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Abstract For a Spin(9)-structure on a Riemannian manifold M16 we write explicitly the
matrixψ of its Kähler 2-forms and the canonical 8-form�Spin(9). We then prove that�Spin(9)
coincides up to a constant with the fourth coefficient of the characteristic polynomial of ψ .
This is inspired by lower dimensional situations, related to Hopf fibrations and to Spin(7).
As applications, formulas are deduced for Pontrjagin classes and integrals of �Spin(9) and
�2

Spin(9) in the special case of holonomy Spin(9).
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1 Introduction

Although Spin(9) belongs to M. Berger’s list in his holonomy theorem, it has been known for
a long time that the only simply connected complete Riemannian manifolds with holonomy
Spin(9) are the Cayley projective plane OP2 = F4

Spin(9) and its dual, the Cayley hyperbolic

plane OH2 = F4(−20)
Spin(9) (cf. [5,12], as well as [10, Chapter 10]). It is also known that, on the

unique irreducible 16-dimensional Spin(9)-module �9, the space �8 of exterior 8-forms
contains a 1-dimensional invariant subspace�8

1. Thus, any generator of�8
1 can be viewed as
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a canonical 8-form �Spin(9) on R
16, which is Spin(9)-invariant with respect to the standard

Spin(9)-structure.
In the same year 1972 when the quoted paper [12] by Brown and Gray appeared,

Berger published an article [9] on the Riemannian geometry of rank one symmetric spaces,
containing the following very simple definition of a Spin(9)-invariant 8-form�Spin(9) in R

16:

�Spin(9)
def= c

∫

OP1

p∗
l νl dl. (1.1)

Here νl is the volume form on the octonionic lines l
def= {(x,mx)} or l

def= {(0, y)} in O
2 ∼=

R
16, pl : O

2 → l is the projection on l, the integral is taken over the “octonionic pro-
jective line” OP1 = S8 of all the l ⊂ O

2 and c is a normalizing constant. In the same
article, Berger writes a similar definition:�Sp(n)·Sp(1)

def= c
∫

HPn−1 p∗
l νl dl for a quaternionic

4-form in H
n ∼= R

4n . Note that such definitions of �Spin(9) and �Sp(n)·Sp(1) arise from dis-
tinguished 8-planes or 4-planes in the two geometries, appearing thus very much in the spirit
of (at the time forthcoming) calibrations. It is also worth reminding that the stabilizers of
�Spin(9) in GL(16,R) and of �Sp(n)·Sp(1) in GL(4n,R) are precisely the subgroups Spin(9)
and Sp(n) · Sp(1), respectively (cf. [15, pp. 168–170] and [28, p. 126]).

The paper by Brown and Gray contains a different definition of �Spin(9), as a Haar inte-
gral over Spin(8). A natural question is whether an explicit and possibly simple algebraic
expression of �Spin(9) can be written in R

16, in parallel with the usual definitions of the
G2-invariant 3-form �G2 on R

7 or the Spin(7)-invariant 4-form �Spin(7) on R
8 (see for

example the books [22] and [23]).
Indeed, some such algebraic expressions have already been written. Namely, Abe and

Matsubara computed �Spin(9) obtaining its 702 terms from the triality principle of Spin(8)
(see [1] and [2], and note that some of the terms have to be corrected [3]). More recently, a
different approach has been presented by Castrillon Lopez et al. [14], where a detailed exam
is given for the invariance of elements of�8(R16) under the generators of the group Spin(9).

A major progress in understanding Spin(9)-structures came in the context of weak holo-
nomies by the work of Friedrich: in [17] and [18] it is observed that the number of possible
“weakened” holonomies Spin(9) is 16, exactly like in the cases of the groups U(n) and G2,
and also that a Spin(9)-structure on M16 can be described as a certain vector subbundle
V 9 ⊂ End(T M). This fact suggests a similarity between Spin(9) and the quaternionic group
Sp(n) · Sp(1).

More precisely, a Spin(9)-structure is a rank 9 real vector bundle V 9 ⊂ End(T M) → M ,
locally spanned by self-dual involutions Iα , for α = 1, . . . , 9, such that Iα ◦Iβ = −Iβ ◦Iα ,
for α �= β (cf. Definition 1). From these data, the local almost complex structures

Jαβ
def= Iα ◦ Iβ (1.2)

are defined on M16, and the 9 × 9 skew-symmetric matrix of their Kähler 2-forms

ψ
def= (ψαβ) (1.3)

is naturally associated with the Spin(9)-structure. The 36 differential forms ψαβ , for α < β,
are thus a local system of Kähler two-forms of the Spin(9)-manifold (M16, V 9).

The first result of this article is the explicit computation of the 702 terms of �Spin(9),
according to the work by Abe and Matsubara, and on the grounds of Berger’s definition of
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�Spin(9). The computation was performed with the help of the software Mathematica, and
the result is shown in Table 2 at p. 340.

The second result is the following formula for �Spin(9), see Theorem 16.

Theorem Let �Spin(9) = c
∫

OP1 p∗
l νl dl be the canonical 8-form in R

16, and choose the
constant c in such a way that all its 702 terms are integers, with no common factors. Then
c = 110880

π4 and

�Spin(9) = 1

360
τ4(ψ), (1.4)

where τ4(ψ) is the fourth coefficient of the characteristic polynomial of the matrix ψ of
Kähler 2-forms.

Formula 1.4 for�Spin(9) holds more generally for any 16-dimensional manifold equipped
with a Spin(9)-structure. In particular, when the matrix (1.3) of Kähler forms can be inter-
preted as the matrix of local curvature forms of a linear connection in the real vector
bundle V 9 → M16, then by Chern-Weil theory its second Pontrjagin class p2(V ) is rep-
resented, up to a constant, by the closed form τ4(ψ). This is certainly the case for a compact
Riemannian manifold M16 with holonomy Spin(9), i.e., either OP2 or any compact quotient
of OH2. Thus, the third result of this article is the representation through�Spin(9) of the sec-
ond Pontrjagin class of OP2 or any compact quotient of OH2, and a relation of the integrals
of �Spin(9) and �2

Spin(9) with the volumes of OP1 and OP2, respectively, see Corollaries 18
and 19.

It is worth mentioning that our point of view is not strictly related to Spin(9) as holon-
omy, but follows the line of non-integrable geometries. For a unified approach to several
non-integrable geometries, see the survey [4].

In this article we also develop the analogy between Spin(9)-structures on 16-dimensional
manifolds and either almost complex Hermitian structures in dimension 4 or almost qua-
ternion Hermitian structures in dimension 8. This is done in Sect. 3, where this similarity
is explained in the framework of what we call Hopf structure, arising from the structure of
the symmetry group of a Hopf fibration. In particular, in dimension 8 the structure group
Sp(1) · Sp(2) is generated by 5 involutions, inducing 10 Kähler forms θαβ , and the left qua-
ternionic 4-form appears as the second coefficient of the characteristic polynomial of the
matrix (θαβ), see Proposition 5.

In Sect. 4 we show that Spin(7) cannot be defined through 7 involutions, but neverthe-
less it admits 21 Kähler forms ϕαβ , and the structure 4-form �Spin(7) appears as the second
coefficient of the characteristic polynomial of the matrix (ϕαβ), see Proposition 10.

In Sect. 5 we explicitly compute the 36 Kähler forms ψαβ of a Spin(9)-structure, and we
prove that in the characteristic polynomial of (ψαβ) only the fourth coefficient τ4(ψ) survives,
see Proposition 13. Section 6 is then devoted to the computation of Table 2 and finally, in
Sect. 7, we prove that 360�Spin(9) = τ4(ψ) see Theorem 16, and we use Chern–Weil theory
to obtain a few relations between�Spin(9) and Pontrjagin classes of compact manifolds with
holonomy Spin(9).

The 36 almost complex structures Jαβ given in (1.2) will be also used in two forthcoming
papers, concerning the classical problem of vector fields on spheres of arbitrary dimension
[25], and the study of 16-dimensional manifolds equipped with a locally conformal parallel
Spin(9) metric [26].

