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Abstract In this article, we deal with compact hypersurfaces without boundary immersed
in space forms with Sr+1

S1
= constant. They are critical points for an area-preserving

variational problem. We show that they are r -stable if and only if they are totally
umbilical hypersurfaces.
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1 Introduction

Let M̃(c) be (n + 1)-dimensional Euclidean space R
n+1, an open hemisphere of the unit

sphere Sn+1(1) or the hyperbolic space Hn+1(−1) according to c = 0, 1 or −1, respectively.
Let x : M → M̃(c) be a smooth immersion of a compact and oriented hypersurface without
boundary.

Volume preserving variational problem has been studied by many authors, see [1–8].
It is well known that immersions with constant mean curvature are critical points for the
variational problem of minimizing the area functional keeping the balance of volume zero.
A local solution for this variational problem is said to be stable. This concept was introduced
by Barbosa, do Carmo and Eschenburg in [8].

For immersions of hypersurfaces with constant (r + 1)th mean curvature in space forms,
Alencar, do Carmo and Rosenberg studied the case of R

n+1 in [3], Barbosa and Colares
studied the case of an open hemisphere of Sn+1(1) or the hyperbolic space Hn+1(−1) in [5].
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These hypersurfaces are critical points for a variational problem of minimizing a curvature
integral of the type

Ar =
∫

M
Fr (S1, . . . , Sr )d M,

keeping the balance of volume zero, where Fr is a suitable function. For this problem, they
introduced the concept of r -stability of hypersurfaces, generalized the one introduced in [8].
Other variational problems for hypersurfaces involving functions of S1, . . . , Sr can be found
in [18].

In this article, we consider hypersurfaces in M̃(c) with positive mean curvature and
constant ratio of (r + 1)th mean curvature and mean curvature, where c = 0 or r is even
when c �= 0, which are critical points for a variational problem of minimizing the
functional Ar in [5] keeping the area of the hypersurfaces. We introduce the concept of r -sta-
bility similar to [5]. We prove that totally umbilical hypersurfaces are the only
r -stable immersed compact oriented hypersurfaces in the Euclidean space R

n+1, an open
hemisphere of the unit sphere Sn+1(1) or the hyperbolic space Hn+1(−1)(see Theorems 5.4
and 5.6).

2 Preliminaries

Let M̃(c) be an (n + 1)-dimensional space form with constant sectional curvature c, where
c = 0, 1, or −1 and respectively M̃(c) is either the Euclidean space R

n+1, the unit sphere
Sn+1(1) or the hyperbolic space Hn+1(−1). We represent 〈·, ·〉 the Riemannian structure
of M̃(c). Let x : M → M̃(c) be a smooth immersion of a compact, connected, oriented
hypersurface without boundary. Let N be a globally defined unit normal vector field
along M .

The shape operator B of x associated to N is defined by B(Y ) = −∇̃Y N , where Y is
any tangent vector field on M , ∇̃ is the Levi Civita connection on M̃(c). Its eigenvalues, the
principal curvatures are represented by k1, k2, . . . , kn . Using the characteristic polynomial
of B, the elementary symmetric function Sr is defined by

det(t I − B) =
n∑

r=0

(−1)r Sr tn−r . (1)

the r th mean curvature Hr is defined by Hr = Sr/Cr
n . Clearly H1 is the mean curvature H .

In this article, we assume the mean curvature H of M is positive and the ratio of (r + 1)th
mean curvature and mean curvature Hr+1/H is constant where c = 0, or c �= 0 and r is
even, 1 ≤ r ≤ n − 1.

The classical Newton transformation Tr are inductively defined by

T0 = I
Tr = Sr I − Tr−1 B.

(2)

Let e1, e2, . . . , en be orthonormal eigenvectors of B corresponding respectively to the
eigenvalues k1, k2, . . . , kn . Represent by Bi the restriction of B to the subspace normal to
ei , and by Sr (Bi ) the r th symmetric function associated to Bi . Then, it is obvious that

Sr+1 = ki Sr (Bi ) + Sr+1(Bi ) for each 1 ≤ r ≤ n − 1 and 1 ≤ i ≤ n. (3)
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We state the following properties of Tr which can be found in [5] or [16]:

Lemma 2.1 ([5,16]) For each 1 ≤ r ≤ n − 1

1. Tr (ei ) = Sr (Bi )ei for each 1 ≤ r ≤ n;
2. trace(Tr ) = (n − r)Sr ;
3. trace(BTr ) = (r + 1)Sr+1;
4. trace(B2Tr ) = S1Sr+1 − (r + 2)Sr+2.

