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Abstract  Several uniqueness results for the spacelike slices in certain Robertson—Walker
spacetimes are proved under boundedness assumptions either on the mean curvature function
of the spacelike surface or on the restriction of the time coordinate on the surface when the
mean curvature is a constant. In the nonparametric case, a uniqueness result and a nonexis-
tence one are proved for bounded entire solutions of some constant mean curvature spacelike
differential equations.

Keywords Mean curvature - Spacelike surface - Robertson—Walker spacetime - Calabi—
Bernstein’s problem

1 Introduction

A maximal surface in a three-dimensional Lorentzian manifold is a spacelike surface of
zero mean curvature. The classical Calabi—Bernstein’s theorem asserts that the only com-
plete maximal surfaces in Lorentz—Minkowski spacetime L3 are the spacelike planes. This
relevant uniqueness result was first proved by Calabi [8] and later extended for maximal
hypersurfaces in L"*! by Cheng and Yau [9]. It can also be stated in terms of the local
complex representation of the surface [12,15]. There are even local estimates of the Gauss
curvature which implies Calabi-Bernstein’s theorem [4, 13]. Moreover, a direct simple proof
of the nonparametric version, inspired from [10], which uses only Liouville’s theorem on
harmonic functions on R? was givenin [21] (see also [3] for more details and related results).

As an application of the generalized maximum principle due to Omori and Yau [18,23]
and of the Calabi—Bernstein’s theorem, Aiyama [1] and Xin [22] (see also [19] for a first
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weaker version given by Palmer) obtained simultaneously and independently a character-
ization of spacelike hyperplanes as the only complete spacelike hypersurfaces with zero
mean curvature in the Lorentz—Minkowski spacetime whose hyperbolic image is bounded.
A second characterization for the spacelike hyperplanes as the only complete spacelike hy-
persufaces with constant mean curvature (CMC) in Lorentz—Minkowski spacetime, which
are bounded between two parallel hyperplanes, has been given by Aledo and Alias [2], also
as a consequence of the generalized maximum principle and the Calabi—Bernstein’s theorem.

On the other hand, in a much more general setting, spacelike hypersurfaces with constant
mean curvature have been extensively studied not only from their mathematical interest, but
also because they are important in general relativity. Specially, several uniqueness results for
CMC spacelike hypersurfaces in generalized Robertson—Walker spacetimes, and other space-
times with certain symmetries, have been obtained [5,6], [7] and [17]. Recall that generalized
Robertson—Walker spacetimes are warped product of a definite negative one-dimensional
base, and a (general) Riemannian manifold as a fiber. This family includes classical Robert-
son—Walker (RW) spacetimes (i.e., the fiber has constant sectional curvature). Let us remark
that in the first three references, the fiber of the ambient spacetime is assumed to be compact
(i.e., the spatially closed cosmological case), which leads to complete spacelike hypersurfaces
to be compact under suitable extra assumptions, and then several Minkowski’s type integral
formulas are used. In the last reference, neither compactness of the fiber nor completeness of
the spacelike hypersurface are assumed, although the existence of a local maximum of some
distinguished function on the spacelike hypersurface is used as assumption.

We are interested now in the case that the RW spacetime M has dimension three, the fiber
is the Euclidean plane R?, and the sectional curvature of M is not zero on any proper open
subset, i.e., the warping function is not locally constant, M is then said to be a proper RW
spacetime, although the curvature of M satisfies certain natural geometric assumptions aris-
ing from relativity theory: the null convergence condition (NCC) or, a stronger assumption,
the time convergence condition (TCC). Under the NCC, new Calabi—Bernstein’s problems
were solved in [16], which allowed to analyze the behavior of Calabi—Bernstein’s properties
with respect to some perturbations of Lorentz—Minkowski spacetime L3 (RW spacetimes
with fiber R? are natural deformations of I3 close to this spacetime if the warping function
is close to the constant 1).

