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Abstract We extend short-time existence and stability of the Dirichlet energy flow as
proven in a previous article by the authors to a broader class of energy functionals. Further-
more, we derive some monotonely decreasing quantities for the Dirichlet energy flow and
investigate an equation of soliton type. In particular, we show that nearly parallel G2-struc-
tures satisfy this soliton equation and study their infinitesimal soliton deformations.

Keywords G2-manifolds · Geometric evolution equations

1 Introduction

In the quest for ‘special’ metrics, variational principles play an important rôle. A prominent
example is the total scalar curvature functional on the space of Riemannian metrics, whose
critical points are Ricci-flat metrics. In this article, we consider various functionals defined
on �3+(M), the space of positive 3-forms on a compact, seven-dimensional spin manifold
M . These forms are sections of the fibre bundle �3+T ∗M → M whose fibre is the open
orbit GL(7)+/G2 of GL(7)+ acting on �3

R
7∗. Furthermore, such a section � induces a

Riemannian metric g� on M . We also refer to � as a G2-structure on M . The importance
of this notion stems from the fact the only (irreducible) odd-dimensional instance of special
holonomy comes from metrics of the form g�. A central problem is to find conditions which
ensure the existence of a holonomy G2-metric provided necessary topological conditions are
met. Such a theorem would yield an analogue of Yau’s celebrated theorem [18] which asserts
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the existence of a metric with holonomy SU(m) on a Kähler manifold M2m whose first Chern
class vanishes.

The quantity we seek to extremalise is the intrinsic torsion of a positive 3-form � which
can be thought of as an endomorphism of T M (cf. Sect. 2 for a definition). To see what this
means concretely we recall that by a result of Fernández and Gray [9], � is torsion-free,
i.e. its intrinsic torsion vanishes, if and only if d� = 0 and δ�� = 0 (here, δ� denotes
the codifferential induced by g�). This, in turn, is equivalent for the holonomy of g� to be
contained in G2. In [17] we show that the critical points of the Dirichlet energy functional

D : �3+(M) → R, � �→ 1

2

∫

M

(|d�|2� + |δ��|2�
)

vol�

(with vol� = � ∧ ���/7) are precisely the torsion-free forms. Since these are absolute
minimisers of D, it is natural to consider the negative gradient flow

∂

∂t
�t = −grad D(�t ) =: Q(�t ) (DF)

for t ∈ [0, T ), subject to some initial condition �0 ∈ �3+(M). Here, −grad denotes the
negative L2-gradient determined by D�D(�̇) = −〈Q(�), �̇〉� = − ∫

M Q(�) ∧ ���̇ for
all �̇ ∈ �3(M). The principal results of [17] are these:

Theorem 1.1 (Short-time existence) The Dirichlet energy flow ∂t�t = Q(�t ) has a unique
short-time solution for any initial condition �0 ∈ �3+(M).

In particular, for any initial condition, there exists a unique solution to (DF) on a maximal
time interval [0, Tmax) where Tmax ∈ (0,∞].
Theorem 1.2 (Stability) Let �̄ ∈ �3+(M) be torsion-free. Then for any initial condition
sufficiently close to �̄ in the C∞-topology, the Dirichlet energy flow exists for all times and
converges modulo diffeomorphisms to a torsion-free G2-structure.

In this article, we analyse the flow (DF) further. Firstly, we derive various monoton-
ely decreasing quantities. In particular, we show that the W 1,2-Sobolev norm ‖�t‖2

W 1,2
�t

is

bounded by a monotonely decreasing bound Ct . Moreover, d
dtCt = 0 if and only if �t is

torsion-free. The proof involves the functional

C(�) = 1

2

∫

M

|∇��|2� vol�,

where ∇� is the Levi–Civita connection induced by g�. Its critical points are again the tor-
sion-free positive forms, and the associated negative gradient flow has properties very similar
to (DF). In fact, both D and C are special instances of a whole family of energy functionals.
To discuss these in general, we first recall that any � ∈ �3+(M) induces a G2-decomposi-
tion of p-forms �p = ⊕q�

p
q into irreducible modules, where q is the rank of the module.

The corresponding module of sections will be denoted by �
p
q (M) (this is analogous to the

decomposition into (p, q)-forms over an almost-complex manifold). For example,

�2 = �2
7 ⊕ �2

14 and �3 = �3
1 ⊕ �3

7 ⊕ �3
27. (1)

Of course, �3
1 is spanned by the invariant form �. Furthermore, �1 is irreducible. Since the

induced Hodge-star operator �� is a G2-equivariant isomorphism �p → �7−p , we imme-
diately get the decomposition of �p for p = 4, 5 and 6. In particular, we can decompose
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d� and d �� � into irreducible components. Using various G2-equivariant isomorphisms,
we can write

d� = τ0 �� � + 3τ1 ∧ � + ��τ3 (2)

and

d �� � = 4τ1 ∧ ��� + τ2 ∧ � (3)

(see e.g. Proposition 1 in [5]) for uniquely determined torsion forms τ0 ∈ �0
1(M), τ1 ∈

�1
7(M), τ2 ∈ �2

14(M) and τ3 ∈ �3
27(M). These forms depend on � and can be thought of

as maps from �3+(M) to �
p
q . The τk(�) vanish identically for all k if and only if � is closed

and coclosed, that is, if � is torsion-free. Note in passing that it is not obvious that τ1 appears
twice in both d� and d �� �, cf. [4]. Here, this will be a consequence of a Bianchi-type
identity for �, see the remark after Lemma 3.3. We now define the energy functionals

Dν :=
3∑

i=0

νi Di

with

Di (�) := 1

2

∫

M

|τi |2� vol� .

and ν = (ν0, ν1, ν2, ν3) ∈ R
4. If ν ∈ R

4+, that is, all entries in ν are positive, then we can
prove Theorems 1.1 and 1.2 for the generalised Dirichlet energy flow

∂

∂t
�t = Qν(�t ), (DFv)

see Theorems 2.9 and 2.10. The flow (DF) is just the special case for ν = (7, 84, 1, 1).
However, we shall write D and Q for Dν and Qν in this case to be consistent with [17].

To obtain concrete solutions to (DFv), we consider the equation

Qν(�0) = μ0�0 + LX0�0

for some real constant μ0 and vector field X0 (with LX0 the Lie derivative along X0). In
analogy with Ricci-flow, we call this the Dν-soliton equation. A D-soliton, where D is the
original Dirichlet energy functional, will be simply called a G2-soliton. For a Dν-soliton �0

as initial condition, the solution to (DFv) has the form �t = μ(t)�0 with μ(t) ↘ 0 as
t ↗ Tmax, and so becomes singular. As in the Ricci-flow case, one expects G2-solitons to
play a major rôle in the study of finite time singularities. We first show that any G2-soliton
is necessarily of the form Q(�) = μ�. This is precisely the condition to be a critical point
for D subject to the constraint that the total volume

∫
M vol� equals 1. Furthermore, any such

G2-soliton is either steady, i.e. μ0 = 0, in which case the flow is constant and thus exists
trivially for all times, or shrinking, i.e. μ0 < 0. In this case, the flow collapses in finite time.
Our main result is that nearly parallel G2-structures (i.e. G2-structures for which all torsion
forms but τ0 vanish) are G2-solitons in the sense above (cf. Theorem 4.1). For example, the
7-sphere with the round metric is nearly parallel. In general, nearly parallel G2-structures
induce Einstein metrics with positive Einstein constant. However, we do not know whether
a soliton is necessarily of this type. Finally, we investigate the premoduli space of G2-sol-
iton deformations at a nearly parallel G2-structure. As in the Einstein case, we can prove
that the premoduli space is a real-analytic subset of some finite-dimensional real analytic
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submanifold (cf. Theorem 5.7). Any infinitesimal Einstein deformation of a nearly parallel
G2-structure gives an infinitesimal soliton deformation, but again we do not know whether
the converse holds.

1.1 Conventions

(i) In this article, we shall only encounter irreducible G2-representation spaces of dimension
equal or less than 27. In this range, an irreducible G2-representation is uniquely determined
by its dimension q . For instance, the space of symmetric 2-tensors �2

R
7∗ can be decom-

posed into the line spanned by the identity and the 27-dimensional irreducible space of
tracefree 2-tensors �2

0R
7∗, which is thus isomorphic to �3

27R
7∗. Consequently, the module

of endomorphisms can be decomposed into

R
7∗ ⊗ R

7∗ = �2
R

7∗ ⊕ �2
R

7∗ = �3
0 ⊕ �3

27 ⊕ �3
7 ⊕ �2

14. (4)

We denote projection onto irreducible components by [ · ]q . For example, a 3-form �̇ ∈
�3(M) can be decomposed into �̇ = [�̇]1 ⊕ [�̇]7 ⊕ [�̇]27 and an endomorphism Ȧ into
[ Ȧ]1 ⊕ [ Ȧ]7 ⊕ [ Ȧ]14 ⊕ [ Ȧ]27.