For the reader’s convenience, Table 1 presents a list of symbols specific to this article.
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Table 1 Synoptic table of symbols specific to this article

Symbol Meaning

1, i, j, k, e, f, g, h Units in the octonions O, with ie = f, je = g, ke = h. See Sect. 2

�Spin(7) Structure 4-form for Spin(7). Defined by (2.4)

α Boldfaced and scriptsized. Short for dxα , with xα coordinates in R
8. The coordinates

in R
16 are (x1, . . . , x8, x ′

1, . . . , x ′
8), and we write also α′ as a shortcut for dx ′

α . The
wedge is omitted, so that 123′4′ means dx1 ∧ dx2 ∧ dx ′

3 ∧ dx ′
4. Note that this

notation can be mixed with scalars: −12123′4′ means then-12 times
dx1 ∧ dx2 ∧ dx ′

3 ∧ dx ′
4Iα Involutions, same symbol with different meanings. They generate the symmetries of

the Hopf fibrations S3 −→ S2, S7 −→ S4, S15 −→ S8 for
α = 1, . . . , 3, α = 1, . . . , 5, α = 1, . . . , 9 respectively. See (3.1), (3.3), (5.1) and 7

Jαβ The complex structure IαIβ . For α = 1, . . . , 3 see (3.2); for α = 1, . . . , 5 see (3.5)
and (3.6); for α = 1, . . . , 9 see (5.2) and (5.3).

RH
α , LH

α Right and left multiplication in H. Here α ∈ {i, j, k}, see (3.4) and (3.10)

Rα Right multiplication in O. Here α ∈ {i, j, k, e, f, g, h}, see (4.1)

θ = (θαβ) Matrix of the Kähler forms of Jαβ . Defined only in dim = 8, thus α, β = 1, . . . , 5,
see (3.7) and (3.8)


 Sum of the squares of θαβ . Defined only in dim = 8, see (3.9)

ωRH· , ωLH· Kähler forms of RH· , LH· . Defined only in dim = 8, see (3.11) and 5

�L Left quaternionic 4-form on H
2, see 5

φα Kähler forms of Rα . Here α ∈ {i, j, k, e, f, g, h}. They generate �2
7 in the

decomposition �2
R

8 = �2
7 ⊕�2

21, see (4.2)}
φ′
α, φ

′′
α, φ

′′′
α Kähler forms generating �2

21 in the decomposition �2
R

8 = �2
7 ⊕�2

21. Here
α ∈ {i, j, k, e, f, g, h}, see (4.3)

Rαβ The complex structure RαRβ , where α, β ∈ {i, j, k, e, f, g, h}, see (4.4)

ϕ = (ϕαβ) Matrix of the Kähler forms of Rαβ , where α, β ∈ {i, j, k, e, f, g, h}, see (4.5) and 10

ψ = (ψαβ) Matrix of the Kähler forms of Jαβ , where α, β ∈ {1, . . . , 9}, see (5.4), (5.5) and 13

τα(ψ) The coefficients of det(t I − ψ). Only τ4 and τ8 are non-trivial, see 13

ω The 2-form c
∫
CP1 p∗

l νl dl. With c = 2/π we have ω = Kähler form in C
2, see (6.2)

� The 4-form c
∫
HP1 p∗

l νl dl. With c = −120/π2 we have � = Right

quaternion-Kähler form in H
2, see (6.4)

�Spin(9) The 8-form c
∫
OP1 p∗

l νl dl. The constant c = 110800/π4 is chosen in such a way that
the coefficients of �Spin(9) be coprime integers, see (6.6)

2 Preliminaries and notations

In this section we state some standard facts and notations on octonions, which will be used
throughout all the computations in this article. For details, the reader is referred for instance
to [21], which is consistent with our notation.

We will denote by i, j, k the units of the quaternions H. A natural way to look at octo-
nions O is then as pairs of quaternions. Accordingly, the multiplication between x, x ′ ∈ O is
defined by writing

x = h1 + h2e, x ′ = h′
1 + h′

2e,

and their product as
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xx ′ = (h1h′
1 − h

′
2h2)+ (h2h

′
1 + h′

2h1)e, (2.1)

where h
′
1, h

′
2 are the conjugates of quaternions h′

1, h′
2 ∈ H (see for instance [24, p. 139]).

Note that the identification

x ↔ (h1, h2)

is not an isomorphism between O and H
2 as quaternionic vector spaces. This is instead the

case for the map

(h1, h2) ∈ H
2 → h1 + (kh2k)e ∈ O (2.2)

(cf. [13, p. 5]), useful to compare structures related to quaternions and octonions. We will
use this for example to write down Formulas (4.1), concerning the almost complex structures
associated with Spin(7).

Multiplication in O is related through Formula (2.1) with multiplication in H. For this
reason, in this article we need to distinguish between them, and we will use the symbols
RH, LH for quaternionic multiplication, reserving R, L to the octonion multiplication.

The conjugation in O is defined through the one in H:

x
def= h1 − h2e,

and allows to write the non-commutativity of O as

xx ′ = x ′x .

The non-associativity of O gives rise to the associator

[x, y, z] def= (xy)z − x(yz),

alternating and vanishing whenever two of its arguments are either equal or conjugate. The
condition [x, y, z] = 0 for orthonormal bases {x, y, z} defines the associative 3-planes ζ ⊂
R

7 = Im O, also characterized as the ones closed with respect to the cross-product

x × y
def= − 1

2
(x y − yx) = Im(yx), for x, y ∈ Im O.

The Grassmannian of associative 3-planes in Im O is the quaternion Kähler Wolf space
G2/SO(4).

The double cross product on R
8 = O is defined by

x × y × z
def= 1

2
(x(yz)− z(yx)), (2.3)

or by the simpler expression x(yz) whenever x, y, z are orthogonal.
If 〈, 〉 denotes the standard scalar product on R

8, the 4-form

�Spin(7)(x, y, z, w)
def= 〈x, y × z × w〉 (2.4)

can be written in terms of the canonical basis {dx1, . . . , dx8} ⊂ �1
R

8 of 1-forms in R
8:

�Spin(7) = 1234 + 1256 + 1357 + 1368 − 1278 − 1467 + 1458 + �, (2.5)

where αβγ δ (smaller size and boldface) denotes dxα ∧ dxβ ∧ dxγ ∧ dxδ , and � denotes the

Hodge star, with the agreement that a + �
def= a + �a.

We will use the above notation αβγ δ and a + � throughout all this article.
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Our definition of �Spin(7) follows the choices in [21, p. 120]. Note that other references
like [22] or [23] use different signs in some of the terms of �Spin(7). The group Spin(7) can
be defined as the subgroup of SO(8) leaving the 4-form�Spin(7) invariant. Equivalently (see
also Sect. 4), Spin(7) is the subgroup of SO(8) generated by the right multiplications Ru , for
all imaginary units u ∈ S6 ⊂ Im O.

The 4-form �Spin(7) is self-dual. Indeed, the following decomposition in orthogonal
Spin(7)-invariant components applies to the space �4

R
8 = �4+ ⊕�4− of 4-forms in R

8:

�4+ = �4
1 ⊕�4

7 ⊕�4
27, �4− = �4

35 . (2.6)

Here �4± denote the self-dual and anti-self-dual 4-forms, �4
l a l-dimensional vector space

and �4
1 is generated by �Spin(7) (cf. for example [23, p. 240]). Similarly, 2-forms in R

8 give
rise to the following Spin(7)-invariant orthogonal decomposition:

�2
R

8 = �2
7 ⊕�2

21, (2.7)

that will be further commented in Sect. 4.
According to what we mentioned in the Sect. 1, we give now the definition of a Spin(9)-

structure in the framework of G-structures, that we will use in this article.

Definition 1 A Spin(9)-structure on a Riemannian manifold M16 is a rank 9 vector subbun-
dle V 9 ⊂ End(T M), locally spanned by nine endomorphisms Iα satisfying the following
conditions:

I2
α = Id, I∗

α = Iα, IαIβ = −IβIα if α �= β, (2.8)

where I∗
α denotes the adjoint of Iα .

