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Abstract We show a way to choose nice coordinates on a surface in S
2 × R and use this

to study minimal surfaces. We show that only open parts of cylinders over a geodesic in S
2

are both minimal and flat. We also show that the condition that the projection of the direction
tangent to R onto the tangent space of the surface is a principal direction, is equivalent to the
condition that the surface is normally flat in E

4. We present classification theorems under the
extra assumption of minimality or flatness.

Keywords Minimal surfaces · Flat · Product manifold

Mathematics Subject Classification (2000) 53B25

1 Introduction

In recent years, a lot of research has been done about surfaces in a three-dimensional Rie-
mannian product of a surface M

2 and R. This was motivated by the study of minimal surfaces.
In particular H. Rosenberg and W. Meeks initiated this in [8,9]. This work inspired other
geometers, for example, in [1–3,5–7].

In this article, we consider a special case of a M
2 × R, namely, we take M

2 to be the unit
2-sphere S

2. We first show how we can take local coordinates on a surface in S
2 × R that are

J. Fastenakels is a research assistant of the Research Foundation—Flanders (FWO).
J. Van der Veken is a postdoctoral researcher supported by the Research Foundation—Flanders (FWO).
This work was partially supported by project G.0432.07 of the Research Foundation—Flanders (FWO).

F. Dillen · J. Fastenakels · J. Van der Veken (B)
Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
e-mail: joeri.vanderveken@wis.kuleuven.be

F. Dillen
e-mail: franki.dillen@wis.kuleuven.be

J. Fastenakels
e-mail: johan.fastenakels@wis.kuleuven.be

123



382 Ann Glob Anal Geom (2009) 35:381–396

adapted to the structure of S
2 ×R. Next we show that we can take easier coordinates when the

surface is minimal. Furthermore, we prove that all flat and minimal surfaces are open parts
of vertical cylinders on a geodesic in S

2, which means surfaces for which the angle between
the unit normal and the R-direction is everywhere equal to π

2 and for which the intersection
with S

2 is a great circle.
In the Sect. 5 we investigate the condition that the projection of ∂

∂t , i.e. the canonical unit
vector tangent to the R-direction, onto the tangent space of an immersed surface, is a principal
direction. We show that this is equivalent to the condition that the surface is normally flat if
we look at a surface in S

2 × R as a codimension 2 immersion of a surface in E
4. Moreover,

we give a characterization of these surfaces and classification theorems under the additional
assumption of minimality or flatness.

2 Preliminaries

Let S
2 × R be the product of the 2-sphere S

2(1) and R with the Riemannian product metric
〈 , 〉 and Levi-Civita connection ˜∇. We denote by ∂

∂t a unit vector field in the tangent bundle
T (S2 × R) that is tangent to the R-direction.

For p ∈ S
2 × R, the Riemann–Christoffel curvature tensor ˜R of S

2 × R is given by

〈˜R(X, Y )Z ,W 〉 = 〈XS2 ,WS2〉〈YS2 , ZS2〉 − 〈XS2 , ZS2〉〈YS2 ,WS2〉,

where X, Y, Z ,W ∈ Tp(S
2 × R) and XS2 = X − 〈X, ∂

∂t 〉 ∂∂t is the projection of X to the
tangent space of S

2.
Let us consider F : M → ˜M , an isometric immersion of a submanifold M into a

Riemannian manifold ˜M with Levi-Civita connection ˜∇. Then we have the formulas of
Gauss and Weingarten which state that for every X and Y tangent to M and for every N
normal to M there holds that

˜∇X Y = ∇X Y + h(X, Y ), (1)
˜∇X N = −SN X + ∇⊥

X N , (2)

with ∇ the Levi-Civita connection of the submanifold. Here h is a symmetric (1, 2)-tensor
field, taking values in the normal bundle, called the second fundamental form of the subman-
ifold, SN is a symmetric (1, 1)-tensor field, called the shape operator associated to N and
∇⊥ is a connection in the normal bundle.