(ii) If F : �3+(M) → E is a smooth map between Fréchet spaces, then we often write
Ḟ� for D�F(�̇), the linearisation of F at � evaluated in �̇ ∈ �3(M). For example, for the
map 	 : �3+(M) → �4(M) which sends � to 	(�) = ���, we get

	̇� = �� p�(�̇) (5)

with

p�(�̇) = 4

3
[�̇]1 + [�̇]7 − [�̇]27.

Another example is Q : �3+(M) → �3(M), the negative gradient of D, given by

Q(�) = −δ�d� − p�(dδ��) − q�(∇��), (6)

where q� is determined by the identities

〈�̇, q�(∇��)〉� = 1

2

(〈�̇�d�, ��d�〉� + 〈�̇�d �� �, ��d �� �〉�
)

(7)

to hold for all �̇ ∈ �3(M).

2 The Dirichlet energy and the Hitchin functional

2.1 The torsion forms of a positive 3-form

Recall that ∇�� is a section of �1 ⊗ �3
7 and hence may be written as ∇�� = T (�) for a

uniquely determined tensor field T ∈ 
(�1 ⊗ �2
7), the intrinsic torsion of the G2-structure

(cf. for example [5]). Here the �2
7 factor of T acts, seen as an element in �2 ∼= so(7), the Lie

algebra of SO(7), equivariantly in the standard way on � and gives an element in �3
7. The

module �1
7 ⊗ �3

7 decomposes as �0
1 ⊕ �1

7 ⊕ �2
14 ⊕ �3

27 into G2-irreducible ones. Hence

∇�� = ξ1 + ξ7 + ξ14 + ξ27,
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where ξi denotes the projection of ξ := ∇�� onto the corresponding irreducible summand.
The ξk are thus the irreducible components of the intrinsic torsion T under the embedding
T �→ T (�).

Proposition 2.1 Let � ∈ �3+(M) be a positive 3-form. Then the following holds:
(i) One has

|d�|2� = 7τ 2
0 + 36|τ1|2� + |τ3|2�

and

|δ��|2� = 48|τ1|2� + |τ2|2�.

In particular,

|d�|2� + |δ��|2� = 7τ 2
0 + 84|τ1|2� + |τ2|2� + |τ3|2�. (8)

(ii) One has

|∇��|2� = 7

4
τ 2

0 + 24|τ1|2� + 2|τ2|2� + 2|τ3|2�. (9)

Proof (i) Clearly

|d�|2� = τ 2
0 | ���|2� + 9|τ1 ∧ �|2� + |τ3|2�,

which using |���|2� = |�|2� = 7 and |τ1 ∧ �|2� = 4|τ1|2� (cf. for instance Eq. (15) in [17])
yields the first equation. Similarly,

|δ��|2� = |d �� �|2� = 16|τ1 ∧ ���|2� + |τ2 ∧ �|2�
as |τ1 ∧ ���|2� = 3|τ1|2� (cf. Eq. (15) in [17]) and |τ2 ∧ �|2� = |τ2|2�, for �2

14 = {α ∈
�2 | α ∧ � = − �� α}.

(ii) Let ε : �1 ⊗ �k → �k+1 and ι : �1 ⊗ �k → �k−1 denote exterior resp. interior
multiplication. Then d� = ε(ξ) and δ�� = −ι(ξ). Since ε and ι are GL-equivariant, one
has more precisely

d� = ε(ξ1) + ε(ξ7) + ε(ξ27)

and

δ�� = −ι(ξ7) − ι(ξ14).

We need to calculate the length distortion of the maps ξ and ι on the irreducible summands.
We claim that

|ε(ξ1)|2� = 4|ξ1|2�, |ε(ξ7)|2� = 3

2
|ξ7|2�, |ε(ξ27)|2� = 1

2
|ξ27|2�

and

|ι(ξ7)|2� = 2|ξ7|2�, |ι(ξ14)|2� = 1

2
|ξ14|2�.

To establish these we consider the map f : �1 ⊗�1 → �1 ⊗�3
7 which to v⊗w assigns v⊗

(w����). The module of symmetric endomorphisms �2 which is spanned by v⊗w+w⊗v

can be decomposed into the tracefree endomorphisms �2
0 and multiples of the identity. A

(GL(7)-)equivariant projection π0 : �2 → �2
0 is given by π0(a) = a − Tr(a)Id/7. We want

to compute |ε( f (π0(a)))|2 and | f (π0(a))|2 for a ∈ �2. It suffices to do this for elements
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of the form ei ⊗ e j + e j ⊗ ei for some orthonormal basis e1, . . . , e7 of �1. Furthermore,
since G2 acts transitively on pairs of orthonormal vectors, we need to consider the element
e1 ⊗ e2 + e2 ⊗ e1 only, which is already in �2

0. Thus,

| f (e1 ⊗ e2 + e2 ⊗ e1)|2 = |e1 ⊗ (e2����) + e2 ⊗ (e1����)|2 = 8

while

|ε( f (e1 ⊗ e2 + e2 ⊗ e1))|2 = |e1 ∧ (e2����) + e2 ∧ (e1����)|2 = 4,

whence the distortion factor 1/2 as claimed above. In the same vein, consider the projection
π2

14 : �2 → �2
14 given by π2

14(α) = (2α − ��(α ∧ �))/3. Then

| f (e1 ⊗ e2 − e2 ⊗ e1)|2 = |e1 ⊗ (e2����) − e2 ⊗ (e1����)|2 = 8

and

|ι( f (e1 ⊗ e2 − e2 ⊗ e1))|2 = |e1�(e2����) − e2�(e1����)|2 = 4,

giving again the distortion factor 1/2. Either by proceeding as before or by using the transi-
tivity of G2 on the sphere of its vector representation we deduce the remaining coefficients.
Therefore

|d�|2� = 4|ξ1|2� + 3

2
|ξ7|2� + 1

2
|ξ27|2�

and

|δ��|2� = 2|ξ7|2� + 1

2
|ξ14|2�.

Comparing this with the formulæ (2) and (3) we get:

|ξ1|2� = 7

4
τ 2

0 , |ξ7|2� = 24|τ1|2�, |ξ14|2� = 2|τ2|2�, |ξ27|2� = 2|τ3|2�.

Since clearly

|∇��|2� = |ξ1|2� + |ξ7|2� + |ξ14|2� + |ξ27|2�
the result follows. ��
Remark The previous proposition provides an alternative proof of the result of Fernández
and Gray mentioned in the introduction: For � ∈ �3+(M) one has ∇�� = 0 if and only if
d� = δ�� = 0, since both equations are equivalent to τ0 = τ1 = τ2 = τ3 = 0. By standard
holonomy theory, ∇�� = 0 is equivalent to g� having holonomy contained in G2.

2.2 Monotone quantities

For any smooth family �t , we can write

∂t�t = 3 ft�t + ��t (αt ∧ �t ) + γt

for uniquely determined quantities ft ∈ C∞(M), αt ∈ �1(M) and γt ∈ �3
27,�t

(M) depend-
ing smoothly on t . These are called the deformation forms of �t . In particular, the evolution
of the associated volume form is given by

∂t vol�t = 7 ft vol�t ,
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see e.g. [5]. For a solution �t to (DF), we have

g�t (Q(�t ),�t ) = 3 ft g�t (�t ,�t ) = 21 ft

and hence

∂t vol�t = 1
3 g�t (Q(�t ),�t ) vol�t . (10)

Alternatively, use that the differential of the map φ : �3+ → �7 sending � to vol� is given
by

D�φ(�̇) = 1
3 �̇ ∧ ���, (11)

cf. [12]. The Hitchin functional is defined by

H : �3+(M) → R, � �→
∫

M

vol�,

i.e. it associates with � ∈ �3+(M) its total volume. We find that the value of the Hitchin
functional is monotone and convex along a solution to the Dirichlet energy flow:

Proposition 2.2 If (�t )t∈[0,T ) is a solution to (DF), then

d

dt
H(�t ) ≤ 0 and

d2

dt2 H(�t ) ≥ 0

for all t ∈ [0, T ). Further, d
dt

∣∣
t=t0

H(�t ) = 0 if and only if �t0 is torsion-free.