3 Lr operator

Let {e1, . . . , en, N } be a local orthonormal frame field along hypersurface M in M̃(c) where
N is a normal vector field, and {ω1, . . . , ωn, ωn+1} its dual coframe field. We have the
structure equations (see [10,13,14])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx =
n∑

i=1

ωi ei ,

dei =
n∑

j=1

ωi j e j +
n∑

j=1

hi jω j N − cxωi , 1 ≤ i ≤ n,

d N = −
n∑

i, j=1

hi jω j ei ,

(4)

where hi j = h ji , Bei = ∑
j hi j e j .

For any smooth function f on M , we define fi and fi j by (see [13,14])

d f =
n∑

i=1

fiωi , (5)

d fi +
n∑

j=1

f jω j i =
n∑

j=1

fi jω j , (6)

where fi j = f j i .
Then the gradient ∇ f and Hessian Hess( f ) of f are defined by

∇ f =
n∑

i=1

fi ei , (7)

and

Hess( f )ei =
n∑

j=1

fi j e j , 1 ≤ i ≤ n, (8)

respectively.
In [10], Cheng and Yau introduced an operator � : C∞(M) → C∞(M),

� f = trace(�Hess( f )), where � = ∑
i j φi jωiω j is a symmetric tensor. They also have

shown that � is self-adjoint if and only if
∑

j φi j j = 0 for all i . It is a simple consequence
of their computation that under the above condition,

� f = div(�∇ f ),

where div stands for the divergence operator on M .
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For each Tr defined by (2), we have a second order differential operator Lr defined by

Lr f = trace(Tr Hess( f )).

From the Codazzi equation, and Cheng-Yau’s result above we have Lr = div(Tr∇ f ). A
proof of this fact was done by Reilly [15] (see also Rosenberg in [16]). Thus, we have the
following lemma by Stokes theorem:

Lemma 3.1 (see [5]) For any function f, g on M, we have∫
M

Lr ( f )dM = 0, (9)

and ∫
M

f Lr (g)dM = −
∫

M
〈Tr∇ f,∇g〉dM. (10)

We need the following theorem:

Theorem 3.2 (see [5,9]) Let x : M → M̃(c) be a hypersurface with unit normal vector field
N. Then we have

Lr x = (r + 1)Sr+1 N − (n − r)cSr x, (11)

Lr N = −∇Sr+1 − (S1Sr+1 − (r + 2)Sr+2)N + c(r + 1)Sr+1x . (12)

For a hypersurface M in R
n+1, taking f = 〈x, N 〉 and g = 1

2
|x |2 in (10), we can obtain

the following lemma:

Lemma 3.3 Let x : M → R
n+1 be a hypersurface with unit normal vector field N. Then we

have ∫
M

〈x, N 〉{(n − r)Sr + (r + 1)Sr+1〈x, N 〉}dM =
∫

M
〈Tr BxT , xT 〉dM, (13)

where xT denotes the tangent component of x.

Proof Through a direct calculation, we have

gi j = δi j + hi j 〈x, N 〉,
∇ f = −

n∑
i, j=1

hi j 〈x, e j 〉ei = −BxT ,

∇g =
n∑

i=1

〈x, ei 〉ei = xT ,

and using Lemma 2.1, we have

Lr g =
n∑

i, j=1

(Tr )i j gi j

= trace(Tr ) + trace(Tr B)〈x, N 〉
= (n − r)Sr + (r + 1)Sr+1〈x, N 〉.

From these formulas and (10) of Lemma 3.1, we have (13). �	
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We define an operator L̃r by

L̃r ( f ) = Lr f − Sr+1

S1
� f. (14)

We have the following proposition:

Proposition 3.4 Let M be an n-dimensional connected, compact without boundary and ori-
ented Riemannian manifold, let M̃(c) be (n + 1)-dimensional Euclidean space R

n+1, an
open hemisphere of the unit sphere Sn+1(1) or the hyperbolic space Hn+1(−1) according to
c = 0, 1 or −1, respectively. Let x : M → M̃(c) be an isometric immersion. If S1 and Sr+1

are all positive, then for 1 ≤ j ≤ r ,

(1) both the operators L j and L̃ j are elliptic;
(2) each j th mean curvature Hj is positive.