Observe that Formula (2.8) implies that compositions of n different Iα’s are complex
structures if n ≡ 2, 3 mod 4, and involutions if n ≡ 0, 1 mod 4.

For M = R
16, I1, . . . , I9 are generators of the Clifford algebra Cl(9), considered as

endomorphisms of its 16-dimensional real representation �9 ∼= R
16 ∼= O

2. Accordingly,
unit vectors v ∈ S8 ⊂ R

9 can be seen as symmetric endomorphisms v : �9 → �9 via the
Clifford multiplication, and these endomorphisms generate Spin(9).

An explicit way to describe these generators is by writing v ∈ S8 ⊂ R × O as r + u,
where r ∈ R, u ∈ O and r2 + uu = 1, and acting on pairs (x, x ′) ∈ O

2 by
(

x
x ′

)
−→

(
r Ru

Ru −r

) (
x
x ′

)
, (2.9)

cf. [20, p. 288].
Observe that Formula (2.9) describes as well a set of generators for other Lie groups,

provided that v is taken respectively in S2 and S4, that is to say, provided that x, x ′, u in (2.9)
are taken respectively in C and H.

3 Low dimensions

Formula (2.9) can be used to define actions of the spheres S2 on C
2 and S4 on H

2, by taking
v ∈ S2 ⊂ R × C and v ∈ S4 ⊂ R × H, respectively. This leads to alternative definitions
of a U(2)-structure on R

4 and of a Sp(1) · Sp(2)-structure on R
8, respectively. We briefly

describe the analogy with symmetries of the Hopf fibrations presented in [19].
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Definition 2 Let V 3 be a rank 3 vector subbundle of the endomorphism bundle End(T M)
on a Riemannian manifold M4. We call V 3 a complex Hopf structure on M4 if V 3 is locally
spanned by involutions I1, I2, I3 satisfying relations (2.8) and related, on open sets covering
M , by functions giving SO(3) matrices.

Our terminology is motivated by the standard choice M4 = C
2. Here one gets the stan-

dard complex Hopf structure from the elements (r, u) = (0, 1), (0, i), (1, 0) ∈ S2 ⊂ R × C.
According to (2.9), their actions on C

2 generate the (identity component of the group of)
symmetries of the Hopf fibration S3 −→ S2.

We obtain in this way the Pauli matrices:

I1 =
(

0 1
1 0

)
, I2 =

(
0 −i
i 0

)
, I3 =

(
1 0
0 −1

)
, (3.1)

belonging to U(2). The compositions Jαβ
def= IαIβ , for α < β, are given by the complex

structures

J12 =
(

i 0
0 −i

)
, J13 =

(
0 −1
1 0

)
, J23 =

(
0 i
i 0

)
, (3.2)

acting on H ∼= C
2 as multiplication on the right by unit quaternions: J12 = RH

i , J13 =
RH

j , J23 = RH

k . Similarly, multiplication LH

i on the left by i coincides with J123
def= I1I2I3.

From this, we see that our datum of V 3 ⊂ End(T R
4) on R

4 gives rise, through the Kähler
forms of J12, J13, J23, J123, to the decomposition of 2-forms in R

4 as

�2
R

4 ∼= so(4) = u(1)⊕ so(3)⊕�2
2,

and the following observation follows.

Proposition 3 The datum of a complex Hopf structure on a Riemannian manifold M4 is
equivalent to an almost Hermitian structure, via the isomorphism U(1) · Sp(1) ∼= U(2).

Similarly, Formula (2.8) suggests also the following:

Definition 4 Let V 5 be a rank 5 vector subbundle of the endomorphism bundle End(T M)
on a Riemannian manifold M8. We say that V 5 is a (right) quaternionic Hopf structure on
M8 if V 5 is locally spanned by involutions I1, . . . , I5 satisfying relations (2.8) and related,
on open sets covering M , by functions giving SO(5) matrices.

Here the terminology comes again from a Hopf fibration. The standard situation is in fact
M8 = H

2 and a basis of V 5 is obtained by Formula (2.9), with now (r, u) ∈ S4 ⊂ R×H at the
five choices (r, u) = (0, 1), (0, i), (0, j), (0, k), (1, 0). Their action generate Sp(2) · Sp(1),
the group of symmetries of the Hopf fibration S7 −→ S4, defined by looking at H

2 as a right
quaternionic vector space.

One gets in this way the involutions on H
2:

I1 =
(

0 Id
Id 0

)
, I2 =

(
0 −RH

i
RH

i 0

)
, I3 =

(
0 −RH

j

RH

j 0

)
,

I4 =
(

0 −RH

k
RH

k 0

)
, I5 =

(
Id 0
0 − Id

)
,

(3.3)
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where

RH

i =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠, RH

j =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠, RH

k =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠.

(3.4)

The ten compositions Jαβ
def= IαIβ , for α < β, are thus the following complex structures

on R
8:

J12 =
(

RH

i 0
0 −RH

i

)
, J13 =

(
RH

j 0

0 −RH

j

)
, J14 =

(
RH

k 0
0 −RH

k

)
,

J23 =
(

RH

k 0
0 RH

k

)
, J24 =

(
−RH

j 0

0 −RH

j

)
, J34 =

(
RH

i 0
0 RH

i

)
,

(3.5)

and

J15 =
(

0 − Id
Id 0

)
, J25 =

(
0 RH

i
RH

i 0

)
, J35 =

(
0 RH

j

RH

j 0

)
, J45 =

(
0 RH

k
RH

k 0

)
.

(3.6)

We obtain also ten further complex structures Jαβγ
def= IαIβIγ , for α < β < γ , that are

easily seen to coincide—up to the sign of the permutation

(
1 2 3 4 5
α β γ δ ε

)
—with the former

Jδε . Moreover, compositions IαIβIγ Iδ reproduce—up to the negative of the sign of the
above permutation—the five involutions Iε . Recall now that a Sp(1) · Sp(2)-structure, (a left
quaternion Hermitian structure) on R

8 is equivalent to decomposing 2-forms as

�2
R

8 ∼= so(8) = so(2)⊕ sp(2)⊕�2
15,

where sp(2) ∼= so(5) is generated by the Jαβ (cf. [28, p. 125]).
Using the notation introduced with Formula (2.5), we can write the Kähler forms θαβ of

Jαβ as

θ12 = −12 + 34 + 56 − 78, θ13 = −13 − 24 + 57 + 68, θ14 = −14 + 23 + 58 − 67,

θ23 = −14 + 23 − 58 + 67, θ24 = 13 + 24 + 57 + 68, θ34 = −12 + 34 − 56 + 78,
(3.7)

and

θ15 = −15 − 26 − 37 − 48, θ25 = −16 + 25 + 38 − 47,

θ35 = −17 − 28 + 35 + 46, θ45 = −18 + 27 − 36 + 45,
(3.8)

so that, if θ
def= (θαβ) and τ2(θ) is the second coefficient of its characteristic polynomial, then

a 4-form



def= τ2(θ) = θ2

12 + θ2
13 + · · · + θ2

45

= −121234 − 41256 − 41357 + 41368 − 41278 − 41467 − 41458 + � (3.9)

is defined.
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We will need also the fact that the left multiplications by i, j, k

LH

i =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠, LH

j =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠, LH

k =

⎛
⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

(3.10)

have Kähler forms

ωLH
i

= −12 − 34 − 56 − 78, ωLH
j

= −13 + 24 − 57 + 68,

ωLH
k

= −14 − 23 − 58 − 67,
(3.11)

and if

�L
def= ω2

LH
i

+ ω2
LH

j
+ ω2

LH
k

is the (left) quaternionic 4-form of H
2 ∼= R

8, the comparison gives

− 2�L = 
. (3.12)

This proves the following:

Proposition 5 The skew-symmetric matrix θ = (θαβ), whose entries are the Kähler forms
of the complex structures Jαβ on R

8, allows to construct both the left quaternionic 4-form
�L and the right Kähler 2-forms ωRH

i
, ωRH

j
, ωRH

k
as

�L = −1

2
τ2(θ)

and

ωRH
i

= θ34, ωRH
j

= −θ24, ωRH
k

= θ23.

