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Abstract We classify the polar actions on the complex hyperbolic plane CH2 up to orbit
equivalence. Apart from the trivial and transitive polar actions, there are five polar actions of
cohomogeneity 1 and four polar actions of cohomogeneity 2.
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1 Introduction

Let M be a Riemannian manifold and denote by I (M) its isometry group. A connected
closed subgroup G of I (M) is said to act polarly on M if there exists a connected closed
submanifold � of M that intersects all the orbits of G orthogonally. Thus, for each p ∈ M
the intersection of � and the orbit G · p of G containing p is nonempty, and for all p ∈ �

the tangent space Tp� of � at p is contained in the normal space νp(G · p) of G · p at p.
The submanifold � is called a section of the action.

Polar actions on Riemannian symmetric spaces of compact type are understood reasonably
well, see [8,9,11] for more details. On the other hand, due to the possible noncompactness
of the groups, polar actions on Riemannian symmetric spaces of noncompact type are not
understood except for the real hyperbolic spaces. The purpose of this paper is to classify the
polar actions on the complex hyperbolic plane CH2 up to orbit equivalence. This is the first
complete such classification on a nontrivial Riemannian symmetric space of noncompact

J. Berndt
Department of Mathematics, King’s College London, London, UK
e-mail: jurgen.berndt@kcl.ac.uk

J. C. Díaz-Ramos (B)
Department of Geometry and Topology, University of Santiago de Compostela, Santiago, Spain
e-mail: josecarlos.diaz@usc.es

123



100 Ann Glob Anal Geom (2013) 43:99–106

type. We hope that this investigation will provide further insight into the structure theory of
polar actions.

The complex hyperbolic plane is a Riemannian symmetric space of noncompact type,
namely CH2 = G/K with G = SU (1, 2) and K = S(U (1)U (2)). Denote by o ∈ CH2

the unique fixed point of the K -action on CH2 and by g = k ⊕ p the corresponding Cartan
decomposition of the Lie algebra g of G. Denote by θ ∈ Aut(g) the corresponding Cartan
involution. Let a be a maximal abelian subspace of p and g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α

the corresponding restricted root space decomposition of g. The root space g0 decomposes
into g0 = k0 ⊕ a, where k0 is the centralizer of a in k. The complex structure on CH2 leaves
the root space gα invariant, and therefore gα

∼= C. By gR

α we denote a real form of gα , i.e.,
a real 1D linear subspace of gα .

The subalgebra n = gα ⊕g2α is nilpotent and the action of the connected closed subgroup
N of G with Lie algebra n on CH2 induces a foliation of CH2 by horospheres. On a horo-
sphere, there are two distinguished types of horocycles, those which are generated by a real
form gR

α and those which are generated by g2α . In the first case, the horocycle lies in a totally
geodesic real hyperbolic plane RH2 ⊂ CH2; and in the second case, the horocycle lies in
a totally geodesic complex hyperbolic line CH1 ⊂ CH2. We call such horocycles real and
complex, respectively. The subalgebra n is isomorphic to the Heisenberg algebra, and every
horosphere in CH2 with the induced metric is isometric to the 3D Heisenberg group with a
suitable left-invariant Riemannian metric. The subalgebra gR

α ⊕ g2α of n is abelian and the
orbit through o of the corresponding connected closed subgroup of N is a Euclidean plane
E

2 embedded in the horosphere as a nontotally geodesic minimal surface.