Proof Using Eq. (10) we get

d

dt
H(�t ) =

∫

M

∂

∂t
vol�t

= 1

3

∫

M

g�t (Q(�t ),�t ) vol�t

= − 1
3 D�t D(�t )

Since D is positively homogeneous, i.e. D(λ�) = λ5/3D(�) for λ > 0, one has D�D(�) =
5
3D(�) by Euler’s formula, cf. the proof of Corollary 4.3 in [17]. Hence

d

dt
H(�t ) = − 5

9D(�t ) ≤ 0 (12)

with equality if and only if �t is torsion-free. Furthermore,

d2

dt2 H(�t ) = − 5
9 D�t D(Q(�t )) = 5

9‖Q(�t )‖2
�t

which is always non-negative. ��
Equation (12) has the following noteworthy consequence for a long-time solution to the
Dirichlet energy flow: Suppose that �t is a solution to (DF) on [0,∞). Then, since D(�t )

is monotonely decreasing, the limit

D∞ := lim
t→∞ D(�t ) ≥ 0

exists. In fact, we have
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Corollary 2.3 If (�t )t∈[0,∞) is a solution to (DF), then D∞ = 0.

Proof Assume to the contrary that D∞ > 0. Then D(�t ) ≥ D∞ > 0 for all t ∈ [0,∞).
Hence, by Eq. (12), d

dt
H(�t ) ≤ − 5

9D∞ < 0 for all t , and therefore

H(�t ) ≤ H(�0) − 5

9
D∞t.

In particular, H(�t ) becomes negative in finite time. Contradiction! ��

Remark As an example communicated to us by Joel Fine shows, long-time existence is not
sufficient to imply convergence to a critical point (cf. Fine, Pers. commun.). It is obtained
by restricting the Dirichlet energy functional D to the space of SO(4)-invariant forms on
R

4 × SO(3). Using Lemma 3.1, the flow equations can be reduced to a system of nonlinear
ODEs which can be explicitly solved and whose solutions project down to T 4 × SO(3). This
is related to the failure of the Dirichlet energy functional to satisfy the Palais–Smale condi-
tion. If, however, limt→∞ �t = �∞ ∈ �3+(M), say w.r.t. the C1-topology, then Corollary
2.3 suffices to conclude that �∞ is torsion-free.

As for the Dirichlet energy functional, we may set

H∞ := lim
t→∞ H(�t ) ≥ 0

for a solution �t to (DF) on [0,∞). Here two cases may occur:

(1) H∞ > 0
(2) H∞ = 0

A prototypical example for the first case is a solution converging to a torsion-free G2-struc-
ture as t → ∞. Such solutions exist as a consequence of Theorem 1.2, our stability result
for the Dirichlet energy flow. A solution fitting into the second case is provided by Fine’s
example (cf. Fine, Pers. commun.).

A further consequence of Eq. (12) is that the value of the Hitchin functional decays at
most linearly along a solution to the Dirichlet energy flow:

Corollary 2.4 If (�t )t∈[0,T ) is a solution to (DF), then

H(�0) ≥ H(�t ) ≥ H(�0) − 5
9 D(�0)t

for all t ∈ [0, T ). In particular, for all ε > 0 there exists δ > 0 such that H(�t ) ≥ δ for all
t ∈ [0, t0 − ε] with t0 = min{T, 9

5
H(�0)
D(�0)

}.

Proof Since the Dirichlet energy flow is the negative gradient flow of D, one clearly has

d

dt
D(�t ) ≤ 0

for all t ∈ [0, T ), in particular D(�t ) ≤ D(�0). Hence by Eq. (12)

d

dt
H(�t ) ≥ −5

9
D(�0),

and the claim follows by integration. ��
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Remark If one knew exponential decay of D(�t ) for a solution to (DF) on [0,∞) before-
hand, then H(�t ) would be bounded from below: Assuming D(�t ) ≤ Ce−λt for constants
C, λ > 0 and using Eq. (12) once again, one gets

H(�t ) ≥ H(�0) − 5

9

t∫

0

Ce−λτ dτ

= H(�0) − 5

9

C

λ
(1 − e−λt )

≥ H(�0) − 5

9

C

λ

for all t ∈ [0,∞). This would be particularly useful if one could choose C and λ in such a
way that δ := H(�0) − 5

9
C
λ

> 0.

In [5] it is shown that the scalar curvature of the metric g� is given by

sg� = 12δ�τ1 + 21

8
τ 2

0 + 30|τ1|2� − 1

2
|τ2|2� − 1

2
|τ3|2�

(cf. (4.28) loc. cit.). Thus, by Stokes’ theorem, the total scalar curvature

S(�) :=
∫

M

sg� vol�

of g� is given by

S(�) =
∫

M

(21

8
τ 2

0 + 30|τ1|2� − 1

2
|τ2|2� − 1

2
|τ3|2�

)
vol� . (13)

On the other hand, by Proposition 2.1, we have

D(�) =
∫

M

(7

2
τ 2

0 + 42|τ1|2� + 1

2
|τ2|2� + 1

2
|τ3|2�

)
vol� .

Comparing coefficients immediately yields

Lemma 2.5 Let � ∈ �3+(M) be a positive 3-form. Then |S(�)| ≤ D(�).

Using the monotonicity of D and Corollary 2.3 we obtain

Corollary 2.6 The absolute value of the total scalar curvature S(�t ) is bounded by a mono-
tonely decreasing quantity along a solution (�t )t∈[0,T ) to (DF). If �t is defined on [0,∞),
then limt→∞ S(�t ) = 0.

If we define

C(�) := 1

2

∫

M

|∇��|2� vol�,
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then we get from Eqs. (8) and (9)

C(�) =
∫

M

(7

8
τ 2

0 + 12|τ1|2� + |τ2|2� + |τ3|2�
)

vol�

= D(�) +
∫

M

(
−21

8
τ 2

0 − 30|τ1|2� + 1

2
|τ2|2� + 1

2
|τ3|2�

)
vol�

= D(�) − S(�).

Furthermore, we remark that

2C(�) + 7H(�) = ‖�‖2
W 1,2

�

,

whence

0 ≤ ‖�‖2
W 1,2

�

≤ 4D(�) + 7H(�) ≤ 8‖�‖2
W 1,2

�

.

In particular, we find along a solution to the Dirichlet energy flow

Proposition 2.7 Let (�t )t∈[0,T ) be a solution to (DF). Then

‖�t‖2
W 1,2

�t

≤ Ct ≤ C0

for the monotonely decreasing bound Ct := 4D(�t ) + 7H(�t ). Furthermore, one has
d
dt

∣∣
t=t0

Ct = 0 if and only if �t0 is torsion-free.

Proof The first assertion follows directly from the discussion above. Secondly, d
dtCt =

4 d
dtD(�t ) + 7 d

dtH(�t ) ≤ 0 with equality if and only if d
dtD(�t ) = 0 and d

dtH(�t ) = 0,
whence the result by Proposition 2.2. ��
2.3 The generalised Dirichlet energy flow

The energy functionals D and C considered above are special instances of the functional

Dλ :=
3∑

i=0

νi Di

with

Di (�) := 1

2

∫

M

|τi |2� vol�

and ν = (ν0, ν1, ν2, ν3) ∈ R
4. More specifically, one has

D = 7D0 + 84D1 + D2 + D3

and

C = 7

4
D0 + 24D1 + 2D2 + 2D3.

We call the functional Dν the generalised Dirichlet energy functional associated with the
parameter ν ∈ R

4. The aim of this section is to further analyse this family of functionals. In
particular, we prove generalised versions of Theorems 1.1 and 1.2 for Dν for ν ∈ R

4+.
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Set Qi (�) := −grad Di (�), i = 0, 1, 2, 3 and Qν(�) := −grad Dν(�) for ν ∈ R
4.

The functional Dν shares the same basic properties with D: It is Diff(M)+-invariant and

positively homogeneous, i.e. Dν(μ�) = μ
5
3 Dν(�) for μ ∈ R+.

Next we consider the negative gradient flow of the generalised Dirichlet energy functional

∂

∂t
�t = Qν(�t ) (DFv)

for ν ∈ R
4, subject to some initial condition �0 ∈ �3+(M). We call the flow equation (DFv)

the generalised Dirichlet energy flow.
For ν ∈ R

4+, the generalised Dirichlet energy flow behaves much like the ordinary
Dirichlet energy flow. In this case, Euler’s formula implies as for Q (corresponding to D)
that Qν(�) = 0 holds if and only if � is torsion-free. As a first result, we have

Lemma 2.8 The flow equation (DFv) is weakly parabolic for ν ∈ R
4≥0, i.e.

−g�(σ(D�Qν)(x, ξ)�̇, �̇) ≥ 0

for all x ∈ M, ξ ∈ T ∗
x M and �̇ ∈ �3T ∗

x M.

Proof According to Proposition 2.1 one has

|[d�]1|2� = 7τ 2
0 , |[d�]7|2� = 36|τ1|2�, |[d�]27|2� = |τ3|2�

and

|[δ��]7|2 = 48|τ1|2�, |[δ��]14|2 = |τ2|2�.