Proof The ellipticity of L j and the positiveness of Hj were proved in [5]. We note for odd
r , the positiveness of Sr+1 can not derive the positiveness of Hj for 1 ≤ j ≤ r unless we
choose the unit normal vector field N such that all the principal curvatures of x are positive
at a point p. Hence, we add the condition that S1 is positive. Thus, we only need to prove L̃ j

is elliptic. But L̃ j ( f ) = trace[(Tj − S j+1
S1

I )Hess( f )], and S1 is positive, so it is equivalent
to the positiveness of the eigenvalues of S1Tj − S j+1 I .

From (1) of Lemma 2.1 and (3), the eigenvalues of S1Tj − S j+1 I are:

S1S j (Bi ) − S j+1 = (S1(Bi ) + ki )S j (Bi ) − S j+1 = S1(Bi )S j (Bi ) − S j+1(Bi ).

We define Hj (Bi ) = S j (Bi )/C j
n−1, 1 ≤ j ≤ n − 1, then we have

S1(Bi )S j (Bi ) − S j+1(Bi ) = (n − 1)C j
n−1 H1(Bi )Hj (Bi ) − C j+1

n−1 Hj+1(Bi )

From the ellipticity of L j and (1) of Lemma 2.1, Hj (Bi ) > 0 for each 1 ≤ j ≤ r , so we
have H1(Bi )Hj (Bi ) ≥ Hj+1(Bi ) (see [11] and [17]). So we have

S1(Bi )S j (Bi ) − S j+1(Bi ) ≥ ((n − 1)C j
n−1 − C j+1

n−1)H1(Bi )Hj (Bi )

= jC j+1
n H1(Bi )Hj (Bi ) > 0. (15)

�	
Corollary 3.5 Under the same assumptions of Proposition 3.4, we have

(r + 2)S1Sr+2 − 2S2Sr+1 < 0. (16)

Proof From (see [11] and [17])

H2
i − Hi−1 Hi+1 ≥ 0,

and the positiveness of H1, . . . , Hr+1, we have,

H2

H1
≥ H3

H2
≥ · · · ≥ Hr+2

Hr+1
.

So H1 Hr+2 ≤ H2 Hr+1. Thus, we have

(r + 2)S1Sr+2 − 2S2Sr+1 = (r + 2)nCr+2
n H1 Hr+2 − n(n − 1)Cr+1

n H2 Hr+1

≤ ((r + 2)nCr+2
n − n(n − 1)Cr+1

n )H2 Hr+1

= −nrCr+1
n H2 Hr+1

< 0. �	
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4 The area-preserving variational problem

We set for each r , 0 ≤ r ≤ n,

Ar =
∫

M
Fr dM, (17)

where the functions Fr are defined inductively by

F0 = 1
F1 = S1

Fr = Sr + c(n − r + 1)

r − 1
Fr−2, for 2 ≤ r ≤ n − 1.

(18)

Clearly A
de f= A0 is the area of M .

Let X : M × (−ε, ε) → M̃(c) be a variation of x . That is, for each t ∈ (−ε, ε), xt (p) =
X (p, t), p ∈ M is an immersion, x0 = x . We denote the unit normal vector field of immersion
xt by Nt . Variation X is said to be area-preserving if for any t ∈ (−ε, ε), A (t) ≡ A .

We consider the variational problem of minimizing Ar keeping the area of M , where r ≥ 1.
By a standard argument involving Lagrange multipliers, this means that we are considering
critical points of the functional

Jr (t) = Ar (t) + λA (t). (19)

Let the variational vector field ∂ X/∂t be decomposed to

∂ X

∂t
= ξ + f N , (20)

where ξ is tangent to M . then we have the following lemmas (see [5] and [15]):

Lemma 4.1 S′
r+1 = Lr ( f ) + (S1Sr+1 − (r + 2)Sr+2) f + c(n − r)Sr f + 〈∇Sr+1, ξ 〉.

Lemma 4.2 (∂/∂t)(dMt ) = (−S1 f + divξ)dMt .

Lemma 4.3 A ′(t) = − ∫
M S1 f (t)dMt .

Lemma 4.4 If c = 0, then A ′
r (t) = −(r + 1)

∫
M Sr+1 f (t)dMt .

