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Abstract We study three-dimensional curvature homogeneous Lorentzian manifolds. We
prove that for all Segre types of the Ricci operator, there exist examples of nonhomogeneous
curvature homogeneous Lorentzian metrics in R

3.
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1 Introduction and main results

A pseudo-Riemannian manifold (M, g) is called curvature homogeneous up to order k if,
for any points p, q ∈ M , there exists a linear isometry φ : Tp M → Tq M such that
φ∗(∇ i R(q)) = ∇ i R(p) for all i ≤ k. When k = 0, (M, g) is simply called a curvature
homogeneous space. A locally homogeneous space is curvature homogeneous of any order
k. Conversely, curvature homogeneity up to order k implies local homogeneity when k is suf-
ficiently high. This result was proved by Singer [12] for Riemannian manifolds and extended
to the pseudo-Riemannian case through the equivalence theorem for G-structures due to
Cartan and Sternberg [13].

If dimM = 2, then curvature homogeneity (up to order 0) already implies local homoge-
neity. However, when dimM ≥ 3, a curvature homogeneous space needs not to be locally
homogeneous. Three-dimensional spaces are natural candidates for a deep investigation about
curvature homogeneity, because in dimension three the curvature tensor is completely deter-
mined by the Ricci tensor, and curvature homogeneity is equivalent to requiring that there
exists, at least locally, a pseudo-orthonormal frame field with respect to which the Ricci
components are constant.
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In dimension three, the Riemannian case and the Lorentzian one split apart. In fact,
K. Sekigawa [11] proved that a three-dimensional Riemannian manifold, which is curva-
ture homogeneous up to order one, is locally homogeneous. On the other hand, Bueken and
Vanhecke [4] found the first examples of nonhomogeneous Lorentzian three-manifolds which
are curvature homogeneous up to order one. The full classification of three-dimensional
Lorentzian manifolds curvature homogeneous up to order one was obtained by Bueken and
Djorić in [3], where they also proved that curvature homogeneity up to order two implies
local homogeneity for a three-dimensional Lorentzian manifold.

Differences arising between the Riemannian and the Lorentzian cases are essentially due
to the different behavior of self-adjoint operators in these frameworks. Because of the sym-
metries of the curvature tensor, the Ricci tensor � is symmetric. Hence, the Ricci operator
Q, defined by g(Q X, Y ) = �(X, Y ), is self-adjoint. Consequently, at each point of a Rie-
mannian manifold there exists an orthonormal basis diagonalizing Q, while for a Lorentzian
manifold four different cases can occur [3,10], known as Segre types, which depend on the
multiplicity of the Ricci eigenvalues and on the dimension of the corresponding eigenspaces.
The possible cases are the following:

1. Segre type {11, 1}: the Ricci operator itself is symmetric and so, diagonalizable. The
comma is used to separate the spacelike and timelike eigenvectors. In the degenerate
case, at least two of the Ricci eigenvalues coincide.

2. Segre type {1zz̄}: the Ricci operator has one real and two complex conjugate eigenvalues.
3. Segre type {21}: the Ricci operator has two real eigenvalues (coinciding in the degener-

ate case), one of which has multiplicity two and each associated to a one-dimensional
eigenspace.

4. Segre type {3}: the Ricci operator has three equal eigenvalues, associated to a one-
dimensional eigenspace.

In particular, at each point p ∈ M there exists a pseudo-orthogonal basis {e1, e2, e3}, with
e3 timelike, such that Q takes one of the following forms:

Segre type {11, 1} :
⎛
⎝

a 0 0
0 b 0
0 0 c

⎞
⎠ , Segre type {1zz̄} :

⎛
⎝

a 0 0
0 b c
0 −c b

⎞
⎠ , c �= 0, (1.1)

Segre type {21} :
⎛
⎝

a 0 0
0 b ε

0 −ε b − 2ε

⎞
⎠ , ε = ±1, Segre type {3} :

⎛
⎝

b a −a
a b 0
a 0 b

⎞
⎠ , a �= 0.

When (M, g) is a curvature homogeneous Lorentzian three-space, starting from a pseudo-
orthonormal basis {(ei )p} at a fixed point p, we can use the linear isometries from Tp M into
the tangent spaces at any other point, to construct a pseudo-orthonormal frame field {ei },
such that the components of � with respect to {ei } remain constant along M . Hence, Q has
constant eigenvalues and the same Segre type at any point p ∈ M . A natural question to ask
is the following:

Do there exist nonhomogeneous curvature homogeneous Lorentzian three-manifolds for
all Segre types of the Ricci operator?

A negative answer holds for Lorentzian three-manifolds curvature homogeneous up to
order one: non-homogeneous examples only occur for degenerate Segre types {11, 1} and
{21} (see [3]). For the case when the Ricci operator is of Segre type either {1zz̄} or {3}, Bueken
and Djorić [3] wrote: “We do not know, however, if there exist non-homogeneous curvature
homogeneous three-dimensional Lorentzian manifolds whose Ricci operator is of this type
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or curvature homogeneity is sufficient to guarantee local homogeneity of the manifolds of
this type.” Also three-dimensional Einstein-like curvature homogeneous Lorentzian metrics
do not provide nonhomogeneous examples for these Segre types of the Ricci operator [7].

The aim of this article is to answer the question above, by proving the following:

Maim Theorem Three-dimensional nonhomogeneous curvature homogeneous Lorentzian
metrics exist for all different Segre types of the Ricci operator (except in the degenerate diag-
onal case with three equal Ricci eigenvalues, when the manifold has necessarily constant
sectional curvature).

To prove our Main Theorem, we shall take into account the previous results on curvature
homogeneous Lorentzian three-spaces. Bueken provided curvature homogeneous examples
in the diagonal case with two distinct Ricci eigenvalues [1] and for case of degenerate Segre
type {21} [2]. Some examples with diagonalizable Ricci operator and constant Ricci eigen-
values were described in [8]. In [6], the author generalized to pseudo-Riemannian manifolds
the powerful technique introduced by Kowalski and Prüfer in [9], to build examples with
diagonal Ricci operator and constant distinct Ricci eigenvalues.