On the other hand, one can easily check that matrices B =
(

B ′ B ′′
B ′′′ B ′′′′

)
∈ SO(8) that

commute with each of the involutions I1, . . . , I5 are the ones satisfying B ′′ = B ′′′ = 0 and
B ′ = B ′′′′ ∈ Sp(1) ⊂ SO(4). Thus the subgroup preserving each of I1, . . . , I5 is the diag-
onal Sp(1)� ⊂ SO(8). The subgroup of SO(8) we are interested in is indeed the structure
group of the quaternionic Hopf structure V 5. It consists of matrices B satisfying BIα = I ′

αB,
with I1, . . . , I5 and I ′

1, . . . , I ′
5 bases of V 5 related by a SO(5) matrix. Thus this structure

group is Sp(1) · Sp(2), hence:

Proposition 6 The datum of a (right) quaternionic Hopf structure on a Riemannian man-
ifold M8 is equivalent to a (left) almost quaternion Hermitian structure, i.e., to a Sp(1) ·
Sp(2)-structure.

In the above discussion we looked at the standard U(2) and Sp(1) · Sp(2)-structures on
R

4 and R
8, through the decompositions of 2-forms

so(4) = u(1)⊕ so(3)⊕�2
2, so(8) = sp(1)⊕ sp(2)⊕�2

15

and orthonormal frames in the component so(3) and sp(2), respectively. The last components
�2

2 and �2
15 describe all the similar structures on the linear spaces R

4 and R
8. Thus, such
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decompositions give rise to the spaces SO(4)/U(2) and SO(8)/Sp(1) · Sp(2), the spaces of
all possible structures in the two cases.

Definition 1 of a Spin(9)-structure on a Riemannian manifold M16 corresponds to what
is now coherent to call an octonionic Hopf structure on M16, via Formula (2.8) and choices

(r, u) = (0, 1), (0, i), (0, j), . . . , (0, h), (1, 0) ∈ S8 ⊂ R × O.

Thus Spin(9)-structures can be viewed as analogs, in dimension 16, of U(2) structures in
dimension 4 and of Sp(1) · Sp(2) structures in dimension 8.

Summarizing:

Corollary 7 The actions

(
x
x ′

)
−→

(
r Ru

Ru −r

) (
x
x ′

)
, when u, x, x ′ ∈ C,H,O (and in any

case r ∈ R and r2 +uu = 1) generate the groups U(2),Sp(1) ·Sp(2),Spin(9) of symmetries
of the Hopf fibrations

S3 −→ S2, S7 −→ S4, S15 −→ S8

(in the first case just the identity component, cf. [19]). The corresponding G-structures
on Riemannian manifolds M4,M8,M16 can be described through vector subbundles V ⊂
End(T M) of rank 3,5,9, respectively. Any such V is locally generated by self-dual involutions
Iα satisfying IαIβ = −IβIα for α �= β and related, on open neighborhoods covering M,
by functions giving matrices in SO(3),SO(5),SO(9).

4 The Kähler forms of a Spin(7)-structure

We saw that U(2),Sp(1) · Sp(2) and Spin(9) can be described through 3, 5, and 9 invo-
lutions satisfying relations (2.8). We now show that a similar approach cannot be pursued
with Spin(7)-structures, that is, Spin(7) cannot be described by 7 involutions satisfying
relations (2.8).

Proposition 8 Let I1, . . . , I2k+1 be involutions in R
n satisfying (2.8). The compositions

Jαβ
def= IαIβ , for α < β, and Jαβγ

def= IαIβIγ , for α < β < γ are linearly independent
complex structures on R

n.

Proof We already observed in Sect. 2 that Jαβ and Jαβγ are complex structures. Now observe
that (2.8) implies, for any α = 1, . . . , n, that tr(I∗

αIα) = 1, and for α < β, that tr(I∗
αIβ) = 0.

Thus, the Iα are orthonormal and symmetric. By a similar argument, tr(J ∗
αβ Jαβ) = 1 and

tr(J ∗
αβ Jγ δ) = tr(IβIαIγ Iδ) = 0 if any of γ, δ equals α or β. Finally, for α �= γ and β �= δ,

note that J ∗
αβ Jγ δ is the composition of the skew-symmetric Jβαγ and the symmetric Iδ and

as such its trace is necessarily zero. Similar arguments show that the Jαβγ , for α < β < γ ,
are orthonormal.

Corollary 9 The Spin(7)-structures on R
8 cannot be defined through 7 endomorphisms sat-

isfying relations (2.8).

Proof For any choice of 7 endomorphisms {Iα} in R
8 satisfying relations (2.8), the complex

structures Jαβγ , for α < β < γ , would give rise to 35 linearly independent skew-sym-
metric endomorphisms, by Proposition 8. But this would contradict decomposition (2.7) of
two-forms in R

8 under Spin(7).
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Nevertheless, the right multiplications by i, j, k, e, f
def= ie, g

def= je, h
def= ke ∈ O define 7

complex structures Ri , . . . , Rh on R
8. As mentioned in Sect. 2, these complex structures lie

in Spin(7) ⊂ SO(8).
We will now use Formula (2.1) to explicitly write the matrix form of Ri , . . . , Rh . If

x = h1 + h2e ∈ O, we obtain

xi = h1i + (−h2i)e, x j = h1 j + (−h2 j)e, xk = h1k + (−h2k)e,

xe = −h2 + (h1)e, x f = ih2 + (ih1)e,

xg = jh2 + ( jh1)e, xh = kh2 + (kh1)e,

and thus their matrices read

Ri =
(

RH

i 0
0 −RH

i

)
, R j =

(
RH

j 0

0 −RH

j

)
, Rk =

(
RH

k 0
0 −RH

k

)
,

Re =
(

0 − Id
Id 0

)
, R f =

(
0 LH

i
LH

i 0

)
,

Rg =
(

0 LH

j

LH

j 0

)
, Rh =

(
0 LH

k
LH

k 0

)
. (4.1)

Correspondingly, their Kähler forms

φi =−12 + 34 + 56 − 78, φ j =−13 − 24 + 57 + 68, φk =−14 + 23 + 58 − 67,

φe =−15 − 26 − 37 − 48, φ f =−16 + 25 − 38 + 47,

φg =−17 + 28 + 35 − 46, φh =−18 − 27 + 36 + 45

(4.2)

generate the first component �2
7 in the decomposition (2.7).

In [16, p. 12] it has been observed that R
8 admits 28 =

(
8
2

)
linearly independent Kähler

forms and that they can be defined, up to sign, as the right hand sides of (4.2), corrected
either with all plus signs or with an even number of minus signs. Thus, the remaining 21
Kähler forms are generators of the other component�2

21 in (2.7), that coincides with the Lie
algebra spin(7). Explicitly, such generators are

φ′
i = 12 + 34 + 56 + 78, φ′′

i = −12 − 34 + 56 + 78, φ′′′
i = −12 + 34 − 56 + 78,

φ′
j = 13 + 24 + 57 + 68, φ′′

j = −13 + 24 − 57 + 68, φ′′′
j = −13 + 24 + 57 − 68,

φ′
k = 14 + 23 + 58 + 67, φ′′

k = −14 − 23 + 58 + 67, φ′′′
k = −14 + 23 − 58 + 67,

φ′
e = −15 − 26 + 37 + 48, φ′′

e = −15 + 26 − 37 + 48, φ′′′
e = −15 + 26 + 37 − 48,

φ′
f = 16 + 25 + 38 + 47, φ′′

f = −16 − 25 + 38 + 47, φ′′′
f = −16 + 25 + 38 − 47,

φ′
g = 17 + 28 + 35 + 46, φ′′

g = −17 − 28 + 35 + 46, φ′′′
g = −17 + 28 − 35 + 46,

φ′
h = 18 + 27 + 36 + 45, φ′′

h = −18 + 27 − 36 + 45, φ′′′
h = −18 + 27 + 36 − 45.