Proof In this case, we have Ar = ∫
M Sr dM , so from Lemmas 4.1, 4.2 and (9), we have the

conclusion. �	
Lemma 4.5 If c �= 0 and r is even, A ′

r (t) = −(r + 1)
∫

M Sr+1 f (t)dMt .

Proof We prove Lemma 4.5 inductively. For r = 0, it is Lemma 4.3. Suppose Lemma 4.5 is
true for r − 2, then we have

A ′
r (t) =

∫
M

S′
r dMt +

∫
M

Sr (∂/∂t)(dMt ) + c(n − r + 1)

r − 1
A ′

r−2(t)

=
∫

M
(Lr−1( f ) − (r + 1)Sr+1 f + 〈∇Sr , ξ 〉 + Sr divξ)dMt

= −(r + 1)

∫
M

Sr+1 f (t)dMt . �	
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From Lemmas 4.4 and 4.5, we immediately get the following variational formula:

Proposition 4.6 (the First Variational Formula) Suppose c = 0, or c �= 0 and r is even,
1 ≤ r ≤ n − 1, then for any variation of x, we have

J ′
r (t) = −

∫
M

{(r + 1)Sr+1 + λS1} f (t)dMt .

From Proposition 4.6 we know, the critical points of the above variational problem are the
immersion x for which

Sr+1/S1 = − λ

r + 1
= constant.

In order to decide if x is or not a local minimum, we restrict ourselves to area-preserving
variations and compute the second derivative of Ar (t) at t = 0. As A (t) ≡ A , we have
A ′′

r (0) = J ′′
r (0). So we can get the following proposition by a direct calculation using

Lemma 4.1:

Proposition 4.7 (the Second Variational Formula) Let x : M → M̃(c) be a hypersurface for
which S1 is positive, Sr+1/S1 = constant, where c = 0, or c �= 0 and r is even, 1 ≤ r ≤ n−1.
For area-preserving variations, the second derivative of Ar at t = 0 is given by

A ′′
r (0) = −(r + 1)

∫
M

∂

∂t
[(r + 1)Sr+1 + λS1]|t=0 f dM

= −(r + 1)

∫
M

f

{
Lr f − Sr+1

S1
� f + f

[
2S2Sr+1

S1
− (r + 2)Sr+2

+ c(n − r)Sr − cnSr+1

S1

]}
dM.

5 Stability of hypersurfaces in M̃(c)

A variation X of the immersion x is called a normal variation if the variational vector field
is parallel to N . We have the following lemma:

Lemma 5.1 For any function f : M → R that satisfying
∫

M
f S1dM = 0, (21)

there exists an area-preserving normal variation X of the immersion x such that the varia-
tional vector field is f N .

Proof Let g : M → R be a smooth function such that
∫

M gS1dM �= 0. We consider the two
parameter variation

X (t, t̄)
de f= expx {(t f + t̄ g)N }, (22)

where exp is the exponential map on M̃(c). Denote the area of M under the induced metric
from immersion X (t, t̄) by A (t, t̄), and consider the following equation:

A (t, t̄) = constant. (23)
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From the property of exponential map we have

∂ X

∂t
|t=t̄=0 = f N , (24)

∂ X

∂ t̄
|t=t̄=0 = gN . (25)

Thus, from Lemma 4.4 we have

∂A (t, t̄)

∂t
|t=t̄=0 = −

∫
M

f S1dM = 0. (26)

∂A (t, t̄)

∂ t̄
|t=t̄=0 = −

∫
M

gS1dM �= 0. (27)

Hence, from implicit function theorem, in a neighborhood of (t, t̄) = (0, 0), we can get a
solution t̄ = s(t) of Eq. 23 satisfies s(0) = 0. Thus we obtain an area-preserving variation

X (t) = expx {(t f + s(t)g)N }. (28)

Observe that

s′(0) = −
{

∂A (t, t̄)

∂t
/
∂A (t, t̄)

∂ t̄

}
|t=t̄=0 = −

∫
M

f S1dM/

∫
M

gS1dM = 0,

we obtain that the variational vector field of X (t) is

∂ X (t)

∂t
|t=0 = ( f + s′(0)g)N = f N . �	

From Lemma 5.1 and Proposition 4.7, the expression of A ′′
r (0) depends only on the

immersion x and on the function f which can be any function satisfies (21).
So, we fix the following notation:

Ir ( f ) = −
∫

M
f

{
Lr f − Sr+1

S1
� f

+ f

[
2S2Sr+1

S1
− (r + 2)Sr+2 + c(n − r)Sr − cnSr+1

S1

]}
dM. (29)

Definition 5.2 We say that a hypersurface x : M → M̃(c) with S1 positive and Sr+1/S1 =
constant is r -stable if Ir ( f ) ≥ 0 for any function f : M → R that satisfies (21), where c = 0,
or c �= 0 and r is even, 1 ≤ r ≤ n − 1.

