ORIGINAL PAPER

Surfaces in $\mathbb{S}^2 \times \mathbb{R}$ with a canonical principal direction

Franki Dillen · Johan Fastenakels · Joeri Van der Veken

Received: 25 January 2008 / Accepted: 17 April 2008 / Published online: 26 November 2008 © Springer Science+Business Media B.V. 2008

Abstract We show a way to choose nice coordinates on a surface in $\mathbb{S}^2 \times \mathbb{R}$ and use this to study minimal surfaces. We show that only open parts of cylinders over a geodesic in \mathbb{S}^2 are both minimal and flat. We also show that the condition that the projection of the direction tangent to $\mathbb R$ onto the tangent space of the surface is a principal direction, is equivalent to the condition that the surface is normally flat in \mathbb{E}^4 . We present classification theorems under the extra assumption of minimality or flatness.

Keywords Minimal surfaces · Flat · Product manifold

Mathematics Subject Classification (2000) 53B25

1 Introduction

In recent years, a lot of research has been done about surfaces in a three-dimensional Riemannian product of a surface \mathbb{M}^2 and \mathbb{R} . This was motivated by the study of minimal surfaces. In particular H. Rosenberg and W. Meeks initiated this in $[8,9]$ $[8,9]$. This work inspired other geometers, for example, in $[1-3,5-7]$ $[1-3,5-7]$ $[1-3,5-7]$ $[1-3,5-7]$.

In this article, we consider a special case of a $\mathbb{M}^2 \times \mathbb{R}$, namely, we take \mathbb{M}^2 to be the unit 2-sphere \mathbb{S}^2 . We first show how we can take local coordinates on a surface in $\mathbb{S}^2 \times \mathbb{R}$ that are

J. Van der Veken is a postdoctoral researcher supported by the Research Foundation—Flanders (FWO). This work was partially supported by project G.0432.07 of the Research Foundation—Flanders (FWO).

F. Dillen

J. Fastenakels

J. Fastenakels is a research assistant of the Research Foundation—Flanders (FWO).

F. Dillen \cdot J. Fastenakels \cdot J. Van der Veken (\boxtimes)

Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Leuven, Belgium e-mail: joeri.vanderveken@wis.kuleuven.be

e-mail: franki.dillen@wis.kuleuven.be

e-mail: johan.fastenakels@wis.kuleuven.be

adapted to the structure of $\mathbb{S}^2 \times \mathbb{R}$. Next we show that we can take easier coordinates when the surface is minimal. Furthermore, we prove that all flat and minimal surfaces are open parts of vertical cylinders on a geodesic in \mathbb{S}^2 , which means surfaces for which the angle between the unit normal and the R-direction is everywhere equal to $\frac{\pi}{2}$ and for which the intersection with \mathbb{S}^2 is a great circle.

In the Sect. 5 we investigate the condition that the projection of $\frac{\partial}{\partial t}$, i.e. the canonical unit vector tangent to the R-direction, onto the tangent space of an immersed surface, is a principal direction. We show that this is equivalent to the condition that the surface is normally flat if we look at a surface in $\mathbb{S}^2 \times \mathbb{R}$ as a codimension 2 immersion of a surface in \mathbb{E}^4 . Moreover, we give a characterization of these surfaces and classification theorems under the additional assumption of minimality or flatness.

2 Preliminaries

Let $\mathbb{S}^2 \times \mathbb{R}$ be the product of the 2-sphere $\mathbb{S}^2(1)$ and \mathbb{R} with the Riemannian product metric \langle , \rangle and Levi-Civita connection $\tilde{\nabla}$. We denote by $\frac{\partial}{\partial t}$ a unit vector field in the tangent bundle $T(\mathbb{S}^2 \times \mathbb{R})$ that is tangent to the R-direction.

For $p \in \mathbb{S}^2 \times \mathbb{R}$, the Riemann–Christoffel curvature tensor \widetilde{R} of $\mathbb{S}^2 \times \mathbb{R}$ is given by

$$
\langle R(X, Y)Z, W \rangle = \langle X_{\mathbb{S}^2}, W_{\mathbb{S}^2} \rangle \langle Y_{\mathbb{S}^2}, Z_{\mathbb{S}^2} \rangle - \langle X_{\mathbb{S}^2}, Z_{\mathbb{S}^2} \rangle \langle Y_{\mathbb{S}^2}, W_{\mathbb{S}^2} \rangle,
$$

where *X*, *Y*, *Z*, $W \in T_p(\mathbb{S}^2 \times \mathbb{R})$ and $X_{\mathbb{S}^2} = X - \langle X, \frac{\partial}{\partial t} \rangle \frac{\partial}{\partial t}$ is the projection of *X* to the tangent space of \mathbb{S}^2 .
Let us consider $F : M \to \tilde{M}$, an isometric immersion of a submanifold M into a $\langle R(X, Y)Z, W \rangle = \langle X_{\mathbb{S}^2}, W_{\mathbb{S}^2} \rangle \langle Y_{\mathbb{S}^2}, Z_{\mathbb{S}^2} \rangle - \langle X_{\mathbb{S}^2}, Z_{\mathbb{S}^2} \rangle \langle Y_{\mathbb{S}^2}, W_{\mathbb{S}^2} \rangle$,
ere *X*, *Y*, *Z*, *W* $\in T_p(\mathbb{S}^2 \times \mathbb{R})$ and $X_{\mathbb{S}^2} = X - \langle X, \frac{\partial}{\partial t} \rangle \frac{\partial}{\partial t}$ is the p where *X*, *Y*, *Z*, *W* $\in T_p(\mathbb{S}^2 \times \mathbb{R})$ and $X_{\mathbb{S}^2} = X - \langle X, \frac{\partial}{\partial x} \rangle$
tangent space of \mathbb{S}^2 .
Let us consider $F : M \to \tilde{M}$, an isometric immer
Riemannian manifold \tilde{M} with Levi-Civita connection

Levi-Civita connection $\tilde{\nabla}$. Then we have the formulas of Gauss and Weingarten which state that for every *X* and *Y* tangent to *M* and for every *N* normal to *M* there holds that

$$
\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y),\tag{1}
$$

$$
\widetilde{\nabla}_X N = -S_N X + \nabla_X^{\perp} N,\tag{2}
$$

with ∇ the Levi-Civita connection of the submanifold. Here *h* is a symmetric (1, 2)-tensor field, taking values in the normal bundle, called the second fundamental form of the submanifold, S_N is a symmetric (1, 1)-tensor field, called the shape operator associated to N and ∇^{\perp} is a connection in the normal bundle.