Main Theorem For each of the subalgebras h of su(1, 2) listed below the connected closed
subgroup H of SU (1, 2) with Lie algebra h acts polarly on CH2:

(i) Actions of cohomogeneity 1—the section � is a totally geodesic real hyperbolic line
RH1 ⊂ CH2:

(a) h = k = s(u(1) ⊕ u(2)) ∼= u(2); the orbits are {o} and the distance spheres
centered at o;

(b) h = g−2α ⊕ g0 ⊕ g2α = s(u(1, 1) ⊕ u(1)) ∼= u(1, 1); the orbits are a totally
geodesic complex hyperbolic line CH1 ⊂ CH2 and the tubes around CH1;

(c) h = θ(gR

α )⊕ a ⊕ gR

α
∼= so(1, 2); the orbits are a totally geodesic real hyperbolic

plane RH2 ⊂ CH2 and the tubes around RH2;
(d) h = k0 ⊕ gα ⊕ g2α or h = gα ⊕ g2α; the orbits form a foliation of CH2 by

horospheres;
(e) h = a ⊕ gR

α ⊕ g2α; the orbits form a foliation of CH2; one of its leaves is the
minimal ruled real hypersurface of CH2 generated by a real horocycle in CH2,
and the other leaves are the equidistant hypersurfaces.

(ii) Actions of cohomogeneity 2—the section � is a totally geodesic real hyperbolic plane
RH2 ⊂ CH2:

(a) h = k∩ (g−2α ⊕g0 ⊕g2α) = s(u(1)⊕u(1)⊕u(1)) ∼= u(1)⊕u(1); the orbits are
obtained by intersecting the orbits of the two cohomogeneity 1 actions (a) and
(b) in (i): the action has one fixed point o, and on each distance sphere centered
at o the orbits are two circles as singular orbits and 2D tori as principal orbits;

(b) h = g0; the action leaves a totally geodesic CH1 ⊂ CH2 invariant. On this
CH1 the action induces a foliation by a totally geodesic real hyperbolic line
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RH1 ⊂ CH1 and its equidistant curves in CH1. The other orbits are 2D cylin-
ders whose axis is one of the curves in that CH1;

(c) h = k0 ⊕ g2α; the orbits are obtained by intersecting the orbits of the two coho-
mogeneity 1 actions (b) and (d) in (i): the action leaves a horosphere foliation
invariant, and on each horosphere the orbits consist of a complex horocycle and
the tubes around it;

(d) h = gR

α ⊕ g2α; the orbits are obtained by intersecting the orbits of the two coho-
mogeneity 1 actions (d) and (e) in (i): the action leaves a horosphere foliation
invariant, and on each horosphere the action induces a foliation for which the
minimally embedded Euclidean plane E

2 and its equidistant surfaces are the
leaves.

Every polar action on CH2 is trivial, transitive, or orbit equivalent to one of the polar actions
described above.

The paper is organized as follows. In Sect. 2 we summarize some basic material, and in
Sect. 3 we present the proof of the Main Theorem. The only two interesting cases arise for
cohomogeneity 1 and cohomogeneity 2. The cohomogeneity 1 case was settled in [2], and
the cohomogeneity 2 case for actions without singular orbits in [3]. The main contribution
of this paper to the classification is the analysis of the cohomogeneity 2 case with singular
orbits.

2 Preliminaries

We refer to Berndt et al. [5] for more information. We denote by CH2 = SU (1, 2)/S(U (1)

U (2)) the complex hyperbolic plane with constant holomorphic sectional curvature −1.
Define G = SU (1, 2) and denote by K ∼= S(U (1)U (2)) the isotropy group of G at some
point o ∈ CH2. The Cartan decomposition of g with respect to o is g = k ⊕ p, where g

and k are the Lie algebras of G and K , respectively, and p is the orthogonal complement of
k in g with respect to the Killing form B of g. Let θ be the corresponding Cartan involu-
tion. Then 〈X, Y 〉 = −B(θ X, Y ) defines a positive definite inner product on g that satisfies
〈ad(X)Y, Z〉 = −〈Y, ad(θ X)Z〉 for all X , Y , Z ∈ g. As usual, ad and Ad will denote the
adjoint maps of g and G, respectively. It is customary to identify p with the tangent space
ToCH2.