Now consider a surface M in S
2 ×R. Let us denote by ξ a unit normal to M with associated

shape operator S. Then we can decompose ∂
∂t at every point p of M as

∂

∂t
= T + cos(θ(p)) ξ, (3)

where T is the projection of ∂
∂t on the tangent space of M and θ is the angle function defined

by

cos(θ(p)) =
〈

∂

∂t
, ξ

〉

. (4)
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If we denote by R the curvature tensor of M , then with the previous notations, the equations
of Gauss and Codazzi are given by

〈R(X, Y )Z ,W 〉 = 〈SY, Z〉〈SX,W 〉 − 〈SX, Z〉〈SY,W 〉
+ 〈X,W 〉〈Y, Z〉 − 〈X, Z〉〈Y,W 〉
+ 〈Y, T 〉〈W, T 〉〈X, Z〉 + 〈X, T 〉〈Z , T 〉〈Y,W 〉
− 〈X, T 〉〈W, T 〉〈Y, Z〉 − 〈Y, T 〉〈Z , T 〉〈X,W 〉, (5)

∇X SY − ∇Y SX − S[X, Y ] = cos(θ) (〈Y, T 〉X − 〈X, T 〉Y ). (6)

Note that Eq. 5 is equivalent to

K = det S + cos2(θ), (7)

where K is the Gaussian curvature of M .
Furthermore, we have the following proposition.

Proposition 1 For every X ∈ T (M), we have that

∇X T = cos(θ) SX, (8)

X [cos(θ)] = −〈SX, T 〉. (9)

We can prove this by using the fact that ∂
∂t is a parallel vector field in S

2 × R and the
decomposition (3).

The Eqs. 5–6, 8–9 are called the compatibility equations for S
2 × R.

In [5] the following theorem was proven.

Theorem 1 (B. Daniel) Let M be a simply connected Riemannian surface, g its metric and ∇
its Levi-Civita connection. Let S be a field of symmetric operators Sp : Tp(M) → Tp(M), T
a vector field on M and θ a smooth function on M such that ‖T ‖2 = sin2(θ).
Assume that (g, S, T, θ) satisfies the compatibility equations for S

2 × R. Then there exists
an isometric immersion F : M → S

2 × R such that the shape operator with respect to the
unit normal ξ is given by S and such that

∂

∂t
= T + cos(θ) ξ.

Moreover the immersion is unique up to global isometries of S
2 × R preserving the orienta-

tions of both S
2 and R.

In the next sections, we will use the notation fx for the partial derivative of a function f
with respect to x .

3 Surfaces in S
2 × R

In this section, we consider arbitrary surfaces in S
2 × R. The following proposition gives a

nice way to choose local coordinates adapted to the structure of S
2 × R.

Proposition 2 If M is an immersed surface in S
2 ×R and p a point of M for which θ(p) �= 0

and θ(p) �= π
2 , then we can choose local coordinates (x, y) in a neighborhood of p such

that ∂
∂x is in the direction of T , the metric g has the form

g = 1

sin2(θ)
dx2 + β2(x, y)dy2, (10)
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and the shape operator S with respect to the basis { ∂
∂x ,

∂
∂y } is given by

S =
(

θx sin(θ) θy sin(θ)
θy

sin(θ)β2
sin2(θ)βx
cos(θ)β

)

. (11)

Moreover the functions θ and β are related by the PDE

sin(θ)

cos2(θ)
θx
βx

β
+ sin2(θ)

cos(θ)

βxx

β
+ 2

cos(θ)

sin2(θ)
θ2

y
1

β2
(12)

− 1

sin(θ)
θyy

1

β2 + 1

sin(θ)
θy
βy

β3 + cos(θ) = 0.

Proof Take an arbitrary point p in M such that the angle function θ(p) �∈ {0, π2 }. Then we
can take local coordinates (x, y) on M such that ∂

∂x is in the direction of T and the metric g
has the form

g = α2(x, y)dx2 + β2(x, y)dy2, (13)

where α and β are functions on M .
By computing the Levi-Civita connection of the metric (13) and using (8) and (9) with

T = sin(θ)
α

∂
∂x , we find that the shape operator S takes the form

S =
(

θx
α

θy
α

αθy

β2
tan(θ)βx
αβ

)

,

with respect to the basis { ∂
∂x ,

∂
∂y } and that α satisfies ∂

∂y (α sin(θ)) = 0, since θ(p) �= π
2 .

Hence we obtain α = φ(x)
sin(θ) for some function φ on M only depending on x . By changing

the x-coordinate, we can thus assume that α = 1
sin(θ) .

The equations of Gauss and Codazzi, (5) and (6), give the PDE relating the functions θ
and β. This concludes the proof. 	

Remark 1 Combining Proposition 2 with Theorem 1 we see that for every two functions θ
and β on a simply connected Riemannian surface with metric given by (10), which satisfy
(12), we can construct an immersion into S

2 × R with shape operator (11).

