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Abstract  For a Spin(9)-structure on a Riemannian manifold M'¢ we write explicitly the
matrix v of its Kéhler 2-forms and the canonical 8-form ®gpin(9). We then prove that ®gpin(9)
coincides up to a constant with the fourth coefficient of the characteristic polynomial of .
This is inspired by lower dimensional situations, related to Hopf fibrations and to Spin(7).
As applications, formulas are deduced for Pontrjagin classes and integrals of ®gpin(9) and
d>§pin(9) in the special case of holonomy Spin(9).
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1 Introduction

Although Spin(9) belongs to M. Berger’s list in his holonomy theorem, it has been known for
a long time that the only simply connected complete Riemannian manifolds with holonomy

Spin(9) are the Cayley projective plane QP2 = SpiFrf(9) and its dual, the Cayley hyperbolic

plane OH 2= g;;(zg; (cf. [5,12], as well as [10, Chapter 10]). It is also known that, on the

unique irreducible 16-dimensional Spin(9)-module Ao, the space A3 of exterior 8-forms
contains a 1-dimensional invariant subspace A?. Thus, any generator of A? can be viewed as
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a canonical 8-form ®gpin(9) on R!®, which is Spin(9)-invariant with respect to the standard
Spin(9)-structure.

In the same year 1972 when the quoted paper [12] by Brown and Gray appeared,
Berger published an article [9] on the Riemannian geometry of rank one symmetric spaces,
containing the following very simple definition of a Spin(9)-invariant 8-form ®gpin(9) in R'6:

def
@Spm(o):C/pl*wdl- (1.1
or!

Here v; is the volume form on the octonionic lines / = {(x,mx)} orl < {(0, y)} in 0 =
R'®, p; : ©* — [ is the projection on [, the integral is taken over the “octonionic pro-
jective line” QP! = S8 of all the I ¢ ©? and c is a normalizing constant. In the same
article, Berger writes a similar definition: ®gp().sp(1) “ c fH pn—i pl* vy dl for a quaternionic
4-form in H" = R*. Note that such definitions of Dspin9) and Pgsp(n).sp(1) arise from dis-
tinguished 8-planes or 4-planes in the two geometries, appearing thus very much in the spirit
of (at the time forthcoming) calibrations. It is also worth reminding that the stabilizers of
Dspin(9) in GL(16, R) and of Psp(n).sp(1) in GL(4n, R) are precisely the subgroups Spin(9)
and Sp(n) - Sp(1), respectively (cf. [15, pp. 168—170] and [28, p. 126]).

The paper by Brown and Gray contains a different definition of ®gpin(9), as a Haar inte-
gral over Spin(8). A natural question is whether an explicit and possibly simple algebraic
expression of ®gpin(9) can be written in R0, in parallel with the usual definitions of the
G;-invariant 3-form &g, on R7 or the Spin(7)-invariant 4-form ®gpin(7) on RS (see for
example the books [22] and [23]).

Indeed, some such algebraic expressions have already been written. Namely, Abe and
Matsubara computed ®spin(9) obtaining its 702 terms from the triality principle of Spin(8)
(see [1] and [2], and note that some of the terms have to be corrected [3]). More recently, a
different approach has been presented by Castrillon Lopez et al. [14], where a detailed exam
is given for the invariance of elements of A8(R'®) under the generators of the group Spin(9).

A major progress in understanding Spin(9)-structures came in the context of weak holo-
nomies by the work of Friedrich: in [17] and [18] it is observed that the number of possible
“weakened” holonomies Spin(9) is 16, exactly like in the cases of the groups U(n) and G»,
and also that a Spin(9)-structure on M 16 can be described as a certain vector subbundle
V? C End(T M). This fact suggests a similarity between Spin(9) and the quaternionic group
Sp(n) - Sp(1).

More precisely, a Spin(9)-structure is a rank 9 real vector bundle V° C End(TM) — M,
locally spanned by self-dual involutions Z,, fora =1, ..., 9,such that Z, o Zg = —Ig o1,,
for o # B (cf. Definition 1). From these data, the local almost complex structures

Jup = Ty 0 Ty (1.2)

are defined on M'©, and the 9 x 9 skew-symmetric matrix of their Kahler 2-forms

def

¥ = (Vap) (1.3)

is naturally associated with the Spin(9)-structure. The 36 differential forms ¥g, fora < B,
are thus a local system of Kihler two-forms of the Spin(9)-manifold (M6, V?).

The first result of this article is the explicit computation of the 702 terms of ®gpin(9),
according to the work by Abe and Matsubara, and on the grounds of Berger’s definition of
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®spin(9). The computation was performed with the help of the software Mathematica, and
the result is shown in Table 2 at p. 340.
The second result is the following formula for ®gpin(9), see Theorem 16.

Theorem Let ®spin) = ¢ f© p1 Pjvidl be the canonical 8-form in R©, and choose the

constant c in such a way that all its 702 terms are integers, with no common factors. Then
__ 110880 d
=% an

1
Dspin9) = %74(1#), (1.4)

where t4({) is the fourth coefficient of the characteristic polynomial of the matrix \r of
Kdihler 2-forms.

Formula 1.4 for ®gpiy(9) holds more generally for any 16-dimensional manifold equipped
with a Spin(9)-structure. In particular, when the matrix (1.3) of Kihler forms can be inter-
preted as the matrix of local curvature forms of a linear connection in the real vector
bundle V° — M, then by Chern-Weil theory its second Pontrjagin class p,(V) is rep-
resented, up to a constant, by the closed form 74 (). This is certainly the case for a compact
Riemannian manifold M '® with holonomy Spin(9), i.e., either O P2 or any compact quotient
of QH?Z. Thus, the third result of this article is the representation through ®gpin(9) of the sec-
ond Pontrjagin class of O P2 or any compact quotient of O H2, and a relation of the integrals
of @gpin(9) and @épin(g) with the volumes of OP! and O P2, respectively, see Corollaries 18
and 19.

It is worth mentioning that our point of view is not strictly related to Spin(9) as holon-
omy, but follows the line of non-integrable geometries. For a unified approach to several
non-integrable geometries, see the survey [4].

In this article we also develop the analogy between Spin(9)-structures on 16-dimensional
manifolds and either almost complex Hermitian structures in dimension 4 or almost qua-
ternion Hermitian structures in dimension 8. This is done in Sect. 3, where this similarity
is explained in the framework of what we call Hopf structure, arising from the structure of
the symmetry group of a Hopf fibration. In particular, in dimension 8 the structure group
Sp(1) - Sp(2) is generated by 5 involutions, inducing 10 Kéhler forms 6,4, and the left qua-
ternionic 4-form appears as the second coefficient of the characteristic polynomial of the
matrix (6yp), see Proposition 5.

In Sect. 4 we show that Spin(7) cannot be defined through 7 involutions, but neverthe-
less it admits 21 Kéhler forms ¢4, and the structure 4-form ®spin(7) appears as the second
coefficient of the characteristic polynomial of the matrix (¢qg), see Proposition 10.