Therefore

7 · D0(�) = 1

2

∫

M

|[d�]1|2� vol�,

36 · D1(�) = 1

2

∫

M

|[d�]7|2� vol�,

D3(�) = 1

2

∫

M

|[d�]27|2� vol�

and

48 · D1(�) = 1

2

∫

M

|[δ��]7|2� vol�, D2(�) = 1

2

∫

M

|[δ��]14|2� vol� .

Linearising as in [17] we get

−σ(D�Q0)(x, ξ)�̇ = 1

7
ξ�[ξ ∧ �̇]1, −σ(D�Q1)(x, ξ)�̇ = 1

36
ξ�[ξ ∧ �̇]7,

−σ(D�Q2)(x, ξ)�̇ = p�(ξ ∧ [ξ�p��̇]14), −σ(D�Q3)(x, ξ)�̇ = ξ�[ξ ∧ �̇]27.

Now for k = 1, 7, 27 we have for ξ ∈ T ∗
x M

g�(ξ�[ξ ∧ �̇]k, �̇) = |[ξ ∧ �̇]k |2� ≥ 0
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and for k = 14

g�(p�(ξ ∧ [ξ�p��̇]14), �̇) = |[ξ�p��̇]14|2� ≥ 0.

Since D�Qν = ∑3
i=0 νi D�Qi , the result follows. ��

Breaking the diffeomorphism invariance one gets:

Theorem 2.9 The generalised Dirichlet energy flow ∂t�t = Qν(�t ) has a unique short-time
solution for ν ∈ R

4+ and any initial condition �0 ∈ �3+(M).

Proof We employ DeTurck’s trick as in [17]. Given some background G2-structure �̄ ∈
�3+(M) (e.g. the initial condition �0) we consider the vector field

X (�) = −(δ�̄�)��̄.

For ε(ν) = mini=0,1,2,3 νi/36, we set �(�) := LX (�)� and

Q̃ν(�) := Qν(�) + ε(ν)�(�).

Then, D� Q̃ν = D�Qν + ε(ν)D��. For ξ ∈ T ∗
x M with |ξ |� = 1, we find that

−g�(σ(D�Qν)(x, ξ)�̇, �̇) = −
3∑

i=0

νi g�(σ(D�Qi )(x, ξ)�̇, �̇)

≥ −ε(ν)g�(σ(D�Q)(x, ξ)�̇, �̇)

and hence

− g�(σ(D� Q̃ν)(x, ξ)�̇, �̇)

≥ − ε(ν)g�(σ(D�Q)(x, ξ)�̇, �̇) − ε(ν)g�(σ(D��)(x, ξ)�̇, �̇)

= − ε(ν)g�(σ(D� Q̃)(x, ξ)�̇, �̇) ≥ ε(ν)|�̇|2�,

where the last line follows from Lemma 5.7 in [17].
This shows that the flow equation ∂t �̃t = Q̃ν(�̃t ) is strongly parabolic. Standard methods,

see for instance [16], now yield a unique short-time solution �̃t . A short-time solution �t for
the original flow equation ∂t�t = Qν(�t ) is then obtained by integrating the time-dependent
vector field X (�̃t ) and pulling back �̃t by the corresponding family of diffeomorphisms,
cf. [17] for details.

The proof of uniqueness given in [17] for the Dirichlet energy flow applies without change
to yield uniqueness of the solution �t on short time intervals. ��
Finally, as in [17] we also get a stability result:

Theorem 2.10 Let �̄ ∈ �3+(M) be torsion-free. Then for any initial condition sufficiently
close to �̄ in the C∞-topology the solution to (DFv) for ν ∈ R

4+ exists for all times and
converges modulo diffeomorphisms to a torsion-free G2-structure.

Proof Let � ∈ �3+(M) be torsion-free, i.e. d� = δ�� = 0. Then

(D�Q0)�̇ = −1

7
δ�[d�̇]1, (D�Q1)�̇ = − 1

36
δ�[d�̇]7

(D�Q2)�̇ = −p�(d[δ� p��̇]14), (D�Q3)�̇ = −δ�[d�̇]27
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and

(D��)(�̇) = −3d[δ��̇]7.

We set Lν := D� Q̃ν and L := D� Q̃ as in [17]. Then we get

Lν =−ν0
1

7
δ�[d�̇]1−ν1

1

36
δ�[d�̇]7−ν2 p�(d[δ� p��̇]14)−ν3δ�[d�̇]27 − 3ε(ν)d[δ��̇]7

and hence

〈−Lν�̇, �̇〉L2
�

≥ ε(ν)〈−L�̇, �̇〉L2
�

∀�̇ ∈ �3(M)

with ε(ν) = mini=0,1,2,3 νi/36 as above. In particular, Lν is non-positive and the Gårding
inequality holds. The proof then proceeds along the same lines as the one given in [17] for
the Dirichlet energy flow. ��

3 G2-solitons

3.1 Symmetries

We recall that one has a natural Diff(M)+-action on �3+(M) given by pullback and that D
is Diff(M)+-invariant, i.e. D(ϕ∗�) = D(�) for all ϕ ∈ Diff(M)+. This implies that

ϕ∗Q(�) = Q(ϕ∗�). (14)

Further, any symmetry of the initial condition �0 is preserved by the Dirichlet energy flow:

Lemma 3.1 Let (�t )t∈[0,T ) be a solution to (DF) with initial condition �0. If ϕ∗�0 = �0

for some ϕ ∈ Diff(M)+, then ϕ∗�t = �t for all t ∈ [0, T ).

Proof Using Eq. (14) one gets that (ϕ∗�t )t∈[0,T ) is a solution to (DF) with initial condition
ϕ∗�0. Since ϕ∗�0 = �0, uniqueness of the Dirichlet energy flow implies that ϕ∗�t = �t

for all t ∈ [0, T ). ��

Secondly, one has a natural R+-action on �3+(M) given by scaling with respect to which
D is positively homogeneous:

D(λ�) = λ
5
3 D(�) (15)

for all λ ∈ R+.

Lemma 3.2 One has Q(λ�) = λ
1
3 Q(�) for all λ ∈ R+.

Proof Using Eq. (15) we calculate

Dλ�D(�̇) = d

dt

∣∣∣
t=0

D(λ� + t�̇)

= λ
5
3

d

dt

∣∣∣
t=0

D(� + tλ−1�̇)

= λ
5
3 D�D(λ−1�̇) = λ

2
3 D�D(�̇).
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Hence

Dλ�D(�̇) = λ
2
3 D�D(�̇) = λ

2
3

∫

M

g�(grad D(�), �̇) vol�

and on the other hand

Dλ�D(�̇) =
∫

M

gλ�(grad D(λ�), �̇) volλ� = λ
1
3

∫

M

g�(grad D(λ�), �̇) vol� .

Here, we have used the fact that volλ� = λ
7
3 vol� and gλ� = λ−2g� on 3-forms. Comparing

these two expressions, we get the result. ��
Remark As a consequence of the preceding lemma, if �t is a solution to (DF) on [0, T ) and
λ > 0, then the space–time rescaling �λ

t := λ�λ−2/3t is again a solution to (DF), defined on
[0, λ2/3T ).

3.2 A Bianchi-type identity

For some fixed background G2-structure �, consider the operator

λ∗
� : X (M) → �3(M), X �→ LX�

and its formal adjoint with respect to L2
g�

, namely

λ� : �3(M) → X (M), �̇ �→ −X�(�̇) − �̇�d�,

where X�(�̇) = −δ��̇��. As usual, we identify 1-forms and vector fields using g�. Recall
that we have an L2-orthogonal decomposition

�3(M) = ker λ� ⊕ im λ∗
�, (16)

where the second summand is tangent to the Diff(M)+-orbit through �, see Proposition 5.6
and Lemma 7.3 in [17].

Lemma 3.3 For all � ∈ �3+(M), we have λ�(Q(�)) = 0 and λ�� = 0.

Proof The proof proceeds along the same lines as Kazdan’s derivation of the usual Bian-
chi identity in [13]: If F : �3+(M) → R is a Diff(M)+-invariant functional, then
λ�(grad F(�)) = 0, since the level-set F−1(F(�)) contains the Diff(M)+-orbit through
�. Now by definition, Q(�) = −grad D(�), which yields λ�(Q(�)) = 0. Secondly, from
Eq. (11) it follows that

grad H(�) = 1
3�

which gives λ�� = 0. ��
Remark The equation λ�� = 0 is equivalent to τ1 = τ̃1, where in light of the definition of
the torsion forms, one has

d� = τ0 �� � + 3τ1 ∧ � + ��τ3

and

d �� � = 4τ̃1 ∧ ��� + τ2 ∧ �
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for τ̃1 a priori different from τ1. Indeed, λ�� = (δ��)�� − ��d� = 0 is equivalent to

([δ��]7)�� = ��([d�]7). (17)

Substituting [δ��]7 = −4 �� τ̃1 ∧ ��� and [d�]7 = 3τ1 ∧ � we obtain that Eq. (17) is
equivalent to

− 4 �� (τ̃1 ∧ ���)�� = 3��(τ1 ∧ �). (18)

A routine calculation establishes for ξ ∈ �1(M) the identities ��(ξ ∧ �) = −4ξ and
��(ξ ∧ ���)�� = 3ξ . Hence, the left-hand side of Eq. (18) equals −12τ̃1, whereas the
right-hand side equals −12τ1.