4 Minimal surfaces in S
2 × R

In this section, we look at minimal surfaces in S
2 × R. We will use Proposition 2 to choose

nice local coordinates.

Proposition 3 Let M be an immersed surface in S
2 × R and p a point of M for which

θ(p) �∈ {0, π2 }. If M is minimal, then we can choose coordinates (x, y) in a neighborhood
of p such that ∂

∂x is in the direction of T , the metric g has the form

g = 1

sin2(θ)

(

dx2 + dy2), (14)

and the shape operator S with respect to the basis { ∂
∂x ,

∂
∂y } is given by

S = sin(θ)

(

θx θy

θy −θx

)

. (15)
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Moreover the angle function θ must satisfy the PDE

� ln

(

tan

(

θ

2

))

= cos(θ), (16)

where � = sin2(θ)( ∂
2

∂x2 + ∂2

∂y2 ) is the Laplacian of M.

Proof Take an arbitrary point p in M such that the angle function θ is not zero or π
2 at p.

Using Proposition 2 we find local coordinates (x, y) on M such that ∂
∂x is in the direction of

T , the metric g has the form (10) and the shape operator S with respect to the basis { ∂
∂x ,

∂
∂y }

is given by (11). Since the surface is minimal, we must have Tr(S) = 0. This means

θx sin(θ)+ sin2(θ)βx

cos(θ)β
= 0, (17)

which is equivalent to

(β sin(θ))x = 0. (18)

Thus β = φ(y)
sin(θ) for some function φ on M depending only on y. After changing the

y-coordinate, we can assume β = 1
sin(θ) . This gives us (14) and (15). From Eq. 12, we

also find that

cos(θ)(θ2
x + θ2

y + 1)− sin(θ)(θxx + θyy) = 0, (19)

which is equivalent to (16). 	

To give non-trivial examples of minimal surfaces in S

2 × R we must find solutions θ of
the PDE (16). Suppose that there is a constant k such that θx = kθy . Then we can find other
coordinates u and v such that

{

∂
∂u = 1√

1+k2 (k
∂
∂x + ∂

∂y ),

∂
∂v

= 1√
1+k2 (

∂
∂x − k ∂

∂y ).

With these coordinates (16) becomes
(

ln

(

tan

(

θ

2

)))

uu
= cos(θ)

sin2(θ)
, (20)

θv = 0. (21)

By making the substitution θ(u) = arctan( c
cos(ρ(u)) ) with c ∈ R, (20) becomes

∂2ρ(u)

∂u2 sin(ρ(u))(cos2(ρ(u))+ c2) +
(

∂ρ(u)

∂u

)2

cos(ρ(u))(1 + c2)

= cos(ρ(u)

c2 (cos2(ρ(u)+ c2)2. (22)

Equation 22 is satisfied if ∂ρ(u)
∂u =

√
cos2(ρ(u))+c2

c . Thus we find that

θ = arctan

⎛

⎝

c

cos
(

am
(

u
√

1+c2

c , 1√
1+c2

))

⎞

⎠ (23)

is a solution for this system of PDE’s. Here am denotes the inverse function of the normal
elliptic integral of the first kind. More details on elliptic functions can be found in [4]. In view

123



386 Ann Glob Anal Geom (2009) 35:381–396

of Theorem 1, we thus have an example of a minimal surface, but to construct this explicitly
the calculations get very difficult.

We show that the only flat and minimal surfaces in S
2 × R are also totally geodesic.

Theorem 2 The only surfaces in S
2×R which are both flat and minimal are vertical cylinders

on a geodesic in S
2, i.e. open parts of surfaces of type S

1 × R.

Proof Consider first the case that the angle function θ is constant. Then we know from (7)
and (9) that the Gaussian curvature is also constant and equal to cos2(θ). However, since we
have a flat surface, we immediately find that θ = π

2 . Suppose that the surface is given by
F(s, t) = (γ (s), t), where γ is a curve in S

2 parametrized by arc length. A straightforward
calculation shows that the shape operator is given by

(

κγ 0
0 0

)

,

where κγ is the geodesic curvature of γ . So if we assume the surface to be minimal, γ has
to be a geodesic of S

2.
Now consider the case that θ is not constant. Then there exists a point p on M for which

θ(p) �= 0 and θ(p) �= π
2 . So we can choose local coordinates { ∂

∂x ,
∂
∂y } in a neighborhood of

p as in Proposition 3. Computing the Gaussian curvature from the metric (14), respectively
from (7) and (15), we obtain