(4.3)
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On the other hand, one can write the compositions Rαβ
def= RαRβ , for α, β ∈

{i, j, k, e, f, g, h}:

Ri j =
(−RH

k 0
0 −RH

k

)
, Rik =

(
RH

j 0

0 RH

j

)
, Rie =

(
0 −RH

i
−RH

i 0

)
,

Ri f =
(

0 RH

i LH

i
−RH

i LH

i 0

)
, Rig =

(
0 RH

i LH

j

−RH

i LH

j 0

)
, Rih =

(
0 RH

i LH

k
−RH

i LH

k 0

)
,

R jk =
(−RH

i 0
0 −RH

i

)
, R je =

(
0 −RH

j

−RH

j 0

)
, R j f =

(
0 RH

j LH

i

−RH

j LH

i 0

)
,

R jg =
(

0 RH

j LH

j

−RH

j LH

j 0

)
, R jh =

(
0 RH

j LH

k

−RH

j LH

k 0

)
, Rke =

(
0 −RH

k
−RH

k 0

)
,

Rk f =
(

0 RH

k LH

i
−RH

k LH

i 0

)
, Rkg =

(
0 RH

k LH

j

−RH

k LH

j 0

)
, Rkh =

(
0 RH

k LH

k
−RH

k LH

k 0

)
,

Ref =
(−LH

i 0
0 LH

i

)
, Reg =

(
−LH

j 0

0 LH

j

)
, Reh =

(−LH

k 0
0 LH

k

)
,

R f g =
(

LH

k 0
0 LH

k

)
, R f h =

(
−LH

j 0

0 −LH

j

)
, Rgh =

(
LH

i 0
0 LH

i

)
, (4.4)

where left and right multiplication on H are given by Formulas (3.4) and (3.10), and their
compositions are

RH

i LH

i =

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , RH

i LH

j =

⎛
⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ , RH

i LH

k =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

RH

j LH

i =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ , RH

j LH

j =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ , RH

j LH

k =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

RH

k LH

i =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , RH

k LH

j =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ , RH

k LH

k =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ .

A computation shows then that their Kähler forms ϕαβ coincide, up to sign, with the
forms (4.3). We write explicitly some of them:

φ′
i = −ϕgh, φ′′

i = −ϕe f , φ′′′
i = −ϕ jk, . . . , φ′

h = −ϕig,

φ′′
h = −ϕke, φ′′′

h = ϕ j f . (4.5)

We can now prove that the 8-form �Spin(7) defined in (2.5) can be recovered from any of
the two components in the decomposition (2.7).

Proposition 10 The 7 Kähler forms φi , . . . , φh of the complex structures Ri , . . . , Rh and
the 21 Kähler forms ϕi j , . . . , ϕgh of Rαβ , for α, β ∈ {i, j, k, e, f, g, h}, satisfy

�Spin(7) = −1

6
(φ2

i + · · · + φ2
h) = 1

6
(ϕ2

i j + ϕ2
ik + · · · + ϕ2

gh) = 1

6
τ2(ϕ),
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where τ2(ϕ) is the second coefficient of the characteristic polynomial of ϕ
def= (ϕαβ). Thus

�Spin(7) is, up to a constant, the sum of squares of elements of an orthonormal basis in any
of the components of �2

R
8 = �2

7 ⊕�2
21.

Proof A computation shows that

φ′
i
2 + φ′′

i
2 + φ′′′

i
2 + · · · + φ′

h
2 + φ′′

h
2 + φ′′′

h
2

= 6(1234 + 5678)− 3(15 + 26 + 37 + 48)2 − 6(1278 − 1368 + 1467 + 2358 − 2457 + 3456)

= −φ2
i − · · · − φ2

h . (4.6)

The conclusion then follows by comparing (4.6) with (2.5).

Remark 11 We have listed a certain number of complex structures in R
8. Indeed, a compar-

ison between the two decompositions �2
R

8 = �2
10 ⊕ �2

18 (under Spin(5)) and �2
R

8 =
�2

7 ⊕�2
21 (under Spin(7)) can be made more precise in terms of the above mentioned gener-

ators of the components. The following identities hold between the ten Spin(5)Kähler forms
θαβ and some of the 7 and of the 21 Kähler forms associated with Spin(7):

θ12 = φi , θ13 = φ j , θ14 = φk, θ15 = φe,

and

θ23 = ϕi j , θ24 = −ϕik, θ34 = −ϕ jk,

θ25 = ϕie, θ35 = −ϕ je, θ45 = −ϕke.

It follows that the remaining 2-forms φα and ϕαβ can be chosen as generators of the com-
ponent �2

18, that contains the so(3) spanned by ϕ f g, ϕ f h, ϕgh . ��
Remark 12 By comparing the last two sections, it appears that the behavior of the represen-
tations of Spin(5) and of Spin(7) on R

8 are quite different in terms of the associated almost
complex structures. In particular, Corollary 9 states the impossibility of deducing the almost
complex structures defined by Spin(7) from a set of involutions. As we will see in the next
section, Spin(9) is much closer in this respect to Spin(5) than to Spin(7). However, most of
the formulas written in the present section will be useful to obtain explicitly the Kähler forms
associated with Spin(9). ��

5 The Kähler forms of a Spin(9)-structure

A basis of the standard Spin(9)-structure on O
2 ∼= R

16 can be written by looking at (2.9)
and at the 9 vectors (0, 1), (0, i), (0, j), . . . , (0, h), (1, 0) ∈ S8 ⊂ R × O. This gives the
following symmetric endomorphisms:

I1 =
(

0 Id
Id 0

)
, I2 =

(
0 −Ri

Ri 0

)
, I3 =

(
0 −R j

R j 0

)
,

I4 =
(

0 −Rk

Rk 0

)
, I5 =

(
0 −Re

Re 0

)
, I6 =

(
0 −R f

R f 0

)
,

I7 =
(

0 −Rg

Rg 0

)
, I8 =

(
0 −Rh

Rh 0

)
, I9 =

(
Id 0
0 − Id

)
.

(5.1)

The space �2
R

16 of 2-forms in R
16 decomposes under Spin(9) as

�2
R

16 = �2
36 ⊕�2

84
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(cf. [17, p. 146]), where�2
36

∼= spin(9) and�2
84 is an orthogonal complement in�2 ∼= so(16).

Explicit generators of both subspaces can be written by looking at the 36 compositions
Jαβ

def= IαIβ , for α < β, and at the 84 compositions Jαβγ
def= IαIβIγ , for α < β < γ ,

all complex structures on R
16. We write now explicitly the matrix forms for Jαβ , and for

convenience we split them in two families. The first 28 complex structures are

J12 =
(

Ri 0
0 −Ri

)
, J13 =

(
R j 0
0 −R j

)
, J14 =

(
Rk 0
0 −Rk

)
, J15 =

(
Re 0
0 −Re

)
,

J16 =
(

R f 0
0 −R f

)
, J17 =

(
Rg 0
0 −Rg

)
, J18 =

(
Rh 0
0 −Rh

)
, J23 =

( −Ri j 0
0 −Ri j

)
,

J24 =
( −Rik 0

0 −Rik

)
, J25 =

( −Rie 0
0 −Rie

)
, J26 =

( −Ri f 0
0 −Ri f

)
, , J27 =

( −Rig 0
0 −Rig

)
,

J28 =
( −Rih 0

0 −Rih

)
, J34 =

( −R jk 0
0 −R jk

)
, J35 =

( −R je 0
0 −R je

)
, J36 =

( −R j f 0
0 −R j f

)
,

J37 =
( −R jg 0

0 −R jg

)
, J38 =

( −R jh 0
0 −R jh

)
, J45 =

( −Rke 0
0 −Rke

)
, J46 =

( −Rk f 0
0 −Rk f

)
,

J47 =
( −Rkg 0

0 −Rkg

)
, J48 =

( −Rkh 0
0 −Rkh

)
, J56 =

( −Ref 0
0 −Ref

)
, J57 =

( −Reg 0
0 −Reg

)
,

J58 =
( −Reh 0

0 −Reh

)
, J67 =

( −R f g 0
0 −R f g

)
, J68 =

( −R f h 0
0 −Reg

)
, J78 =

( −Rgh 0
0 −Rgh

)
,

(5.2)

and the remaining 8 complex structures are

J19 =
(

0 − Id
Id 0

)
, J29 =

(
0 Ri

Ri 0

)
, J39 =

(
0 R j

R j 0

)
, J49 =

(
0 Rk

Rk 0

)
,

J59 =
(

0 Re

Re 0

)
, J69 =

(
0 R f

R f 0

)
, J79 =

(
0 Rg

Rg 0

)
, J89 =

(
0 Rh

Rh 0

)
.