Now consider a surface *M* in $\mathbb{S}^2 \times \mathbb{R}$. Let us denote by ξ a unit normal to *M* with associated shape operator *S*. Then we can decompose $\frac{\partial}{\partial t}$ at every point *p* of *M* as

$$
\frac{\partial}{\partial t} = T + \cos(\theta(p)) \xi,
$$
\n(3)

where *T* is the projection of $\frac{\partial}{\partial t}$ on the tangent space of *M* and θ is the angle function defined by of \vec{a} , $\left\{\xi\right\}$

$$
\cos(\theta(p)) = \left\langle \frac{\partial}{\partial t}, \xi \right\rangle.
$$
 (4)

 \circledcirc Springer

If we denote by *R* the curvature tensor of *M*, then with the previous notations, the equations of Gauss and Codazzi are given by

$$
\langle R(X, Y)Z, W \rangle = \langle SY, Z \rangle \langle SX, W \rangle - \langle SX, Z \rangle \langle SY, W \rangle + \langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle + \langle Y, T \rangle \langle W, T \rangle \langle X, Z \rangle + \langle X, T \rangle \langle Z, T \rangle \langle Y, W \rangle - \langle X, T \rangle \langle W, T \rangle \langle Y, Z \rangle - \langle Y, T \rangle \langle Z, T \rangle \langle X, W \rangle,
$$
(5)

$$
\nabla_X SY - \nabla_Y SX - S[X, Y] = \cos(\theta) \left(\langle Y, T \rangle X - \langle X, T \rangle Y \right). \tag{6}
$$

Note that Eq. [5](#page-2-0) is equivalent to

$$
K = \det S + \cos^2(\theta),\tag{7}
$$

where *K* is the Gaussian curvature of *M*.

Furthermore, we have the following proposition.

Proposition 1 *For every* $X \in T(M)$ *, we have that*

$$
\nabla_X T = \cos(\theta) \, SX,\tag{8}
$$

$$
X[\cos(\theta)] = -\langle SX, T \rangle. \tag{9}
$$

We can prove this by using the fact that $\frac{\partial}{\partial t}$ is a parallel vector field in S² × R and the decomposition [\(3\)](#page-1-0).

The Eqs. [5](#page-2-0)[–6,](#page-2-1) [8–9](#page-2-2) are called the compatibility equations for $\mathbb{S}^2 \times \mathbb{R}$.

In [\[5\]](#page-15-4) the following theorem was proven.

Theorem 1 (B. Daniel) *Let M be a simply connected Riemannian surface, g its metric and* ∇ *its Levi-Civita connection. Let S be a field of symmetric operators* S_p : $T_p(M) \to T_p(M)$, *T a* vector field on M and θ *a* smooth function on M such that $||T||^2 = \sin^2(\theta)$.

Assume that (g, S, T, θ) *satisfies the compatibility equations for* $\mathbb{S}^2 \times \mathbb{R}$ *. Then there exists an isometric immersion* $F : M \to \mathbb{S}^2 \times \mathbb{R}$ *such that the shape operator with respect to the unit normal* ξ *is given by S and such that*

$$
\frac{\partial}{\partial t} = T + \cos(\theta) \xi.
$$

Moreover the immersion is unique up to global isometries of $\mathbb{S}^2 \times \mathbb{R}$ *preserving the orientations of both* \mathbb{S}^2 *and* \mathbb{R} *.*

In the next sections, we will use the notation f_x for the partial derivative of a function f with respect to *x*.

3 Surfaces in $\mathbb{S}^2 \times \mathbb{R}$

In this section, we consider arbitrary surfaces in $\mathbb{S}^2 \times \mathbb{R}$. The following proposition gives a nice way to choose local coordinates adapted to the structure of $\mathbb{S}^2 \times \mathbb{R}$.

Proposition 2 *If M is an immersed surface in* $\mathbb{S}^2 \times \mathbb{R}$ *and p a point of M for which* $\theta(p) \neq 0$ *and* $\theta(p) \neq \frac{\pi}{2}$, then we can choose local coordinates (x, y) in a neighborhood of p such *that* [∂] [∂]*^x is in the direction of T , the metric g has the form*

$$
g = \frac{1}{\sin^2(\theta)} dx^2 + \beta^2(x, y) dy^2,
$$
 (10)

and the shape operator S with respect to the basis { [∂] [∂]*^x* , [∂] [∂]*^y* } *is given by*

$$
Ann Glob Anal Geom (2009) 35:381-396
$$

respect to the basis { $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ } is given by

$$
S = \begin{pmatrix} \theta_x \sin(\theta) & \theta_y \sin(\theta) \\ \frac{\theta_y}{\sin(\theta)\beta^2} & \frac{\sin^2(\theta)\beta_x}{\cos(\theta)\beta} \end{pmatrix}.
$$
(11)

Moreover the functions θ *and* β *are related by the PDE*

$$
\frac{\sin(\theta)}{\cos^2(\theta)} \theta_x \frac{\beta_x}{\beta} + \frac{\sin^2(\theta)}{\cos(\theta)} \frac{\beta_{xx}}{\beta} + 2 \frac{\cos(\theta)}{\sin^2(\theta)} \theta_y^2 \frac{1}{\beta^2} \n- \frac{1}{\sin(\theta)} \theta_{yy} \frac{1}{\beta^2} + \frac{1}{\sin(\theta)} \theta_y \frac{\beta_y}{\beta^3} + \cos(\theta) = 0.
$$
\n(12)

Proof Take an arbitrary point *p* in *M* such that the angle function $\theta(p) \notin \{0, \frac{\pi}{2}\}$. Then we can take local coordinates (x, y) on *M* such that $\frac{\partial}{\partial x}$ is in the direction of *T* and the metric *g* has the form

$$
g = \alpha^{2}(x, y)dx^{2} + \beta^{2}(x, y)dy^{2},
$$
\n(13)

where α and β are functions on M.

By computing the Levi-Civita connection of the metric [\(13\)](#page-3-0) and using [\(8\)](#page-2-2) and [\(9\)](#page-2-2) with $T = \frac{\sin(\theta)}{\alpha} \frac{\partial}{\partial x}$, we find that the shape operator S takes the form

$$
f(x, y)a x + p(x, y)
$$

\n
$$
f.
$$

\n
$$
f.
$$

\n
$$
f.
$$

\n
$$
f
$$

\n
$$
\frac{\theta_x}{\alpha}
$$

\n
$$
\frac{\theta_y}{\alpha}
$$

\n
$$
\frac{\theta_y}{\alpha\beta}
$$

\n
$$
f
$$

\n
$$
f
$$

\n
$$
\frac{\theta_y}{\alpha\beta}
$$

\n
$$
f
$$

\n
$$
f
$$

\n
$$
f
$$

\n
$$
f
$$

\n
$$
\frac{\theta_y}{\alpha\beta}
$$

\n
$$
f
$$

\n<math display="</math>

with respect to the basis $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}\$ and that α satisfies $\frac{\partial}{\partial y}(\alpha \sin(\theta)) = 0$, since $\theta(p) \neq \frac{\pi}{2}$. Hence we obtain $\alpha = \frac{\phi(x)}{\sin(\theta)}$ for some function ϕ on *M* only depending on *x*. By changing the *x*-coordinate, we can thus assume that $\alpha = \frac{1}{\sin(\theta)}$.

The equations of Gauss and Codazzi, [\(5\)](#page-2-0) and [\(6\)](#page-2-1), give the PDE relating the functions θ and β . This concludes the proof.

Remark [1](#page-2-4) Combining Proposition [2](#page-2-3) with Theorem 1 we see that for every two functions θ and β on a simply connected Riemannian surface with metric given by [\(10\)](#page-2-5), which satisfy [\(12\)](#page-3-1), we can construct an immersion into $\mathbb{S}^2 \times \mathbb{R}$ with shape operator [\(11\)](#page-3-2).