θxx + θyy = cos(θ)

sin3(θ)
, (24)

θ2
x + θ2

y = cot2(θ), (25)

since the surface is flat.
By deriving (25) with respect to x and substituting cos(θ)

sin3(θ)
from (24) we get

2θxθxx + θyθxy + θxθyy = 0. (26)

In an analogous way, by deriving with respect to y, we get

2θyθyy + θxθxy + θyθxx = 0. (27)

Combining (26) and (27) with (24) and (25), we see that θ must satisfy

cos(θ) sin(θ)θxx + 3θ2
x = 2 cot2(θ). (28)

Now by making the substitution f (x, y) = ln (cos(θ(x, y))), Eq. 28 reduces to

2 f 2
x − (1 − e2 f ) fxx = 2. (29)

By deriving (29) with respect to x we see that

2
2 + e2 f

1 − e2 f
fx = fxxx

fxx
. (30)

Integrating (30) we get

fxx = φ(y)
e4 f

(1 − e2 f )3
, (31)
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for a function φ on M . Substituting (31) in (29) gives

f 2
x = 1 + φ(y)

2

(

e2 f

1 − e2 f

)2

. (32)

In an analogous way one has that

fyy = ψ(x)
e4 f

(1 − e2 f )3
, (33)

f 2
y = 1 + ψ(x)

2

(

e2 f

1 − e2 f

)2

, (34)

for a function ψ on M .
Substituting (31) and (33) in (24) gives

φ(y)+ ψ(x) = −2

(

1 − e2 f

e2 f

)2

. (35)

By substituting (32), (34) in (25), we also find Eq. 35.
Combining (32) and (34) with (35), we get

f 2
x = ψ(x)

ψ(x)+ φ(y)
, (36)

f 2
y = φ(y)

ψ(x)+ φ(y)
. (37)

From the integrability of this system, we see that

ψ(x) = −(αx + β)2, (38)

φ(y) = −(αx + δ)2. (39)

Note that ψ and φ are negative because of (35), (36) and (37).
Thus, (36) and (37) now become

fx = ± αx + β
√

(αx + β)2 + (αy + δ)2
, (40)

fy = ± αy + δ
√

(αx + β)2 + (αy + δ)2
. (41)

We can see from the integrability condition that in fact fx and fy must have the same
sign. Solving this system, we then find

f (x, y) = ± 1

c

√

(αx + β)2 + (αy + δ)2. (42)

But (42) gives a contradiction with (35), (38) and (39). So we can conclude that this case
does not occur, which proves the theorem. 	


5 Surfaces for which T is a principal direction

In [8] surfaces in S
2 × R for which the angle function θ is constant, were studied. These

constant angle surfaces were characterized by the fact that the projection T of ∂
∂t on the

tangent space of the surface, is a principal direction with principal curvature 0. A natural
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generalization of constant angle surfaces is thus the study of surfaces in S
2 × R for which

T is a principal direction, but the principal curvature doesn’t need to be zero. Note that we
can consider a surface in S

2 × R also as a codimension 2 immersion of a surface in E
4. The

condition that T is a principal direction is equivalent to the condition of the vanishing of the
normal curvature of the surface in E

4. This is again an indication that this condition is very
natural in S

2 × R.

Theorem 3 Let M be an immersed surface in S
2 × R and p a point of M for which θ(p) �∈

{0, π2 }. Then T is a principal direction if and only if M considered as a surface in E
4 is

normally flat.

Proof Take an arbitrary point p in M such that the angle function θ is not zero or π
2 at

p. Choose local coordinates as in Proposition 2. Now let us consider the surface M as a
codimension 2 immersed surface in E

4 and denote by F = (F1, F2, F3, F4) the immersion,
with D the Euclidean connection and with ∇⊥ the normal connection. Then we have two unit
normals: ξ = (ξ1, ξ2, ξ3, cos(θ)) tangent to S

2 ×R and˜ξ = (F1, F2, F3, 0) normal to S
2 ×R

with shape operator S respectively ˜S. We have for every X = (X1, X2, X3, X4) ∈ Tp(M)

∇⊥
X
˜ξ = 〈DX˜ξ, ξ 〉 ξ

= 〈(X1, X2, X3, 0), ξ 〉 ξ
= − cos(θ)〈X, T 〉 ξ, (43)

and hence

∇⊥
X ξ = cos(θ)〈X, T 〉˜ξ . (44)

Choose coordinates (x, y) as in Proposition 2. From (43) and (44), we obtain
〈

R⊥
(

∂

∂x
,
∂

∂y

)

ξ,˜ξ

〉

= sin(θ)θy . (45)

Hence, R⊥ = 0 if and only if θy = 0. From (11) in Proposition 2, we obtain the result. 	