(5.3)

We write now the associated Kähler two-forms ψαβ of the complex structures Jαβ , by
denoting the coordinates in O

2 ∼= R
16 by (1, . . . , 8, 1′, . . . , 8′). Abusing a little the notation

introduced in Sect. 2, we can then write

ψ12 = (−12 + 34 + 56 − 78)− ( )′, ψ13 = (−13 − 24 + 57 + 68)− ( )′,

ψ14 = (−14 + 23 + 58 − 67)− ( )′, ψ15 = (−15 − 26 − 37 − 48)− ( )′,

ψ16 = (−16 + 25 − 38 + 47)− ( )′, ψ17 = (−17 + 28 + 35 − 46)− ( )′,

ψ18 = (−18 − 27 + 36 + 45)− ( )′, ψ23 = (−14 + 23 − 58 + 67)+ ( )′,

ψ24 = (13 + 24 + 57 + 68)+ ( )′, ψ25 = (−16 + 25 + 38 − 47)+ ( )′,

ψ26 = (15 + 26 − 37 − 48)+ ( )′, ψ27 = (18 + 27 + 36 + 45)+ ( )′,

ψ28 = (−17 + 28 − 35 + 46)+ ( )′, ψ34 = (−12 + 34 − 56 + 78)+ ( )′,

ψ35 = (−17 − 28 + 35 + 46)+ ( )′, ψ36 = (−18 + 27 + 36 − 45)+ ( )′, (5.4)

ψ37 = (+15 − 26 + 37 − 48)+ ( )′, ψ38 = (16 + 25 + 38 + 47)+ ( )′,

ψ45 = (−18 + 27 − 36 + 45)+ ( )′, ψ46 = (17 + 28 + 35 + 46)+ ( )′,

ψ47 = (−16 − 25 + 38 + 47)+ ( )′, ψ48 = (15 − 26 − 37 + 48)+ ( )′,

ψ56 = (−12 − 34 + 56 + 78)+ ( )′, ψ57 = (−13 + 24 + 57 − 68)+ ( )′,

ψ58 = (−14 − 23 + 58 + 67)+ ( )′, ψ67 = (14 + 23 + 58 + 67)+ ( )′,

ψ68 = (−13 + 24 − 57 + 68)+ ( )′, ψ78 = (12 + 34 + 56 + 78)+ ( )′,
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where ( )′ denotes the ′ of what appears before it, for instance

ψ12 = (−12 + 34 + 56 − 78)− (−1′2′ + 3′4′ + 5′6′ − 7′8′).

Moreover we have

ψ19 = −11′ − 22′ − 33′ − 44′ − 55′ − 66′ − 77′ − 88′,

ψ29 = −12′ + 21′ + 34′ − 43′ + 56′ − 65′ − 78′ + 87′,

ψ39 = −13′ − 24′ + 31′ + 42′ + 57′ + 68′ − 75′ − 86′,

ψ49 = −14′ + 23′ − 32′ + 41′ + 58′ − 67′ + 76′ − 85′, (5.5)

ψ59 = −15′ − 26′ − 37′ − 48′ + 51′ + 62′ + 73′ + 84′,

ψ69 = −16′ + 25′ − 38′ + 47′ − 52′ + 61′ − 74′ + 83′,

ψ79 = −17′ + 28′ + 35′ − 46′ − 53′ + 64′ + 71′ − 82′,

ψ89 = −18′ − 27′ + 36′ + 45′ − 54′ − 63′ + 72′ + 81′.

Proposition 13 Letψ be the matrix of Kähler forms (ψαβ)α,β=1,...,9 given by Formulas (5.4)
and (5.5). Then its characteristic polynomial reduces to

det(t I − ψ) = t9 + τ4(ψ)t
5 + τ8(ψ)t.

Proof The coefficients τ2k−1 of det(t I − ψ) are zero, since ψ is a 9 × 9 skew-symmetric
matrix. Thus, it remains to check that τ2 = τ6 = 0. Since τ6(ψ) is the Hodge star of τ2(ψ)

in R
16, we are only left to show the vanishing of τ2(ψ).

Observe that the Kähler forms in (5.4) can be arranged in the following seven families:

ψ12, ψ34, ψ56, ψ78 = [±(12)± (34)± (56)± (78)] ± [±(12)′ ± (34)′ ± (56)′ ± (78)′],
ψ13, ψ24, ψ57, ψ68 = [±(13)± (24)± (57)± (68)] ± [±(13)′ ± (24)′ ± (57)′ ± (68)′],
ψ14, ψ23, ψ58, ψ67 = [±(14)± (23)± (58)± (67)] ± [±(14)′ ± (23)′ ± (58)′ ± (67)′],
ψ15, ψ26, ψ37, ψ48 = [±(15)± (26)± (37)± (48)] ± [±(15)′ ± (26)′ ± (37)′ ± (48)′],
ψ16, ψ25, ψ38, ψ47 = [±(16)± (25)± (38)± (47)] ± [±(16)′ ± (25)′ ± (38)′ ± (47)′],
ψ17, ψ28, ψ35, ψ46 = [±(17)± (28)± (35)± (46)] ± [±(17)′ ± (28)′ ± (35)′ ± (46)′],
ψ18, ψ27, ψ36, ψ45 = [±(18)± (27)± (36)± (45)] ± [±(18)′ ± (27)′ ± (36)′ ± (45)′],

(5.6)

and note that the four ψαβ in each line indicate precisely the four pairs (αβ) appearing in
their expression. Note also that in each line the signs inside brackets follow (up to a global
change) the four patterns

− ( )+ ( )+ ( )− ( ), −( )+ ( )− ( )+ ( ),

− ( )− ( )+ ( )+ ( ), +( )+ ( )+ ( )+ ( ), (5.7)

that is, an even number of + and − signs. Finally, observe that in all cases (and again up to a
global change for forms of type ψ1β , for β = 2, . . . , 8) the same pattern appears both in the
terms with coordinates (1, . . . , 8) and in those with coordinates (1′, . . . , 8′).
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It follows

1

4

(
ψ2

12+ψ2
34+ψ2

56+ψ2
78

) = 121′2′+123′4′+125′6′−127′8′+341′2′+343′4′−345′6′+347′8′

+ 561′2′−563′4′+565′6′+567′8′−781′2′+783′4′+785′6′+787′8′,
1

4

(
ψ2

13+ψ2
24+ψ2

57+ψ2
68

) = 131′3′−132′4′+135′7′+136′8′−241′3′+242′4′+245′7′+246′8′

+ 571′3′+572′4′+575′7′−576′8′+681′3′+682′4′−685′7′+686′8′,
1

4

(
ψ2

14+ψ2
23+ψ2

58+ψ2
67

) = 141′4′+142′3′+145′8′−146′7′+231′4′+232′3′−235′8′+236′7′

+ 581′4′−582′3′+585′8′+586′7′−671′4′+672′3′+675′8′+676′7′,
1

4

(
ψ2

15+ψ2
26+ψ2

37+ψ2
48

) = 151′5′−152′6′−153′7′−154′8′−261′5′+262′6′−263′7′−264′8′

−371′5′−372′6′+373′7′−374′8′−481′5′−482′6′−483′7′+484′8′,
1

4

(
ψ2

16+ψ2
25+ψ2

38+ψ2
47

) = 161′6′+162′5′−163′8′+164′7′+251′6′+252′5′+253′8′−254′7′

− 381′6′+382′5′+383′8′+384′7′+471′6′−472′5′+473′8+474′7′,
1

4

(
ψ2

17+ψ2
28+ψ2

35+ψ2
46

) = 171′7′+172′8′+173′5′−174′6′+281′7′+282′8′−283′5′+284′6′

+ 351′7′−352′8′+353′5′+354′6′−461′7′+462′8′+463′5′+464′6′,
1

4

(
ψ2

18+ψ2
27+ψ2

36+ψ2
45

) = 181′8′−182′7′+183′6′+184′5′−271′8′+272′7′+273′6′+274′5′

+ 361′8′+362′7′+363′6′−364′5′+451′8′+452′7′−453′6′+454′5′,

(5.8)

where the sum of the underlined terms is equal to − 1
2ψ

2
19. On the other hand, the computation

of

1

2

(
ψ2

29 + ψ2
39 + ψ2

49 + ψ2
59 + ψ2

69 + ψ2
79 + ψ2

89

)
(5.9)

through formulas (5.5) yields a sum of 28 × 7 = 196 terms. Among them, the 28 involving
repeated coordinates (like −12′21′ or −34′43′) reproduce the negative of the underlined terms
in 5.8 (or equivalently the terms of − 1