To our knowledge, references above cover the known examples of curvature homogeneous
Lorentzian three-spaces. These examples focus on the diagonal case, except for [2], where
the Ricci operator is assumed to be of degenerate Segre type {21} (all the Ricci eigenvalues
coincide and the corresponding eigenspace is two-dimensional).

In this article, we shall provide some families of explicit examples of nonhomogeneous
curvature homogeneous Lorentzian metrics on R

3, whose Ricci operator is either of Segre
type {1zz̄}, of Segre type {3}, or of nondegenerate Segre type {21}. Together with the above-
cited results, these new examples complete the proof of our Main Theorem.

For the different Segre types, a different approach will be used to determine these exam-
ples. After giving a general description of curvature homogeneous Lorentzian three-spaces
in Sect. 2, examples with Ricci operator of Segre type {3} and nondegenerate {21} will be
given in Sect. 3 inside the class of Lorentzian three-spaces admitting a parallel degenerate
line field [8]. On the other hand, the case of Ricci operator of Segre type {1zz̄} will be dealt
with in Sect. 4, by describing these spaces via a system of differential equations and finding
explicit solutions.

2 Curvature homogeneous Lorentzian 3-spaces: a general description

Let (M, g) be a connected three-dimensional Lorentzian manifold. We denote by ∇ the Levi
Civita connection of (M, g) and by R its curvature tensor, taken with the sign convention

R(X, Y ) = ∇[X,Y ] − [∇X ,∇Y ].
Since M is three-dimensional, R is completely determined by the Ricci tensor �, defined by

�(X, Y ) =
3∑

i=1

εi g(R(X, ei )Y, ei ), (2.1)

for any vector fields X, Y , where {e1, e2, e3} is a (local) pseudo-orthonormal basis of Tp M
with e3 timelike, that is, ε1 = ε2 = −ε3 = 1. As we already pointed out, if (M, g) is
curvature homogeneous, then the Ricci operator Q has the same Segre type at any point
p ∈ M and has constant eigenvalues. Let {ei } denote a local pseudo-orthonormal frame field
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on (M, g), with respect to which the Ricci components are constant. Following [5], we then
put

∇ei e j =
∑

k

ε j b
i
jkek, (2.2)

for all indeces i, j . Clearly, the functions bi
jk determine completely the Levi Civita connec-

tion, and conversely. Note that from ∇g = 0 it follows at once

bi
k j = −bi

jk, (2.3)

for all i, j, k. In particular,

bi
j j = 0 (2.4)

for all indices i and j . We now put

b1
12 = α, b1

13 = β b1
23 = γ, b2

12 = κ, b2
13 = µ, b2

23 = ν, b3
12 = σ,

b3
13 = τ, b3

23 = ψ. (2.5)

By (2.2–2.5) we get that the Levi Civita connection ∇ of (M, g) is completely determined
by

∇e1 e1 = α e2 + β e3, ∇e2 e1 = κ e2 + µ e3, ∇e3 e1 = σ e2 + τ e3,

∇e1 e2 = −α e1 + γ e3, ∇e2 e2 = −κ e1 + ν e3, ∇e3 e2 = −σ e1 + ψ e3,

∇e1 e3 = β e1 + γ e2, ∇e2 e3 = µ e1 + ν e2, ∇e3 e3 = τ e1 + ψ e2.

(2.6)

In particular, from (2.6) we get at once

[e1, e2] = −α e1 − κ e2 + (γ − µ) e3,

[e1, e3] = β e1 + (γ − σ) e2 − τe3, (2.7)

[e2, e3] = (µ+ σ) e1 + ν e2 − ψ e3.

Conversely, functions (bi
jk) are completely determined by the Lie brackets of vector fields

e1, e2, e3. In fact, the well-known Koszul formula [10] yields

2ε jεkbi
jk = 2g(∇ei e j , ek) = g([ei , e j ], ek)− g([e j , ek], ei )+ g([ek, ei ], e j ). (2.8)

We can now compute the components of curvature tensor with respect to {ei }. Starting
from (2.6), standard calculations give

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1212 = e2(α)− e1(κ)− α2 − κ2 + βν − γµ+ σ(γ − µ),

R1313 = e1(τ )− e3(β)− β2 + τ 2 − αψ + γ σ − µ(γ − σ),

R2323 = e2(ψ)− e3(ν)− ν2 + ψ2 + κτ − µσ − γ (µ+ σ),

R1213 = e1(µ)− e2(β)+ α(β − ν)+ γ (κ − τ)+ µ(κ + τ),

R1323 = e1(ψ)− e3(γ )− γ (β + ν)− σ(β − ν)+ τ(α + ψ),

R1223 = e3(κ)− e2(σ )+ α(µ+ σ)+ ν(κ − τ)+ ψ(µ− σ).

(2.9)
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We now use (2.9) in (2.1) to calculate the Ricci components in function of (bi
jk). We get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�11 = e2(α)+ e3(β)− e1(κ)− e1(τ )− α2 + β2 − κ2 − τ 2 + αψ + βν − 2µσ,

�22 = e2(α)− e1(κ)+ e3(ν)− e2(ψ)− α2 − κ2 + ν2 − ψ2 + βν − κτ + 2γ σ,

�33 = e1(τ )− e3(β)− e3(ν)+ e2(ψ)− β2 + τ 2 − ν2 + ψ2 − αψ + κτ − 2γµ,

�12 = e3(γ )− e1(ψ)+ γ (β + ν)+ σ(β − ν)− τ(α + ψ),

�13 = e2(σ )− e3(κ)− α(µ+ σ)− ν(κ − τ)− ψ(µ− σ),

�23 = e1(µ)− e2(β)+ α(β − ν)+ γ (κ − τ)+ µ(κ + τ).
(2.10)

Before specializing our study to the different Segre types, we remark that functions α, .., ψ
are not all independent. In fact, from (2.2) and the constancy of �i j it easily follows

∇i� jk = −
∑

t

(
ε j b

i
j t�tk + εkbi

kt�t j

)
, (2.11)

for all indeces i, j, k. Since (M, g) is curvature homogeneous, its scalar curvature r = tr� is
constant. The well-known divergence formula dr = 2div� [10] then implies