In any RW spacetime M, there is a natural foliation whose leaves, the level surfaces of
the time coordinate of M, constitute a distinguished family of spacelike surfaces in M: its
spacelike slices. This article is devoted to characterize this family from several points of view.
The key starting point is the fact that on any spacelike surface S, the restriction, f (), of the
warping function f of M satisfies a differential equation, (7), which, under suitable assump-
tions, leads to the function f(#)(> 0) on S to be superharmonic. Therefore, provided that
S is parabolic, we can conclude that f(¢) is constant on .S, which implies that ¢ is constant
on S when the RW spacetime is proper. Thus, we prove the following uniqueness results
(Theorems 4.1, 4.5)

Let M be a proper RW spacetime with fiber R? and which obeys the NCC (resp. TCC).
The only complete spacelike surfaces S in M whose mean curvature H satisfies

oo L @2

TN D

(resp. H? <

on all S, are the spacelike slices.
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Note that in both results, H is not assumed to be constant. The function — f/(z9)/f (1) is,
according to our sign choice for the unit normal vector field, the mean curvature of the space-
like slice t = tp and that (N, 9;) is the hyperbolic cosine of the hyperbolic angle between the
normal vector field N and —0; at any point of S. The second inequality may be interpreted
saying that at any p € S, | H(p) | does not exceed the analogous quantity for the spacelike
slice t = t(p). These results specialize to CMC spacelike surfaces; in particular, both extend
a known result in the maximal case (Corollary4.3 and Remark4.6). Next, we study CMC
spacelike surfaces which lie between two spacelike slices. First and in Theorem 5.2, a totally
geodesic slice is characterized among all the complete CMC spacelike surfaces bounded
between two spacelike slices. Later, after showing, Propositions 5.3, 5.4, that the inequality
H? < f'(1)2/f(1)? naturally holds under suitable assumptions on complete CMC spacelike
surfaces which lie between two spacelike slices, we obtain (Theorem5.5)

Let M be a proper RW spacetime with fiber R? which obeys the TCC (resp. NCC) and
with warping function satisfying either ' > Qor f' < 0(resp. f'(ty) = 0 for some ty).
The only complete CMC spacelike surfaces S which lie between two spacelike slices
are also the spacelike slices.

Finally, the last section deals with a Calabi—Bernstein’s type problem for CMC spacelike
graphs in RW spacetimes. Concretely, for the CMC spacelike differential equation,

. Du £ ( | Du |2)
div =2H — 2+
F)Vf@)?= | Du F)f@)?= | Du 2 fu)?

(E.1)
| Du|< rf(m), 0<ir<l, (E.2)

where Du denotes the gradient of the function u € C®(Q), H € R,and f : I — Roa
smooth positive function such that u(€2) C I, the following uniqueness and nonexistence
result (Theorem 6.1) is proved

Assume f is not locally constant, f' has no zero (resp. there exists ty such that f'(ty) =
0) and f” < 0 (resp. (log f)” <0).

(a) If H # —% forany t € I, then there exists no entire bounded solution to the

CMC spacelike differential equation (E) of mean curvature H in M.

(b) IfH = — ff/((ttg)) for some ty € I, then u(x, y) = to, is the unique entire bounded

solution to the CMC spacelike differential equation (E) of mean curvature H in
M.

In view of the obtained results, it seems natural to wonder if our technique extends to
spacelike hypersurfaces of n(> 4)-dimensional RW spacetimes with fiber R”~!. Recall that
R™,m > 31is not parabolic, and therefore, spacelike slices {fo} x R™ are not parabolic either.
Since we always use paraboliticity to conclude that the spacelike surface must be a spacelike
slice, the previously mentioned extension makes no sense.
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2 Preliminaries

Let f be a positive smooth function defined on an open interval / of R and consider
M = I x R? endowed with the Lorentzian metric

(,)=—mjde*) + f(m)znfg&xgo), (1

where ;7 and TR denote the projections onto I and Rz, respectively, and g is the usual

Riemannian metric of R, The Lorentzian manifold (M, (,)) is the warped product, in the
sense of [20, p. 204], with base (I,—dr?), fiber (Rz, 8,) and warping function f. We will refer
to M as a Robertson—Walker (RW) spacetime.