In Sect. 5 we explicitly compute the 36 Kihler forms g of a Spin(9)-structure, and we
prove that in the characteristic polynomial of (1) only the fourth coefficient 74 (v/) survives,
see Proposition 13. Section 6 is then devoted to the computation of Table 2 and finally, in
Sect. 7, we prove that 360®s,in9) = T4(¥) see Theorem 16, and we use Chern—Weil theory
to obtain a few relations between ®gpin9) and Pontrjagin classes of compact manifolds with
holonomy Spin(9).

The 36 almost complex structures Jyg given in (1.2) will be also used in two forthcoming
papers, concerning the classical problem of vector fields on spheres of arbitrary dimension
[25], and the study of 16-dimensional manifolds equipped with a locally conformal parallel
Spin(9) metric [26].

For the reader’s convenience, Table 1 presents a list of symbols specific to this article.
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Table 1 Synoptic table of symbols specific to this article

Symbol

Meaning

Li,j. ke f,g.h
PSpin(7)

o

Iy

Jup

REL LH
Ry

0 = (bap)
®

@RH @LH
Qr

b

¢/ " a
o rar vo

Raﬂ

® = (Pap)
Y= (‘/’aﬂ)
T (Y1)

w

Q

Pspin(9)

Units in the octonions O, with ie = f, je = g, ke = h. See Sect. 2

Structure 4-form for Spin(7). Defined by (2.4)

Boldfaced and scriptsized. Short for dx,, with x4 coordinates in R8. The coordinates
in R are (xq, ..., xsg, xi, o xé), and we write also &’ as a shortcut for dx,,. The
wedge is omitted, so that 123’4’ means dx| A dxp A dxj A dx)y. Note that this
notation can be mixed with scalars: —12123’4’ means then-12 times
dxy Adxy A dxg A d)cf1

Involutions, same symbol with different meanings. They generate the symmetries of
the Hopf fibrations §3 — 52, §7 — 5%, 15 — §8 for
a=1,....,3,a=1,...,5 a=1,...,9respectively. See (3.1), (3.3), (5.1) and 7

The complex structure Zy Zg. Fora = 1, ..., 3 see (3.2); fora = 1, ..., 5 see (3.5)
and (3.6); fora =1, ...,9 see (5.2) and (5.3).

Right and left multiplication in H. Here « € {i, j, k}, see (3.4) and (3.10)

Right multiplication in O. Here « € {i, j, k, e, f, g, h}, see (4.1)

Matrix of the Kahler forms of Jyg. Defined only in dim = 8, thus e, B =1, ..., 5,
see (3.7) and (3.8)

Sum of the squares of 6. Defined only in dim = 8, see (3.9)

Kihler forms of RH, LH. Defined only in dim = &, see (3.11) and 5

Left quaternionic 4-form on ]HIZ, see S5

Kihler forms of Ry. Here o € {i, j, k, e, f, g, h}. They generate A% in the
decomposition AZRS = A% 3} A%l, see (4.2)}

Kéhler forms generating A%l in the decomposition ARS8 = A% 53] A%l. Here
aeli,j ke, f, g, h}, see (4.3)

The complex structure Ry Rﬁ, where o, B € {i, j, k, e, f, g, h}, see (4.4)

Matrix of the Kéhler forms of Ryg, where o, 8 € {i, j, k, e, f, g, h}, see (4.5) and 10

Matrix of the Kihler forms of Jaﬂy where o, 8 € {1, ...,9}, see (5.4), (5.5) and 13

The coefficients of det(r — ). Only 74 and tg are non-trivial, see 13

The 2-form ¢ f(CPl p;" vy dl. With ¢ = 2/ we have w = Kihler form in C2, see (6.2)

The 4-form ¢ fHPl pl*vl dl. With ¢ = —120/7'[2 we have 2 = Right
quaternion-Kéhler form in HQ, see (6.4)

The 8-form ¢ f@Pl pf vy dl. The constant ¢ = 110800/714 is chosen in such a way that
the coefficients of ®gpin(9) be coprime integers, see (6.6)

2 Preliminaries and notations

In this section we state some standard facts and notations on octonions, which will be used
throughout all the computations in this article. For details, the reader is referred for instance
to [21], which is consistent with our notation.

We will denote by i, j, k the units of the quaternions H. A natural way to look at octo-
nions O is then as pairs of quaternions. Accordingly, the multiplication between x, x’ € Q is

defined by writing

x =hy + hpe, x’:h/l—l—h/ze,

and their product as
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xx' = (hih) — Hyhy) + (hoh'y + hyhy)e, @2.1)

where E/l , Fz are the conjugates of quaternions /', h), € H (see for instance [24, p. 139]).
Note that the identification

x < (hy, h2)

is not an isomorphism between @ and H? as quaternionic vector spaces. This is instead the
case for the map

(hi, hy) € B2 — h; + (khak)e € O (2.2)

(cf. [13, p. 5]), useful to compare structures related to quaternions and octonions. We will
use this for example to write down Formulas (4.1), concerning the almost complex structures
associated with Spin(7).

Multiplication in O is related through Formula (2.1) with multiplication in H. For this
reason, in this article we need to distinguish between them, and we will use the symbols
R™, L® for quaternionic multiplication, reserving R, L to the octonion multiplication.

The conjugation in O is defined through the one in H:

lef —
X = hy — hae,
and allows to write the non-commutativity of Q as
xx' =¥%%

The non-associativity of O gives rise to the associator

[x, y,2] = (xy)z — x(y2),

alternating and vanishing whenever two of its arguments are either equal or conjugate. The
condition [x, y, z] = O for orthonormal bases {x, y, z} defines the associative 3-planes ¢ C
R’ = Im O, also characterized as the ones closed with respect to the cross-product

et 1
xxyg —E(fy—yx)zlm(ix), forx,y € ImQ.

The Grassmannian of associative 3-planes in Im O is the quaternion Kihler Wolf space

G,2/SO(4).
The double cross product on R® = O is defined by

a1
XXyXz= E(X(YZ) —z(yx)), (2.3)

or by the simpler expression x(yz) whenever x, y, z are orthogonal.
If (, ) denotes the standard scalar product on RS, the 4-form

def
Dgpin(7) (X, ¥, 2, w) = (x,y X z X w) 2.4)
can be written in terms of the canonical basis {dxi, ..., dxg} € A'R® of 1-forms in R®:
Dgpin(7) = 1234 + 1256 + 1357 + 1368 — 1278 — 1467 + 1458 + *, 2.5)

where apys (smaller size and boldface) denotes dx, A dxg A dx, A dxs, and x denotes the

. def
Hodge star, with the agreement that a 4+ * = a + *a.
We will use the above notation «gyé and a + % throughout all this article.
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Our definition of ®gpin(7) follows the choices in [21, p. 120]. Note that other references
like [22] or [23] use different signs in some of the terms of ®gpin(7). The group Spin(7) can
be defined as the subgroup of SO(8) leaving the 4-form ®gpi,(7) invariant. Equivalently (see
also Sect. 4), Spin(7) is the subgroup of SO(8) generated by the right multiplications R,,, for
all imaginary units « € S® € Im Q.