4 Minimal surfaces in $\mathbb{S}^2 \times \mathbb{R}$

In this section, we look at minimal surfaces in $\mathbb{S}^2 \times \mathbb{R}$ $\mathbb{S}^2 \times \mathbb{R}$ $\mathbb{S}^2 \times \mathbb{R}$. We will use Proposition 2 to choose nice local coordinates.

Proposition 3 *Let M be an immersed surface in* S² × R *and p a point of M for which* $\theta(p) \notin \{0, \frac{\pi}{2}\}$. If M is minimal, then we can choose coordinates (x, y) in a neighborhood *of p such that* $\frac{\partial}{\partial x}$ *is in the direction of T, the metric g has the form die* in $\mathbb{S}^2 \times$
choose coo
metric g has
 $dx^2 + dy^2$

$$
g = \frac{1}{\sin^2(\theta)} (dx^2 + dy^2),
$$
\n
$$
respect to the basis \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\} is given by
$$
\n
$$
S = \sin(\theta) \begin{pmatrix} \theta_x & \theta_y \\ \theta_y & \theta_z \end{pmatrix}.
$$
\n(15)

and the shape operator S with respect to the basis $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}$ *is given by*

$$
S = \sin(\theta) \begin{pmatrix} \theta_x & \theta_y \\ \theta_y & -\theta_x \end{pmatrix} . \tag{15}
$$

Moreover the angle function θ *must satisfy the PDE*

$$
\begin{array}{ll}\n\text{d} & \text{385} \\
\text{d} & \text{484} \\
\text{d} & \text{49} \\
\text{d} & \text{40} \\
$$

where $\Delta = \sin^2(\theta)(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$ *is the Laplacian of M.*

Proof Take an arbitrary point *p* in *M* such that the angle function θ is not zero or $\frac{\pi}{2}$ at *p*. Using Proposition [2](#page-2-3) we find local coordinates (x, y) on *M* such that $\frac{\partial}{\partial x}$ is in the direction of *T*, the metric *g* has the form [\(10\)](#page-2-5) and the shape operator *S* with respect to the basis { $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ } is given by [\(11\)](#page-3-2). Since the surface is minimal, we must have $Tr(S) = 0$. This means

$$
\theta_x \sin(\theta) + \frac{\sin^2(\theta)\beta_x}{\cos(\theta)\beta} = 0,
$$
\n(17)

which is equivalent to

$$
(\beta \sin(\theta))_x = 0. \tag{18}
$$

Thus $\beta = \frac{\phi(y)}{\sin(\theta)}$ for some function ϕ on *M* depending only on *y*. After changing the *y*-coordinate, we can assume $\beta = \frac{1}{\sin(\theta)}$. This gives us [\(14\)](#page-3-3) and [\(15\)](#page-3-4). From Eq. [12,](#page-3-1) we also find that

$$
\cos(\theta)(\theta_x^2 + \theta_y^2 + 1) - \sin(\theta)(\theta_{xx} + \theta_{yy}) = 0,\tag{19}
$$

which is equivalent to (16) .

To give non-trivial examples of minimal surfaces in $\mathbb{S}^2 \times \mathbb{R}$ we must find solutions θ of the PDE [\(16\)](#page-4-0). Suppose that there is a constant *k* such that $\theta_x = k\theta_y$. Then we can find other coordinates *u* and v such that

$$
\begin{cases}\n\frac{\partial}{\partial u} = \frac{1}{\sqrt{1+k^2}} (k \frac{\partial}{\partial x} + \frac{\partial}{\partial y}),\n\frac{\partial}{\partial v} = \frac{1}{\sqrt{1+k^2}} (\frac{\partial}{\partial x} - k \frac{\partial}{\partial y}).\nbecomes\n\end{cases}
$$
\n
$$
\ln \left(\tan \left(\frac{\theta}{2} \right) \right) = \frac{\cos(\theta)}{\cos(\theta)}
$$

With these coordinates (16) becomes

$$
\left(\ln\left(\tan\left(\frac{\theta}{2}\right)\right)\right)_{uu} = \frac{\cos(\theta)}{\sin^2(\theta)},
$$
\n(20)
\n
$$
\theta_v = 0.
$$
\n(21)

By making the substitution $\theta(u) = \arctan(\frac{c}{\cos(\rho(u))})$ with $c \in \mathbb{R}$, [\(20\)](#page-4-1) becomes

$$
\frac{\partial^2 \rho(u)}{\partial u^2} \sin(\rho(u)) (\cos^2(\rho(u)) + c^2) + \left(\frac{\partial \rho(u)}{\partial u}\right)^2 \cos(\rho(u)) (1 + c^2)
$$

$$
= \frac{\cos(\rho(u)}{c^2} (\cos^2(\rho(u) + c^2)^2). \tag{22}
$$

Equation [22](#page-4-2) is satisfied if $\frac{\partial \rho(u)}{\partial u}$ = $\sqrt{\cos^2(\rho(u))}+c^2$ $\frac{\rho(u)/\tau_c}{c}$. Thus we find that

$$
c^{2}
$$

\nfield if $\frac{\partial \rho(u)}{\partial u} = \frac{\sqrt{\cos^{2}(\rho(u))} + c^{2}}{c}$. Thus we find that
\n
$$
\theta = \arctan\left(\frac{c}{\cos\left(\text{am}\left(\frac{u\sqrt{1+c^{2}}}{c}, \frac{1}{\sqrt{1+c^{2}}}\right)\right)}\right)
$$
\n(23)

is a solution for this system of PDE's. Here am denotes the inverse function of the normal elliptic integral of the first kind. More details on elliptic functions can be found in [\[4\]](#page-15-6). In view

of Theorem [1,](#page-2-4) we thus have an example of a minimal surface, but to construct this explicitly the calculations get very difficult.

We show that the only flat and minimal surfaces in $\mathbb{S}^2 \times \mathbb{R}$ are also totally geodesic.

Theorem 2 *The only surfaces in* $S^2 \times \mathbb{R}$ *which are both flat and minimal are vertical cylinders on a geodesic in* \mathbb{S}^2 , *i.e. open parts of surfaces of type* $\mathbb{S}^1 \times \mathbb{R}$ *.*

Proof Consider first the case that the angle function θ is constant. Then we know from [\(7\)](#page-2-6) and [\(9\)](#page-2-2) that the Gaussian curvature is also constant and equal to $\cos^2(\theta)$. However, since we have a flat surface, we immediately find that $\theta = \frac{\pi}{2}$. Suppose that the surface is given by $F(s, t) = (\gamma(s), t)$, where γ is a curve in \mathbb{S}^2 parametrized by arc length. A straightforward calculation shows that the shape operator is given by constare
 $\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ 0 & 0 \end{pmatrix}$

$$
\left(\begin{array}{cc} \kappa_{\gamma} & 0 \\ 0 & 0 \end{array}\right),
$$

where κ_{γ} is the geodesic curvature of γ . So if we assume the surface to be minimal, γ has to be a geodesic of \mathbb{S}^2 .

Now consider the case that θ is not constant. Then there exists a point p on M for which $\theta(p) \neq 0$ and $\theta(p) \neq \frac{\pi}{2}$. So we can choose local coordinates $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}\$ in a neighborhood of p as in Proposition [3.](#page-3-5) Computing the Gaussian curvature from the metric (14) , respectively from (7) and (15) , we obtain

$$
\theta_{xx} + \theta_{yy} = \frac{\cos(\theta)}{\sin^3(\theta)},
$$
\n(24)

$$
\theta_x^2 + \theta_y^2 = \cot^2(\theta),\tag{25}
$$

since the surface is flat.