∑
j

ε j∇ j�i j = 0 for all i, (2.12)

which, taking into account (2.11), gives some restrictions for the connection functions (2.5).
Explicitly, from (2.12) we get

⎧⎨
⎩
�11(κ + τ)− �22κ + �33τ − �12(2α − ψ)− �13(2β + ν)− �23(µ− σ) = 0,
�11α − �22(α − ψ)+ �33ψ + �12(2κ + τ)− �13(γ + σ)− �23(β + 2ν) = 0,
�11β + �22ν + �33(β + ν)− �12(γ + µ)− �13(κ + 2τ)+ �23(α − 2ψ) = 0,

(2.13)

which may be used, for example, to express ν, τ, ψ in function of α, β, γ, κ, µ, σ .
Summarizing, curvature homogeneous Lorentzian three-manifolds (M, g) are character-

ized by Eqs. 2.10 and 2.13. According to (2.6) (equivalently, to (2.7)), functionsα, β, γ, κ, µ, σ ,
appearing in (2.10) and (2.13) completely determine the Levi Civita connection of (M, g).
In this way, we proved the following.

Theorem 2.1 Let (M, g) be a three-dimensional Lorentzian manifold. (M, g) is curvature
homogeneous if and only if there exist (at least, locally) a pseudo-orthonormal frame field
{e1, e2, e3} and six functions α, β, γ, κ, µ, σ , such that (2.7), (2.10) and (2.13) hold for six
constants �11, . . . , �23.

From now on, we shall focus on curvature homogeneous Lorentzian three-spaces (M, g)
whose Ricci operator is neither of diagonal Segre type {11, 1} nor of degenerate Segre type
{21}, because non-homogeneous examples have already been studied in these cases. Under
this restriction, we can now give a simple criterion to recognize locally homogeneous Lo-
rentzian three-spaces among all solutions of (2.10) and (2.13).

As the author proved in [5], a three-dimensional locally homogeneous Lorentzian three-
manifold is either locally symmetric or locally isometric to a Lie group, equipped with a
left-invariant Lorentzian metric. Moreover, he also proved that Lorentzian symmetric three-
spaces only occur when the Ricci operator is of degenerate Segre type either {11, 1} or {21}.
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Henceforth, under the assumption above, (M, g) can not be locally symmetric and we can
easily prove the following

Theorem 2.2 Let (M, g) be a curvature homogeneous Lorentzian three-space, whose Ricci
operator Q is neither diagonal nor of degenerate Segre type {21}. Let {e1, e2, e3} be a (local)
pseudo-orthonormal frame field on (M, g) for which (2.7), (2.10) and (2.13) hold. Then,
(M, g) is locally homogeneous if and only if all functions α, β, γ, κ, µ, σ are constant.

Proof If (2.7) holds for some constants α, β, γ, κ, µ, σ , then (2.8) yields that all bi
jk are

constant (at least, locally). Since the components of the Ricci tensor and of its derivatives of
any order with respect to {ei } depend on bi

jk , we have that (M, g) is curvature homogeneous
up to any order k and so, is locally homogeneous.

Conversely, assume now that (M, g) is locally homogeneous. Because of the Segre type of
its Ricci operator, (M, g) is not locally symmetric. Hence, the main result of [5] implies that
(M, g) is locally isometric to a three-dimensional Lie group G, equipped with a left-invariant
Lorentzian metric. The Lie algebra g of G admits a pseudo-orthonormal basis {e′

1, e′
2, e′

3},
such that

[
e′

1, e′
2

] = k1e′
1 + k2e′

2 + k3e′
3,

[
e′

1, e′
3

] = k4e′
1 + k5e′

2 + k6e′
3,[

e′
2, e′

3

] = k7e′
1 + k8e′

2 + k9e′
3,

for some real constants k1, . . . , k9, and the conclusion follows by comparing formulas above
with formulas (2.7) 	

Remark 2.3 Conditions for local homogeneity given in Theorem 2.2 appear rather restric-
tive compared with equations (2.10) and (2.13), which express curvature homogeneity when
all �i j are constant. In particular, it suffices to have one non-constant connection function
between α, β, γ, κ, µ, σ , to have a non-homogeneous solution of (2.10) and (2.13). In the
rest of this article, we shall construct explicitly such solutions.

3 Examples with Ricci operator of either Segre type {3} or nondegenerate Segre type
{21}

The existence of a parallel line field has strong and interesting consequences on the geometry
of a manifold. If a Riemannian manifold (M, g) admits such a line field, then (M, g) is locally
reducible. The same property remains true for a pseudo-Riemannian manifold admitting a
parallel non-degenerate line field. However, in the pseudo-Riemannian framework, a peculiar
phenomenon arises: it can exist a parallel degenerate line field, that is, one generated by a
null vector field.

The geometry of Lorentzian three-manifolds admitting a parallel degenerate line field has
been studied in [8]. These manifolds are described in terms of a suitable system of local coor-
dinates (t, x, y) and form a large class, depending on an arbitrary three-variables function
f (t, x, y). We briefly report here the decription of these manifolds, which we shall denote
by (M, g f ), referring to [8] for more details.

A three-dimensional Lorentzian manifold (M, g f ) admitting a parallel degenerate line
field has local coordinates (t, x, y) such that with respect to the local frame fields {∂t , ∂x , ∂y},
the Lorentzian metric is expressed by

g f =
⎛
⎝

0 0 1
0 ε 0
1 0 f (t, x, y)

⎞
⎠ (3.1)
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for some function f (t, x, y), where ε = ±1. Here we fix ε = 1, so that the Lorentzian
metric tensor will have signature (+,+,−). The parallel degenerate line field is given by
D̄ =Span(∂t ). When U = ∂t is a parallel null vector field, then f = f (x, y).