We have the following propositions.

Proposition 4 Let M be an immersed surface in S
2 × R and p a point of M for which

θ(p) �∈ {0, π2 }. If T is a principal direction, then we can choose coordinates (x, y) in a
neighborhood of p such that ∂

∂x is in the direction of T , the metric g has the form

g = dx2 + β2(x, y)dy2, (46)

and the shape operator S with respect to the basis { ∂
∂x ,

∂
∂y } is given by

S =
(

θx 0
0 tan(θ) βx

β

)

. (47)

Moreover the functions θ and β are related by the PDE

βxx + βx tan(θ)θx + β cos2(θ) = 0, (48)

and θy = 0.

Proof Take an arbitrary point p in M such that the angle funtion θ is not zero or π
2 at p.

From Proposition 2 and the assumption that T is a principal direction, we see that θy = 0.
This means that by changing the x-coordinate we can assume that the metric is given by (46).
Now we can find (47) and (48) in an analogous way as in Proposition 2. 	
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Proposition 5 A surface M immersed in S
2 × R is a surface for which T is a principal

direction if and only if the immersion F is (up to isometries of S
2 × R) in the neighborhood

of a point p where θ(p) �∈ {0, π2 } given by

F : M → S
2 × R : (x, y) �→ (F1(x, y), F2(x, y), F3(x, y), F4(x)) (49)

with

Fj (x, y) =
y

∫

y0

α j (v) sin (ψ(x)+ φ(v)) dv (50)

for j = 1, 2, 3 where ψ ′(x) = cos(θ(x)), F ′
4(x) = sin(θ(x)), (α1, α2, α3) is a curve in S

2

and F2
1 + F2

2 + F2
3 = 1. Moreover α1, α2, α3, ψ and φ are functions on M related by

α′
j (y) = − cos (ψ(x)+ φ(y))

y
∫

y0

α j (v) cos (ψ(x)+ φ(v)) dv

− sin(ψ(x)+ φ(y))

y
∫

y0

α j (v) sin (ψ(x)+ φ(v)) dv. (51)

Proof Take an arbitrary point p in M such that the angle function θ is not zero or π
2 at p.

We take coordinates as in Proposition 4.

From (48) we find that β satisfies β2
x

cos2(θ)
+ β2 = k(y)2 for some function k on M and

hence β(x, y) = k(y) sin(ψ(x)+ φ(y)) for some function φ on M and a primitive function
ψ of cos(θ). By changing the y-coordinate we can assume that we have

g = dx2 + sin2(ψ(x)+ φ(y))dy2, (52)

and thus the Levi-Civita connection is given by

∇ ∂
∂x

∂

∂x
= 0, (53)

∇ ∂
∂x

∂

∂y
= cot(ψ(x)+ φ(y)) cos(θ)

∂

∂y
, (54)

∇ ∂
∂y

∂

∂y
= − sin(ψ(x)+ φ(y)) cos(ψ(x)+ φ(y)) cos(θ)

∂

∂x

+ cot(ψ(x)+ φ(y))φ′(y) ∂
∂y
. (55)

Denote the two normals by ξ and ˜ξ . The normal ξ = (ξ1, ξ2, ξ3, cos(θ)), with shape
operator S, is tangent to S

2 × R and the normal ˜ξ = (F1, F2, F3, 0) with shape operator ˜S,
is normal to S

2 × R. S and ˜S are given by

S =
(

θx 0
0 cot(ψ(x)+ φ(y)) sin(θ)

)

, ˜S =
(− cos2(θ) 0

0 −1

)

. (56)

From the form of ˜S and (45) in the proof of Theorem 3 we also have that

ξ j = − tan(θ)(Fj )x , (57)

for j = 1, 2, 3.
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For the first three components of F the formula of Gauss (1) together with (53), (54), (55)
and (56) gives the following system of PDE’s

(Fj )xx = − tan(θ)θx (Fj )x − cos2(θ)Fj , (58)

(Fj )xy = cot(ψ(x)+ φ(y)) cos(θ)(Fj )y, (59)

(Fj )yy = −1

2
sin(2(ψ(x)+ φ(y)))

1

cos(θ)
(Fj )x

+ cot(ψ(x)+ φ(y))φ′(y)(Fj )y

− sin2(ψ(x)+ φ(y))Fj . (60)

From (59) we find that

Fj (x, y) =
y

∫

y0

α j (v) sin (ψ(x)+ φ(v)) dv, (61)

where α j is a function on M for j = 1, 2, 3.