Corollary 3.4 If � ∈ �3+(M) satisfies Q(�) = f · � for f ∈ C∞(M), then f is constant,
i.e. Q(�) = λ� for λ ∈ R.

Proof Applying λ� to the equation Q(�) = f · � yields the equation λ�( f �) = 0 using
Lemma 3.3. On the other hand

λ�( f �) = −δ�( f �)�� − f ��d�

= (d f �� − f δ��)�� − f ��d�

= (d f ��)�� − f λ�� = (d f ��)��,

where we have again used Lemma 3.3 in the last line. Now since (ξ��)�� = 3ξ for all
ξ ∈ �1(M) we conclude that d f = 0, i.e. f is constant. ��

Next we consider the operator Q̃�̄(�) = Q(�) + λ∗
�(X�̄(�)), �, �̄ ∈ �3+(M), defined

in [17].

Corollary 3.5 If � ∈ �3+(M) satisfies Q̃�̄(�) = 0, then Q(�) = 0, i.e. � is torsion-free.

Proof Applying λ� to the equation

Q̃�̄(�) = Q(�) + λ∗
�(X�̄(�)) = 0 (19)

yields the equation λ�λ∗
�(X�̄(�)) = 0 using Lemma 3.3. Hence, λ∗

�(X�̄(�)) = 0 and
therefore Q(�) = 0. ��

Remark Note that if M has finite fundamental group or more generally satisfies H1(M; R) =
{0}, then Q̃�̄(�) = 0 also implies X�̄(�) = 0. Indeed, since Q(�) = 0, � is torsion-free
and LX�̄(�)� = 0. Hence, g� is Ricci-flat and X�̄(�) is Killing. But this implies that
X�̄(�) is parallel and therefore its dual 1-form is harmonic. In general, a parallel Killing
vector field has no zeros unless it is identically vanishing. Hence, the dual of X�̄(�) is a
closed, nowhere vanishing 1-form. By Tischler’s theorem [15], M must globally fibre over
the circle. Note, however, that non-trivial parallel Killing vector fields can exist: If X is a
Calabi–Yau threefold, then the product X × S1 admits a natural torsion-free G2-structure
for which the coordinate vector field ∂t on S1 is a parallel Killing vector field. Conversely,
by standard holonomy theory, (cf. for instance [2]), a torsion-free G2-manifold (M,�) with
non-trivial parallel Killing vector field is reducible, i.e. locally of the form X × S1 for X a
Calabi–Yau manifold.
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3.3 The soliton equation

Definition 3.6 A triple (�0, X0, μ0) with �0 ∈ �3+(M), X0 ∈ X (M) a vector field and
μ0 ∈ R, which satisfy the equation

Q(�0) = μ0�0 + LX0�0

is called a G2-soliton structure. A solution to (DF) of the form

�t = μ(t)ϕ∗
t �0

for some function μ(t) and a family of orientation-preserving diffeomorphisms ϕt is called
a G2-soliton solution.

A particular case of a soliton structure is a G2-structure �0 satisfying the equation
Q(�0) = μ0 · �0 for some constant μ0 ∈ R. The ansatz

�t = μ(t)�0, μ(0) = 1

yields using Lemma 3.2

∂t�t = μ′(t)�0

Q(�t ) = μ(t)
1
3 μ0�0

and hence, the ODE

μ′(t) = μ0μ(t)
1
3 , μ(0) = 1. (20)

The solution of (20) is given by

μ(t) =
(

2μ0

3
t + 1

) 3
2

on some maximal time interval [0, Tmax). As in the Ricci-flow case, one has more generally:

Lemma 3.7 Let (�0, X0, μ0) be a G2-soliton structure. Then

�t := μ(t)ϕ∗
t �0 (21)

is a G2-soliton solution on [0, Tmax) for μ(t) = (
2μ0

3 t + 1)
3
2 and ϕt the flow of the time-

dependent vector field μ(t)− 2
3 X0. The associated metric flow is given by

gt = μ(t)
2
3 ϕ∗

t g0.

Conversely, if �t = μ(t)ϕ∗
t �0 is a G2-soliton solution on [0, Tmax), then (�0, X0, μ0) with

X0 = d
dt

∣∣
t=0ϕt and μ0 = μ(0) is a G2-soliton structure.

Proof Differentiating Eq. (21) we get

∂t�t = ϕ∗
t

(
μ(t)

1
3 LX0(�0) + μ′(t)�0

)
Q(�t ) = ϕ∗

t μ(t)
1
3 Q(�0)

which yields the claim upon substituting (20). The evolution of the associated metric gt

immediately follows from its scaling behaviour. ��
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Remark By the preceding lemma, a G2-soliton structure and a G2-soliton solution are essen-
tially the same thing. We will therefore simply refer to both the G2-soliton structure or the
corresponding soliton solution as a G2-soliton.

Definition 3.8 A G2-soliton (�0, X0, μ0) is called expanding, if μ0 > 0; steady, if μ0 = 0;
and shrinking, if μ0 < 0. It is called trivial if Q(�0) = μ0�0.

Using this terminology we can state the following:

Proposition 3.9 Let (�0, X0, μ0) be a G2-soliton. Then the following holds:
(i) Any G2-soliton (�0, X0, μ0) is trivial, i.e. already satisfies Q(�0) = μ0�0.
(ii) One has μ0 ≤ 0, i.e. there are no expanding G2-solitons.
(iii) If �t denotes the corresponding soliton solution, then Tmax = ∞ in the steady case

and Tmax = − 3
2μ0

in the shrinking case.

Proof To prove the first assertion we apply λ�0 to the equation

Q(�0) = μ0�0 + LX0�0 = μ0�0 + λ∗
�0

X0.

This gives, using Lemma 3.3, the equation λ�0λ
∗
�0

X0 = 0, hence, LX0�0 = 0.
Secondly, for μ0 > 0 we would have

d

dt
D(�t ) = d

dt
D(μ(t)�0) = 5

3
μ0μ(t)D(�0) > 0

which is incompatible with the monotonicity of D. The remaining statements follow from
the behaviour of the solution of the ODE (20). ��
Remark For a shrinking soliton one clearly has limt→Tmax μ(t) = 0 and therefore
limt→Tmax H(�t ) = limt→Tmax D(�t ) = 0. This follows easily from the scaling behaviour
of these functionals.

3.4 A constrained variational principle

Next we ask for critical points of D under the constraint H(�) = 1. Let �3+,1(M) be the

submanifold of �3+(M) consisting of positive 3-forms of total volume 1. Its tangent space
at � is ker D�H. Now by (11), Ḣ� = 〈�̇,�〉/3 so that T��3+,1(M) = �⊥, the 3-forms

which are perpendicular to � with respect to the natural L2-product. On the other hand, we
need grad D = −Q to be orthogonal to T��3+,1(M), hence, a constrained critical point �

satisfies Q(�) = μ0� for some constant μ0 ∈ R. In view of Proposition 3.9, we obtain an
alternative characterisation of G2-solitons.

Corollary 3.10 A positive 3-form � is a G2-soliton if and only if � is a critical point of D
subject to H ≡ 1.

Remark The results of this section apply mutatis mutandis to the generalised Dirichlet energy
functionals Dν , ν ∈ R

4+. More precisely, we say that (�0, X0, μ0) is a Dν-soliton if the equa-
tion Qν(�0) = μ0�0 + LX0�0 holds. Since Dν shares the same symmetries with D, we
obtain the Bianchi identity λ�(Qν(�)) = 0. Hence, we may deduce that any Dν-soliton is
trivial with μ0 ≤ 0. The explicit solution to the soliton equation remains unchanged.
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4 Examples

4.1 Homogeneous spaces

Consider a compact homogeneous space M = G/H . Then G acts on M via diffeomorphisms
coming from left translations. Let g = h ⊕ m be the decomposition at Lie algebra level from
the inclusion H ↪→ G, where m is some complement invariant under the isotropy action of
H (the adjoint action of G restricted to H ). The space of G-invariant G2-forms is precisely
the space of H -invariant G2-forms in �3m∗. Since invariant critical points can be obtained
by restricting the functional to invariant G2-forms, we are left with a finite-dimensional
variational problem. We will illustrate this procedure for the Dirichlet energy functional D.