By deriving [\(25\)](#page-5-0) with respect to *x* and substituting $\frac{\cos(\theta)}{\sin^3(\theta)}$ from [\(24\)](#page-5-0) we get

$$
2\theta_x \theta_{xx} + \theta_y \theta_{xy} + \theta_x \theta_{yy} = 0. \tag{26}
$$

In an analogous way, by deriving with respect to *y*, we get

$$
2\theta_y \theta_{yy} + \theta_x \theta_{xy} + \theta_y \theta_{xx} = 0. \tag{27}
$$

Combining [\(26\)](#page-5-1) and [\(27\)](#page-5-2) with [\(24\)](#page-5-0) and [\(25\)](#page-5-0), we see that θ must satisfy

$$
\cos(\theta)\sin(\theta)\theta_{xx} + 3\theta_x^2 = 2\cot^2(\theta). \tag{28}
$$

Now by making the substitution $f(x, y) = \ln(\cos(\theta(x, y)))$, Eq. [28](#page-5-3) reduces to

$$
2f_x^2 - (1 - e^{2f})f_{xx} = 2.
$$
 (29)

By deriving [\(29\)](#page-5-4) with respect to *x* we see that

$$
2\frac{2+e^{2f}}{1-e^{2f}}f_x = \frac{f_{xxx}}{f_{xx}}.
$$
\n(30)

Integrating (30) we get

$$
f_{xx} = \phi(y) \frac{e^{4f}}{(1 - e^{2f})^3},\tag{31}
$$

 \mathcal{L} Springer

for a function ϕ on *M*. Substituting [\(31\)](#page-5-6) in [\(29\)](#page-5-4) gives

$$
f_x^2 = 1 + \frac{\phi(y)}{2} \left(\frac{e^{2f}}{1 - e^{2f}} \right)^2.
$$
 (32)

In an analogous way one has that

$$
f_{yy} = \psi(x) \frac{e^{4f}}{(1 - e^{2f})^3},
$$
\n(33)

$$
f_y^2 = 1 + \frac{\psi(x)}{2} \left(\frac{e^{2f}}{1 - e^{2f}} \right)^2,
$$
 (34)

for a function ψ on M .

Substituting (31) and (33) in (24) gives

$$
\phi(y) + \psi(x) = -2\left(\frac{1 - e^{2f}}{e^{2f}}\right)^2.
$$
\n(35)

By substituting (32) , (34) in (25) , we also find Eq. [35.](#page-6-2)

Combining (32) and (34) with (35) , we get

$$
f_x^2 = \frac{\psi(x)}{\psi(x) + \phi(y)},
$$
 (36)

$$
f_y^2 = \frac{\phi(y)}{\psi(x) + \phi(y)}.
$$
 (37)

From the integrability of this system, we see that

$$
\psi(x) = -(\alpha x + \beta)^2,\tag{38}
$$

$$
\phi(y) = -(\alpha x + \delta)^2. \tag{39}
$$

Note that ψ and ϕ are negative because of [\(35\)](#page-6-2), [\(36\)](#page-6-3) and [\(37\)](#page-6-3). Thus, (36) and (37) now become

$$
f_x = \pm \frac{\alpha x + \beta}{\sqrt{(\alpha x + \beta)^2 + (\alpha y + \delta)^2}},\tag{40}
$$

$$
f_y = \pm \frac{\alpha y + \delta}{\sqrt{(\alpha x + \beta)^2 + (\alpha y + \delta)^2}}.
$$
\n(41)

We can see from the integrability condition that in fact f_x and f_y must have the same sign. Solving this system, we then find

$$
f(x, y) = \pm \frac{1}{c} \sqrt{(\alpha x + \beta)^2 + (\alpha y + \delta)^2}.
$$
 (42)

But (42) gives a contradiction with (35) , (38) and (39) . So we can conclude that this case does not occur, which proves the theorem.

5 Surfaces for which *T* **is a principal direction**

In [\[8](#page-15-0)] surfaces in $\mathbb{S}^2 \times \mathbb{R}$ for which the angle function θ is constant, were studied. These constant angle surfaces were characterized by the fact that the projection *T* of $\frac{\partial}{\partial t}$ on the tangent space of the surface, is a principal direction with principal curvature 0. A natural generalization of constant angle surfaces is thus the study of surfaces in $\mathbb{S}^2 \times \mathbb{R}$ for which *T* is a principal direction, but the principal curvature doesn't need to be zero. Note that we can consider a surface in $\mathbb{S}^2 \times \mathbb{R}$ also as a codimension 2 immersion of a surface in \mathbb{E}^4 . The condition that *T* is a principal direction is equivalent to the condition of the vanishing of the normal curvature of the surface in \mathbb{E}^{4} . This is again an indication that this condition is very natural in $\mathbb{S}^2 \times \mathbb{R}$.

Theorem 3 *Let M be an immersed surface in* $\mathbb{S}^2 \times \mathbb{R}$ *and p a point of M for which* $\theta(p) \notin$ $\{0, \frac{\pi}{2}\}\$ *. Then T is a principal direction if and only if M considered as a surface in* \mathbb{E}^4 *is normally flat.*

Proof Take an arbitrary point *p* in *M* such that the angle function θ is not zero or $\frac{\pi}{2}$ at *p*. Choose local coordinates as in Proposition [2.](#page-2-3) Now let us consider the surface *M* as a codimension 2 immersed surface in \mathbb{E}^4 and denote by $F = (F_1, F_2, F_3, F_4)$ the immersion, codimension 2 immersed surface in \mathbb{E}^1 and denote by $F = (F_1, F_2, F_3, F_4)$ the immersion,
with *D* the Euclidean connection and with ∇^{\perp} the normal connection. Then we have two unit
normals: $\xi = (\xi_1, \xi_2, \xi_$ *Proof* Take an arbitrary point *p* in *M* such that the angle function θ is not zero or $\frac{\pi}{2}$ at *p*. Choose local coordinates as in Proposition 2. Now let us consider the surface *M* as a codimension 2 immersed sur *p*. Choose local coordinates as in Proposition 2. Now let us consider the surface *M* as codimension 2 immersed surface in \mathbb{E}^4 and denote by $F = (F_1, F_2, F_3, F_4)$ the immersio with *D* the Euclidean connection and

$$
\nabla_X^{\perp} \tilde{\xi} = \langle D_X \tilde{\xi}, \xi \rangle \xi
$$

= \langle (X_1, X_2, X_3, 0), \xi \rangle \xi
= -\cos(\theta) \langle X, T \rangle \xi, (43)

and hence

$$
\nabla_X^{\perp} \xi = \cos(\theta) \langle X, T \rangle \, \tilde{\xi}.
$$
\n(44)

Choose coordinates (x, y) as in Proposition 2. From (43) and (44), we obtain

$$
\nabla_{\overline{X}}^{\perp} \xi = \cos(\theta) \langle X, T \rangle \tilde{\xi}.
$$
\n(44)
\n
$$
y) \text{ as in Proposition 2. From (43) and (44), we obtain}
$$
\n
$$
\left\langle R^{\perp} \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) \xi, \tilde{\xi} \right\rangle = \sin(\theta) \theta_{y}.
$$
\n(45)

Hence, $R^{\perp} = 0$ if and only if $\theta_y = 0$. From (11) in Proposition 2, we obtain the result. \Box We have the following propositions.