The 4-form ®gpine7) is self-dual. Indeed, the following decomposition in orthogonal
Spin(7)-invariant components applies to the space A*RS = Ai @ A* of 4-forms in R®:

A =Ate Ao Ay, At =A% (2.6)

Here Ai denote the self-dual and anti-self-dual 4-forms, A? a [-dimensional vector space
and A‘l‘ is generated by ®gpin(7) (cf. for example [23, p. 240]). Similarly, 2-forms in RS give
rise to the following Spin(7)-invariant orthogonal decomposition:

AR = A2 @ A%, 2.7

that will be further commented in Sect. 4.
According to what we mentioned in the Sect. 1, we give now the definition of a Spin(9)-
structure in the framework of G-structures, that we will use in this article.

Definition 1 A Spin(9)-structure on a Riemannian manifold M 16 is a rank 9 vector subbun-
dle V° ¢ End(T M), locally spanned by nine endomorphisms Z, satisfying the following
conditions:

I2=1d, I!=71, ZToZp=-1Iply ifa#p, 2.8)
where Z}; denotes the adjoint of Z,,.

Observe that Formula (2.8) implies that compositions of n different Z,’s are complex
structures if » = 2,3 mod 4, and involutions if » = 0, 1 mod 4.

For M = RI°, 11, ..., 729 are generators of the Clifford algebra CI(9), considered as
endomorphisms of its 16-dimensional real representation Ag = R!'® = Q2. Accordingly,
unit vectors v € S® C R can be seen as symmetric endomorphisms v : Ag — Ag via the
Clifford multiplication, and these endomorphisms generate Spin(9).

An explicit way to describe these generators is by writing v € $% C R x O as r + u,
where r € R, u € O and r> 4+ uu = 1, and acting on pairs (x, x') € O? by

X r Ry X
cf. [20, p. 288].

Observe that Formula (2.9) describes as well a set of generators for other Lie groups,
provided that v is taken respectively in S and S*, that is to say, provided that x, x', u in (2.9)
are taken respectively in C and H.

3 Low dimensions
Formula (2.9) can be used to define actions of the spheres $2 on C2 and S* on H?, by taking
veS?CcRxCandv e §* C R x H, respectively. This leads to alternative definitions

of a U(2)-structure on R* and of a Sp(1) - Sp(2)-structure on RS, respectively. We briefly
describe the analogy with symmetries of the Hopf fibrations presented in [19].
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Definition 2 Let V3 be a rank 3 vector subbundle of the endomorphism bundle End(7 M)
on a Riemannian manifold M*. We call V3 a complex Hopf structure on M* if V3 is locally
spanned by involutions 71, Z,, 73 satisfying relations (2.8) and related, on open sets covering
M, by functions giving SO(3) matrices.

Our terminology is motivated by the standard choice M* = CZ. Here one gets the stan-
dard complex Hopf structure from the elements (r, u) = (0, 1), (0, ), (1,0) € S2cRxC.
According to (2.9), their actions on C? generate the (identity component of the group of)
symmetries of the Hopf fibration §3 — S2.

We obtain in this way the Pauli matrices:

01 0 —i 10
I‘:(1 o)’ Iz:(i 0)’ 13:(0 —1)’ G-I

belonging to U(2). The compositions Jyg = ZoIg, for o < B, are given by the complex

structures
i 0 0 —1 0 i
1122(0 —i)’ 1132(1 0>, 123=(l. 0), (3.2)

acting on H = C? as multiplication on the right by unit quaternions: Ji, = R}H[, Jiz3 =
R?, Jo3 = R}L. Similarly, multiplication LI on the left by i coincides with Ji23 L L5,

From this, we see that our datum of V3 C End(TR4) on R* gives rise, through the Kéhler
forms of Ji2, Ji13, J23, J123, to the decomposition of 2-forms in R* as

A’R* Z s0(4) = u(1) @ s0(3) ® A3,
and the following observation follows.

Proposition 3 The datum of a complex Hopf structure on a Riemannian manifold M* is
equivalent to an almost Hermitian structure, via the isomorphism U(1) - Sp(1) = U(2).

Similarly, Formula (2.8) suggests also the following:

Definition 4 Let V> be a rank 5 vector subbundle of the endomorphism bundle End(7 M)
on a Riemannian manifold M3. We say that V> is a (right) quaternionic Hopf structure on
M3 if V7 is locally spanned by involutions Z7, . . ., Zs satisfying relations (2.8) and related,
on open sets covering M, by functions giving SO(5) matrices.

Here the terminology comes again from a Hopf fibration. The standard situation is in fact
M3 = H? and a basis of V7 is obtained by Formula (2.9), with now (r, u) € §* c RxHatthe
five choices (r, u) = (0, 1), (0, i), (0, j), (0, k), (1, 0). Their action generate Sp(2) - Sp(1),
the group of symmetries of the Hopf fibration S7 —> §*, defined by looking at H? as a right
quaternionic vector space.

One gets in this way the involutions on H?:

0|1d 0 |-RE 0 |-RHY
I = (+) 122( L ) 132( )
1d[0 i RHRi 0 . RI[0 33
_ LY _
n=(go ) »=(5%)
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where
0 -1 00 00 -1 0 0 00 —1
s (1 0 00 S s [0 01 o0
Ri=1o o o1 ®=l10 0o o] ®=lo-10 o
0 0 —1 0 01 0 0 1 00 0
(3.4)

The ten compositions Jyg = ZoZIp, for a < B, are thus the following complex structures
on R3:

(R 0 (R o _(RE| 0
112—( 0 TRZH) J13 —(—()L*_—R\;qr o Ju=1 —&7)’
_(RE O 3 —RY| 0 (Rl 0
123—(0@5{), Jo4 —(ﬂjx}m J3g = 0 &)
and

_(0]-u _( 0 |RY [ O |RY (0 |R]
JIS—(I ), 125—(Ri 0), 135—(Rj o | Jys = RET0 )

(3.6)

We obtain also ten further complex structures Jyg,, = ToIpZy,,fora < B < y, that are
12345
aByde
Jse. Moreover, compositions Z,Zg7,Zs reproduce—up to the negative of the sign of the
above permutation—the five involutions Z,. Recall now that a Sp(1) - Sp(2)-structure, (a left
quaternion Hermitian structure) on R® is equivalent to decomposing 2-forms as

easily seen to coincide—up to the sign of the permutation ( )—With the former

A’R® = 50(8) = 50(2) D sp(2) @ A%s,

where s5p(2) = s0(5) is generated by the Jug (cf. [28, p. 125]).
Using the notation introduced with Formula (2.5), we can write the Kihler forms 6,4 of
Jop as