Proposition 5.3 Totally umbilical hypersurfaces of M̃(c) which are not totally geodesic are
r-stable, where c = 0, or c �= 0 and r is even, 1 ≤ r ≤ n − 1.

Proof Let 
 be a totally umbilical hypersurfaces of M̃(c), and suppose 
 is not totally
geodesic. We choose normal vector such the principal curvatures of 
 are equal to k > 0.
Then we have

S j = C j
n k j , S j (Bi ) = C j

n−1k j ,

and

Lr ( f ) = Cr
n−1kr� f.
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Hence, 
 is a hypersurface with S1 > 0 and Sr+1/S1 is a constant, and from (29) we have

Ir ( f ) = −
∫




{
(Cr

n−1 − 1

n
Cr+1

n )kr f � f + (
2

n
Cr+1

n C2
n − (r + 2)Cr+2

n )kr+2 f 2

+ c((n − r)Cr
n − Cr+1

n )kr
}

dM

= − r

n
Cr+1

n kr
∫




{ f � f + n(k2 + c) f 2}dM

≥ r

n
Cr+1

n kr
∫




{λ1 − n(k2 + c)} f 2dM

= 0,

where λ1 stands for the first eigenvalue of the Laplacian � of 
. The last equality is because

 is isometric to an Euclidean n-sphere with constant curvature k2+c. Hence λ1 = n(k2+c).
Therefore, 
 is r -stable. �	

Now we state our main theorems

Theorem 5.4 Let M be an n-dimensional connected, compact without boundary and ori-
ented Riemannian manifold, 1 ≤ r ≤ n − 1. An isometric immersion x : M → R

n+1 for
which S1 is positive and Sr+1/S1 is a constant is r-stable if and only if M is a sphere and x
is its inclusion as a totally umbilical hypersurface.

Proof From Proposition 5.3, the condition is sufficient. Now we prove that it is also necessary.
By Proposition 3.4, the operator L̃r is elliptic.

Let
∫

M x S1dM = C , constant vector in R
n+1, then

x̃ = x − 1∫
M S1dM

C

satisfies
∫

M x̃ S1dM = 0. Because the qualities of (29) are same for x and x̃ , so without loss
of generality, we can assume that ∫

M
x S1dM = 0.

Take an orthonormal basis E1, E2, . . . , En+1 of R
n+1 and define functions f A, gA by

f A = 〈N , E A〉, gA = 〈x, E A〉. (30)

The hypothesis of r -stability implies that I (gA) ≥ 0 for each A, 1 ≤ A ≤ n + 1. Hence,
using (29) and Theorem 3.2 in the case c = 0, we obtain

0 ≤ Ir (gA) = −
∫

M
gA

{
Lr gA − Sr+1

S1
�gA + gA

[
2S2Sr+1

S1
− (r + 2)Sr+2

]}
dM

=
∫

M

{
−

[
2S2Sr+1

S1
− (r + 2)Sr+2

]
g2

A − r Sr+1 f AgA

}
dM. (31)

Adding these equations for 1 ≤ A ≤ n + 1 and noting
∑n+1

A=1〈X, E A〉〈E A, Y 〉 = 〈X, Y 〉, we
conclude that

0 ≤
∫

M
{−r Sr+1〈x, N 〉 −

(
2S2Sr+1

S1
− (r + 2)Sr+2

)
|x |2}dM

=
∫

M

{
−r Sr+1〈x, N 〉 −

(
2S2Sr+1

S1
− (r + 2)Sr+2

) (
|xT |2 + 〈x, N 〉2

)}
dM. (32)

123



64 Ann Glob Anal Geom (2008) 34:55–68

Notice that Sr+1/S1 is a constant, and using Lemma 3.3, through a direct calculation, we
derive from (13),

∫
M

〈(
Tr+1 − Sr+1

S1
T1

)
BxT , xT

〉
dM

= −
∫

M

[
−r Sr+1 < x, N > −(

2S2Sr+1

S1
− (r + 2)Sr+2) < x, N >2

]
dM. (33)