2ψ
2
19). Moreover, the remaining 196 − 28 = 168 terms

are in 2 to 1 correspondence with the negative of the 84 non-underlined terms in 5.8. In other
words, we have

1

4

⎛
⎝ 8∑
α<β=2

ψ2
αβ + ψ2

19 +
8∑
α=2

ψ2
α9

⎞
⎠ = 0,

which gives (cf. [14] as well as the discussion in [12] concerning invariant tensors of the
16-dimensional representation of Spin(9)):

τ2(ψ) =
9∑

α<β=2

ψ2
αβ = 0. (5.10)

Since τ8(ψ) is a 16-form, it is proportional to the volume form of R
16. Sections 6 and 7

will be devoted to the computation of τ4(ψ).
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6 The 8-form of a Spin(9)-structure

Recall (cf. [9, p. 13] as well as [15, pp. 168–170]) that a Spin(9)-invariant 8-form �Spin(9)
in O

2 can be defined through the projections pl from O
2 onto its octonionic lines l. If νl is

the volume form on each line l, then

�Spin(9)
def= c

∫

OP1

p∗
l νl dl, (6.1)

for some constant c. The Spin(9)-invariance of �Spin(9) is a consequence of the Spin(9)
action on the octonionic lines l and of the Spin(9)-invariance of the measure dl on OP1.

The above definition of�Spin(9), forerunning the point of view of calibrations, parallels that
of the Kähler 2-form in C

n and the quaternionic 4-form in H
n as the integrals

∫
CPn−1 p∗

l νl dl
and

∫
HPn−1 p∗

l νl dl, respectively.
In this Section, we will use Formula (6.1) to explicitly compute �Spin(9) ∈ �8

R
16, and

we will give a formula analogous to Formula (2.5). To this aim, it is convenient to look first
at the corresponding approaches for the complex and quaternionic cases.

The Kähler form in C
2

Let l
def= lm = {(z,mz)|z ∈ C} be a complex line in C

2, where m = m1 + im2 ∈ C. Denote
by pl : C

2 − 0 → lm the projection, and by νl the volume form on lm ⊂ R
4. Writing the

generators (1,m) and (i,mi) of lm in real coordinates, and using again the notation {1, . . . , 4}
for the standard basis of �1

R
4, we obtain the following co-frame α1, α2 in lm ⊂ R

4:

α1 = 1 + m13 + m24,

α2 = 2 − m23 + m14.

Thus, we have

ω
def= c

∫

CP1

p∗
l νl dl = c

∫

R2

α1 ∧ α2

1 + m2
1 + m2

2

dm1 ∧ dm2

= c
∫

R2

(1 + m13 + m24) ∧ (2 − m23 + m14)

1 + m2
1 + m2

2

dm1 ∧ dm2,

and using polar coordinates m = ρeiθ , we have dm1 ∧ dm2 = ρ/(1 + ρ2)2dρ ∧ dθ and

ω = c

∞∫

0

2π∫

0

(1 + ρ cos θ3 + ρ sin θ4) ∧ (2 − ρ sin θ3 + ρ cos θ4)ρ

(1 + ρ2)3
dρ ∧ dθ.

The 2-form ω is then described by

(
4
2

)
integrals, and a computation shows that the only

non-zero coefficients are that of 12 and 34:

∞∫

0

2π∫

0

ρ/(1 + ρ2)3 dρ ∧ dθ = π/2 =
∞∫

0

2π∫

0

ρ3/(1 + ρ2)3 dρ ∧ dθ.
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Thus, for a ad-hoc choice of the constant c, we obtain

ω = (2/π)
∫

CP1

p∗
l νl dl = 12 + 34 = Kähler form in C

2. (6.2)

The quaternion-Kähler form in H
2

Following the complex case, in the quaternionic case we write l
def= lm = {(h,mh)|h ∈ H},

where m = m1 + im2 + jm3 + km4 ∈ H. Denote again by pl : H
2 − 0 → lm the projection,

by νl the volume form on lm ⊂ R
8 and by {1, . . . , 8} the standard real co-frame of R

8. The
co-frame {α1, . . . , α4}, dual to {(1,m), (i,mi), ( j,mj), (k,mk)} in lm ⊂ R

8, is then given
by

α1 = 1 + m15 + m26 + m37 + m48,

α2 = 2 − m25 + m16 + m47 − m38,

α3 = 3 − m35 − m46 + m17 + m28,

α4 = 4 − m45 + m36 − m27 + m18,

and the integral 4-form is

�
def= c

∫

HP1

p∗
l νl dl =

∫

R4

α1 ∧ · · · ∧ α4

(1 + m2
1 + m2

2 + m2
3 + m2

4)
2

dm1 ∧ · · · ∧ dm4. (6.3)

Again, the computation of these

(
8
4

)
integrals can be done in polar coordinates. We used

Mathematica for this computation, obtaining

� = c

(
π2

20
1234 − π2

60
1256 + π2

60
1278 − π2

60
1357 − π2

60
1368 − π2

60
1458 + π2

60
1467

+ π2

60
2358 − π2

60
2367 − π2

60
2457 − π2

60
2468 + π2

60
3456 − π2

60
3478 + π2

20
5678

)
,

and a comparison with the right quaternionic 4-form ω2
RH

i
+ ω2

RH
j

+ ω2
RH

k
(see also Proposi-

tion 5) leads to

� = (−120/π2)

∫

HP1

p∗
l νl dl = ω2

RH
i

+ ω2
RH

j
+ ω2

RH
k

= Right quaternion-Kähler form in H
2. (6.4)

The Spin(9)-form in O
2

In the octonionic case we write l
def= lm = {(x,mx)|x ∈ O}, where m = m1 + im2 + jm3 +

km4 + em5 + f m6 + gm7 + hm8 ∈ O. The projection is pl : O
2 − 0 → lm , and νl is the

volume form on lm ⊂ R
16. For the sake of notation, it is now convenient to split R

16 as two
copies of R

8, so to denote by {1, . . . , 8, 1′, . . . , 8′} the standard real co-frame of R
16. We have

already introduced this notation in Formula (5.4).
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In the same way as before, we obtain the co-frame {α1, . . . , α8} dual to {(1,m), . . . ,
(h,mh)} in lm ⊂ R

16, and the integral 8-form (6.1) is

�Spin(9) = c
∫

OP1

p∗
l νl dl =

∫

R8

α1 ∧ · · · ∧ α8

(1 + m2
1 + · · · + m2

8)
2

dm1 ∧ · · · ∧ dm8. (6.5)

A Mathematica computation in polar coordinates of these

(
16
8

)
integrals leads then to

the explicit formula, given in Table 2. Remark that since �Spin(9) is self-dual, Table 2 lists
only half of its monomials, the remaining ones being their Hodge stars. Thus the content of
Table 2 should be looked at as the analogue to formula (2.5) for the 4-form �Spin(7).

Recall also that the entries of Table 2 have been computed, according to the theorem in
the Sect. 1, in such a way that the coefficients of �Spin(9) be integers with gcd = 1. Thus,
with this constraint on the constant c, we have

�Spin(9) = 110880

π4

∫

OP1

p∗
l νl dl. (6.6)

Remark 14 Using the Hodge star � the 8-form reads

�Spin(9) = Table 2 + �Table 2.