By substituting (61) into (60) we find that α j must satisfy

α′
j (y) = − cos (ψ(x)+ φ(y))

y
∫

y0

α j (v) cos (ψ(x)+ φ(v)) dv

− sin(ψ(x)+ φ(y))

y
∫

y0

α j (v) sin (ψ(x)+ φ(v)) dv. (62)

Since we must have that (F1, F2, F3) ∈ S
2 we also need that F2

1 + F2
2 + F2

3 = 1 and
from 〈Fy, Fy〉 = sin2(ψ(x)+ φ(y)) we find that (α1, α2, α3) is a curve in S

2.
For the fourth component of the immersion note that

(F4)x =
〈

Fx ,
∂

∂t

〉

= sin(θ), (63)

(F4)y =
〈

Fy,
∂

∂t

〉

= 0. (64)

Thus we see that F4 only depends on x and is a primitive function of sin(θ). This proves the
proposition. 	


We can give many examples of these type of surfaces. The constant angle surfaces, as
defined in [8], and the rotation surfaces, as defined in [7], all satisfy this condition. Since
we know from Theorem 3 that the condition that T is a principal direction is equivalent to
normal flatness in E

4 and from [6] that all rotation surfaces are normally flat, one could think
that every surface for which T is a principal direction must be a rotation surface. This is
however not true as can be seen from the following example:

F : M → S
2 × R : (x, y) �→ (cos x cos y, cos x sin y, sin x, f (x, y)) (65)

with f (x, y) = ∫ x
0

√
c − tan2 u du+y where c ∈ R is a constant such that on a neighborhood

of 0 we have that c − tan2 u ≥ 0.
We can give classification theorems for surfaces for which T is a principal direction under

an additional assumption.
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Theorem 4 A surface M immersed in S
2 × R is a minimal surface with T a principal direc-

tion if and only if the immersion F is (up to isometries of S
2 × R) in the neighborhood of a

point p where θ(p) �∈ {0, π2 } given by

F : M → S
2 × R :

(x, y) �→
(

sin x√
1 + c2

,

√
cos2 x + c2 cos y√

1 + c2
,

√
cos2 x + c2 sin y√

1 + c2
, F4(x)

)

. (66)

with

F4(x) =
x

∫

0

c
√

cos2(u)+ c2
du. (67)

Proof Take an arbitrary point p in M such that the angle function θ is not zero or π
2 at p.

Choose local coordinates as in Proposition 4. Since now M is minimal, it follows from (47)
that we can take β = 1

sin(θ) . Summarizing this, we obtain the metric g

g = dx2 + 1

sin2(θ)
dy2, (68)

and the shape operator S

S =
(

θx 0
0 −θx

)

. (69)

Since θy = 0 if T is a principal direction and β = 1
sin(θ) , Eq. 48 reduces to an ordinary

differential equation in θ

θxx − 2 cot(θ)θ2
x + cos(θ) sin(θ) = 0. (70)

Making the substitution θ(x) = arctan( f (x)), we get
(

f ′
f

)′

1 +
(

f ′
f

)2 = 1. (71)

Integrating (71) we find f ′
f = tan(x + d̃) for some constant d̃. By changing the x-coordinate

if necessary, we can assume d̃ = 0. Integrating this last equation, we find f (x) = c
cos(x) for

a constant c and thus

θ = arctan

(

c

cos(x)

)

. (72)

Now we know from Theorem 1 that this function will give the surface we are looking for. To
get an explicit parametrization we will integrate the formula of Gauss (1). In order to do so,
we consider the surface as a surface in E

4. From the metric (68) we find that the Levi-Civita
connection ∇ is given by

∇ ∂
∂x

∂

∂x
= 0, (73)

∇ ∂
∂x

∂

∂y
= − cot(θ)θx

∂

∂y
, (74)

∇ ∂
∂y

∂

∂y
= cos(θ)

sin3(θ)

∂

∂x
. (75)
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As in the proof of Proposition 5 we take two unit normals ξ and ˜ξ with shape operators S
and ˜S given by