Proposition 4 *Let M be an immersed surface in* $\mathbb{S}^2 \times \mathbb{R}$ *and p a point of M for which* $\theta(p) \notin \{0, \frac{\pi}{2}\}\$ *. If* T is a principal direction, then we can choose coordinates (x, y) in a *neighborhood of p such that* [∂] [∂]*^x is in the direction of T , the metric g has the form*

$$
g = dx^2 + \beta^2(x, y)dy^2,
$$
\n(46)

and the shape operator S with respect to the basis $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}$ *is given by*

$$
S = \begin{pmatrix} \theta_x & 0\\ 0 & \tan(\theta) \frac{\beta_x}{\beta} \end{pmatrix}.
$$
 (47)

Moreover the functions θ *and* β *are related by the PDE*

$$
\beta_{xx} + \beta_x \tan(\theta)\theta_x + \beta \cos^2(\theta) = 0,\tag{48}
$$

 $and \theta_v = 0.$

Proof Take an arbitrary point *p* in *M* such that the angle funtion θ is not zero or $\frac{\pi}{2}$ at *p*. From Proposition [2](#page-2-3) and the assumption that *T* is a principal direction, we see that $\theta_y = 0$. This means that by changing the *x*-coordinate we can assume that the metric is given by [\(46\)](#page-7-0). Now we can find [\(47\)](#page-7-1) and [\(48\)](#page-7-2) in an analogous way as in Proposition [2.](#page-2-3) \Box **Proposition 5** *A surface M immersed in* $\mathbb{S}^2 \times \mathbb{R}$ *is a surface for which T is a principal direction if and only if the immersion F is (up to isometries of* $\mathbb{S}^2 \times \mathbb{R}$) *in the neighborhood of a point p where* $\theta(p) \notin \{0, \frac{\pi}{2}\}\$ *given by*

$$
F: M \to \mathbb{S}^2 \times \mathbb{R} : (x, y) \mapsto (F_1(x, y), F_2(x, y), F_3(x, y), F_4(x))
$$
(49)

with

$$
F_j(x, y) = \int_{y_0}^{y} \alpha_j(v) \sin(\psi(x) + \phi(v)) dv
$$
 (50)

for $j = 1, 2, 3$ *where* $\psi'(x) = \cos(\theta(x))$ *,* $F'_4(x) = \sin(\theta(x))$ *,* $(\alpha_1, \alpha_2, \alpha_3)$ *is a curve in* \mathbb{S}^2 *and* $F_1^2 + F_2^2 + F_3^2 = 1$ *. Moreover* $\alpha_1, \alpha_2, \alpha_3, \psi$ *and* ϕ *are functions on M related by*

$$
\alpha'_j(y) = -\cos(\psi(x) + \phi(y)) \int_{y_0}^{y} \alpha_j(v) \cos(\psi(x) + \phi(v)) dv
$$

$$
- \sin(\psi(x) + \phi(y)) \int_{y_0}^{y} \alpha_j(v) \sin(\psi(x) + \phi(v)) dv.
$$
(51)

Proof Take an arbitrary point *p* in *M* such that the angle function θ is not zero or $\frac{\pi}{2}$ at *p*. We take coordinates as in Proposition [4.](#page-7-3)

From [\(48\)](#page-7-2) we find that β satisfies $\frac{\beta_x^2}{\cos^2(\theta)} + \beta^2 = k(y)^2$ for some function *k* on *M* and hence $\beta(x, y) = k(y) \sin(\psi(x) + \phi(y))$ for some function ϕ on *M* and a primitive function ψ of cos(θ). By changing the *y*-coordinate we can assume that we have

$$
g = dx2 + \sin2(\psi(x) + \phi(y))dy2,
$$
 (52)

and thus the Levi-Civita connection is given by

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} = 0,\tag{53}
$$

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} = \cot(\psi(x) + \phi(y)) \cos(\theta) \frac{\partial}{\partial y},\tag{54}
$$

$$
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} = -\sin(\psi(x) + \phi(y))\cos(\psi(x) + \phi(y))\cos(\theta)\frac{\partial}{\partial x}
$$

+cot(\psi(x) + \phi(y))\phi'(y)\frac{\partial}{\partial y}. (55)
Denote the two normals by ξ and $\tilde{\xi}$. The normal $\xi = (\xi_1, \xi_2, \xi_3, \cos(\theta))$, with shape
operator S, is tangent to $\mathbb{S}^2 \times \mathbb{R}$ and the normal $\tilde{\xi} = (F_1, F_2, F_3, 0)$ with shape operator \tilde{S} ,

is normal to S² × R. and $\widetilde{\xi}$.

operator *S*, is tangent to S² × R. and the n

is normal to S² × R. *S* and \widetilde{S} are given by ormals by ξ and ξ . The normal ξ
t to $S^2 \times \mathbb{R}$ and the normal $\xi = (F_1 S)$
S and \tilde{S} are given by
 θ_x 0
0 cot($\psi(x) + \phi(y)$) sin(θ), $\tilde{S} =$

is normal to
$$
\mathbb{S}^2 \times \mathbb{R}
$$
. *S* and \widetilde{S} are given by
\n
$$
S = \begin{pmatrix} \theta_x & 0 \\ 0 & \cot(\psi(x) + \phi(y)) \sin(\theta) \end{pmatrix}, \quad \widetilde{S} = \begin{pmatrix} -\cos^2(\theta) & 0 \\ 0 & -1 \end{pmatrix}.
$$
\n(56) From the form of \widetilde{S} and (45) in the proof of Theorem 3 we also have that

$$
\xi_j = -\tan(\theta)(F_j)_x,\tag{57}
$$

for $j = 1, 2, 3$.

For the first three components of F the formula of Gauss [\(1\)](#page-1-1) together with [\(53\)](#page-8-0), [\(54\)](#page-8-0), [\(55\)](#page-8-0) and [\(56\)](#page-8-1) gives the following system of PDE's

$$
(F_j)_{xx} = -\tan(\theta)\theta_x(F_j)_x - \cos^2(\theta)F_j,\tag{58}
$$

$$
(F_j)_{xy} = \cot(\psi(x) + \phi(y))\cos(\theta)(F_j)_y,\tag{59}
$$

$$
(F_j)_{yy} = -\frac{1}{2}\sin(2(\psi(x) + \phi(y)))\frac{1}{\cos(\theta)}(F_j)_x + \cot(\psi(x) + \phi(y))\phi'(y)(F_j)_y - \sin^2(\psi(x) + \phi(y))F_j.
$$
 (60)

From [\(59\)](#page-9-0) we find that

$$
F_j(x, y) = \int_{y_0}^{y} \alpha_j(v) \sin(\psi(x) + \phi(v)) dv,
$$
 (61)

where α_j is a function on *M* for $j = 1, 2, 3$.