On M consider the vector field £ := f(7;) 9;, which is timelike and satisfies

Vxé = () X, )

for any X € X(M), where V denotes the Levi—Civita connection of the metric (1), [20, Cor.
7.35]. Thus, & is conformal with L¢(, ) =2 f'(r7) (, ) and its metrically equivalent 1-form
is closed.

Being three-dimensional M, its curvature is completely determined by its Ricci tensor,
and this obviously depends on f; actually, M is flatif and only if f is constant [20, Cor. 7.43].
Here, we are interested in the case M is not flat but its curvature satisfies a natural geometric
assumption arising from relativity theory. In fact, this condition on a spacetime is necessary
in order that the spacetime obeys Einstein’s equation (with zero cosmological constant).
Therefore, we recall that a Lorentzian manifold obeys the NCC, when its Ricci tensor, Ric,
satisfies

Ric(Z, Z) > 0,

for any null tangent vector Z, i.e., Z # 0 and such that ( Z,Z ) = 0. Taking into account that
the fiber of the RW spacetime M is flat, and making use again of [20, Cor.7.43] we get,

Ric(Z, 2) = —(log /) (Z, 3)?, 3)

for any null tangent vector Z. Therefore, the RW spacetime M obeys the NCC if and only if
its warping function satisfies

(log /)" < 0. “

The more restrictive condition f” < 0 holds when we have (3) for any timelike Z (and
hence for any causal Z by continuity) is known as the TCC.

3 Set up
3.1 The restriction of the warping function on a spacelike surface

Let x : S —> M be a (connected) spacelike surface in M; that is, x is an immersion and
induces a Riemannian metric on the two-dimensional manifold S from the Lorentzian metric
(1). It should be noted that any spacelike surface in M is orientable and noncompact [5]. As
usual, we agree to represent the induced metric with the same symbol as the metric (1) does.
The unitary timelike vector field 9, := 9/9t € X(M) determines a time orientation on M.
Then, the time orientability of M allows us to consider N € X*(S) as the only, globally
defined, unitary timelike normal vector field on S in the same time orientation of —d;. Thus,
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from the wrong way Cauchy—Schwarz inequality (see [20, Prop. 5.30]), for instance) we have
(N, d;) > 1and (N, 9;) = 1 at a point p if and only if N(p) = —9;(p). We define spacelike
slice to be a spacelike surface x such that w; o x is a constant. A spacelike surface is a
spacelike slice if and only if it is orthogonal to 9; or, equivalently, orthogonal to &. Denote
by 8,T =09y + (N, 9;)N the tangential component of d; on S. It is not difficult to see

Vi =9, 5)

where V7 is the gradient of ¢ := m; o x. Now, from the Gauss formula, taking into account
eT = F(n) B,T and (5), the Laplacian of ¢ satisfies

__f'o
AQ)

where f(t) := fot, f'(t) := f' ot and the function H := —(1/2) trace(A), where A
is the shape operator associated to N, is called the mean curvature of S relative to N. A
spacelike surface S with constant mean curvature is a critical point of the area functional
under a certain volume constraint (see [11], for instance). A spacelike surface with H = 0
is called maximal. Note that with our choice of N, the shape operator of the spacelike slice

t=tois A= (f'(t0)/f (o)) I and H = — f"(t0)/f (to).

A direct computation from (6) and (5) gives
f1@)?
f @)

for any spacelike surface of the RW spacetime M.