Combining (32) with (33), we get

0 ≤
∫

M

{(
(r + 2)Sr+2 − 2S2Sr+1

S1

)
|xT |2 +

〈(
Tr+1 − Sr+1

S1
T1

)
BxT , xT

〉}
dM. (34)

Let e1, e2, . . . , en be orthonormal principal vectors corresponding to the principal curvatures
k1, k2, . . . , kn respectively. Then we have by use of (1) of Lemma 2.1 and (3)

(
(r + 2)Sr+2 − 2S2Sr+1

S1

)
|xT |2 +

〈(
Tr+1 − Sr+1

S1
T1

)
BxT , xT

〉

=
n∑

i=1

{(r + 2)Sr+2 − 2S2Sr+1

S1
+ ki Sr+1(Bi ) − Sr+1

S1
ki S1(Bi )}〈x, ei 〉2

= 1

S1

n∑
i=1

{(r + 2)S1Sr+2 − 2S2Sr+1 + k2
i (Sr+1(Bi ) − S1(Bi )Sr (Bi ))}〈x, ei 〉2. (35)

But, from (15) and (16),

(r + 2)S1Sr+2 − 2S2Sr+1 + k2
i (Sr+1(Bi ) − S1(Bi )Sr (Bi )) < 0.

From (34) and (35), we must have xT = 0, this means x = k N for some function k. But
then we have

d|x |2 = 2〈dx, x〉 = 2k〈dx, N 〉 = 0.

This means |x |2 is a constant, i.e. M is a sphere. This completes the proof of Theorem 5.4.�	

Remark 5.5 When r = 1, Theorem 5.4 has been proved in [12].

In the case of M is a hypersurface of an open hemisphere of the unit sphere Sn+1(1) or the
hyperbolic space Hn+1(−1), we have the following theorem:

Theorem 5.6 Let M be an n-dimensional connected, compact without boundary and ori-
ented Riemannian manifold, let M̃(c) be an open hemisphere of the unit sphere Sn+1(1)

or the hyperbolic space Hn+1(−1) according to c = 1 or −1 respectively. Let r be even,
1 ≤ r ≤ n −1. An isometric immersion x : M → M̃(c) for which S1 is positive and Sr+1/S1

is a constant is r-stable if and only if M is a sphere and x is its inclusion as a non totally
geodesic, totally umbilical hypersurface.

Proof From Proposition 5.3, the condition is sufficient. Now we prove that it is also neces-
sary. By Proposition 3.4, the operator L̃r is elliptic. We consider separately the two cases.

Case 1 Suppose M̃(c) = open hemisphere of Sn+1(1) ⊂ R
n+2.

123



Ann Glob Anal Geom (2008) 34:55–68 65

Set N̄ = ∫
M N S1dM . Assume N̄ = 0. Take an orthonormal basis E0, E1, . . . , En+1 of

R
n+2 and define f A, gA as in (30). The hypothesis of r -stability implies that I ( f A) ≥ 0 for

each A, 0 ≤ A ≤ n + 1. Hence, using theorem 3.2, we obtain

0 ≤ −
∫

M
f A

{
Lr f A − Sr+1

S1
� f A

+ f A

[
2S2Sr+1

S1
− (r + 2)Sr+2 + (n − r)Sr − nSr+1

S1

]}
dM (36)

=
∫

M

{
− r Sr+1 f AgA −

[
(n − r)Sr − nSr+1

S1

]
f 2

A

}
dM.

Adding these equations for all A, using 〈x, N 〉 = 0 and |N |2 = 1, we obtain

0 ≤
∫

M

{
−r Sr+1〈x, N 〉 −

[
(n − r)Sr − nSr+1

S1

]
|N |2

}
dM

= −
∫

M

{
1

S1

[
(n − r)S1Sr − nSr+1

]
R

}
dM

= −
∫

M

{
1

S1

[
n(n − r)Cr

n H1 Hr − nCr+1
n Hr+1

]}
dM (37)

≤ −
∫

M

{
1

S1

[
n(n − r)Cr

n Hr+1 − nCr+1
n Hr+1

]}
dM

= −
∫

M

nr Sr+1

S1
dM

< 0.

So, N̄ cannot be zero.
Thus, we assume that N̄ �= 0. Let E0, E1, . . . , En+1 be orthonormal basis of R

n+2 such
that E0 = N̄/|N̄ |, and define f A and gA as in (30). Now we have

∫
M

f A S1dM = 0, for 1 ≤ A ≤ n + 1.