A maximal abelian subspace a of p is 1D and induces a restricted root space decomposition
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α , where gλ = {X ∈ g: ad(H)X = λ(H)X for all H ∈ a}.
Recall that [gλ, gμ] = gλ+μ, θgλ = g−λ, and g0 = k0 ⊕ a, where k0 = g0 ∩ k. Note that
k0 is isomorphic to u(1) and g2α is 1D. Let n = gα ⊕ g2α , which is a nilpotent subalge-
bra of g isomorphic to the 3D Heisenberg algebra. Then g = k ⊕ a ⊕ n is an Iwasawa
decomposition of g and the connected subgroup AN of G whose Lie algebra is a ⊕ n acts
simply transitively on CH2. We endow AN , and hence a ⊕ n, with the left-invariant metric
〈 · , · 〉AN , and the complex structure J that make CH2 and AN isometric. This implies that
〈X, Y 〉AN = 〈Xa, Ya〉 + 1

2 〈Xn, Yn〉 for X, Y ∈ a ⊕ n ∼= T1 AN , where the subscript means
orthogonal projection. The complex structure J on a⊕n satisfies that Jgα = gα and Ja = g2α .
Let B be a unit vector in a and define Z = J B ∈ g2α . Note that 〈B, B〉 = 〈B, B〉AN = 1,
whereas 〈Z , Z〉 = 2〈Z , Z〉AN = 2. Then

[aB + U + x Z , bB + V + y Z ] = −b

2
U + a

2
V +

(
−bx + ay + 1

2
〈JU, V 〉

)
Z ,
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where a, b, x , y ∈ R, and U , V ∈ gα . Finally, we define pλ = (1 − θ)gλ ⊂ p. Then,
p = a ⊕ pα ⊕ p2α , pα is complex, and p2α is 1D. If i denotes the complex structure of p, we
have i B = 1

2 (1 − θ)Z , and i(1 − θ)U = (1 − θ)JU .

3 Proof of the Main Theorem

For a Riemannian manifold M we denote by I (M) the isometry group of M and by Tp M
the tangent space of M at p ∈ M . If � is a submanifold of M , we denote by νp� the normal
space of � at p ∈ �. For a subgroup H ⊂ I (M) we denote by H · p the orbit of the H -action
on M containing p. We first recall a result from [7].

Proposition 3.1 Let M be a complete connected Riemannian manifold and � be a connected
totally geodesic embedded submanifold of M. A closed subgroup H of I (M) acts polarly on
M with section � if and only if there exists a point o ∈ M such that

(a) To� ⊂ νo(H · o),
(b) the slice representation of Ho on νo(H · o) is polar and To� is a section,
(c) ∇v X∗ ∈ νo� for all v ∈ To� and all X ∈ h, where X∗ denotes the smooth vector field

on M defined by X∗
p = d

dt |t=0 Exp(t X)(p) for each p ∈ M.

We will use a refinement of this result for symmetric spaces of noncompact type. Let
M = G/K be a Riemannian symmetric space of noncompact type, where G = I o(M)

is the connected component of I (M) containg the identity transformation of M and K is the
isotropy subgroup of G at o ∈ M . Let g be the Lie algebra of G, B the Killing form of g, and
θ the Cartan involution of the Cartan decomposition g = k ⊕ p. The inner product defined
by 〈X, Y 〉 = −B(X, θY ) for all X, Y ∈ g is positive definite. We identify To M with p in the
usual way.

Corollary 3.2 Let M = G/K be a Riemannian symmetric space of noncompact type, and
let � be a connected totally geodesic submanifold of M with o ∈ �. A connected closed
subgroup H of I (M) acts polarly on M with section � if and only if To� ⊂ νo(H · o), To�

is a section of the slice representation of Ho on νo(H · o), and

〈[v,w], X〉 = −B([v,w], θ X) = 0 for all v, w ∈ To� ⊂ p and all X ∈ h.