{2+ Ve P} —2H (N, 3,), (6)

Af@t) = -2 + f(0)og ) (1) | Vi P =2f"()H (N, 3), (7
3.2 The Gauss curvature of a spacelike surface

From the Gauss equation of a spacelike surface S in M and taking in mind the expression
for the Ricci tensor of M [20, Prob. 7.13], the Gauss curvature K of S satisfies

PG
f@)?

— (og f)'(t) | Vi |> —2H* + %trace(Az), )

where
f'()?
f(@0?

is, at any p € S, the sectional curvature in M of the tangent plane dx,(7,S).

— (log f)'(t) | V1t [*

4 Mean curvature and parabolicity

Consider a spacelike surface S with mean curvature H in a RW spacetime M, which obeys
the NCC. Assume H2 < (f’(t)z/f(t)z). Then, using in (8) the classical Cauchy—Schwarz
inequality, we have that the Gauss curvature of § satisfies K > 0. If in addition we suppose
that S is complete, then we get that S is parabolic, making use of a classical result by Ahlfors
and Blanc—Fiala—Huber, (see [14] for instance). Under a stronger assumption on H, we can
derive the following uniqueness result
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Theorem 4.1 Let M be a proper RW spacetime with fiber R? and which obeys the NCC.
The only complete spacelike surfaces S in M, whose mean curvature H satisfies

H? < 1 f/(f)2
T (N3 f()?

on all S, are the spacelike slices.

Proof From (6), using —2ab < a® + b2 fora, b € R with a f“) b= H(N,?d), we get
f ( )2 " 2 f ( ) 2
Af@) = — + (og /)" (1) | Vi |” + + H*(N, 3,
f(t) 2w e @y ’
(¢ 2
= 12N, 0> - L 1 dtog 1)) 1 V1 P< 0.
1@
Thus, f(¢) is a positive superharmonic function on the parabolic surface S. Therefore f(¢)
must be constant and then S is necessarily a spacelike slice ([16], Lemma 2.1) O

Consequently, we have

Corollary 4.2 The only CMC spacelike surfaces S in a proper RW spacetime with fiber Rz,
and which obeys the NCC, whose mean curvature H satisfies

1 f0?
(N,8,)? f(1)? )

H? < infg (
are the spacelike slices.

In particular we have reproved [16, Cor. 5.1]

Corollary 4.3 The only complete maximal surfaces in a proper RW spacetime, with fiber
R? and which obeys the NCC, are the spacelike slices t = 1y with f'(1y) = 0.

Remark 4.4 Note that (N, ;)% = cosh® @ where 0 is, at any point of S, the hyperbolic angle
between N and —d,. Consider the family of proper RW spacetimes R x R, with f(t) = a e”!
aeR”, p € R~ {0}. Clearly, each of its members M obeys the NCC. Let S be a complete
CMC spacelike surface on M whose mean curvature never vanishes. If cosh? @ < (p2/H?),
then Theorem 4.1 gives that § is necessarily a spacelike slice.

Theorem 4.5 Let M be a proper RW spacetime with fiber R? and which obeys TCC. The
only complete spacelike surfaces S in M whose mean curvature H satisfies

_f'@?
- f (1)?

on all S, are the spacelike slices.

Proof A similar reasoning as in Theorem 4.1 gives

f@)? O]
f(t) Fr) a0+ S v

Now we have that the Gauss curvature K of S satisfies K > 0, using (8). On the other
hand, the first term of the right-hand side of this inequality is nonpositive and the second one
is also nonpositive using TCC. This concludes the proof. O

Af@ = (H? -
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Remark 4.6 Taking into account that, under the assumptions of Corollary 4.3, the NCC nec-
essarily implies the TCC, we can also derive it as a consequence of Theorem 4.5. Moreover,
an analogous result to Corollary 4.2 can be also stated from Theorem4.5.