For these functions r -stability implies the validity of (36). We may add them from 1 to n + 1
to obtain

0 ≤
∫

M

{
−r Sr+1

n+1∑
A=1

f AgA −
[
(n − r)Sr − nSr+1

S1

] n+1∑
A=1

f 2
A

}
dM

=
∫

M
{r Sr+1 f0g0 −

[
(n − r)Sr − nSr+1

S1

]
(1 − f 2

0 )}dM. (38)

On the other hand, we have

1 = |E0|2 ≥ 〈E0, x〉2 + 〈E0, N 〉2 = g2
0 + f 2

0 .
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Therefore, using Theorem 3.2 and the ellipticity of L̃r , we can get

0 ≤
∫

M

{
r Sr+1 f0g0 −

[
(n − r)Sr − nSr+1

S1

]
g2

0

}
dM

=
∫

M

{
g0 L̃r g0

}
dM

= −
∫

M

〈(
Tr − Sr+1

S1
I

)
∇g0,∇g0

〉
dM

≤ 0. (39)

Hence all the inequalities must be equalities. In particular, we obtain that ∇g0 = 0, so g0

is a constant. Thus, the image of x is contained in the intersection of a hyperplane and the
sphere Sn+1(1). Therefore, x(M) is a non-geodesic hypersphere of Sn+1(1).

Case 2 Suppose M̃(c) = Hn+1(−1) ⊂ R
n+2
1 , where R

n+2
1 is the Lorentz space.

We define x̄ = ∫
M x S1dM . From

〈x, x〉 = −x2
0 +

n+1∑
A=1

x2
A = −1,

and x0 > 0, we have

x0 =
√√√√1 +

n+1∑
A=1

x2
A.

Hence, from the Minkowski integral formula, we have

(∫
M

S1dM

)2

+
n+1∑
A+1

(∫
M

xA S1dM

)2

≤
⎛
⎝

∫
M

√√√√1 +
n+1∑
A=1

x2
A S1dM

⎞
⎠

2

=
(∫

M
x0S1dM

)2

.

Thus, we have

〈x̄, x̄〉 = −
(∫

M
x0S1dM

)2

+
n+1∑
A+1

(∫
M

xA S1dM

)2

≤ −
(∫

M
S1dM

)2

< 0.

We choose E0 = x̄/|x̄ | and complete it into an orthonormal basis of R
n+2
1 . For such a basis,

define f A and gA as in (30). It is clear that
∫

M gA S1dM = 0 for 1 ≤ A ≤ n + 1. Thus, for
such gA, r -stability implies:

0 ≤ Ir (gA) = −
∫

M
gA

{
Lr gA − Sr+1

S1
�gA

+ gA

[
2S2Sr+1

S1
− (r + 2)Sr+2 − (n − r)Sr + nSr+1

S1

]}
dM (40)

=
∫

M

{[
(r + 2)Sr+2 − 2S2Sr+1

S1

]
g2

A − r Sr+1 f AgA

}
dM.

Adding these equations for 1 ≤ A ≤ n + 1 and using the fact that

− f0g0 +
n+1∑
A=1

f AgA = 〈x, N 〉 = 0
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and

−g2
0 +

n+1∑
A=1

g2
A = 〈x, x〉 = −1,

we conclude that

0 ≤
∫

M

{
−r Sr+1 f0g0 +

[
2S2Sr+1

S1
− (r + 2)Sr+2

]
(1 − g2

0)

}
dM. (41)

On the other hand, we have

−1 = 〈E0, E0〉 ≥ −〈E0, x〉2 + 〈E0, N 〉2 = −g2
0 + f 2

0 .

Therefore, using Theorem 3.2 and the ellipticity of L̃r , we can get

0 ≤
∫

M

{
−r Sr+1 f0g0 −

[
2S2Sr+1

S1
− (r + 2)Sr+2

]
f 2
0

}
dM

=
∫

M

{
f0 L̃r f0

}
dM

= −
∫

M

〈(
Tr − Sr+1

S1
I

)
∇ f0,∇ f0

〉
dM

≤ 0. (42)

This implies that f0 is constant and −g2
0 + f 2

0 = 1. Hence g0 is also a constant and the proof
can be concluded as in Case 2. This completes the proof of Theorem 5.6. �	
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