With respect to the coordinate basis {∂t , ∂x , ∂y}, the Levi Civita connection and curvature
tensor of (M, g f ) are determined by the following formulas:

∇∂t ∂y = 1
2 f ′

t ∂t ,

∇∂x ∂y = 1
2 f ′

x∂t ,

∇∂y∂y = 1
2 ( f f ′

t + f ′
y)∂t − 1

2 f ′
x∂x − 1

2 f ′
t ∂y,

(3.2)

and

R(∂t , ∂y)∂t = − 1
2 f ′′

t t ∂t

R(∂t , ∂y)∂x = − 1
2 f ′′

t x∂t

R(∂t , ∂y)∂y = − 1
2 f f ′′

t t ∂t + 1
2 f ′′

t x∂x + 1
2 f ′′

t t ∂y

R(∂x , ∂y)∂t = − 1
2 f ′′

t x∂t

R(∂x , ∂y)∂x = − 1
2 f ′′

xx∂t ,

R(∂x , ∂y)∂y = − 1
2 f f ′′

t x∂t + 1
2 f ′′

xx∂x + 1
2 f ′′

t x∂y .

(3.3)

In particular, with respect to {∂t , ∂x , ∂y}, the Ricci operator Q and the Ricci tensor � of
(M, g f ) are respectively given by:

Q =

⎛
⎜⎜⎜⎝

1
2 f ′′

t t
1
2 f ′′

t x − 1
2 f ′′

xx

0 0 1
2 f ′′

t x

0 0 1
2 f ′′

t t

⎞
⎟⎟⎟⎠ and � =

⎛
⎜⎜⎜⎝

0 0 1
2 f ′′

t t

0 0 1
2 f ′′

t x

1
2 f ′′

t t
1
2 f ′′

t x
1
2 ( f f ′′

t t − f ′′
xx )

⎞
⎟⎟⎟⎠ . (3.4)

The eigenvalues of the Ricci operator Q are λ1 = 0 and λ2 = λ3 = 1
2 f ′′

t t . Henceforth, the
constancy of f ′′

t t is a necessary condition for the curvature homogeneity of (M, g f ). Note
that all Ricci eigenvalues are real and so, Q is never of Segre type {1zz̄}.

We now describe (M, g f ) in terms of a (local) pseudo-orthonormal frame field. Consider
local coordinates (t, x, y) for which (3.1) holds. Then, it is easy to check that

e1 = ∂x , e2 = 2 − f

2
√

2
∂t + 1√

2
∂y, e3 = 2 + f

2
√

2
∂t + 1√

2
∂y (3.5)

is a local pseudo-orthonormal frame field on (M, g f ), with e3 timelike. Using (3.2) and
(3.5), we easily find that with respect to {e1, e2, e3} the Levi Civita connection is completely
determined by

∇e1 e1 = 0, ∇e2 e1 = 1
4 f ′

x (e2 + e3), ∇e3 e1 = − 1
4 f ′

x (e2 + e3),

∇e1 e2 = 0, ∇e2 e2 = − 1
4 f ′

x e1 + 1
2
√

2
f ′
t e3, ∇e3 e2 = 1

4 f ′
x e1 − 1

2
√

2
f ′
t e3,

∇e1 e3 = 0, ∇e2 e3 = 1
4 f ′

x e1 + 1
2
√

2
f ′
t e2, ∇e3 e3 = − 1

4 f ′
x e1 − 1

2
√

2
f ′
t e2,

(3.6)
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while (3.4) and (3.5) yield that the Ricci operator with respect to {e1, e2, e3} is given by

Q =

⎛
⎜⎜⎜⎝

0 1
2
√

2
f ′′
t x − 1

2
√

2
f ′′
t x

1
2
√

2
f ′′
t x

1
4 (2 f ′′

t t − f ′′
xx )

1
4 f ′′

xx

1
2
√

2
f ′′
t x − 1

4 f ′′
xx

1
4 (2 f ′′

t t + f ′′
xx )

⎞
⎟⎟⎟⎠ , (3.7)

and for the Ricci components (�i j ) it suffices to change the signs in the last row of (3.7).
We now find conditions ensuring that (M, g f ) is curvature homogeneous and has Ricci

operator either of Segre type {3} or of nondegenerate Segre type {21}.
Segre type {3} In order to be of Segre type {3}, Q must admit a triple eigenvalue λ1 =

λ2 = λ3. Therefore, we necessarily have f ′′
t t = 0. In this case, by either (3.4) or (3.7) it

easily follows that Q is of Segre type {3} if and only if f ′′
t x �= 0. In fact, if f ′′

t x �= 0, then the
associated eigenspace is one-dimensional, while f ′′

t x = 0 implies that the eigenspace is at
least two-dimensional and so, Q is not of Segre type {3}. In particular, if the defining function
f satisfies

⎧⎨
⎩

f ′′
t t = 0,

f ′′
t x = a1,

f ′′
xx = a2,

(3.8)

where a1 �= 0 and a2 are two real constants, then (3.7) becomes

Q =

⎛
⎜⎜⎜⎝

0 1
2
√

2
a1 − 1

2
√

2
a1

1
2
√

2
a1 − 1

4 a2
1
4 a2

1
2
√

2
a1 − 1

4 a2
1
4 a2

⎞
⎟⎟⎟⎠ (3.9)

and so, (M, g f ) is curvature homogeneous. Integrating (3.8), we find

f (t, x, y) = a1xt + a2

2
x2 + p(y)t + q(y)x + s(y), (3.10)

where p, q, s are the three arbitrary one-variable functions. Note that when (3.10) holds,
(M, g f ) is neither locally symmetric nor locally homogeneous. This follows both from
Theorem 2.2 and by direct calculation. In fact, if f satisfies (3.10), then the Ricci compo-
nents (3.9) with respect to {e1, e2, e3} are constants, but a straightforward calculation gives

∇2�22 = −2�(∇e2 e2, e2) = 1

4
√

2
(a1t2 + a1q(y)− a2 p(y)),

which is not constant. In this way, we proved the following.

Theorem 3.1 For any defining function f satisfying (3.10), the Lorentzian manifold (M, g f )

with metric tensor (3.1) is curvature homogeneous and has Ricci operator of Segre type {3}.
Hence, (3.10) and (3.1) determine explicitly a family of (nonhomogeneous) curvature

homogeneous Lorentzian metrics on R
3[t, x, y], with Ricci operator of Segre type {3},

depending on three arbitrary functions of one variable.