Remark 4.7 1t should be noted that the assumptions on the mean curvature H, under the
NCC (or the TCC), in Theorems 4.1, 4.5, and Corollary 4.2 not only lead to K > 0 (and
so to the paraboliticity of the complete spacelike surface §), but they also imply that the
restriction on S of the warping function, f (¢), is superharmonic. Even in the maximal case,
in which the inequalities for H are trivially satisfied, we need the curvature assumption on the
ambient spacetime to conclude that f(¢) is superharmonic. On the other hand, if we omit the
assumptions on H, paraboliticity is proved as follows. A particular case of [5, Lemma 3.1]
provides that a complete spacelike surface such that f(¢) is bounded must be diffeomorphic
to R2. In this case, parabolicity can be achieved assuming f s max (0, —K)dS < oo, which
is weaker than K > 0. However, we cannot prove that f(¢) is superharmonic; therefore, we
need to include that as an assumption.

5 Bounded CMC spacelike surfaces

Recall the following generalized maximum principle for complete Riemannian manifolds
due to Omori [18] and Yau [23].

Theorem 5.1 Let S be a complete Riemannian manifold whose Ricci curvature is bounded
from below and let u : S —> R be a smooth function bounded from below on S (resp.
bounded from above on S). Then, for each ¢ > 0, there exists a point p. € S such that

(M Vulpe) <&,

(2) Au(pe) > —e (resp. Au(pe) < ¢€),

3) infu <u(pe) <infu + ¢ (resp. supu — & < u(p;) < supu).
Using this tool, we get

Theorem 5.2 Let M be proper RW spacetime with fiber RZ, which obeys the NCC, and
assume there exists ty € I such that f'(ty) = 0. Then, the only complete CMC spacelike
surface S such that sup t(S) > to, inf 1(S) < to and which lies between the spacelike slices
t =t andt =, witht; <ty < ta, is the totally geodesic spacelike slice t = 1.

Proof From (6), we have

= 2

L2+ | VP - A
2(N, d)

The function (= m; o x) is bounded from above by #,, thus the Omori—Yau-generalized

maximum principle says that for each ¢ > 0, there exists a p, € S such that | Vi (p;) |< ¢,

At(pe) < eandsupt —e < t(p;) < supt.
Therefore, (9) gives

(C))

=f'(t(pe)) {2+ I Vi |2 (p )} —¢
H > St (pe)) i ] (10)
2(N, 9;)(pe)
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Taking into account that M obeys the NCC,

/ /

i =L@ G =GRS
e=0 f(t(pe)) J(supz($))

therefore, we obtain from (10) that H > 0. On the other hand, the function ¢ is also bounded

from below by #;; thus, the Omori—Yau-generalized maximum principle implies that for each

& > 0, there exists a p, € S such that | Vt(pe) |< €, At(pe) > —e and inft < f(pe) <

inf t + ¢. Hence, making use again of (9), we get

L@ 51| vr 2 (pe)) + &

H< S (pe)) ) (11)
2(N, 9;)(pe)
and using again that M obeys the NCC, we get
—f —f/(inf £ (S
im =L D) Gy 2 () 4o =L EES)
e=0 f(1(pe)) S (@inf 1(S))
obtaining now from (11) the other inequality H < 0. The conclusion follows then from
Corollary 4.3. O

According to the previous result, if there exists a complete CMC spacelike surface, with
H # 0, which lies between two spacelike slices in M, then it must be contained either in the
regiont <ty orin ¢ > ty. Even more, we have the following

Proposition 5.3 Let M be a proper RW spacetime with fiber RZ, which obeys the NCC and
assume that there exists ty € I such that f’(t9) = 0. If a complete CMC spacelike surface S
in M satisfies t(S) C [to, 2], to < 12 (resp. t(S) C [t1,t0], 1y < to), then 0 < H < —L 1)

f(@)
(resp. —% < H <0) holds on S. In any case, we have

/(412
2 < S (f)2
f@)
on S. Moreover, when H # 0 we have inf t(S) > ty (resp. supt(S) < 1)

Proof Tf M obeys the NCC and there exists fo € I such that f/(¢9) = 0, then £y is the unique
critical point of f and sup f (/1) = f(t9), i.e., f attains its global maximum at #y [16]. Note
that f’(¢) < 0 in the first case. Being the function ¢ bounded from above, we have H > 0.