By substituting [\(61\)](#page-9-1) into [\(60\)](#page-9-0) we find that α_j must satisfy

$$
\alpha'_{j}(y) = -\cos(\psi(x) + \phi(y)) \int_{y_{0}}^{y} \alpha_{j}(v) \cos(\psi(x) + \phi(v)) dv - \sin(\psi(x) + \phi(y)) \int_{y_{0}}^{y} \alpha_{j}(v) \sin(\psi(x) + \phi(v)) dv.
$$
 (62)

Since we must have that $(F_1, F_2, F_3) \in \mathbb{S}^2$ we also need that $F_1^2 + F_2^2 + F_3^2 = 1$ and from $\langle F_y, F_y \rangle = \sin^2(\psi(x) + \phi(y))$ we find that $(\alpha_1, \alpha_2, \alpha_3)$ is a curve in \mathbb{S}^2 .

For the fourth component of the immersion note that

$$
(F_4)_x = \left\langle F_x, \frac{\partial}{\partial t} \right\rangle = \sin(\theta),\tag{63}
$$

$$
(F_4)_y = \left\langle F_y, \frac{\partial}{\partial t} \right\rangle = 0.
$$
 (64)

Thus we see that F_4 only depends on *x* and is a primitive function of $sin(\theta)$. This proves the proposition.

We can give many examples of these type of surfaces. The constant angle surfaces, as defined in [\[8](#page-15-0)], and the rotation surfaces, as defined in [\[7](#page-15-5)], all satisfy this condition. Since we know from Theorem [3](#page-7-5) that the condition that *T* is a principal direction is equivalent to normal flatness in \mathbb{E}^4 and from [\[6\]](#page-15-7) that all rotation surfaces are normally flat, one could think that every surface for which T is a principal direction must be a rotation surface. This is however not true as can be seen from the following example: formal namess in \mathbb{I}
that every surface
however not true a
 $F : M \to$
with $f(x, y) = \int_0^x$

$$
F: M \to \mathbb{S}^2 \times \mathbb{R} : (x, y) \mapsto (\cos x \cos y, \cos x \sin y, \sin x, f(x, y)) \tag{65}
$$

 $\sqrt{c - \tan^2 u} du + y$ where $c \in \mathbb{R}$ is a constant such that on a neighborhood of 0 we have that $c - \tan^2 u \ge 0$.

We can give classification theorems for surfaces for which *T* is a principal direction under an additional assumption.

Theorem 4 A surface M immersed in $\mathbb{S}^2 \times \mathbb{R}$ is a minimal surface with T a principal direc*tion if and only if the immersion F is (up to isometries of* $\mathbb{S}^2 \times \mathbb{R}$) *in the neighborhood of a point p where* $\theta(p) \notin \{0, \frac{\pi}{2}\}\$ *given by*

$$
F: M \to \mathbb{S}^2 \times \mathbb{R}:
$$

\n
$$
(x, y) \mapsto \left(\frac{\sin x}{\sqrt{1+c^2}}, \frac{\sqrt{\cos^2 x + c^2 \cos y}}{\sqrt{1+c^2}}, \frac{\sqrt{\cos^2 x + c^2 \sin y}}{\sqrt{1+c^2}}, F_4(x)\right).
$$
 (66)

with

$$
F_4(x) = \int_0^x \frac{c}{\sqrt{\cos^2(u) + c^2}} du.
$$
 (67)

Proof Take an arbitrary point *p* in *M* such that the angle function θ is not zero or $\frac{\pi}{2}$ at *p*. Choose local coordinates as in Proposition [4.](#page-7-3) Since now *M* is minimal, it follows from [\(47\)](#page-7-1) that we can take $\beta = \frac{1}{\sin(\theta)}$. Summarizing this, we obtain the metric *g*

$$
g = dx^2 + \frac{1}{\sin^2(\theta)} dy^2,
$$
 (68)

and the shape operator *S*

$$
S = \begin{pmatrix} \theta_x & 0 \\ 0 & -\theta_x \end{pmatrix}.
$$
 (69)

Since $\theta_y = 0$ if *T* is a principal direction and $\beta = \frac{1}{\sin(\theta)}$, Eq. [48](#page-7-2) reduces to an ordinary differential equation in θ differential equation in θ

$$
\theta_{xx} - 2\cot(\theta)\theta_x^2 + \cos(\theta)\sin(\theta) = 0.
$$
 (70)

Making the substitution $\theta(x) = \arctan(f(x))$, we get

$$
\frac{\left(\frac{f'}{f}\right)'}{1 + \left(\frac{f'}{f}\right)^2} = 1.
$$
\n(71)

Integrating [\(71\)](#page-10-0) we find $\frac{f'}{f} = \tan(x + \tilde{d})$ for some constant \tilde{d} . By changing the *x*-coordinate if necessary, we can assume $\tilde{d} = 0$. Integrating this last equation, we find $f(x) = \frac{c}{\cos(x)}$ for a constant *c* and thus $(x + \tilde{d})$ for some of
0. Integrating this
 $\theta = \arctan \left(\frac{c}{\sqrt{c}} \right)$

$$
\theta = \arctan\left(\frac{c}{\cos(x)}\right). \tag{72}
$$

Now we know from Theorem [1](#page-2-4) that this function will give the surface we are looking for. To get an explicit parametrization we will integrate the formula of Gauss [\(1\)](#page-1-1). In order to do so, we consider the surface as a surface in \mathbb{E}^4 . From the metric [\(68\)](#page-10-1) we find that the Levi-Civita connection ∇ is given by

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} = 0,\tag{73}
$$

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} = -\cot(\theta)\theta_x \frac{\partial}{\partial y},\tag{74}
$$

$$
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} = \frac{\cos(\theta)}{\sin^3(\theta)} \frac{\partial}{\partial x}.
$$
 (75)

Ann Glob Anal Geom (2009) 3[5](#page-7-6):381-396
As in the proof of Proposition 5 we take two unit normals ξ and $\tilde{\xi}$ with shape operators *S* $\frac{392}{\text{As in the proof}}$ $\frac{1}{\tilde{S}}$ =

$$
S = \begin{pmatrix} \theta_x & 0 \\ 0 & -\theta_x \end{pmatrix}, \quad \widetilde{S} = \begin{pmatrix} -\cos^2(\theta) & 0 \\ 0 & -1 \end{pmatrix}.
$$
 (76)

with

$$
\xi_j = -\tan(\theta)(F_j)_x. \tag{77}
$$

Combining [\(73\)](#page-10-2), [\(74\)](#page-10-2), [\(75\)](#page-10-2), [\(76\)](#page-11-0) and [\(77\)](#page-11-1) with [\(1\)](#page-1-1) we find for $j = 1, 2, 3$ that

$$
(F_j)_{xx} = -\tan(\theta)\theta_x(F_j)_x - \cos^2(\theta)F_j,\tag{78}
$$

$$
(F_j)_{xy} = -\cot(\theta)\theta_x(F_j)_y,\tag{79}
$$

$$
(F_j)_{yy} = \frac{\theta_x}{\cos(\theta)\sin^3(\theta)}(F_j)_x - \frac{1}{\sin^2(\theta)}F_j.
$$
 (80)

From [\(79\)](#page-11-2) we find that F_j is given by

$$
F_j = \frac{\phi_j(y)}{\sin(\theta)} + \psi_j(x),\tag{81}
$$

where ϕ_j and ψ_j are functions on *M* for $j = 1, 2, 3$ and θ is given by [\(72\)](#page-10-3).