We end the study of this case by discussing when two of the Lorentzian metrics described
in Theorem 3.1 are locally isometric. Let (M, g) and (M ′, g′) be curvature homogeneous
Lorentzian three-manifolds admitting (at least, locally) pseudo-orthonormal frame fields
{e1, e2, e3} and {e′

1, e′
2, e′

3} respectively, for which (3.9) hold. Then, we have the following
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Theorem 3.2 A differentiable mapping ϕ : M → M ′ is an isometry if and only if

ϕ∗(ei ) = εe′
i = ±e′

i .

Proof If ϕ satisfies the condition above, then clearly ϕ is an isometry. Conversely, suppose
that ϕ is an isometry. By (3.9) it easily follows that the one-dimensional Ricci eigenspace of
(M, g) is spanned by the null vector u = e2+e3√

2
. For this reason, we pass from the pseudo-

orthonormal frame field {e1, e2, e3} to the null frame field {e1, u, v}, where v = e2−e3√
2

. Taking
into account (3.9), the Lorentzian metric and the Ricci tensor with respect to {e1, u, v} are
completely determined by conditions

g(e1, e1) = g(u, v) = 1, g(e1, u) = g(e1, v) = g(u, u) = g(v, v) = 0 (3.11)

and

�(e1, e1) = �(e1, u) = �(u, u) = �(u, v) = 0, �(e1, v) = a1

2
, �(v, v) = −a2.(3.12)

The null frame field {e′
1, u′, v′} is defined in the same way starting from the pseudo-

orthonormal frame field {e′
1, e′

2, e′
3}, and (3.11), (3.12) hold for g′ and �′.

Since ϕ preserves the Ricci eigenspace, we have Span(u′)= Span(ϕ∗(u)). Hence, there
exists a smooth function r �= 0 such that ϕ∗(u) = ru′, and

⎧⎨
⎩
ϕ∗(e1) = h1e′

1 + h2u′ + h3v
′,

ϕ∗(u) = ru′,
ϕ∗(v) = s1e′

1 + s2u′ + s3v
′.

(3.13)

for some smooth functions h1, h2, h3, s1, s2, s3. Since ϕ both preserves the Lorentzian metric
and the Ricci tensor, (3.11) and (3.12) easily imply h1 = r = s3 = ε and h2 = h3 = s1 =
s2 = 0. Then, (3.13) reduces to f∗(e1) = εe′

1, f∗(u) = εu′, f∗(v) = εv′, from which the
conclusion follows at once, since e2 = u+v√

2
and e3 = u−v√

2
. 	


By Theorem 3.2, two locally isometric curvature homogeneous pseudo-Riemannian three-
manifolds (M, g) and (M ′, g′) having the same Ricci operator (3.9), with respect to the suit-
able pseudo-orthonormal frames {ei } and {e′

i }, necessarily have the same connection functions
(at most, up to sign). Therefore, (3.6) yields that two of the solutions given in Theorem 3.1,
constructed starting by two defining functions f and f̄ satisfying (3.10) but such that either
f ′
x �= f̄ ′

x or f ′
t �= f̄ ′

t , is not (locally) isometric. So, Theorems 3.1 and 3.2 ensure that there
are infinitely many curvature homogeneous Lorentzian metrics on R

3[w, x, y], all having
the same Ricci operator (3.9) of Segre type {3}, not locally isometric to one another.

Nondegenerate Segre type {21} It is easy to check that if f ′′
t x = 0 and f ′′

xx �= 0 �= f ′′
t t ,

then the Ricci operator Q of (M, g f ) is of nondegenerate Segre type {21}. In fact, by either
(3.4) or (3.7), it follows that the Ricci eigenvalues are λ1 = 0 �= 1

2 f ′′
t t = λ2 = λ3, and the

eigenspace associated to the eigenvalue λ2 = λ3 is one-dimensional.
In particular, (3.7) easily implies that (M, g f ) is curvature homogeneous and has Ricci

operator of nondegenerate Segre type {21} if the defining function f satisfies the following
system of partial differential equations:

⎧⎨
⎩

f ′′
t t = b1,

f ′′
t x = 0,

f ′′
xx = b2,

(3.14)
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for two real constants b1 �= 0 and b2 �= 0. In this case, (3.7) becomes

Q =

⎛
⎜⎜⎜⎝

0 0 0

0 1
4 (2b1 − b2)

1
4 b2

0 − 1
4 b2

1
4 (2b1 + b2)

⎞
⎟⎟⎟⎠ (3.15)

and the Ricci eigenvalues are λ1 = 0 �= b1
2 = λ2 = λ3. We integrate (3.14) and we find

f (t, x, y) = b1

2
t2 + b2

2
x2 + p̄(y)t + q̄(y)x + s̄(y), (3.16)

for three arbitrary one-variable functions p̄, q̄, s̄. If f satisfies (3.16), then the Ricci compo-
nents with respect to {e1, e2, e3} are constant, but for example

∇2�23 = −�(∇e2 e2, e3)− �(e2,∇e2 e3) = b1

4
√

2
(b1t + p̄(y))

is not a constant and so, (M, g f ) is neither locally symmetric nor locally homogeneous.
Thus, we proved

Theorem 3.3 For any defining function f satisfying (3.16), the Lorentzian manifold (M, g f )

with metric tensor (3.1) is curvature homogeneous and has Ricci operator of nondegenerate
Segre type {21}.

Hence, (3.16) and (3.1) determine explicitly a family of (nonhomogeneous) curvature
homogeneous Lorentzian metrics on R

3[t, x, y], with Ricci operator of nondegenerate Segre
type {21}, depending on three arbitrary functions of one variable.

Suppose now that (M, g) and (M ′, g′) are curvature homogeneous Lorentzian three-mani-
folds admitting (at least, locally) pseudo-orthonormal frame fields {e1, e2, e3} and {e′

1, e′
2, e′

3}
respectively, for which (3.15) hold. Then, we can prove the following

Theorem 3.4 A differentiable mapping ϕ : M → M ′ is an isometry if and only if

ϕ∗(e1) = ε1e′
1, ϕ∗(e2) = ε2e′

2, ϕ∗(e3) = ε2e′
3,

where εi = ±1 for i = 1, 2.