O1p = —12+34+56—78, 613 =—13—24+4+57+68, O14 = —14+ 23+ 58 — 67, 3.7)
03 = —14+23 —58+67, by =13+24+57+68, O34 = —12+ 34 — 56 + 78, '
and
O15 = —15—26 —37 — 48, 0G5 = —16 + 25+ 38 — 47, (3.8)
035 = —17 — 28 + 35+ 46, i35 = —18 + 27 — 36 + 45, '

so that, if 6 = (B4p) and 7, (0) is the second coefficient of its characteristic polynomial, then
a 4-form

II&
o

O = n@) =04 +65+- +05

= —121234 — 41256 — 41357 + 41368 — 41278 — 41467 — 41458 + * 3.9)

is defined.
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We will need also the fact that the left multiplications by i, j, k

0 -10 0 0 0 -10 00 0 -1
m_|1 00 O m_|0 0 01 m_|00 -1 0
Li_OOO—l’Lj_IOOO’L_Ol 0

0 01 O 0 -1 00 10 0 O

(3.10)
have Kihler forms
wH=—12—34—56—78, @ u=—13+24—57 +68,
' ! (3.11)
;= —14 — 23 — 58 — 67,
k
and if
def
is the (left) quaternionic 4-form of H? = R®, the comparison gives
—2Q; =0. (3.12)

This proves the following:

Proposition 5 The skew-symmetric matrix 0 = (04g), whose entries are the Kiihler forms
of the complex structures Jop on R®, allows to construct both the left quaternionic 4-form
Qy, and the right Kiihler 2-forms w g, @ gi, wREH as

i J

1
Qp =—=1(0
L > 2(0)
and
Wi = 034, Wpit = —0h4, WRH = 023.
B/ B//

On the other hand, one can easily check that matrices B = ( B B////) € SO(8) that
commute with each of the involutions Z1, ..., Zs are the ones satisfying B” = B”” = 0 and
B’ = B”" € Sp(1) € SO(4). Thus the subgroup preserving each of 71, ..., Zs is the diag-

onal Sp(1)ao C SO(8). The subgroup of SO(8) we are interested in is indeed the structure
group of the quaternionic Hopf structure V. It consists of matrices B satisfying BZ, = 7, B,
withZy,...,Zs and 7}, ..., Ig bases of V7 related by a SO(5) matrix. Thus this structure
group is Sp(1) - Sp(2), hence:

Proposition 6 The datum of a (right) quaternionic Hopf structure on a Riemannian man-
ifold M8 is equivalent to a (left) almost quaternion Hermitian structure, i.e., to a Sp(1) -
Sp(2)-structure.

In the above discussion we looked at the standard U(2) and Sp(1) - Sp(2)-structures on
R* and R®, through the decompositions of 2-forms

s0(4) =u(l) ®s0(3) @ A2, 50(8) = sp(1) ®Dsp(2) @ A%S
and orthonormal frames in the component so(3) and sp(2), respectively. The last components

A% and A%S describe all the similar structures on the linear spaces R* and R3. Thus, such
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decompositions give rise to the spaces SO(4)/U(2) and SO(8)/Sp(1) - Sp(2), the spaces of
all possible structures in the two cases.

Definition 1 of a Spin(9)-structure on a Riemannian manifold M ' corresponds to what
is now coherent to call an octonionic Hopf structure on M 16 via Formula (2.8) and choices

(r,u) = (0, 1), (0,4), (0, j),...,(0,h),(1,0) € S¥ C R x O.

Thus Spin(9)-structures can be viewed as analogs, in dimension 16, of U(2) structures in
dimension 4 and of Sp(1) - Sp(2) structures in dimension 8.
Summarizing:

Corollary 7 The actions (;,) — (1: RZ) (;,), whenu, x, x' € C, H, O (and in any
u -

caser € Randr®* +ui = 1) generate the groups U(2), Sp(1) - Sp(2), Spin(9) of symmetries
of the Hopf fibrations

RN N Y N Y

(in the first case just the identity component, cf. [19]). The corresponding G-structures
on Riemannian manifolds M*, M8, M'© can be described through vector subbundles V. C
End(T M) of rank 3,5,9, respectively. Any such V is locally generated by self-dual involutions
Ty satisfying To1g = —Iply for a # B and related, on open neighborhoods covering M,
by functions giving matrices in SO(3), SO(5), SO(9).

4 The Kihler forms of a Spin(7)-structure

We saw that U(2), Sp(1) - Sp(2) and Spin(9) can be described through 3, 5, and 9 invo-
lutions satisfying relations (2.8). We now show that a similar approach cannot be pursued
with Spin(7)-structures, that is, Spin(7) cannot be described by 7 involutions satisfying
relations (2.8).

Proposition 8 Let 71, ..., Zop+1 be involutions in R" satisfying (2.8). The compositions
def def

Jop = LoZg, for a < B, and Jugy = 1411, for a < B < y are linearly independent

complex structures on R".

Proof We already observed in Sect. 2 that J,g and Jyg,, are complex structures. Now observe
that (2.8) implies, forany = 1, ..., n, thattr(Z;Z,) = 1,andfore < g, thattr(Z;Zg) = 0.
Thus, the Z,, are orthonormal and symmetric. By a similar argument, tr(J; Jop) = 1 and
tr(J(;"ﬂ Jys) = tr(Zg1,Z,Zs) = 0 if any of y, 6 equals o or B. Finally, for o # y and 8 # 4,
note that J;‘ﬁ Jys is the composition of the skew-symmetric Jgq, and the symmetric Zs and
as such its trace is necessarily zero. Similar arguments show that the Jyg,,, fora < 8 < y,
are orthonormal.

Corollary 9 The Spin(7)-structures on R® cannot be defined through 7 endomorphisms sat-
isfying relations (2.8).

Proof For any choice of 7 endomorphisms {Z} in R® satisfying relations (2.8), the complex
structures Jugy,, for @ < B < y, would give rise to 35 linearly independent skew-sym-
metric endomorphisms, by Proposition 8. But this would contradict decomposition (2.7) of
two-forms in R® under Spin(7).

@ Springer



Ann Glob Anal Geom (2012) 41:321-345

331

Nevertheless, the right multiplications by 7, j, k, e, f = ie, g = je, h £ ke € O define 7

complex structures R;, ..
in Spin(7) € SO(8).

We will now use Formula (2.1) to explicitly write the matrix form of R;, ..

x = hy + hye € O, we obtain

xi = hii + (—hai)e,

and thus their matrices read

RE| 0
“= (i)

xj =hij+ (=h2j)e,
xe = —hy + (hy)e,
xg = jha + (jhpe,

Correspondingly, their Kéhler forms

¢i=—12+ 34 4+ 56 — 78,

generate the first component A% in the decomposition (2.7).