Proof Every totally geodesic submanifold in G/K is embedded. Conditions (a) and (b) of
Proposition 3.1 are satisfied by hypothesis, so we only have to check condition (c). Let
v ∈ To� and X ∈ h. Then, v can be considered as a vector in p ⊂ g, and hence we have
∇v X∗ = [v∗, X∗]o = −[v, X ]∗o = −[v, X ]p, where the subscript means orthogonal projec-
tion onto p (see, for example [12, § IV.6]). Therefore, ∇v X∗ ∈ νo� if and only if for each
w ∈ To� ⊂ p we have 0 = 〈∇v X∗, w〉 = −〈[v, X ]p, w〉 = −〈X, [v,w]〉. ��
Assume that H is a connected closed subgroup of SU (1, 2) acting polarly on CH2, and let �
be a section of the action of H . Since � is totally geodesic, it is congruent to a point, a geo-
desic which we can view as a totally geodesic RH1, a totally geodesic complex hyperbolic
line CH1, a totally geodesic real hyperbolic plane RH2, or the whole complex hyperbolic
plane CH2. Clearly, if � is a point, then the action of H is transitive, and if � is the entire
space, then the action is trivial. So the only possibilities left are RH1, RH2, and CH1.

If � = RH1, then the action of H is of cohomogeneity 1 (and also hyperpolar). coho-
mogeneity 1 actions on complex hyperbolic spaces were classified in [2]. A more geometric
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classification in terms of the constancy of the principal curvatures of a real hypersurface in
CH2 can be found in [1]. This corresponds to item (i) of the Main Theorem.

Therefore, the only remaining possibility for � is to be an RH2 or a CH1, which both have
dimension 2. Hence, from now on we assume that H acts on CH2 with cohomogeneity 2.

If all the orbits of the action of H have the same dimension, then there are no exceptional
orbits and H induces a homogeneous polar foliation of CH2 [6]. Homogeneous polar foli-
ations of complex hyperbolic spaces were classified by the authors in [3]. This corresponds
to case (iid) of the Main Theorem.

Thus, we can assume from now on that the action of H has a singular orbit. For dimen-
sion reasons, this orbit can only be 0D or 1D. Assume first that there is a 0D orbit,
i.e., there is a point o ∈ CH2 that is fixed by the action of H . In this case, the group H
has to be compact. Indeed, let {hn} be a sequence contained in H . Since H fixes o, we have
that {hn(o)} converges to o. Since the group is closed in SU (1, 2), the action of H is proper
and hence, by definition of proper action, {hn} has a convergent subsequence. This shows that
H is compact. In any case, polar actions with a fixed point on CH2 have been classified in
[7, Proposition 12 (ii)]. There are exactly three possibilities up to orbit equivalence: the trivial
action, the isotropy action of S(U (1)U (2)) (which is of cohomogeneity 1), and the action of
S(U (1)U (1)U (1)) ∼= U (1)·U (1), which is of cohomogeneity 2 and corresponds to case (iia)
of the Main Theorem. It is worthwhile to point out at this stage that polar actions with a fixed
point in CH2 correspond to polar actions on CP1. The only nontrivial and nontransitive polar
action on CP1 up to orbit equivalence is the isotropy action of U (1) ∼= S(U (1)U (1)), which
has two fixed points as singular orbits; the rest of the orbits are principal, and in particular
one of its orbits is a totally geodesic RP1 in CP1. This action is orbit equivalent to the action
of SO(2) on CP1.

Finally, let us assume that H has a singular orbit of dimension 1 and no fixed points. Let
h be the Lie algebra of H . Let l be a proper maximal subalgebra of su(1, 2) containing h.
It is known that l is either reductive or parabolic (see [10] or [4, Theorem 3.2] for a more
detailed proof).