Proof The “if” part is trivial. As regards the “only if” part, suppose that ϕ is an isome-
try. Then, ϕ preserves the Ricci eigenspaces. In particular, Span(ϕ∗e1)= Span(e′

1) and so,
ϕ∗(e1) = ε1e′

1. Moreover, since ϕ is an isometry and ϕ∗(e1) = ε1e′
1, it is easy to check that

ϕ∗e2 and ϕ∗e3 are both orthogonal to e′
1. Therefore, Span(ϕ∗e2, ϕ∗e3)=Span(e′

2, e′
3) and so,

there exists a real-valued function θ , such that

ϕ∗(e2) = ε2(cosh θe′
2 + sinh θe′

3), ϕ∗(e3) = ε3(sinh θe′
2 + cosh θe′

3), (3.17)

where εi = ±1 for i = 1, 2. Since ϕ preserves the Ricci tensor, using (3.15) and (3.17) to
calculate �′

22 we easily get

(cosh θ − sinh θ)2 = 1

which admits θ = 0 as the unique solution. Then, (3.17) gives ϕ∗(e2) = ε2e′
2,

ϕ∗(e3) = ε3e′
3.
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Finally, since ϕ preserves the one-dimensional eigenspace associated to the Ricci
eigenvector λ2 = λ3 = b1

2 , we have that ϕ∗(e2) + ϕ∗(e3) and e′
2 + e′

3 are collinear. Hence,
ε2 = ε3 and this ends the proof. 	


The same argument used in the previous case leads here to conclude that, by Theorems 3.3
and 3.4, there are infinitely many curvature homogeneous Lorentzian metrics on R

3[w, x, y],
all having the same Ricci operator (3.15) of nondegenerate Segre type {21}, not locally iso-
metric to one another.

4 Examples with Ricci operator of Segre type {1zz̄}

In order to complete the proof of our Main Theorem, we must exhibit a family of non-
homogeneous curvature homogeneous Lorentzian three-spaces whose Ricci operator is of
Segre type {1zz̄}. Let (M, g) be a three-dimensional curvature homogeneous Lorentzian
manifold. Adapting to the Lorentzian case the technique used in [9] (see also [6]), we shall
express conditions (2.10) and (2.13) through a system of partial differential equations for
some three-variables functions, whose solutions permit to build explicitly Lorentzian met-
rics on R

3 with the curvature properties of (M, g). We refer to [9] for a more detailed
explanation of how the corresponding equations for the connection and the curvature are
obtained.

We fix a point p ∈ M and consider a pseudo-orthonormal frame field {e1, e2, e3} as in
Theorem 2.1. We then choose a surface S through p transversal to the lines generated by e3,
a local coordinates system (w, x) on S and a neighborhood Up of p, sufficiently small that
each q ∈ Up is situated on exactly one line generated by e3 and passing through one point
q̄ ∈ S.

Choose an orientation of S and define the coordinate function y in Up as the oriented
distance of the point q from S along the corresponding line, that is, y(q) = dist(q, π(q)),
where π : Up → S is the corresponding projection. We also define w(q) = w(π(q)) and
x(q) = x(π(q)).

In this way, a local coordinate system (w, x, y) is introduced in Up . Notice that e3 = ∂
∂y

and the coframe {ω1, ω2, ω3} of {e1, e2, e3} takes the form

ω1 = Adw + Bdx, ω2 = Cdw + Ddx, ω1 = Gdw + Hdx + dy, (4.1)

for some functions A, B,C, D,G, H . Next, we introduce the connection forms on (M, g),
putting

ωi
j =

∑
k

ε j b
i
jkω

k . (4.2)

Connection forms completely determine the Levi Civita connection, because

∇ei e j =
∑

k

ωk
j (ei )ek,

for all i, j . Note also that from (2.4) we easily get

ωi
j + εiε jω

j
i = 0 (4.3)
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for all i, j . In particular, ωi
i = 0 for all i . The structure equations for ωi

j give

dωi +
∑

j

ωi
j ∧ ω j = 0, (4.4)

for all indices i . As regards the curvature forms �i
j (X, Y ) = ωi (R(X, Y )e j ), they are

completely determined by the standard formulas

−�i
j = dωi

j +
∑

k

ωi
k ∧ ωk

j . (4.5)

Using (2.1) and taking into account (4.3), we obtain that (4.5) is equivalent to

dω1
2 + ω1

3 ∧ ω3
2 = R1212 ω

1 ∧ ω2 + �23 ω
1 ∧ ω3 − �13 ω

2 ∧ ω3,

dω1
3 + ω1

2 ∧ ω2
2 = �23 ω

1 ∧ ω2 + R1313 ω
1 ∧ ω3 − �12 ω

2 ∧ ω3, (4.6)

dω2
3 − ω1

2 ∧ ω1
3 = −�13 ω

1 ∧ ω2 − �12 ω
1 ∧ ω3 + R2323 ω

2 ∧ ω3.

We now use (4.1) in (4.4). After some long but standard calculations, we obtain that (4.4) is
equivalent to the following system of nine partial differential equations:

A′
x − B ′

w = −αD + βE + (µ+ σ)F,
A′

y = βA + (µ+ σ)C, B ′
y = βB + (µ+ σ)D,

C ′
x − D′

w = −κD + (γ − σ)E + νF,
C ′

y = (γ − σ)A + νC, D′
y = (γ − σ)B + νD,

G ′
x − H ′

w = (γ − µ)D − τE − ψF,
G ′

y = −τ A − ψC, H ′
y = −τ B − ψD,

(4.7)

where D, E,F are auxiliary functions, defined by

D = AD − BC, E = AH − BG, F = C H − DG. (4.8)

Note that, because of (4.1), D �= 0 is a necessary and sufficient condition for linear indepen-
dence of ωi . Starting from the connection functions bi

jk of (Mg), system (4.7) determines

the functions A, .., H and so, gives explicit Lorentzian metrics on R
3, with the same Levi