¢j =—13 — 24 + 57 + 68,
P =—15— 26 — 37 — 48,
g = —17 + 28 + 35 — 46,

In [16, p. 12] it has been observed that R® admits 28 =

., Ry on R8. As mentioned in Sect. 2, these complex structures lie

., Ry If
xk = hik + (—hok)e,
xf =ihy+ (ihy)e,
xh = khy + (khy)e,
_ (R0

w= ()

0 |LHY
Ry = (Flﬁf 0 )

0Ly

G =—14 + 23 4+ 58 — 67,
¢f=—16+ 25 — 38 + 47,
¢p=—18 — 27 + 36 + 45

(4.2)

g linearly independent Kéhler

forms and that they can be defined, up to sign, as the right hand sides of (4.2), corrected
either with all plus signs or with an even number of minus signs. Thus, the remaining 21
Kihler forms are generators of the other component A%l in (2.7), that coincides with the Lie
algebra spin(7). Explicitly, such generators are

¢, =12+34+56+78, ¢ =—-12—34+56+78, ¢ = —12+34—56+78,
q>;-=13+24+57+68, ¢}/=—13+24—57+68, ¢}”=—l3+24+57—68,
Gy =14+23+58+67, ¢ =—-14—23+58+67, ¢ =—14+23—58+67,
¢, =—15—26+37+4d8, ¢, =—15+26—37+48, ¢, = —15-+26—+ 37 — 48,
P =16+25+38+47, Pp=-16-25+38+47, ¢ =—-16+25+38—47,
by =17+28+35+46, ¢y =—17—28+35+46, ¢, = —17+28 — 35+ 46,
Gp =18+274+36+45, ¢, = —18+27—36+45, ¢, = —18+ 27+ 36 — 45.

(4.3)
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On the other hand, one can write the compositions Ryg = RyRg, for o, €
{i,j. ke f g h}

_(-RI o (R o _( 0 |-RE
le_< 0 _Rk)a le—(o Rj s Rze— _R,' 0 s

HyH
L)

; ) 4.4)

where left and right multiplication on H are given by Formulas (3.4) and (3.10), and their
compositions are

-1 000 0 0 0-1 0 01 0
g | 0-100 gm | 0 0-1 0 gm [0 00-1
RELE=1 0 o10]|" RELi=1 o-1 0o o] R®L=[1 00 of"
0 001 -1 0 0 0 0-10 0
000—1 1 00 0 0100
g, | 001 0 gm_ [0-10 0 g, [ 1000
RiLi=1 o010 of" RiLi=10 o1 of" Rile={o0001|"
~100 0 0 00-1 0010
0 0-1 0 01 0 0 ~100 0
g, | 0 0 0-1 g, (10 0 0 g | 010 0
Reli=|_1 0 0o o] R®Li=|o0 o-1] Reli=1 o001 o
0-1 0 0 00-1 0 000 —1

A computation shows then that their Kihler forms ¢ug coincide, up to sign, with the
forms (4.3). We write explicitly some of them:

¢ = —@en, O =—@ef,  O'=—@jk,.... ¢ = —¢ig,
by = —Pkes Py = 0jf- 4.3)

We can now prove that the 8-form ®gpin(7) defined in (2.5) can be recovered from any of
the two components in the decomposition (2.7).

Proposition 10 The 7 Kdihler forms ¢;, ..., ¢n of the complex structures R;, ..., R, and
the 21 Kdhler forms @;j, ..., @gn of Rug, for o, B € {i, j, k, e, f, g, h}, satisfy

1 2 2 1 2 2 2 1
Dspin(7) = —g(d)l- + oty = 8(‘/),'j + @i+ +(Pgh) = gfz((.ﬂ),
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def
where 12(¢) is the second coefficient of the characteristic polynomial of ¢ = (@up). Thus
Dspin(7) is, up to a constant, the sum of squares of elements of an orthonormal basis in any
of the components of A*R8 = A% &) A%l.

Proof A computation shows that

R A

= 6(1234 + 5678) — 3(15 + 26 + 37 + 48)2 — 6(1278 — 1368 + 1467 + 2358 — 2457 + 3456)
=—¢7 = — 9. (4.6)
The conclusion then follows by comparing (4.6) with (2.5).

Remark 11 We have listed a certain number of complex structures in R®. Indeed, a compar-
ison between the two decompositions ARS8 = A%O @ A%S (under Spin(5)) and ARS8 =
A% ® A%l (under Spin(7)) can be made more precise in terms of the above mentioned gener-
ators of the components. The following identities hold between the ten Spin(5) Kéhler forms
0up and some of the 7 and of the 21 Kihler forms associated with Spin(7):

O=0¢i, Oi3=¢;, Ou=dr, 0Oi15= ¢,
and
03 = @ij,  Oha=—pix, 4= —gji,
025 = Qies 035 = —Qje, 045 = —Qre.

It follows that the remaining 2-forms ¢, and ¢qg can be chosen as generators of the com-
ponent A%g, that contains the s0(3) spanned by ¢ r¢, @ 11, @gn- O

Remark 12 By comparing the last two sections, it appears that the behavior of the represen-
tations of Spin(5) and of Spin(7) on R® are quite different in terms of the associated almost
complex structures. In particular, Corollary 9 states the impossibility of deducing the almost
complex structures defined by Spin(7) from a set of involutions. As we will see in the next
section, Spin(9) is much closer in this respect to Spin(5) than to Spin(7). However, most of
the formulas written in the present section will be useful to obtain explicitly the Kéhler forms
associated with Spin(9). O

5 The Kéhler forms of a Spin(9)-structure

A basis of the standard Spin(9)-structure on 0? = R!® can be written by looking at (2.9)
and at the 9 vectors (0, 1), (0, 1), (0, j), ..., (0, k), (1,0) € S8 C R x O. This gives the

following symmetric endomorphisms:
0|—R; _{ O|=R;
(o) ==(xro)

0|Id

() o

_(O]-R 0|-R, 0 |-R;
() () (o) e
_(0|-R, (0 |-Ry (1] 0
n=(wre)  a-(@s) »-(Fe)

The space AZR!6 of 2-forms in R'® decomposes under Spin(9) as

&
[

216 _ A2 2
AR = A30© Agy
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(cf.[17,p. 146]), where Agé = spin(9) and A 24 is an orthogonal complementin A? = 50(16).
Explicit generators of both subspaces can be written by looking at the 36 compositions
Jup “ ZToZp, for o < B, and at the 84 compositions Jug, “ ToIpZy, fora < B < vy,
all complex structures on R'®. We write now explicitly the matrix forms for Jup, and for
convenience we split them in two families. The first 28 complex structures are

() e
)

=~
5]
Il
Y
o|=
|
=[S
—
H

_(—Ri| O _ Ri.| O _(—Rir| O .
= ( 0 le) - ( 0 R,e) 6 =\—5 —R,-f) = ( 0 |—Rig
Jog = (_Rih 2 ) “Rpe] 0 ) J36 = (_Rff 0
ih -

II H
A A
%
e
=
|
o X|o
e
=
~—
[
b
Il
~—

0 0 0 0 _
—R 0 —Rip| O —Rer| O —R 0
SR A R A R A

8 e eg

0 0 0 0
—Rep 0 R/g 0 —Rf';, 0 —Rgh 0
Js3 = Je7 = s Jeg = . s J1g =
58 ( 0 =R ) 67 = ( 0 |“Ry 63 0 |—Rup 78 0 R