4.1.1 The round sphere

We think of S7 as the homogeneous space Spin(7)/G2. Then spin(7) = �2
R

7∗ = g2 ⊕ m

by (1), where m is isomorphic to the 7-dimensional irreducible vector representation of G2.
Hence, �3m∗ ∼= 1⊕m⊕�2

0m (also cf. our first convention at the end of Sect. 1) is a decompo-
sition into irreducible G2-modules, and we find a one-dimensional space of Spin(7)-invariant
G2-forms spanned by �0. In fact, if we think of S7 as the unit octonians with induced metric
g0 (the round metric), then at p ∈ S7, �0,p(u, v, w) = g0,p

(
p, u · (v̄ ·w)−w · (v̄ ·u)

)
(here ¯

and · denote conjugation and multiplication on O). Since Q(�0) must be also Spin(7)-invari-
ant by Lemma 3.1, we deduce Q(�0) = c�0 for some nonpositive constant c. Furthermore,
H3(S7; R) = 0 so that �0 cannot be torsionfree, whence, Q(�0) �= 0.

4.1.2 The squashed sphere

Now consider S7 as the homogeneous space G/H = Sp(2) × Sp(1)/Sp(1) × Sp(1) defined
by the embedding

(a, b) ∈ Sp(1) × Sp(1) �→
((

a 0
0 b

)
, b

)
.

The complex irreducible representations of Sp(1) ∼= SU(2) are obtained from the symmetric
powers σp = �p

C
2 of the standard vector representation on C

2. Endowed with some nega-
tive multiple of the Killing form G/H becomes a normal Riemannian homogeneous space
(cf. Definition 7.86 in [2]) with orthogonal decomposition g = h ⊕ m. As an Sp(1) × Sp(1)-
space, m = 1 ⊗ σ2 ⊕ σ1 ⊗ σ1 =: m′ ⊕ m′′. Here, by abuse of notation, σ1 ⊗ σ1 (which is
of real type) also denotes the underlying real representation. In the resulting decomposition
of �3m∗, we find two trivial representations, namely �3m′∗ ∼= R and one in m′∗ ⊗ �2m′′∗
(cf. [1]). If f1, f2 and f3 denotes an orthonormal basis of m′, then the first one is spanned
by1 �1 = f 123. For the second invariant form �2, we note that �2m′′∗ = 1 ⊗ σ2 ⊕ σ2 ⊗ 1
which is just the decomposition into self- and antiselfdual forms. Consequently, if e1, . . . , e4

is an orthonormal basis for m′′, then �1 = ∑
k f k ∧ ωk where

ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23.

The G-invariant forms

I = {
�a,b := −a3�1 + ab2�2 | a, b > 0

}

1 Here and in the sequel, f 123 will be shorthand for f 1 ∧ f 2 ∧ f 3.
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are of G2-type and compatible with the natural orientation. To compute the G-invariant crit-
ical points we must compute D on I. We first note that �a,b induces the metric ga,b =
−a2 B|m′ − b2 B|m′′ so that vola,b = a3b4e1234 ∧ f 123 and

�a,b�a,b = −b4e1234 + a2b2 (
f 23 ∧ ω1 − f 13 ∧ ω2 + f 12 ∧ ω3

)
.

We compute the commutators [·,·]m and thus the exterior differentials of e1, . . . , f3. Upon
suitably rescaling B we find

d�a,b = 12ab2e1234 + (10ab2 + 2a3)
(− f 23 ∧ ω1 + f 13 ∧ ω2 − f 12 ∧ ω3

)

and d �a,b �a,b = 0. Consequently, |d�a,b|2 = 24(7a2b−4 + 25a−2 + 10b−2), whence,

D(�a,b) = 12(7a5 + 10a3b2 + 25ab4)Vol,

with Vol the total volume of G/H with respect to vol1,1 = e1234 ∧ f 123. Subject to the
constraint a3b4 = 1 the critical point equations read

7a4 + 6a2b2 + 5b4 = 3μa2b4, a2 + 5b2 = μa2b2, a3b4 = 1

for some constant τ . Substituting u = a2 and v = b2 shows that u = v and μ = 6/v. Hence,
a = 1, b = 1 and μ = 6 is the unique solution which gives the soliton �1,1. The resulting
metric is the so-called squashed metric.

4.2 Nearly parallel G2-structures

The previous two examples define in fact nearly parallel G2-structures (see for instance [10]).
These were first investigated by Gray [11] (who called them weak holonomy G2-structures).
This is a G2-structure given by a G2-form � satisfying

d� = τ0 �� �

for some constant τ0 �= 0. In particular, d�� � = 0 so that alternatively, we may characterise
nearly parallel G2-structures as those for which all torsion forms but τ0 do vanish. By abuse
of language, we refer to such an � itself as a nearly parallel G2-structure. The associated
metric is necessarily Einstein with positive constant scalar curvature s� = 21

7 τ 2
0 .

Theorem 4.1 If � is a nearly parallel G2-structure, then

Qν(�) = − 5
42ν0τ

2
0 (�)� (22)

for all ν = (ν0, ν1, ν2, ν3) ∈ R
4+. In particular, � is a G2-soliton.

Proof First we note that D�Dk(�̇) = ∫
M τ̇k,� ∧ ��τk(�)+ 1

2

∫
M τk(�)∧ �̇�τk(�). But for

a nearly parallel G2-form � we have τk = 0, k �= 0, so that grad Dk(�) = 0 and in particular
Qν(Q) = −ν0grad D0(�). We contend that for general � ∈ �3+(M),

grad D0(�) = − 1
6τ 2

0 � + 2
7τ0 �� d� + 1

7 �� (dτ0 ∧ �). (23)

If this is true, then grad D0(�) = 5
42 c2� for nearly parallel �, whence the result. It remains

to show (23). We first determine �̇�, the derivative of the map �3+ → Hom(�0,�7) which
sends � to ��. As this is a pointwise computation, we can write �̇ = Ȧ∗�, where Ȧ = Ȧ0

for a smooth curve At ⊂ GL(7) with A0 = Id. Then,

�̇� = d
dt

∣∣
t=0�A∗

t � = d
dt

∣∣
t=0 A∗

t �� A−1∗
t = Ȧ∗��,
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for GL(7) acts trivially on 0-forms. In general, if v,w ∈ �1, the action is given by (v ⊗
w)∗α p = v ∧ (w�α p) for α p ∈ �p . Using the standard formulæ ��(v�α p) = (−1)p+1v ∧
��α p and ��(v ∧ α p) = (−1)pv���α p we get

Ȧ∗�� = Tr( Ȧ) �� − �� ( Ȧt )∗ = Tr( Ȧ) �� .

On the other hand, we have Ȧ∗� = Ȧ∗
1� + Ȧ∗

7� + Ȧ∗
27� where we used the decomposition

of Ȧ ∈ �1 ⊗ �1 given by (4). Since Ȧ1 = 3
7 Tr( Ȧ) id, we have

Ȧ∗
1� = 3

7 Tr( Ȧ)�. (24)

Hence,

�̇�τ0 = τ0Tr( Ȧ) �� 1 = 1
7τ0Tr( Ȧ)� ∧ ��� = 1

3τ0�̇ ∧ ���.

To compute the linearisation of τ0(�) = ��(d� ∧ �)/7 we note that �2
� = id implies

���̇� = −�̇���, whence,

τ̇0,� = �̇�

(
�� τ0(�)

) + 1
7 �� (d�̇ ∧ � + �̇ ∧ d�)

= − 1
3τ0(�) �� (�̇ ∧ ���) + 1

7 �� (d�̇ ∧ � + �̇ ∧ d�).

From

〈grad D0(�), �̇〉� =
∫

M

τ0τ̇0� vol� + 1
6

∫

M

τ 2
0 �̇ ∧ ���

Equation (23) easily follows. ��

Remark The factor appearing in the soliton equation (22) can also be computed using the
homogeneity of Dν : If d� = τ0 �� �, then by Euler’s rule

〈Qν(�),�〉� = −D�Dν(�) = − 5
3 Dν(�) = − 5

42ν0τ
2
0 〈�,�〉�.

In particular, it follows that

τ 2
0 (�) = 2

ν0
· D(�)

H(�)
. (25)

Corollary 4.2 Let � ∈ �3+(M) be torsion-free. Then there exists a neighbourhood of � in
�3+(M) with respect to the C∞-topology which does not contain any shrinking Dν-solitons,
and in particular no nearly parallel G2-structures.