S =
(

θx 0
0 −θx

)

, ˜S =
(− cos2(θ) 0

0 −1

)

. (76)

with

ξ j = − tan(θ)(Fj )x . (77)

Combining (73), (74), (75), (76) and (77) with (1) we find for j = 1, 2, 3 that

(Fj )xx = − tan(θ)θx (Fj )x − cos2(θ)Fj , (78)

(Fj )xy = − cot(θ)θx (Fj )y, (79)

(Fj )yy = θx

cos(θ) sin3(θ)
(Fj )x − 1

sin2(θ)
Fj . (80)

From (79) we find that Fj is given by

Fj = φ j (y)

sin(θ)
+ ψ j (x), (81)

where φ j and ψ j are functions on M for j = 1, 2, 3 and θ is given by (72).
Substituting (72) and (81) in (78) gives ordinary differential equations for the functions

ψ j :

ψ ′′
j (x) cos3(x)+ ψ ′′

j (x)c
2 cos(x)+ ψ ′

j (x)c
2 sin(x)+ ψ j (x) cos3(x) = 0. (82)

Substituting (72) and (81) in (80) gives

φ′′
j (y)+ c2 + 1

c2 φ j (y) = εd j , (83)

sin(x) cos2(x)ψ ′
j (x)+ c2 sin(x)ψ ′

j (x)− cos3(x)ψ j (x)

− c2 cos(x)ψ j (x) = −d j c cos(x)
√

cos2(x)+ c2, (84)

where ε = 1 if cos(x) ≥ 0 in a neighborhood of p and ε = −1 in the other case and d j

is a constant.
Note that Eq. 84 implies Eq. 82, since we get (82) by deriving (84) with respect to x .

Eq. 84 is equivalent to

sin(x)ψ ′
j (x)− cos(x)ψ j (x) = d j c cos(x)

√

cos2(x)+ c2
. (85)

From (85) we see that ψ j is given by

ψ j (x) = A j sin(x)− d j c
√

cos2(x)+ c2

c2 + 1
, (86)

for a constant A j .
And by solving (83), we have

φ j (y) = ε

⎛

⎝B j cos

⎛

⎝y

√

c2 + 1

c2

⎞

⎠ + C j sin

⎛

⎝y

√

c2 + 1

c2

⎞

⎠ + d j c2

c2 + 1

⎞

⎠ , (87)
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with B j and C j constants.
Combining (81), (86), and (87) we find

Fj =
√

cos2(x)+ c2

c

⎛

⎝B j cos

⎛

⎝y

√

c2 + 1

c2

⎞

⎠ + C j sin

⎛

⎝y

√

c2 + 1

c2

⎞

⎠

⎞

⎠

+A j sin(x), (88)

for j = 1, 2, 3.
Since we must have that 〈(F1, F2, F3), (F1, F2, F3)〉 = 1 we find that 〈A, B〉 =

〈A,C〉 = 〈B,C〉 = 0 and c2‖A‖2 = ‖B‖2 = ‖C‖2 = c2

1+c2 where A = (A1, A2, A3),

B = (B1, B2, B3) and C = (C1,C2,C3). Thus we can assume that A = ( 1√
1+c2 , 0, 0),

B = (0, 1√
1+c2 , 0) and C = (0, 0, c√

1+c2 ).

From the proof of Proposition 5, we know that F4(x, y) = ∫ x
x0

sin(θ(u))du. Together with
(72), we see that

F4 =
x

∫

0

c
√

cos2(u)+ c2
du. (89)

By changing the y-coordinate, equations (88) and (89) give the immersion (66). 	

Remark 2 We can rewrite F4 in the following way:

F4 = c√
1 + c2

x
∫

0

du
√

1 − 1
1+c2 sin2(u)

= c√
1 + c2

F

(

x,

√

1

1 + c2

)

,

where F is the normal elliptic integral of the first kind. More details on elliptic functions can
be found in [4].

Theorem 5 A surface M immersed in S
2 × R is a flat surface with T a principal direction

if and only if the immersion F is (up to isometries of S
2 × R) in the neighborhood of a point

p where θ(p) �∈ {0, π2 } given by

F : M → S
2 × R : (x, y) �→

(√
1 + d − x2
√

1 + d
,

x cos y√
1 + d

,
x sin y√

1 + d
, F4(x)

)

(90)

with

F4(x) =
x

∫

0

√
d − u2

√
1 + d − u2

du. (91)

Proof Take an arbitrary point p in M such that the angle function θ is not zero or π
2 at p.