(5.2)
and the remaining 8 complex structures are
_(0]-1d _( O|R 0 |R; _( O |R
= (S (8. = (215). (21
(5.3)

0 |R. 0 |Ry 0 Rg) ( 0 Rh)
Js9 = , Jeo = , J9 = , Jgo = .
59 (4‘7& 0) 69 (Rf o ) 79 (+Rg 0 8 =%T0

We write now the associated Kihler two-forms ¥, of the complex structures Jyg, by
denoting the coordinates in 0? = R!6 by (1,...,8,1,...,8). Abusing a little the notation
introduced in Sect. 2, we can then write

Yo =(—12+34+56—178) — (), Y13 =(—13—24+57+68) — (),
Via = (—14+23+58—67) — (), Y15=(-15-26—37—48) — (),
Yie = (—16+25—38+47) — (), Y17 = (—17+ 28435 —46) — (),
Yig = (—18 — 27+ 36+ 45) — (), Yo3 = (—14+23—58+67) + (),
Yoa = (13+244+57+68) + (), Vo5 = (—16 + 25+ 38 —47) + (),
Vo6 = (15+26 — 37 —48) + (), Yo7 = (18427 +36+45) + (),
Yog = (—17+28—35+46) + (), Y34 = (—-12+34—56+78) + (),
Y35 = (=17 —28+35446) + (), Y3g=(—18+27+36—45)+ (), (54
Y37 = (+15—26+37—48) + (),  Y3g=(16+25+38+47) + (),
Ygs = (—18+27 — 36 +45) + (), Va6 = (17 +28 + 35+ 46) + (),
Ya7 = (-16 —25+38+47) + (), Yuz=(15—26—37+48) + (),
Yse = (—12—34+56+78) + (), Ys7=(-13+24+57—68) + (),
Ysg = (—14 — 23+ 58 +67) + (), Yo7 = (14423458 +67) + (),
Yes = (—13+24 —57+68) + (), Ys=(12+34+5+78)+ (),
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where ()’ denotes the ’ of what appears before it, for instance
Y12 = (—12+ 34+ 56 — 78) — (—1'2 + 34 + 56 — 7'8)).

Moreover we have

Y19 = —11 — 22’ — 33 — 44’ — 55 — 66/ — 77" — 88/,
Y9 = —12' + 21" + 34 — 43 + 56 — 65’ — 78’ + 87,
Y39 = —13 — 24’ + 31 + 42’ + 57 + 68 — 75 — 86/,
Va9 = —14' +23 — 32 +41' + 58 — 67 + 76’ — 85, (55
Ysg = —15 — 26’ — 37 — 48 + 51’ + 62’ + 73’ + 84/,
Yoo = —16 + 25 — 38 + 47 — 52’ + 61/ — 74 + 8%,
Y19 = —17 + 28 + 35 — 46’ — 53 464 + 71" — 82/,
Ygg = —18 — 27 + 36/ + 45 — 54’ — 63 + 72 + 81,

9 given by Formulas (5.4)

and (5.5). Then its characteristic polynomial reduces to
dett] —¥) = 1° + ©()r’ + w@)r.

Proof The coefficients tp_1 of det(t/ — i) are zero, since ¥ is a 9 x 9 skew-symmetric
matrix. Thus, it remains to check that 7o = ¢ = 0. Since 76(/) is the Hodge star of 72 (1)
in R, we are only left to show the vanishing of 7o (v).

Observe that the Kihler forms in (5.4) can be arranged in the following seven families:

V12, Y34, Y6, Y78 = [£(12) £ (34) & (56) & (78)] & [£(12)" £ (34)" & (56) & (78)'],
V13, You, ¥s7, Yes = [£(13) &= (24) £ (57) £ (68)] & [£(13) & (24)" £ (57)" & (68)'],
V14, Y23, ¥ss, Yo7 = [£(14) &= (23) = (58) £ (67)] & [£(14)" & (23)" £ (58) & (67)'],
Y15, Y26, Y37, Yag = [£(15) & (26) = (37) £ (48)] & [£(15) & (26)" £ (37)' & (48)'],
Y16, V25, Y38, Va7 = [£(16) & (25) £ (38) £ (47)] & [£(16)’ & (25)" £ (38)’ & (47)'],
Y17, Y28, Y35, Yae = [£(17) £ (28) & (35) & (46)] & [£(17)" £ (28)" & (35)" & (46)'],
Y18, Y27, Y36, Yas = [£(18) &+ (27) & (36) & (45)] & [£(18)" £ (27)" £ (36) & (45)'],
(5.6)

and note that the four ¥, in each line indicate precisely the four pairs («g) appearing in
their expression. Note also that in each line the signs inside brackets follow (up to a global
change) the four patterns

—()+CH+(H)=C), —=(H)+()=C)H)+(),
—()=()+CH)+C),  +CH+CH+CH+C ), (5.7
that is, an even number of + and — signs. Finally, observe that in all cases (and again up to a

global change for forms of type v, for 8 = 2, ..., 8) the same pattern appears both in the
terms with coordinates (1, ..., 8) and in those with coordinates (1/, ..., 8).
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It follows

(Vi +V3u+Vde+ag) = 1202 + 1234 +125'6' —127'8' +3412 + 3434 —345'6/ +-347'8'

E

—+ 561'2' —563'4' +565'6' +567'8' —781'2' +783'4' +785'¢' +787'8’,

% (VYU +9d) = 1BUY— 1324 1357 136’8 — 2413 +242/4' + 2457 +246'8'

+ 5713 45724 +575'7 —576'8' +681'3 +682'4 —685'7 +686'8',
% (Vs +Va+ V5 +1g;) = 1414 +142' + 1458 —146'7 +231'4' +232'3 —235'8'+ 2367

+ 581’4’ —582'3' 4-585'8' +586'7" —671'4’ 4672’3 +-675'8' +676'7’,
L T S S SV
1 (Vis+¥ie+ V3 +Vig) = 1515 —152'6 —1537 —154'8' —261'S' +262'6' —263'7' —264'8

—371'5' —372/6' + 3737 — 374’8 —481'S' —482'6' —483'7' + 484’8,
% (Vio+V3s+ V3 +¥d;) = 1616 +162'S' — 1638 -+ 1647 +251'6' +252'5' +253'8' —254'7"

— 381’6/ +382'5' 383’8 +384'7 +471'6' —472'5' +473/ 8+ 4747,

1

(Vi + V3 + V35 +Vie) = VT +172'8 + 1735 — 1746’ + 2817+ 282'8' —283'S' +284'6'

|

+ 351'7' —352'8' +-353'5" +354'6' —461'7' +462'8' +463'5 +464'¢’,

—

1 (Vis + V3 +Uge+is) = 1818 — 1827 + 1836 -+184'S —271'8' +272'7 + 2736/ +274'S'
+ 361’8 +3627 3636/ —364'5' +451'8' -+ 4527 —453'6' +-454'5,
(5.8)

where the sum of the underlined terms is equal to — % %29~ On the other hand, the computation
of