Substituting [\(72\)](#page-10-3) and [\(81\)](#page-11-3) in [\(78\)](#page-11-2) gives ordinary differential equations for the functions ψ _{*j*}:

$$
\psi_j''(x)\cos^3(x) + \psi_j''(x)c^2\cos(x) + \psi_j'(x)c^2\sin(x) + \psi_j(x)\cos^3(x) = 0.
$$
 (82)

Substituting (72) and (81) in (80) gives

$$
\phi''_j(y) + \frac{c^2 + 1}{c^2} \phi_j(y) = \epsilon d_j,
$$
\n(83)

$$
\sin(x)\cos^{2}(x)\psi_{j}'(x) + c^{2}\sin(x)\psi_{j}'(x) - \cos^{3}(x)\psi_{j}(x) - c^{2}\cos(x)\psi_{j}(x) = -d_{j}c\cos(x)\sqrt{\cos^{2}(x) + c^{2}},
$$
\n(84)

where $\epsilon = 1$ if $\cos(x) \ge 0$ in a neighborhood of p and $\epsilon = -1$ in the other case and d_i is a constant.

Note that Eq. [84](#page-11-4) implies Eq. [82,](#page-11-5) since we get (82) by deriving (84) with respect to *x*. Eq. [84](#page-11-4) is equivalent to

$$
\sin(x)\psi'_j(x) - \cos(x)\psi_j(x) = \frac{d_j c \cos(x)}{\sqrt{\cos^2(x) + c^2}}.
$$
 (85)

From [\(85\)](#page-11-6) we see that ψ_i is given by

$$
\psi_j(x) = A_j \sin(x) - \frac{d_j c \sqrt{\cos^2(x) + c^2}}{c^2 + 1},
$$
\n(86)

for a constant A_j .

And by solving [\(83\)](#page-11-7), we have

$$
\phi_j(y) = \epsilon \left(B_j \cos \left(y \sqrt{\frac{c^2 + 1}{c^2}} \right) + C_j \sin \left(y \sqrt{\frac{c^2 + 1}{c^2}} \right) + \frac{d_j c^2}{c^2 + 1} \right), \quad (87)
$$

 \circledcirc Springer

with B_i and C_j constants.

Combining [\(81\)](#page-11-3), [\(86\)](#page-11-8), and [\(87\)](#page-11-9) we find

$$
F_j = \frac{\sqrt{\cos^2(x) + c^2}}{c} \left(B_j \cos\left(y\sqrt{\frac{c^2 + 1}{c^2}}\right) + C_j \sin\left(y\sqrt{\frac{c^2 + 1}{c^2}}\right) \right)
$$

+
$$
A_j \sin(x),
$$
 (88)

for $j = 1, 2, 3$.

Since we must have that $\langle (F_1, F_2, F_3), (F_1, F_2, F_3) \rangle = 1$ we find that $\langle A, B \rangle =$ $\langle A, C \rangle = \langle B, C \rangle = 0$ and $c^2 ||A||^2 = ||B||^2 = ||C||^2 = \frac{c^2}{1+c^2}$ where $A = (A_1, A_2, A_3)$, $B = (B_1, B_2, B_3)$ and $C = (C_1, C_2, C_3)$. Thus we can assume that $A = (\frac{1}{\sqrt{1+c^2}}, 0, 0)$, $B = (0, \frac{1}{\sqrt{1+c^2}}, 0)$ and $C = (0, 0, \frac{c}{\sqrt{1+c^2}})$. Since we must have that $\langle (F_1, F_2, F_3), (F_1, F_2, F_3) \rangle =$, $C \rangle = \langle B, C \rangle = 0$ and $c^2 ||A||^2 = ||B||^2 = ||C||^2 = \frac{c^2}{1 + c^2}$
 $= (B_1, B_2, B_3)$ and $C = (C_1, C_2, C_3)$. Thus we can assum
 $= (0, \frac{1}{\sqrt{1+c^2}}, 0)$ and $C = (0, 0, \frac{c}{\sqrt{$

 $\int_{x_0}^{x} \sin(\theta(u)) du$. Together with [\(72\)](#page-10-3), we see that c ²

$$
F_4 = \int_0^x \frac{c}{\sqrt{\cos^2(u) + c^2}} du.
$$
 (89)

By changing the *y*-coordinate, equations (88) and (89) give the immersion (66) .

Remark 2 We can rewrite *F*⁴ in the following way:

$$
F_4 = \frac{c}{\sqrt{1+c^2}} \int_0^x \frac{du}{\sqrt{1 - \frac{1}{1+c^2} \sin^2(u)}} = \frac{c}{\sqrt{1+c^2}} F\left(x, \sqrt{\frac{1}{1+c^2}}\right),
$$

where F is the normal elliptic integral of the first kind. More details on elliptic functions can be found in [\[4\]](#page-15-6).

Theorem 5 *A surface M immersed in* $\mathbb{S}^2 \times \mathbb{R}$ *is a flat surface with T a principal direction if and only if the immersion F is (up to isometries of* $\mathbb{S}^2 \times \mathbb{R}$) *in the neighborhood of a point p* where $\theta(p) \notin \{0, \frac{\pi}{2}\}\$ *given by*

$$
F: M \to \mathbb{S}^2 \times \mathbb{R}: (x, y) \mapsto \left(\frac{\sqrt{1+d-x^2}}{\sqrt{1+d}}, \frac{x\cos y}{\sqrt{1+d}}, \frac{x\sin y}{\sqrt{1+d}}, F_4(x)\right) \tag{90}
$$

with

$$
F_4(x) = \int_0^x \frac{\sqrt{d - u^2}}{\sqrt{1 + d - u^2}} du.
$$
\n(91)

Proof Take an arbitrary point *p* in *M* such that the angle function θ is not zero or $\frac{\pi}{2}$ at *p*. Choose local coordinates as in Proposition [4.](#page-7-3) From the metric [\(46\)](#page-7-0) and the fact that *M* is flat we know that $\beta_{xx} = 0$. Thus we have $\beta = a(y)x + b(y)$ for some functions *a* and *b* on *M*. Substituting this in (48) we get

$$
\frac{a(y)}{b(y)} = -\frac{\cos^2(\theta)}{\tan(\theta)\theta_x + x\cos^2(\theta)}.
$$
\n(92)

Since the left hand side of (92) depends only on *y* and the right hand side only on *x*, they must be constant. So there is a constant *c* such that

$$
b(y) = c a(y) \tag{93}
$$

$$
-c\cos^2(\theta) = \tan(\theta)\theta_x + x\cos^2(\theta). \tag{94}
$$

From [\(93\)](#page-13-0) we see that $\beta = a(y)(x+c)$. So after changing the *x*-coordinate we can assume that $c = 0$ and that the metric g is given by From (93) we see that $\beta = a(y)(x + c)$. So after changing the
 $t c = 0$ and that the metric g is given by
 $g = dx^2 + x^2 dy^2$.

We can rewrite [\(94\)](#page-13-0) as $(\frac{1}{2} \tan^2(\theta))_x = -x$. This means that

$$
g = dx^2 + x^2 dy^2.
$$
 (95)

$$
g = dx2 + x2 dy2.
$$
 (95)

$$
f2(\theta)
$$
_x = -x. This means that

$$
\theta = \arctan(\sqrt{d - x2}),
$$
 (96)

for some positive constant *d*.