Remark 15 The monomials of�Spin(9) can be partitioned in eight different families. For any
subset {a, b, c, d} of indexes in {1, . . . , 8}, we say that abcd is of Cayley type if and only if
d = [±]a × b × c in the double cross product of O ∼= R

8 defined by Formula (2.3). Observe
that this definition does not depend on the ordering of a, b, c, d .

Then in table + � we can recognize the following patterns:

1. 2 monomials 12345678 and 1′2′3′4′5′6′7′8′, both with coefficient −14;

2. 70 monomials abcda′b′c′d′, one for each of the

(
8
4

)
choices {a, b, c, d} ⊂ {1, 2, . . . , 8}.

Among them, the 14 of Cayley type have coefficient ±2, the remaining 56 have coeffi-
cient ±1, depending on the orientation;

3. 70 monomials abcdα′β′γ ′δ′, where α, β, γ, δ are all different from a, b, c, d . Again, the
14 of Cayley type have coefficient ±2, and the remaining 56 have coefficient ±1;

4. 336 monomials abcdα′β′γ ′δ′ with two coincidences, i.e., exactly two between α, β, γ, δ
coincide with two between a, b, c, d . Cayley type is here excluded, so that there are

56 = 70 − 14 choices for {a, b, c, d}, and for each of them there are exactly 6 =
(

4
2

)

choices for {α, β, γ, δ}: in fact, for each choice of coincidence (for instance, α = c, β =
d), the remaining two indexes are obtained as double cross products (in our example,
γ = α × β × a and δ = α × β × b). Here all monomials have coefficients ±1, according
to the orientation;

5. 28 monomials abcdαβγ ′δ′, where γ, δ are all different from a, b, c, d, α, β. The coeffi-
cients are ±2, according to the orientation;

6. 28 monomials abc′d′α′β′γ ′δ′, where a, b are all different from c, d, α, β, γ, δ. The coef-
ficients are ±2, according to the orientation;

7. 84 monomials abcdαβγ ′δ′, where {γ, δ} ⊂ {a, b, c, d, α, β}. The coefficients are ±2, and
only choices such that the remaining indexes {a, b, c, d, α, β} − {γ, δ} correspond to
Cayley type are admitted;
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8. 84 monomials abc′d′α′β′γ ′δ′, where {a, b} ⊂ {c, d, α, β, γ, δ}. The coefficients are ±2,
and only choices such that the remaining indexes {c, d, α, β, γ, δ} − {a, b} correspond
to Cayley type are admitted. ��

7 The main formula and its corollaries

Let M16 be a Riemannian manifold equipped with a Spin(9)-structure, as in Definition 1.
The linear algebra developed in Sect. 5 gives then local Kähler matrices on M , namely the
skew-symmetric matricesψ

def= (ψαβ), whereψαβ are the Kähler forms of the 36 local almost
complex structures Jαβ , for 1 ≤ α < β ≤ 9 (cf. Formulas (5.2) and (5.3)). Moreover, we have
a Spin(9)-form on M , that is, the 8-form locally written as �Spin(9) given by Formula (6.6).
We denote it by the same symbol �Spin(9).

A local Kähler matrix ψ is a local 2-form taking values in so(9), and ψ,ψ ′ associated
with different local orthonormal bases of sections are related as usual by

ψ ′ = A−1ψ A, (7.1)

where A denotes the change of basis, with values in SO(9). Thus, the characteristic polyno-
mial det(t I − ψ) is globally defined.

Theorem 16 The 8-form �Spin(9) associated with the Spin(9)-structure V 9 → M16 coin-
cides, up to a constant, with the coefficient τ4(ψ) of t5 in the characteristic polynomial

det(t I − ψ) = t9 + τ4(ψ)t
5 + τ8(ψ)t,

where ψ is any local Kähler matrix of M. The proportionality factor is given by

360�Spin(9) = τ4(ψ).

Proof The fact that in the characteristic polynomial only the terms of degree 9, 5, and 1 sur-
vive was already observed in Proposition 13. The 8-form τ4(ψ) is naturally Spin(9)-invariant
and thus, if not zero, it has to be proportional to�Spin(9). Then, to compute the proportionality
factor, it is sufficient to look at any of the terms of�Spin(9) and τ4(ψ). We consider the term
12345678.

From Table 2, we see that the coefficient for�Spin(9) is −14. As for τ4(ψ), we first observe
that it can be computed with a summation over the squared Pfaffians of the principal 4 × 4
submatrices of �Spin(9):

τ4(ψ) =
∑

1≤α1<α2<α3<α4≤9

(
ψα1α2 ∧ ψα3α4 − ψα1α3 ∧ ψα2α4 + ψα1α4 ∧ ψα2α3

)2
,

and then we compute it using Formulas (5.4) and (5.5), thus obtaining −5040 = −14·360.

In particular the theorem stated in the Sect. 1 follows.
Another consequence of Theorem 16 is:

Corollary 17 The Kähler forms of the Spin(9)-structure of O
2 allow to compute the inte-

gral (1.1) as
∫

OP1

p∗
l νl dl = π4

110880·360
τ4(ψ).
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When Spin(9) is the holonomy group of the Riemannian manifold M16, the Levi-Civita
connection ∇ preserves the vector bundle V 9, and the local sections I1, . . . , I9 of V 9 induce
the Kähler forms ψαβ on M as local curvature forms.

Corollary 18 Let M16 be a compact Riemannian manifold with holonomy Spin(9), i.e.,
M16 is either isometric to the Cayley projective plane OP2 or to any compact quotient of
the Cayley hyperbolic plane OH2. Then its Pontrjagin classes are given by

p1(M) = 0, p2(M) = − 45

2π4 [�Spin(9)], p3(M) = 0, p4(M) = − 13

256π8 [τ8(ψ)].

Proof By Chern–Weil theory the Pontrjagin classes of the vector bundle V 9 → M are

p1(V ) = 0, 16π4 p2(V ) = τ4(ψ) = 360[�Spin(9)],
p3(V ) = 0, 256π8 p4(V ) = [τ8(ψ)].

On the other hand, for any compact manifold M equipped with a Spin(9)-structure, the fol-
lowing relations hold between the Pontrjagin classes of V = V 9 and the Pontrjagin classes
of M , see [17, p. 138]:

p1(M) = 2p1(V ),

p2(M) = 7

4
p2

1(V )− p2(V ),

p3(M) = 1

8

(
7p3

1(V )− 12p1(V )p2(V )+ 16p3(V )
)
,

p4(M) = 1

128

(
35p4

1(V )− 120p2
1(V )p2(V )+ 400p1(V )p3(V )− 1664p4(V )

)
.

(7.2)

Thus, under our hypotheses, from τ2(ψ) = τ6(ψ) = 0 we get p1(V ) = p3(V ) = 0, so
that p1(M) = p3(M) = 0, p2(M) = −p2(V ) and p4(M) = −13p4(V ). The conclusion
follows.

The Pontrjagin classes of OP2 are known for a long time, see [11, p. 535]: p2(OP2) = 6u
and p4(OP2) = 39u2, where u is the canonical generator of H8(OP2; Z). Thus, Corollary 18
give the following representative forms of the cohomology classes u and u2:

u =
[
− 15

4π4�Spin(9)

]
=

[
− 1

96π4 τ4(ψ)

]
, u2 =

[
− 1

768π8 τ8(ψ)

]
.

The volume of OP2 with respect to the canonical metric is known to be 6π8/11!, and the
volume of its totally geodesic OP1 ⊂ OP2 is the same as the volume of S8( 1

2 ), i.e., π4/840,
cf. [9, p. 8]. Thus:

Corollary 19 On the Cayley projective plane OP2 the following relation holds:

[τ4(ψ)]2 = 12[τ8(ψ)].
Moreover, the integrals of�2

Spin(9) and�Spin(9) on OP2 and on its totally geodesic subman-

ifold OP1 give∫

OP1

�Spin(9) = −224vol(OP1),

∫

OP2

�2
Spin(9) = −473088vol(OP2).
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