1
3 (V3o + Vo + Vo + Vo + Vo + Vo + Vo) (5.9

through formulas (5.5) yields a sum of 28 x 7 = 196 terms. Among them, the 28 involving
repeated coordinates (like —12’21" or —34'43") reproduce the negative of the underlined terms
in 5.8 (or equivalently the terms of —%1//129)‘ Moreover, the remaining 196 — 28 = 168 terms
are in 2 to 1 correspondence with the negative of the 84 non-underlined terms in 5.8. In other
words, we have

8 8
2| 20 vas i+ 2 vk ) =0
a<pf=2 a=2

which gives (cf. [14] as well as the discussion in [12] concerning invariant tensors of the
16-dimensional representation of Spin(9)):

9
L) = D Yy =0. (5.10)

a<pf=2

Since tg(V) is a 16-form, it is proportional to the volume form of R'®. Sections 6 and 7
will be devoted to the computation of 74 ().
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6 The 8-form of a Spin(9)-structure

Recall (cf. [9, p. 13] as well as [15, pp. 168—170]) that a Spin(9)-invariant 8-form Pgpin(9)
in ©? can be defined through the projections p; from @2 onto its octonionic lines /. If v; is
the volume form on each line /, then

def
Dspin©) = ¢ / pivdl, 6.1)
oPr!

for some constant c. The Spin(9)-invariance of ®gpin(9) is a consequence of the Spin(9)
action on the octonionic lines / and of the Spin(9)-invariance of the measure d/ on QP!.

The above definition of ®gpin(9), forerunning the point of view of calibrations, parallels that
of the Khler 2-form in C" and the quaternionic 4-form in H" as the integrals [ p,—1 pjvi dl
and [y pa1 pjvi dl, respectively.

In this Section, we will use Formula (6.1) to explicitly compute ®gpin9) € ASR'®, and
we will give a formula analogous to Formula (2.5). To this aim, it is convenient to look first
at the corresponding approaches for the complex and quaternionic cases.

The Kihler form in C2

Let! = I = {(z, mz)|z € C} be a complex line in C2, where m = m| + im; € C. Denote
by p; : C2 — 0 — I, the projection, and by v; the volume form on /,, C R*. Writing the
generators (1, m) and (i, mi) of [, in real coordinates, and using again the notation {1, .. ., 4}
for the standard basis of A'R*, we obtain the following co-frame o1, o inl,, C R*:

o] =14+ m13+ mo4,
oy =2—mp3+mi4.
Thus, we have
def oap A oag

w=c *vdl:cfidm Adm
/p’[ Lmeamd 0T
(CP] 2

1 3 A2 —my3 4
/( +mi3+ma4) A (2 —mp3+my )dm1/\dmz,
2

R
=c
l—l—m%—l—m%
R

and using polar coordinates m = pe'? we have dm A dmy = p/(1+ pH)2dp A dO and

00 21

//(1+pcos€3+psin04)A(Z—psin@3+pcos@4)p
w=c

0 0

(1+p%)?3

dp A do.

The 2-form w is then described by (3) integrals, and a computation shows that the only
non-zero coefficients are that of 12 and 34:

21 oo 21

//p/(l+/02)3dp/\d9:7(/2://p3/(1+p2)3dp/\d9.
0 0 0 0
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Thus, for a ad-hoc choice of the constant ¢, we obtain

w=2/mr) / pl*vl dl = 12 + 34 = Kihler form in C2. (6.2)

cp!

The quaternion-Kihler form in H?

Following the complex case, in the quaternionic case we write [ = Ly = {(h,mh)|h € H},
where m = m +imy + jm3 + kmy4 € H. Denote again by p; : H2—0 — I, the projection,

by v; the volume form on [, C R® and by {1, ..., 8} the standard real co-frame of R8. The
co-frame {1, ..., a4}, dual to {(1, m), (i, mi), (j, mj), (k, mk)} in l,, C R8, is then given
by

ol =14+ m15+ mo6 4+ ms7+ my8,
ay =2 —ma5+m16 4+ my7 — ms38,
a3 =3 — m35 — mqg6 + m17 + m38,

o4 = 4 — my5+ m36 — mo7 + m 8,

and the integral 4-form is

def % [ S ARERNAN 7]
Q:c/plwdl: 3 5 5 5 dmi A - Admy. (6.3)
| f (1 4+ my +m3 + m3 + m3)?
HP R

Again, the computation of these (i) integrals can be done in polar coordinates. We used

Mathematica for this computation, obtaining

72 2 2 2 2 2 2
Q=c| 71234 — —1256 + ——1278 — —1357 — ——1368 — —— 1458 + ——1467
20 60 60 60 60 60 60

72 2 2 2 2 2 2
——2358 — ——2367 — ——2457 — ——2468 + ——3456 — —3478 + ——5678 |,
* 60 60 60 60 + 60 60 + 20 )

and a comparison with the right quaternionic 4-form a)iH + a)iH + wi}(}ﬂ (see also Proposi-
U J
tion 5) leads to

Q = (—120/7%) / pivdl = wi’H + wigﬂ + wigﬂ
HP!

= Right quaternion-Kshler form in HZ. (6.4)

The Spin(9)-form in 0?

In the octonionic case we write | = Ly = {(x,mx)|x € O}, where m =m +imy + jmsz +
kmy + ems + fme + gm7 + hmg € O. The projection is py : 0% =0 — I, and vy is the
volume form on /,, C R!®. For the sake of notation, it is now convenient to split R!® as two
copies of R8, 50 to denote by {1,...,8,1,..., 8} the standard real co-frame of R!®. We have
already introduced this notation in Formula (5.4).
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In the same way as before, we obtain the co-frame {«q, ..., ag} dual to {(1,m), ...,
(h, mh)}inl, C R, and the integral 8-form (6.1) is

oS WANRERAN 0 1}
4 (I+m}+-+md)?

¢Spin(9) =cC / pl*vl dl = dmy A -+ Admg. (65)

oP!

A Mathematica computation in polar coordinates of these integrals leads then to

16
8
the explicit formula, given in Table 2. Remark that since ®spin(9) is self-dual, Table 2 lists
only half of its monomials, the remaining ones being their Hodge stars. Thus the content of
Table 2 should be looked at as the analogue to formula (2.5) for the 4-form ®gpin(7).

Recall also that the entries of Table 2 have been computed, according to the theorem in
the Sect. 1, in such a way that the coefficients of ®gpin9) be integers with ged = 1. Thus,
with this constraint on the constant ¢, we have

110880
q)spin(g) = 7-[4 / p;kl)[ dl. (66)

oP!

Remark 14 Using the Hodge star  the 8-form reads
Dspin9) = Table 2 + xTable 2.

Remark 15 The monomials of ®gpin(9) can be partitioned in eight different families. For any
subset {a, b, c, d} of indexes in {1, ..., 8}, we say that abcd is of Cayley type if and only if
d = [£]a X b X ¢ in the double cross product of @ = R® defined by Formula (2.3). Observe
that this definition does not depend on the ordering of a, b, ¢, d.