Civita connection of (M, g). Notice that, conversely, if A, . . . , H are known, then by (4.7)
we can determine uniquely the connection functions bi

jk .
Next, we use (4.1) to express curvature conditions (4.6). As in [9], we shall restrict

ourselves to the case when all connection functions bi
jk are independent of the variable

y. Notice that, by Theorem 2.2, this condition is also satisfied when (M, g) is locally
homogeneous.
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A long but straightforward calculation leads to conclude that, under this assumption, (4.6)
is equivalent to the following system of nine differential equations:

σ ′
w = −(V3 + �23)A − (W3 − �13)C, σ ′

x = −(V3 + �23)B − (W3 − �13)D,

τ ′
w = −(V2 − R1313)A − (W2 + �12)C, τ ′

x = −(V2 − R1313)B − (W2 + �12)D,

ψ ′
w = −(V1 + �12)A − (W1 − R2323)C, ψ ′

x = −(V1 + �12)B − (W1 − R2323)D,

Aα′
x−Bα′

w+Cκ ′
x−Dκ ′

w+Gσ ′
x−Hσ ′

w = D(U3+R1212)+E(V3+�23)+F(W3−�13),

Aβ ′
x−Bβ ′

w+Cµ′
x−Dµ′

w+Gτ ′
x−Hτ ′

w = D(U2−�23)+E(V2−R1313)+F(W2+�12),

Aγ ′
x−Bγ ′

w+Cν′
x−Dν′

w+Gψ ′
x−Hψ ′

w = D(U1+�13)+E(V1+�12)+F(W1−R2323),

(4.9)

where we put

U1 = α(γ + µ)− κ(β − ν)− ψ(γ − µ),

V1 = −β(γ + σ)− ν(γ − σ)+ τ(α + ψ),

W1 = −ν2 + ψ2 − γ (µ+ σ)+ κτ − µσ,

U2 = α(β − ν)+ κ(γ + µ)− τ(γ − µ),

V2 = −β2 + τ 2 − µ(γ − σ)− αψ + γ σ,

W2 = −β(µ+ σ)− ν(µ− σ)− ψ(κ − τ),

U3 = α2 + κ2 − σ(γ − µ)− βν + γµ,

V3 = −β(α + ψ)− κ(γ − σ)+ τ(γ + σ),

W3 = −α(µ+ σ)− ν(κ − τ)− ψ(µ− σ). (4.10)

In this way, we proved the following.

Proposition 4.1 Let A, B,C, D,G, H be smooth functions on the three variables w, x, y,
satisfying partial differential equations (4.7) and (4.9). Then, (4.1) describes a curvature
homogeneous Lorentzian metric g on R

3, whose Ricci tensor has constant (local) compo-
nents (�i j ).

Note that Proposition 4.1 is valid for any Segre type of the Ricci operator. We shall
now apply this result to describe some nonhomogeneous curvature homogeneous Lorentzian
metrics on R

3 with Ricci operator of Segre type {1zz̄}. More precisely, we shall construct
examples whose Ricci operator is of the form

Q =
⎛
⎝

0 0 0
0 0 c
0 −c 0

⎞
⎠ , (4.11)
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for any real constant c �= 0, that is, having λ1 = 0 as the sole real Ricci eigenvalue. We
choose the connection functions in the following way:

α = β = κ = µ = ν = σ = ψ = 0, γ = − c

τ
, (4.12)

with τ �= 0. By (4.12), Eq. 2.10 reduce to

�11 = −�33 = −e1(τ )− τ 2, �22 = �13 = 0, �12 = c

τ 2 e3(τ ), �23 = c.

Hence, the Ricci operator Q assumes the form (4.11) for any smooth function τ satisfying

e1(τ )+ τ 2 = 0, e3(τ ) = 0.

Notice that (4.11) and (4.12) imply that all Eq. 2.13 are automatically satisfied.
Next, we consider the curvature Eq. 4.9. Using (4.11) and (4.12) in (4.10), we easily get

U1 = U3 = V1 = W1 = W2 = W3 = 0, U2 = −V3 = c, V2 = τ 2

and so, the curvature equations (4.9) reduce to

A = −τ
′
w

τ 2 , B = − τ
′
x

τ 2 (4.13)

and

Gτ ′
x − Hτ ′

w = τ 2E, c

τ 2 Aτ ′
x − c

τ 2 Bτ ′
w = 0. (4.14)

But equations (4.14) follow at once from (4.13) and E = AH − BG. Hence, when (4.11)
and (4.12) hold, system (4.9) just reduces to (4.13).

Next, as regards connection Eq. 4.7, because of (4.12) they reduce to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A′
y = 0, B ′

y = 0, A′
x − B ′

w = 0,

C ′
y = − c

τ
A, D′

y = − c
τ

B, C ′
x − D′

w = − c
τ
E

G ′
y = −τ A, H ′

y = −τ B, G ′
x − H ′

w = − c
τ
D − τE .

(4.15)

It is easily seen that the equations in the first row of (4.15) follow at once from (4.13) and the
fact that τ does not depend on y. Summarizing, when (4.11) and (4.12) hold, all connection
and curvature Eqs. 4.7, 4.9 reduce to the following system of partial differential equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A = − τ ′
w

τ 2 B = − τ ′
x
τ 2 ,

C ′
y = cτ ′

w

τ 3 , D′
y = cτ ′

x
τ 3 , C ′

x − D′
w = − c

τ
E,

G ′
y = τ ′

w

τ
, H ′

y = τ ′
x
τ
, G ′

x − H ′
w = − c

τ
D − τE .

(4.16)

Since τ does not depend on y, integrating the first two equations in the second and third row
of (4.16) we obtain at once

C = cτ ′
w

τ 3 y + C0(w, x), D = cτ ′
x

τ 3 y + D0(w, x), G = τ ′
w

τ
y + G0(w, x),

H = cτ ′
x

τ
y + H0(w, x), (4.17)
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where C0, D0,G0, H0 are two-variables functions. Finally, we use (4.17) to rewrite the last
equations in the second and third row of (4.16). Taking into account the definition of D and
E , we get

⎧⎨
⎩
(C0)

′
x − (D0)

′
w = − c

τ
(AH0 − BG0),

(G0)
′
x − (H0)

′
w = − c

τ
(AD0 − BC0)− τ(AH0 − BG0).