From [\(95\)](#page-13-1) we find the Levi-Civita connection

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} = 0,\tag{97}
$$

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} = \frac{1}{x} \frac{\partial}{\partial y},\tag{98}
$$

$$
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} = -x \frac{\partial}{\partial x}.
$$
\n(99)

As before, take two unit normals $\xi = (\xi_1, \xi_2, \xi_3, \cos(\theta))$ with shape operator

$$
S = \begin{pmatrix} \theta_x & 0 \\ 0 & \frac{\tan(\theta)}{x} \end{pmatrix},\tag{100}
$$

where $\xi_j = -\tan(\theta)(F_j)_x$ and $\tilde{\xi} = (F_1, F_2, F_3, 0)$ with shape operator

$$
\widetilde{S} = \begin{pmatrix} -\cos^2 \theta & 0\\ 0 & -1 \end{pmatrix}.
$$
 (101)

Combining all this with the formula of Gauss [\(1\)](#page-1-1) we find the following system for $j = 1, 2, 3$:

$$
(F_j)_{xx} = -\tan(\theta)\theta_x(F_j)_x - \cos^2(\theta)F_j,\tag{102}
$$

$$
(F_j)_{xy} = \frac{1}{x}(F_j)_y,\tag{103}
$$

$$
(F_j)_{yy} = \frac{-x}{\cos^2(\theta)} (F_j)_x - x^2 F_j.
$$
 (104)

From [\(103\)](#page-13-2) we conclude that

$$
F_j = \phi_j(y)x + \psi_j(x),\tag{105}
$$

for some functions ϕ_j and ψ_j on *M*.

Substituting (96) and (105) in (102) gives us

$$
(x2 - d - 1)\psi''_j(x) + x\psi'_j(x) - \psi_j(x) = 0,
$$
\n(106)

 \bigcirc Springer

and substituting this in [\(104\)](#page-13-2) gives

$$
\phi''_j(y) + (1+d)\phi_j(y) = k_j,
$$
\n(107)

$$
(1+d)\psi'_j(x) - x^2\psi'_j(x) + x\psi_j(x) = -k_j,
$$
\n(108)

for a constant k_j . Note that Eq. [108](#page-14-0) implies Eq. [106,](#page-13-5) since we get (106) by deriving (108) with respect to x . Solving [\(108\)](#page-14-0), we find

$$
\psi_j(x) = A_j \sqrt{1 + d - x^2} - \frac{k_j}{1 + d} x,
$$
\n(109)
\nsolving (107), we get
\n
$$
j \cos \left(y \sqrt{1 + d} \right) + C_j \sin \left(y \sqrt{1 + d} \right) + \frac{k_j}{1 + d},
$$
\n(110)

for a constant A_j . And by solving [\(107\)](#page-14-0), we get

$$
\psi_j(x) = A_j \sqrt{1 + d - x^2} - \frac{k_j}{1 + d} x,
$$
\n(109)
\n
$$
A_j. \text{ And by solving (107), we get}
$$
\n
$$
\phi_j(y) = B_j \cos\left(y\sqrt{1 + d}\right) + C_j \sin\left(y\sqrt{1 + d}\right) + \frac{k_j}{1 + d},
$$
\n(110)
\n
$$
y_j \text{ constants, since we know that } d \text{ is a positive constant.}
$$
\nand (110) we conclude that\n
$$
F_j(x, y) = B_j x \cos\left(y\sqrt{1 + d}\right) + C_j x \sin\left(y\sqrt{1 + d}\right)
$$
\n(111)

with B_j and C_j constants, since we know that d is a positive constant. e l

From (109) and (110) we conclude that

$$
F_j(x, y) = B_j x \cos\left(y\sqrt{1+d}\right) + C_j x \sin\left(y\sqrt{1+d}\right)
$$

+
$$
A_j \sqrt{1+d-x^2}
$$
 (111)

for $j = 1, 2, 3$.

Since we must have that $\langle (F_1, F_2, F_3), (F_1, F_2, F_3) \rangle = 1$ we find that $\langle A, B \rangle = \langle A, C \rangle =$ $\langle B, C \rangle = 0$ and $||A||^2 = ||B||^2 = ||C||^2 = \frac{1}{1+d}$ where $A = (A_1, A_2, A_3), B = (B_1, B_2, B_3)$ and $C = (C_1, C_2, C_3)$. From the proof of Proposition [5,](#page-7-6) we know that F_1 , F_2 , F_3), (F_1, F_2, F_3) = 1 we fin
 F_1 , C = 0 and $||A||^2 = ||B||^2 = ||C||^2 = \frac{1}{1+d}$ where $A = (A_1, A_1C) = (C_1, C_2, C_3)$.

From the proof of Proposition 5, we know \equiv

From the proof of Proposition 5, we know that $F_4(x, y) = \int_{x_0}^x \sin(\theta(u))du$. Using [\(96\)](#page-13-3) we find

$$
F_4(x, y) = \int_0^x \frac{\sqrt{d - u^2}}{\sqrt{1 + d - u^2}} du.
$$
 (112)

By changing the *y*-coordinate, Eq. [111](#page-14-3) and [112](#page-14-4) give us the immersion [\(90\)](#page-12-3). □

Remark 3 Again we can rewrite F_4 , by making the substitution $t = \frac{u}{1+d}$, in the following way,

$$
F_4(x, y) = \frac{1}{\sqrt{1+d}} \int_0^x \frac{\sqrt{d - u^2}}{\sqrt{1 - \left(\frac{u}{1+d}\right)^2}} du
$$

= $\sqrt{d(1+d)} \int_0^{\frac{x}{1+d}} \frac{\sqrt{1 - \frac{(1+d)^2}{d}t^2}}{\sqrt{1 - t^2}} dt$
= $\sqrt{d(1+d)} E\left(\frac{x}{1+d}, \frac{1+d}{\sqrt{d}}\right),$

where *E* is the normal elliptic integral of the second kind.

Acknowledgment The authors would like to thank Luc Vrancken for his valuable suggestions

References

- 1. Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$. Acta Math. **193**(2), 141–174 (2004)
- 2. Albujer, A.L., & Alías, L.J.: Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces. (preprint, arXiv:0709.4363.)
- 3. Alías, L.J., Dajczer, M., Ripoll, J.: A Bernstein-type theorem for Riemannian manifolds with a killing field. Ann. Global. Anal. Geom. **31**(4), 363–373 (2007)
- 4. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edn. Springer-Verlag, New York (1971)
- 5. Daniel, B.: Isometric immersions into $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ and applications to minimal surfaces. Trans. Amer. Math. Soc. (to appear)
- 6. Dillen F., Fastenakels J., Van der Veken J.: Rotation hypersurfaces in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$, Note Mat. (to appear)
- 7. Meeks, W., Rosenberg, H.: Stable minimal surfaces in $M^2 \times \mathbb{R}$. J. Differential. Geom. **68**(3), 515– 534 (2004)
- 8. Dillen, F., Fastenakels, J., Van der Veken, J., Vrancken, L.: Constant angle surfaces in $\mathbb{S}^2 \times \mathbb{R}$. Monatsh. Math. **152**(2), 89–96 (2007)
- 9. Rosenberg, H.: Minimal surfaces in $M^2 \times \mathbb{R}$. Illinois. J. Math. 46(4), 1177–1195 (2002)