Then in table 4+ » we can recognize the following patterns:

1. 2 monomials 12345678 and 1'2'3'4’5’¢’7’8’, both with coefficient —14;

2. 70 monomials abeda’b'¢’'d’, one for each of the choices {a, b, c,d} C {1,2, ..., 8}.

8

4
Among them, the 14 of Cayley type have coefficient £2, the remaining 56 have coeffi-
cient 1, depending on the orientation;

3. 70 monomials abede’g’y’s’, where «, B, y, 6 are all different from a, b, c, d. Again, the
14 of Cayley type have coefficient +2, and the remaining 56 have coefficient £1;

4. 336 monomials abeda’g’y’s’ wWith two coincidences, i.e., exactly two between «, 8, y, &
coincide with two between a, b, ¢, d. Cayley type is here excluded, so that there are

56 = 70 — 14 choices for {a, b, ¢, d}, and for each of them there are exactly 6 = (g)

choices for {«, 8, v, §}: in fact, for each choice of coincidence (for instance, @ = ¢, =
d), the remaining two indexes are obtained as double cross products (in our example,
y =a X g Xaand § =« X g X b). Here all monomials have coefficients 1, according
to the orientation;

5. 28 monomials abedafy’s’, where y, § are all different from a, b, ¢, d, «, 8. The coeffi-
cients are 2, according to the orientation;

6. 28 monomials abc’'d’«’g'y’8’, where a, b are all different from c, d, «, B, y, 8. The coef-
ficients are +2, according to the orientation;

7. 84 monomials abedaBy’s’, where {y, §} C {a, b, ¢, d, a, B}. The coefficients are +2, and
only choices such that the remaining indexes {a, b, ¢, d, o, B} — {y, 8} correspond to
Cayley type are admitted;
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8. 84 monomials abc’d’a’g’y’s’, where {a, b} C {c,d, a, B, v, 8}. The coefficients are +2,
and only choices such that the remaining indexes {c, d, «, B, y, 8} — {a, b} correspond
to Cayley type are admitted. O

7 The main formula and its corollaries

Let M' be a Riemannian manifold equipped with a Spin(9)-structure, as in Definition 1.
The linear algebra developed in Sect. 5 gives then local Kihler matrices on M, namely the
skew-symmetric matrices ¥ = (Yap), where Vg are the Kihler forms of the 36 local almost
complex structures Jog,for 1 < o < B < 9(cf. Formulas (5.2) and (5.3)). Moreover, we have
a Spin(9)-form on M, that is, the 8-form locally written as ®spin(9) given by Formula (6.6).
We denote it by the same symbol ®gpiy (o).

A local Kihler matrix v is a local 2-form taking values in s0(9), and ¥, " associated
with different local orthonormal bases of sections are related as usual by

Y =ATyA, (7.1)
where A denotes the change of basis, with values in SO(9). Thus, the characteristic polyno-

mial det(z/ — ) is globally defined.

Theorem 16 The 8-form ®spin(9) associated with the Spin(9)-structure V9 — M1 coin-
cides, up to a constant, with the coefficient t4(\) of t> in the characteristic polynomial

det(t] — ¥) = 1 + w1 + (W)L,
where  is any local Kihler matrix of M. The proportionality factor is given by

360Dspin9) = T4 (¥).

Proof The fact that in the characteristic polynomial only the terms of degree 9, 5, and 1 sur-
vive was already observed in Proposition 13. The 8-form t4(1/) is naturally Spin(9)-invariant
and thus, if not zero, it has to be proportional to ®spin(9). Then, to compute the proportionality
factor, it is sufficient to look at any of the terms of ®gpin(9) and 74(3). We consider the term
12345678.

From Table 2, we see that the coefficient for @gpin(9) is —14. As for t4(v/), we first observe
that it can be computed with a summation over the squared Pfaffians of the principal 4 x 4
submatrices of ®gpin(9):

wu(y) = > (Varar A Vasas — Varas A Vs + Varas A V) -

1<a)<ar<az<ws<9

and then we compute it using Formulas (5.4) and (5.5), thus obtaining —5040 = —14-360.

In particular the theorem stated in the Sect. 1 follows.
Another consequence of Theorem 16 is:

Corollary 17 The Kiihler forms of the Spin(9)-structure of Q% allow to compute the inte-
gral (1.1) as

dl= —" o).
/ Pt 110880-360 “¥)
oP!
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When Spin(9) is the holonomy group of the Riemannian manifold M ', the Levi-Civita
connection V preserves the vector bundle V9, and the local sections 7 ls...,Zgof v? induce
the Kihler forms ¥4 on M as local curvature forms.

Corollary 18 Ler M'® be a compact Riemannian manifold with holonomy Spin(9), i.e.,
M0 is either isometric to the Cayley projective plane QP> or to any compact quotient of
the Cayley hyperbolic plane OH?. Then its Pontrjagin classes are given by

p1(M) =0, pr(M)=— [Pspin)], p3(M) =0, ps(M) = [zs(¥)]

4 13
274 25678
Proof By Chern—Weil theory the Pontrjagin classes of the vector bundle V° — M are

pir(V) =0, 167 pa(V) = 14(¥) = 360 Pspinco)];
p3(V) =0, 2567°pa(V) = [z5(¥)]-

On the other hand, for any compact manifold M equipped with a Spin(9)-structure, the fol-
lowing relations hold between the Pontrjagin classes of V = V? and the Pontrjagin classes
of M, see [17, p. 138]:

p1(M) =2p(V),

)
p2(M) = 2 pi(V) = pa(V),

1, (7.2)
p3(M) = 3 (7pi(V) = 12p1(V)pa(V) + 16p3(V)),
1
pa(M) = 2% (35p1(V) — 120p1 (V) p2(V) +400p1 (V) p3(V) — 1664 p4(V)).

Thus, under our hypotheses, from 72 (¥) = 16(¢y) = 0 we get p1(V) = p3(V) = 0, so
that py(M) = p3(M) = 0, po(M) = —p2(V) and pa(M) = —13p4(V). The conclusion
follows.

The Pontrjagin classes of @ P? are known for a long time, see [11, p. 535]: p2(OP?) = 6u
and p4(OP?) = 39u?, where u is the canonical generator of H 8(0P2; Z). Thus, Corollary 18
give the following representative forms of the cohomology classes u and u?:

[o1s - !
u—|: ey Spln(9)] [ %6 4T4(1/f):| u —[—Wfs(w)]-

The volume of QP2 with respect to the canonical metric is known to be 68 /11!, and the
volume of its totally geodesic OP! c OP2? is the same as the volume of SS(%), ie., t /840,
cf. [9, p. 8]. Thus:

Corollary 19 On the Cayley projective plane Q P? the following relation holds:
[T = 12[(¥)].

Moreover, the integrals of <I>§pin(9) and Pgpin(9) on QP2 and on its totally geodesic subman-
ifold OP' give

/ Dspin9) = —224vol(QOP"), / DG in(o) = —473088vol(OP?).
or! op?
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