Proof Choose a neighbourhood U ⊂ �3+(M) such that for any initial condition �0 ∈ U the
conclusion of Theorem 1.2 holds. Now if �0 were a shrinking Dν-soliton, then Tmax < ∞
according to Proposition 3.9, which is impossible. ��

Remark The previous corollary should be compared with Theorem 1.2 in [6] which asserts
that a Ricci-flat metric which admits nonzero parallel spinors (as it is the case for g� with �

torsion-free) cannot be smoothly deformed into a metric of positive scalar curvature.
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5 Soliton deformations

Let �̄ ∈ �3+(M) be a fixed nearly parallel G2-structure, i.e. d�̄ = τ̄0 ��̄ �̄ for some constant
τ̄0 �= 0. In this final section, we linearise the G2-soliton equation

S�̄(�) := Q(�) + 5
6 τ̄ 2

0 � = 0 (26)

at �̄ and study the premoduli space of G2-soliton deformations.

5.1 The linearised soliton equation

In order to linearise the G2-soliton equation, we need a lemma first. Recall the map

	 : �3+(M) → �4(M), � �→ ���

from Convention (ii) in Sect. 1. Its linearisation at � is given by 	̇� = �� p�(�̇) where
p�(�̇) := 4

3 [�̇]1 + [�̇]7 − [�̇]27.

Lemma 5.1 Let � ∈ �3+(M). For x ∈ M, let �t = A∗
t �x for a curve At ⊂ GL(7) such

that A0 = IdTx M . If we define s�(�̇) := [�̇]1 −[�̇]7 +[�̇]27, then for the second derivative

	̈� := d2

dt2

∣∣
t=0	(�t ) at x we find

	̈� =1

3
g(�, �̇) �� (p� − s�)�̇ + 2 �� ( Ȧt )∗2� − ��s��̈

+ 1

3

(
g(�̈,�) − g(s��̇, �̇)

)
�� �.

In particular, we have

	̈� = 1

3
g(�, �̇) �� (p� − s�)�̇ + 2 �� ( Ȧt )∗2� − 1

3
g(s��̇, �̇) �� �.

for �̈ = 0.

Proof Writing At = At A−1
t0 At0 we get

d

dt

∣∣∣
t=t0

A∗
t 	(�) = A∗

t0

d

dt

∣∣∣
t=t0

(
At A−1

t0

)∗
	(�) = A∗

t0

(
Ȧt0 A−1

t0

)∗
	(�)

and hence,

d2

dt2

∣∣∣
t=t0

	(�t ) = (
( Ȧ∗)2 + Ä∗ − ( Ȧ2)∗

)
	(�).

In the same way, we obtain

�̈ = (( Ȧ∗)2 + Ä∗ − ( Ȧ2)∗)�. (27)

Now

( Ȧ∗)2	(�) = Ȧ∗( Ȧ∗ �� �)

= Ȧ∗(Tr Ȧ �� � − ��( Ȧt )∗�)

= Tr Ȧ
(
Tr Ȧ �� � − ��( Ȧt )∗�)

) − Tr Ȧ �� ( Ȧt )∗� + ��( Ȧt )∗2�

= Tr Ȧ �� (p� − s�)�̇ + ��( Ȧt )∗2�,
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where we have used Tr Ȧ �� � − ��( Ȧt )∗� = 	̇� and ( Ȧt )∗� = s��̇. Similarly,

Ä∗	(�) = Ä∗ �� � = Tr Ä �� � − ��( Ät )∗�

and

−( Ȧ2)∗	(�) = − Tr Ȧ2 �� � + ��( Ȧ2)t∗�.

Finally, using (27)
(
( Ȧ∗)2 + Ä∗ − ( Ȧ2)∗

)
	(�)

= Tr Ȧ �� (p� − s�)�̇ + (Tr Ä − Tr Ȧ2) �� � + 2 �� (( Ȧt )∗)2� − ��s��̈.

Next we need to compute the expression Tr( Ä− Ȧ2). By (24) Tr Ȧ = 1
3 g(�, �̇) and similarly

Tr Ä = 1
3 g(�, Ä∗�). Write ( Ä − Ȧ2)∗� = �̈ − ( Ȧ∗)2�. Then

Tr( Ä − Ȧ2) = 1
3 g(�, ( Ä − Ȧ2)∗�) = 1

3 g(�, �̈ − ( Ȧ∗)2�).

Furthermore,

[ Ȧ∗
1�̇]1 = 1

7 g( Ȧ∗
1�̇,�)� = 1

7 g(�̇, Ȧ∗
1�)� = 1

7 |[�̇]1|2�
[ Ȧ∗

7�̇]1 = 1
7 g( Ȧ∗

7�̇,�)� = − 1
7 g(�̇, Ȧ∗

7�)� = − 1
7 |[�̇]7|2�

[ Ȧ∗
27�̇]1 = 1

7 g( Ȧ∗
27�̇,�)� = 1

7 g(�̇, Ȧ∗
27�)� = 1

7 |[�̇]27|2�.

Hence,

[ Ȧ∗ Ȧ∗�]1 = [ Ȧ∗�̇]1

= [ Ȧ∗
1�̇]1 + [ Ȧ∗

7�̇]1 + [ Ȧ∗
27�̇]1

= 1
7

(|[�̇]1|2 − |[�̇]7|2 + |[�̇]27|2
)
�

= 1
7 g(s��̇, �̇)�

and in turn

Tr( Ä − Ȧ2) = 1
3 g(�, �̈) − 1

3 g(s��̇, �̇),

which yields the assertion. ��
Proposition 5.2 Let � ∈ �3+(M) be a nearly parallel G2-structure and define r�(�̇) :=
(id −p�)(�̇). Then

D�Q(�̇) = − δ�d�̇ − p�dδ� p��̇ − τ0(��dr� + r� �� d)�̇

+ τ 2
0

( 1
18 [�̇]1 + 1

6 [�̇]7 − 23
6 [�̇]27

)
= − p�d(p�d)∗�̇ − (��d + τ0r�)2�̇ + 1

6τ 2
0 �̇

for τ0 = τ0(�) and �̇ ∈ �3(M).

Proof We compute the linearisation by starting from Eqs. (6) and (7). First,

D�(� �→ δ�d�)(�̇) = �̇�d �� d� + ��d�̇�d� + ��d �� d�̇

= τ 2
0 �̇� �� � + τ0 �� d�̇� �� � + ��d �� d�̇

= τ 2
0 r��̇ + τ0 �� dr��̇ + δ�d�̇.
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Second,

D�(� �→ p�dδ��)(�̇) = − ṗ�(d �� d ���) − p�(d�̇�d �� �) − p�(d �� d	̇�)

= p�dδ� p��̇.

Third we note that q�(∇�) = q�(d�) + q�(δ��), where q�(d�) and q�(δ��) are deter-
mined by the identities

q�(d�) ∧ ���′ = 1
2 (�′

�d�) ∧ d� (28)

and

q�(δ��) ∧ ���′ = 1
2 (�′

�d �� �) ∧ d �� � (29)

(with �′
� = D�(� �→ ��)(�′)) valid for all �′ ∈ �3(M). It follows that q�(d�) = − 1

6τ 2
0 �.

Indeed, the left hand side of (28) is twice τ 2
0 �′

� 	(�) ∧ 	(�). Now � = ��	(�) so that
�′ = �′

�	(�)+��	′
�. Hence, [�′

�	(�)]1 = −[�′]1/3 which is the only component which
survives wedging by 	(�). Differentiating Eq. (28) therefore implies

D�(� �→ q�(d�))(�̇) ∧ ���′

= 1
2 (D2

��)(�̇,�′)d� ∧ d� + �′
�d� ∧ d�̇ − q�(d�) ∧ �̇��′

= 1
2τ 2

0 (D2
��)(�̇,�′) �� � ∧ ��� + τ0 �′

� ��� ∧ d�̇ − 1
6τ 2

0 r��̇ ∧ ���′.

On the other hand, differentiating the equation � = ��	(�) gives �̈ = �̈�	(�)+2�̇�	̇�+
��	̈�. Without loss of generality we may assume that �t = (1+ t)�, so in particular �̈ = 0
and hence, �̈�	� = −2�̇� − ��	̈�. From Lemma 5.1, we deduce

1
2τ 2

0 (D2
��)(�̇,�′) �� � ∧ ���

= τ 2
0

(−�̇�	̇�− 1
6 g�(�, �̇)(p� − s�)�̇ − (

( Ȧt )∗2� + 1
6 g�(s��̇, �̇)�

) ∧ ���′).
Furthermore, the identities

−(( Ȧt )∗)2� ∧ ��� = −( Ȧt )∗� ∧ �� Ȧ∗� = −s��̇ ∧ ���̇

−�̇�	̇� ∧ ��� = −r� p��̇ ∧ ���̇

− 1
6 g�(�, �̇)(p� − s�)�̇ ∧ ��� = − 7

18 [�̇]1 ∧ ���̇

1
6 g�(s��̇, �̇)� ∧ ��� = 7

6 s��̇ ∧ ���̇

imply

1
2 τ 2

0 (D2
��)(�̇,�′) �� � ∧ ��� = τ 2

0

( 2
9 [�̇]1 − 1

6 [�̇]7 + 13
6 [�̇]27

) ∧ ���′.