On the other hand, as ¢ is bounded from below by 7y, from the Omori—Yau-generalized
maximum principle and using (N, 9;) > 1, we have that for each ¢ > 0, there exists p, € §
such that

4 e+ VP (o) +e
< : |

(12)

Ife — 0in (12), we get
_ —//(inf1(8)
f(nfz(S))
Even more, if inf7(S) = 19, then H = 0 and § is the maximal slice. Now, the function
—f'(t)/f (¢) is increasing because the NCC holds, and therefore,
g
H < S (l).
f@
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In the second case, we have f’(¢) > 0, and as ¢ is bounded from below for 71, H < 0.
Moreover, if S is not the maximal slice, the inequality is strict. Again from Theorem 5.1, for
each ¢ > (0, there exists p, € S such that

=LA 04 Ve P (po)) — e
. 2 . ' (13)

If ¢ — 0in (13), we have

_ —f/(supr(8)

fsupt(S)
If sups(S) = 1o, then H = 0 and S is the maximal slice. In a similar way as before, we
conclude o
< H <0,
f@o -
which ends the proof. O

An analogous argument to the previous one gives

Proposition 5.4 Let M be a proper RW spacetime with fiber R? which obeys the NCC and
with warping function satisfying either f' > 0 or f' < 0. If a complete CMC spacelike
surface S lies between two spacelike slices, then f'H < 0 and

H? < .IN(f)2
T f@)?

holds on all S.

Theorem 5.5 Let M be a proper RW spacetime with fiber R? which obeys the TCC (resp.
NCC) and with warping function satisfying either f' > 0 or f' < 0 (resp. f'(ty) = 0 for
some ty € I). The only complete CMC spacelike surfaces S which lie between two spacelike
slices are also the spacelike slices.

Proof Observe that if f/(z9) = 0 for some #y € I, this £y is unique and the NCC implies in
fact the TCC. On the other hand, the conclusion of Proposition 5.4 holds true, and then the
proof follows from Theorem 4.5. O

6 A Calabi-Bernstein’s type problem

In this section, we will deal with the CMC spacelike differential equation (E) announced in
Sect. 1. The graph £ = {(u(x, y),x,y) : (x,y) € 2} of any solution u to the equation (E)
is a CMC spacelike surface, with constant mean curvature H in a RW spacetime defined as
the warped product of base I, fiber 2, and warping function f. We are interested in the entire
solutions, i.e., defined on all R?, to equation (E). PutBy = {—f'(t)/f(t) : t € I} C R,and

denote, as previously, by M the RW spacetime with base I, fiber R? and warping function f.

Theorem 6.1 Assume that f is not locally constant, f' has no zero (resp. there exists ty € I
such that f'(to) = 0) and f” < 0 (resp. (log f)” <0).

(a) IfH & By, then there exists no entire bounded solution to the CMC spacelike differential
equation (E) of mean curvature H in M.
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(b) IfH € By, thenu(x,y) = to, where H = — J;/((;(?)), is the unique entire bounded solution
to the CMC spacelike differential equation (E) of mean curvature H in M.

Proof On the graph of a solution of (E), the constraint (E.2) may be expressed as follows:

(N, 0;) < ﬁ (14)

The induced metric on the graph is represented on the plane R? by
gu = —du® + fu)?(dx? +dy?),
and therefore, the assumption (14) gives
gu((@.b), (@,b)) = (1 =33 fw)?@ +b%),

for all (a, b) € R2. From our assumptions, we have inf f(x) > 0, and therefore, the metric
gu 1s complete. Now, the result follows from Theorem 5.5. O
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