Choose local coordinates as in Proposition 4. From the metric (46) and the fact that M is flat
we know that βxx = 0. Thus we have β = a(y)x + b(y) for some functions a and b on M .
Substituting this in (48) we get

a(y)

b(y)
= − cos2(θ)

tan(θ)θx + x cos2(θ)
. (92)
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Since the left hand side of (92) depends only on y and the right hand side only on x , they
must be constant. So there is a constant c such that

b(y) = c a(y) (93)

−c cos2(θ) = tan(θ)θx + x cos2(θ). (94)

From (93) we see that β = a(y)(x +c). So after changing the x-coordinate we can assume
that c = 0 and that the metric g is given by

g = dx2 + x2dy2. (95)

We can rewrite (94) as
( 1

2 tan2(θ)
)

x = −x . This means that

θ = arctan
(
√

d − x2
)

, (96)

for some positive constant d .
From (95) we find the Levi-Civita connection

∇ ∂
∂x

∂

∂x
= 0, (97)

∇ ∂
∂x

∂

∂y
= 1

x

∂

∂y
, (98)

∇ ∂
∂y

∂

∂y
= −x

∂

∂x
. (99)

As before, take two unit normals ξ = (ξ1, ξ2, ξ3, cos(θ)) with shape operator

S =
(

θx 0
0 tan(θ)

x

)

, (100)

where ξ j = − tan(θ)(Fj )x and ˜ξ = (F1, F2, F3, 0) with shape operator

˜S =
(− cos2 θ 0

0 −1

)

. (101)

Combining all this with the formula of Gauss (1) we find the following system for
j = 1, 2, 3:

(Fj )xx = − tan(θ)θx (Fj )x − cos2(θ)Fj , (102)

(Fj )xy = 1

x
(Fj )y, (103)

(Fj )yy = −x

cos2(θ)
(Fj )x − x2 Fj . (104)

From (103) we conclude that

Fj = φ j (y)x + ψ j (x), (105)

for some functions φ j and ψ j on M .

Substituting (96) and (105) in (102) gives us

(x2 − d − 1)ψ ′′
j (x)+ xψ ′

j (x)− ψ j (x) = 0, (106)
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and substituting this in (104) gives

φ′′
j (y)+ (1 + d)φ j (y) = k j , (107)

(1 + d)ψ ′
j (x)− x2ψ ′

j (x)+ xψ j (x) = −k j , (108)

for a constant k j . Note that Eq. 108 implies Eq. 106, since we get (106) by deriving (108)
with respect to x . Solving (108), we find

ψ j (x) = A j

√

1 + d − x2 − k j

1 + d
x, (109)

for a constant A j . And by solving (107), we get

φ j (y) = B j cos
(

y
√

1 + d
)

+ C j sin
(

y
√

1 + d
)

+ k j

1 + d
, (110)

with B j and C j constants, since we know that d is a positive constant.
From (109) and (110) we conclude that

Fj (x, y) = B j x cos
(

y
√

1 + d
)

+ C j x sin
(

y
√

1 + d
)

(111)

+A j

√

1 + d − x2

for j = 1, 2, 3.
Since we must have that 〈(F1, F2, F3), (F1, F2, F3)〉 = 1 we find that 〈A, B〉 = 〈A,C〉 =

〈B,C〉 = 0 and ‖A‖2 = ‖B‖2 = ‖C‖2 = 1
1+d where A = (A1, A2, A3), B = (B1, B2, B3)

and C = (C1,C2,C3).
From the proof of Proposition 5, we know that F4(x, y) = ∫ x

x0
sin(θ(u))du. Using (96)

we find

F4(x, y) =
x

∫

0

√
d − u2

√
1 + d − u2

du. (112)

By changing the y-coordinate, Eq. 111 and 112 give us the immersion (90). 	

Remark 3 Again we can rewrite F4, by making the substitution t = u

1+d , in the following
way,

F4(x, y) = 1√
1 + d

x
∫

0

√
d − u2

√

1 −
(

u
1+d

)2
du

= √

d(1 + d)

x
1+d
∫

0

√

1 − (1+d)2
d t2

√
1 − t2

dt

= √

d(1 + d)E

(

x

1 + d
,

1 + d√
d

)

,

where E is the normal elliptic integral of the second kind.
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