Assume first that l is reductive. Then, up to conjugation, l is s(u(1, 1)⊕ u(1)) ∼= su(1, 1),
so(1, 2), or s(u(1) ⊕ u(2)) ∼= u(2). The last possibility corresponds to a compact group
and hence H ⊂ S(U (1)U (2)) would have a fixed point by Cartan’s fixed point theorem,
contradicting our assumption. Then l = su(1, 1) or l = so(1, 2). In both the cases, l has
dimension 3, and the action of L , the connected Lie subgroup of SU (1, 2) whose Lie algebra
is l, is of cohomogeneity 1. Thus, dim h < 3. By the classification of Lie algebras of low
dimension, this implies that h is solvable, and hence it is contained in a Borel subalgebra
b, i.e., a maximal solvable subalgebra of su(1, 2). There are, up to conjugation, exactly two
types of Borel subalgebras in su(1, 2): of maximally compact type, and of maximally non-
compact type. Again, h cannot be contained in a Borel subalgebra of maximally compact type,
because such a subalgebra b is compact and hence H would have a fixed point by Cartan’s
fixed point theorem. Hence h is contained in a Borel subalgebra of maximally noncompact
type. Then, with respect to a suitable Cartan decomposition su(1, 2) = k ⊕ p, and a suitable
maximal abelian subspace a of p, we have b = t ⊕ a ⊕ gα ⊕ g2α . Here t ⊕ a is a Cartan
subalgebra of su(1, 2); a ⊂ p is called is vector part, and t ⊂ k is called the toroidal part. It is
easy to see in this case that t = k0. Hence, b = k0 ⊕ a ⊕ gα ⊕ g2α turns out to be a parabolic
subalgebra. Thus, we may assume from now on that the maximal subalgebra l containing h

is parabolic. Write, as before, this parabolic subalgebra as l = k0 ⊕ a ⊕ gα ⊕ g2α .
Since a subgroup of SU (1, 2) whose Lie algebra is contained in a ⊕ gα ⊕ g2α induces

a foliation on CH2, we conclude that the orthogonal projection of h onto k0 is nonzero.
Moreover, we know that k0 is 1D, and that the orbit of H through the origin o is at most 2D,
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which implies that the orthogonal projection of h onto a⊕gα ⊕g2α is at most 2D. Therefore,
h can be written as h = k0 ⊕ Rξ ⊕ Rη, where ξ , η ∈ a ⊕ gα ⊕ g2α are orthogonal vectors,
or h = R(T + ξ) ⊕ Rη, with T ∈ k0, T = 0, and ξ , η ∈ a ⊕ gα ⊕ g2α . We analyze both
possibilities.

Assume first that h = k0⊕Rξ⊕Rη, where ξ , η ∈ a⊕gα⊕g2α are orthogonal vectors. It fol-
lows from the properties of root spaces, the fact that h is a Lie algebra, and the skew-symmetry
of the elements of ad(k0), that ad(k0)ξ ∈ gα ∩(h�Rξ) = Rη, ad(k0)η ∈ gα ∩(h�Rη) = Rξ .
Since 〈ad(T )ξ, η〉 = −〈ad(T )η, ξ 〉 for each T ∈ k0, ad(k0)ξ and ad(k0)η are both zero, or
both nonzero. If ad(k0)ξ = ad(k0)η = 0, we conclude that ξ , η ∈ a⊕g2α , so h = k0⊕a⊕g2α .
This is not possible because the corresponding group H would act with cohomogeneity 1.
Let us assume then that ad(k0)ξ and ad(k0)η are both nonzero. Hence, Rξ ⊕ Rη ⊂ gα , and
since they are orthogonal and gα is 2D, it follows that h = k0 ⊕ gα . This is not possible
because k0 ⊕ gα is not a Lie algebra.

In order to deal with the second possibility we start first with

Lemma 3.3 Assume h = R(T + ξ) ⊕ Rη, with 0 = T ∈ k0 and ξ , η ∈ a ⊕ gα ⊕ g2α . Then
h can be written in one of the following forms:

(a) 0 = ξ ∈ gα and 0 = η ∈ g2α , or
(b) ξ = 0 and 0 = η ∈ a ⊕ g2α , or
(c) ξ = [T, Y ] + Z and η = 2B + Y + d Z, where d ∈ R and 0 = Y ∈ gα such that

[[T, Y ], Y ] = 2Z.