Hence, using

τ0 �′
� �� ∧ d�̇ = −τ0 �� �′

�� ∧ d�̇ = τ0r��′ ∧ d�̇ = τ0r� �� d�̇ ∧ ���′

we arrive at

D�(� �→ q�(d�))(�̇) ∧ ���′

= τ 2
0

( 2
9 [�̇]1 − 1

6 [�̇]7 + 13
6 [�̇]27

) ∧ ���′ + τ0r� �� d�̇ ∧ ���′ − 1
6τ 2

0 r��̇ ∧ ���′

= τ 2
0

(
5

18 [�̇]1 − 1
6 [�̇]7 + 11

6 [�̇]27

)
∧ ���′ + τ0r� �� d�̇ ∧ ���′.
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Similarly, differentiating Eq. (29) we get

D�(� �→ q�(δ��))(�̇) ∧ ���′

= 1
2 (D2

��)(�̇,�′)d	(�) ∧ d	(�) + �′
�d	(�) ∧ d	̇� − q�(δ��) ∧ �̇��′

= 0,

for d	(�) = q�(δ��) = 0. Hence,

D�(� �→ q�(∇�))(�̇) = D�(� �→ q�(d�))(�̇)

= τ0r� �� d�̇ + τ 2
0

(
5

18 [�̇]1 − 1
6 [�̇]7 + 11

6 [�̇]27

)
.

Summing up we obtain

(D�Q)(�̇) = − δ�d�̇ − p�dδ� p��̇ − τ0 �� dr��̇ − τ 2
0 r��̇

− τ0r� �� d�̇ − τ 2
0

(
5

18 [�̇]1 − 1
6 [�̇]7 + 11

6 [�̇]27

)

= − δ�d�̇ − p�dδ� p��̇ − τ0(��dr� + r� �� d)�̇

+ τ 2
0

( 1
18 [�̇]1 + 1

6 [�̇]7 − 23
6 [�̇]27

)
,

which is the desired result. ��
Remark In particular, we see that D�Q(�) = − 5

18τ 2
0 � which, of course, follows directly

from differentiating Q((1 + t)�) = (1 + t)1/3 Q(�) at t = 0 (cf. Lemma 3.2).

As a corollary to Proposition 5.2, we immediately obtain the linearisation of the operator
S�̄ at �̄:

Corollary 5.3 Let �̄ ∈ �3+(M) be a nearly parallel G2-structure. Then

D�̄S�̄(�̇) = −p�̄d(p�̄d)∗�̇ − (��̄d + τ̄0r�̄)2�̇ + τ̄ 2
0 �̇

for τ̄0 = τ0(�̄) and �̇ ∈ �3(M).

5.2 The premoduli space

As above, let �̄ ∈ �3+(M) be a fixed nearly parallel G2-structure on M . We wish to study
the space of G2-soliton deformations of �̄, i.e. solutions � ∈ �3+(M) to the soliton equation
(26) close to �̄ modulo the action of diffeomorphisms. Towards that end, we first investigate
the linear equation D�̄S�̄(�̇) = 0. As this parallels the corresponding theory for the Einstein
premoduli space as developed by Koiso, we follow [2,3] and only sketch the main points.
Recall the L2-orthogonal decomposition

�3(M) = im λ∗̄
�

⊕ ker λ�̄.

given in (16). By Ebin’s slice theorem [8], ker λ�̄ = T�̄S�̄ integrates to a slice S�̄ for the
Diff0(M)-action. Hence, the space σ(�̄) of infinitesimal soliton deformations of �̄ consists
of �̇ ∈ �3(M) satisfying the equations

D�̄S�̄(�̇) = 0 and λ�̄(�̇) = 0.

The premoduli space M(�̄) of G2-soliton deformations at �̄ is the set of G2-solitons in the
slice S�̄ near �̄. To investigate the structure of σ(�̄) and M(�̄) further we introduce the
linear operator
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P�̄ : �3(M) → �3(M), P�̄(�̇) := D�̄S�̄(�̇) − λ∗̄
�
λ�̄(�̇),

which is clearly symmetric.

Lemma 5.4 The operator P�̄ is elliptic.

Proof The operator P�̄ differs from the linearisation of the Dirichlet–DeTurck operator only
in the lower order terms, cf. in particular Eq. (32) in [17]. Hence, it has the same symbol and
the claim follows from Lemma 5.7 in [17]. ��

Since any infinitesimal soliton deformation of �̄ lies in the kernel of P�̄, we immediately
conclude from ellipticity:

Corollary 5.5 The space σ(�̄) is finite dimensional.

To discuss the structure of the premoduli space we first prove the following

Lemma 5.6 The restricted linear operator D�̄S�̄ : T�̄S�̄ → �3(M) has closed2 image.

Proof Clearly, P�̄(T�̄S�̄) = D�̄S�̄(T�̄S�̄). As an elliptic operator, P�̄ has closed image.
Furthermore, λ�̄ ◦ P�̄ = λ�̄λ∗̄

�
◦ λ�̄ and thus

P�̄(T�̄S�̄) ⊂ P�̄(�3(M)) ∩ ker λ�̄ ⊂ P�̄

(
λ−1

�̄

(
ker λ�̄λ∗̄

�

))
.

Now L�̄ := λ�̄λ∗̄
�

is elliptic. Indeed, for the principal symbol applied to a covector ξ ∈ T ∗
x M

we find that σ(L�̄)(x, ξ)v = i(v ⊗ ξ)∗�̄. This is injective, for (v ⊗ ξ)∗�̄ = 0 implies
v ⊗ ξ ∈ �2 ⊂ �1 ⊗�1 on representation theoretic grounds, that is, v ⊗ ξ is skew. But this is
impossible for a decomposable endomorphism unless v = 0. Hence, g�̄(σ (L�̄)(x, ξ)v, v) =
−|σ(λ∗̄

�
)(x, ξ)v|2

�̄
is negative-definite. Consequently, ker L�̄ is finite-dimensional and so

T�̄S�̄ is of finite codimension in λ−1
�̄

(ker λ�̄λ∗̄
�
). Since T�̄S�̄ is also closed, P�̄(T�̄S�̄) is

closed in P�̄

(
λ−1

�̄
(ker λ�̄λ∗̄

�
)
)
. As a result, P�̄(T�̄S�̄) is closed in P�̄(�3(M))∩ker λ�̄ and

thus in �3(M). ��
Let p : �3(M) → D�̄S�̄(T�̄S�̄) be the orthogonal projection. By the previous lemma,

p ◦ S�̄ : S�̄ → D�̄S�̄(T�̄S) is a submersion at �̄. It is also a real analytic map, since g�̄ is
Einstein (hence, real analytic in harmonic coordinates, cf. [7]) and �g�̄

�̄ = τ̄ 2
0 �̄ (so that �̄ is

real analytic as a solution of an elliptic PDE with real analytic coefficients). As a consequence,
Z := p◦S−1

�̄
(0) is a real analytic submanifold with tangent space ker D�̄S�̄∩T�̄S�̄ = σ(�̄).

Restricted to Z , S�̄ is also real analytic so that (S�̄|Z )−1(0), the premoduli space of solitons,
is a real analytic subset. We thus arrive at the following conclusion (compare with Koiso’s
work [14] in the Einstein case).

Theorem 5.7 The slice S�̄ contains a finite-dimensional real analytic submanifold Z such
that Z contains M(�̄) as a real analytic subset and T�̄ Z = σ(�̄).

Example Consider the spaces

σ1 = {
γ ∈ �3

27(M) | ��̄ dγ = −τ̄0γ
}
,

σ2 = {
γ ∈ �3

27(M) | ��̄ dγ = −3τ̄0γ
}
,

σ3 = {
γ ∈ �3

27(M) | ��̄ dγ = −3τ̄ 2
0 γ

}
.

2 Here and thereafter, this refers to the natural extension of D�̄S�̄ to Sobolev- or Hölder-spaces.
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Any γ ∈ σ1,2 is coclosed. Since d�̄ = τ0 ��̄ �, we also have γ �d� = 0. Furthermore,
any γ ∈ σ3 is closed, hence, [δ�̄γ ]7 = 0 (see the proofs of Lemma 3.3 and Proposition 5.3
in [1]). Therefore, λ�̄(γ ) = 0 in all three cases. It is straightforward to check that P�̄γ = 0
for γ ∈ σ1,2,3. By Theorem 6.2 in [1] these spaces correspond to the infinitesimal Einstein
deformations of �̄. We do not know whether they exhaust all of σ(�̄).
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