(4.18)

Therefore, all solutions of (4.16) are determined by A, B given by (4.13) and C, D,G, H of
the form (4.17), where C0, D0,G0, H0 satisfy (4.18). If for example we choose D0 and H0 as
arbitrary smooth functions on R

2[w, x], then (4.18) is a system of two linear ordinary differ-
ential equations of the first order for C0,G0, withw as a parameter (see also [9]). The standard
existence theorem ensures that this system can be solved. The solution (C0,G0) exists on
the whole of R

2[w, x] and involves two arbitrary functions of the variable w. Moreover,
D = AD0 − BC0 �= 0 in a dense open subset of R

2[w, x]. Therefore, A, B,C0, D0,G0, H0

determine a Lorentzian metric on a dense open subset of R
3[w, x, y], with Ricci operator

(4.11) of Segre type {1zz̄}. Thus, we proved the following.

Theorem 4.2 For any real constant c �= 0, let Q be the linear operator of Segre type {1zz̄}
described by (4.11) and τ �= 0 an arbitrary smooth function on R

2[w, x], satisfying either
τ ′
w �= 0 or τ ′

x �= 0. Then, (4.1) determines a family of curvature homogeneous Lorentz-
ian metrics on R

3[w, x, y] having Q as the Ricci operator at any point, where functions
A, B,C, D,G, H are described by (4.13), (4.17) and (4.18). They depend on two arbitray
functions of two variables and two arbitrary functions of one variable.

All the solutions given in Theorem 4.2 are nonhomogeneous. In fact, either τ ′
w �= 0 or

τ ′
x �= 0. Hence, the connection function τ is not constant and Theorem 2.2 implies that the

corresponding metric is not locally homogeneous.
In order to decide whether two of such solutions are locally isometric or not, consider

more generally two curvature homogeneous Lorentzian three-manifolds (M, g), (M ′, g′),
both with Ricci operator of Segre type {1zz̄}, admitting (at least, locally) pseudo-orthonor-
mal frame fields {e1, e2, e3} and {e′

1, e′
2, e′

3} respectively, for which (2.7), (2.10) and (2.13)
hold. Then, we have the following

Theorem 4.3 A differentiable mapping ϕ : M → M ′ is an isometry if and only if

ϕ∗(ei ) = εi e
′
i ,

where εi = ±1 for all i = 1, 2, 3.

Proof Conditions above imply that ϕ is an isometry. Conversely, if ϕ is an isometry, then
it preserves the eigenspace of the real Ricci eigenvalue. Therefore, Span(e′

1)=Span(ϕ∗(e1))

and so, ϕ∗(e1) = ε1e′
1 = ±e′

1. Again because ϕ is an isometry, it preserves the orthogo-
nal complement of the eigenspace, that is, Span(e′

2, e′
3)=Span(ϕ∗(e2), ϕ∗(e3)). Hence, there

exists a real-valued function θ , such that

ϕ∗(e2) = ε2(cosh θe′
2 + sinh θe′

3), ϕ∗(e3) = ε3(sinh θe′
2 + cosh θe′

3). (4.19)

Next, ϕ preserves the Ricci components. Thus, by (1.1) and (4.19) we have

b = �22 = �′
22 = b + 2c sinh θ cosh θ,

which implies sinh θ = 0, because c cosh θ �= 0. Then, (4.19) reduces to ϕ∗(e2) = ε2e′
2,

ϕ∗(e3) = ε3e′
3 and this ends the proof. 	
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Theorem 4.3 ensures that two locally isometric curvature homogeneous pseudo-
Riemannian three-manifolds (M, g) and (M ′, g′) having the same Ricci operator of Segre
type {1zz̄}, with respect to the suitable frames {ei } and {e′

i }, must have the same connection
functions (at most, up to sign). Therefore, two of the solutions given in Theorem 4.2, con-
structed starting by two different functions τ = b3

13, are never (locally) isometric. In other
words, Theorems 4.2 and 4.3 ensure that there are infinitely many curvature homogeneous
Lorentzian metrics on R

3[w, x, y], all having the same Ricci operator (4.11), not locally
isometric to one another.

We end this section presenting some explicit solutions of (4.16), that is, some explicit
curvature homogeneous Lorentzian metrics with Ricci operator (4.11). To construct them,
we assume τ = τ(w) and in (4.17) we choose C0 = H0 = 0. Then, it is easily seen that
functions

A = − τ ′

τ 2 B = 0, C = cτ ′
w

τ 3 y, D = D0, G = τ ′

τ
y + G0, H = 0

are a solution of (4.16) whenever

(D0)
′
w = 0, (G0)

′
x = cτ ′

τ 3 D0. (4.20)

Integrating (4.20), we get at once

D0 = p(x), G0 = cτ ′

τ 3

∫
p(x)dx + q(w),

where p �= 0 and q are arbitrary one-variable functions. In this way, we proved the following

Corollary 4.4 Consider an arbitrary one-variable function τ = τ(w) �= 0 with τ ′ �= 0.
Then, the following functions

A = − τ ′
τ 2 B = 0, C = cτ ′

w

τ 3 y

D = p(x), G = τ ′
τ

y + cτ ′
τ 3

∫
p(x)dx + q(w), H = 0,

(4.21)

where p �= 0 and q are arbitrary one-variable functions, are solutions of (4.16). So, (4.1)
and (4.21) determine explicit nonhomogeneous curvature homogeneous Lorentzian metrics
on R

3[w, x, y] having the Ricci operator of the form (4.11).

Remark 4.5 In all the examples we constructed in Theorems 3.1, 3.3, and 4.2 of nonhomo-
geneous curvature homogeneous Lorentzian three-manifolds, with Ricci operator of Segre
type {3}, nondegenerate {21}, and {1zz̄} respectively, λ1 = 0 occurs as Ricci eigenvalue.
We do not know whether the nullity of a Ricci eigenvalue is a necessary condition for the
existence of nonhomogeneous examples with the Ricci operator of these Segre types, or there
exist examples with non-vanishing Ricci eigenvalues.
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