Proof Write ξ = aB + X + bZ , and η = cB + Y + d Z , with a, b, c, d ∈ R, and X , Y ∈ gα .
We may assume that 〈X, Y 〉 = 0.

First of all, by the algebraic properties of root spaces, [T + ξ, η] ∈ (gα ⊕ g2α) ∩ h ⊂ Rη.
We can therefore write λη = [T + ξ, η] for some λ ∈ R. Inserting the above expres-
sions for ξ and η, and taking the components of the resulting expression in a, gα and g2α

we get

λc = 0, (1)

λY = a

2
Y − c

2
X + [T, Y ], (2)

λd = ad − bc + 1

2
〈[X, Y ], Z〉. (3)

We consider the two cases Y = 0 and Y = 0 separately.

Case 1 Y = 0.
If λ = 0, Eq. (3) with Y = 0 says that ad − bc = 0, and hence the vectors aB + bZ

and cB + d Z are linearly dependent, so we can write h = R(T + X) ⊕ R(cB + d Z). Now,
from (2) we get cX = 0. If c = 0 then h = R(T + X) ⊕ g2α and we are in case (a), whereas
if X = 0 we are in case (b).

If λ = 0, we get c = 0 from (1) and therefore we can write h = R(T + aB + X) ⊕ g2α .
It is obvious that in this case the orbit H · o is 2D. Hence, if � is a section of the action
with o ∈ �, we must have To� = {v ∈ p : 〈v, ξ 〉 = 〈v, η〉 = 0}. For X = 0 we have
To� = pα , and Corollary 3.2 implies 0 = 〈Z , [(1 − θ)U, (1 − θ)JU ]〉 = 〈Z , [U, JU ]〉 =
‖U‖2 for all U ∈ gα , which is impossible. Therefore we must have X = 0, and then
To� = R((1 − θ)J X) ⊕ R(−‖X‖2 B + a(1 − θ)X). Since � is totally geodesic, To� is
either real or complex, and this can happen only if a = 0, which implies case (a).
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Case 2 Y = 0.
As X and Y are orthogonal and [T, Y ] is orthogonal to Y , Eq. (2) implies λ = a

2 and
[T, Y ] = c

2 X . Since the connected subgroup K0 ∼= U (1) of S(U (1)U (2)) with Lie algebra
k0 acts transitively on the unit circle in gα , it follows that [T, Y ] = 0 and hence also c = 0
and X = 0. From (1), we get λ = 0 (which implies that h is abelian) and thus also a = 0,
and from (3) we then get 〈[X, Y ], Z〉 = 2bc. Since X, Y = 0 and dim gα = 2 we also get
b = 0. Finally, since b, c = 0 we can renormalize T and Y so that b = 1 and c = 2, thus
getting (c). ��

The next step is to show that the actions arising from Lemma 3.3 are orbit equivalent to
the actions described in items (iib) or (iic) of the Main Theorem. We have three different
possibilities:

(a) h = R(T + X) ⊕ g2α with 0 = T ∈ k0 and 0 = X ∈ gα . Since T = 0 and
ad(T ) is skewsymmetric, we have [T, [T, X ]] = −ρX for some ρ > 0. We define
g = Exp(− 1

ρ
[T, X ]) ∈ G. Then we get Ad(g)Z = Z and, since [[T, X ], T + X ] =

ρX + [[T, X ], X ],
Ad(g)(T + X)=T +X −X − 1

ρ
[[T, X ], X ]+ 1

2ρ
[[T, X ], X ]=T − 1

2ρ
[[T, X ], X ].

Since [[T, X ], X ] ∈ g2α this implies Ad(g)(h) = k0 ⊕ g2α . It follows that the action is
conjugate to the one in (iic) of the Main Theorem.

(b) h = k0 ⊕ R(aB + bZ) with a, b ∈ R, a = 0 or b = 0. If a = 0 we get h = k0 ⊕ g2α ,
which is case (iic) of the Main Theorem. Thus we can assume a = 0. In this case we
define g = Exp( b

a Z). Since [k0, g2α] = 0 we get Ad(g)k0 = k0, and since [B, Z ] = Z
we get Ad(g)(aB + bZ) = aB. Altogether this implies Ad(g)h = k0 ⊕ a = g0, and
therefore the action is conjugate to the one in (iib) of the Main Theorem.

(c) h = R(T + [T, Y ] + Z) ⊕ R(2B + Y + d Z) with d ∈ R, 0 = T ∈ k0 and 0 = Y ∈ gα

such that [[T, Y ], Y ] = 2Z .
We define g = Exp(Y + d

2 Z). Then

Ad(g)(T + [T, Y ] + Z) = T + [T, Y ] + Z + [Y, T ] + [Y, [T, Y ]] + 1

2
[Y, [Y, T ]] = T,

Ad(g)(B + Y + d Z) = 2B + Y + d Z + 2[Y, B] + d[Z , B] = 2B,

and therefore Ad(g)h = k0 ⊕ a = g0. Consequently, the action is conjugate to the one
in (iib) of the Main Theorem.

Altogether we have proved

Proposition 3.4 Assume that H acts polarly and without fixed points on CH2 with coho-
mogeneity 2 and with a 1D singular orbit. Then the Lie algebra of H is conjugate to g0 or
k0 ⊕ g2α .

In order to finish the proof of the Main Theorem it remains to show that the actions of the
groups whose Lie algebras are g0 or k0 ⊕ g2α are indeed polar. We use the criterion given in
Corollary 3.2.

Case 1 H is the connected Lie subgroup of SU (1, 2) whose Lie algebra is h = g0

We consider the submanifold � = expo(s) with s = (1−θ)(gR

α ⊕g2α). Here, expo denotes
the exponential map ToCH2 → CH2, and we are identifying ToCH2 with p as usual. It is
clear that s is a real subspace of p, and hence � is a totally geodesic real hyperbolic plane
RH2 ⊂ CH2.
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Obviously, To� = s ⊂ pα ⊕ p2α = νo(H · o). If K0 ∼= U (1) denotes the connected Lie
group of SU (1, 2) whose Lie algebra is k0 ∼= u(1), the slice representation of H at o is the
representation of K0 on pα ⊕ p2α , which is equivalent to the sum of the standard represen-
tation of U (1) on pα

∼= C, and the trivial representation on p2α
∼= R. Thus, s is a section of

the slice representation. Since [s, s] = (1 + θ)[θgR

α , g2α] ⊂ g−α ⊕ gα , which obviously is
perpendicular to g0 = h, it now follows from Corollary 3.2 that the action of H on CH2 is
polar.

Case 2 H is the connected Lie subgroup of SU (1, 2) whose Lie algebra is h = k0 ⊕ g2α

In this case, we consider � = expo(s) with s = a ⊕ (1 − θ)(gR

α ). Again, s is a real
subspace of p and � is a totally geodesic RH2 ⊂ CH2. Moreover, we have To� = s ⊂
a ⊕ pα = νo(H · o), and the slice representation of H at o is the representation of K0 on
a ⊕ pα , which is equivalent to the sum of the standard representation of U (1) on pα

∼= C,
and the trivial representation on a ∼= R. Therefore, s is a section of the slice representation.
Finally, [s, s] = (1 + θ)gR

α ⊂ g−α ⊕ gα is orthogonal to h = k0 ⊕ g2α , and thus it follows
from Corollary 3.2 that the action of H on CH2 is polar.

Altogether we have proved the Main Theorem.
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