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Abstract In this article, we deal with compact hypersurfaces without boundary immersed
in space forms with % = constant. They are critical points for an area-preserving
variational problem. We show that they are r-stable if and only if they are totally

umbilical hypersurfaces.
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1 Introduction

Let M(c) be (n + 1)-dimensional Euclidean space R"t1 an open hemisphere of the unit
sphere $”1(1) or the hyperbolic space H"*!(—1) according to ¢ = 0, 1 or —1, respectively.
Let x: M — M(c) be a smooth immersion of a compact and oriented hypersurface without
boundary.

Volume preserving variational problem has been studied by many authors, see [1-8].
It is well known that immersions with constant mean curvature are critical points for the
variational problem of minimizing the area functional keeping the balance of volume zero.
A local solution for this variational problem is said to be stable. This concept was introduced
by Barbosa, do Carmo and Eschenburg in [8].

For immersions of hypersurfaces with constant ( + 1)th mean curvature in space forms,
Alencar, do Carmo and Rosenberg studied the case of R"*! in [3], Barbosa and Colares
studied the case of an open hemisphere of §"*1(1) or the hyperbolic space H"*!(—1) in [5].
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These hypersurfaces are critical points for a variational problem of minimizing a curvature
integral of the type

Ay =/ Fe(S1, ..., 8)dM,
M

keeping the balance of volume zero, where F} is a suitable function. For this problem, they
introduced the concept of r-stability of hypersurfaces, generalized the one introduced in [8].
Other variational problems for hypersurfaces involving functions of Sy, ..., S, can be found
in [18].

In this article, we consider hypersurfaces in M(c) with positive mean curvature and
constant ratio of ( + 1)th mean curvature and mean curvature, where ¢ = 0 or r is even
when ¢ # 0, which are critical points for a variational problem of minimizing the
functional 7 in [5] keeping the area of the hypersurfaces. We introduce the concept of r-sta-
bility similar to [5]. We prove that totally umbilical hypersurfaces are the only
r-stable immersed compact oriented hypersurfaces in the Euclidean space R"*!, an open
hemisphere of the unit sphere S”*!(1) or the hyperbolic space H"*!(—1)(see Theorems 5.4
and 5.6).

2 Preliminaries

Let M (c) be an (n + 1)-dimensional space form with constant sectional curvature ¢, where
¢ = 0,1, or —1 and respectively M (c) is either the Euclidean space R"+!, the unit sphere
$"F1(1) or the hyperbolic space H"t!(—1). We represent (-, -) the Riemannian structure
of M(c). Let x: M — M(c) be a smooth immersion of a compact, connected, oriented
hypersurface without boundary. Let N be a globally defined unit normal vector field
along M.

The shape operator B of x associated to N is defined by B(Y) = —VyN, where Y is
any tangent vector field on M, V is the Levi Civita connection on M (c). Its eigenvalues, the
principal curvatures are represented by ki, k», . .., k,. Using the characteristic polynomial
of B, the elementary symmetric function S, is defined by

det(t1 — B) = Z(—l)’S,t”". 1)

the rth mean curvature H, is defined by H, = S, /C;,. Clearly H; is the mean curvature H.
In this article, we assume the mean curvature H of M is positive and the ratio of (r 4 1)th
mean curvature and mean curvature H,11/H is constant where ¢ = 0, or ¢ # 0 and r is
even, 1l <r <n-—1.
The classical Newton transformation 7, are inductively defined by

To=1

T, =S,1—T,_1B. @)
Let e1, €3, ..., e, be orthonormal eigenvectors of B corresponding respectively to the
eigenvalues ki, k2, ..., k,. Represent by B; the restriction of B to the subspace normal to

ei, and by S, (B;) the rth symmetric function associated to B;. Then, it is obvious that

Sr41 =kiSp(Bi) + Sr4+1(Bj) foreachl <r<n—1landl <i <n. 3)
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We state the following properties of 7, which can be found in [5] or [16]:
Lemma 2.1 ([5,16]) Foreach1 <r <n—1
1. T.(e;) = S,(Bj)e; foreachl <r <n;
trace(T,) = (n —r)S,;
trace(BT,) = (r + 1)S,41;
trace(B>Ty) = §1S,41 — (r +2)S, 0.

e

3 L, operator

Let{ey, ..., en, N} be alocal orthonormal frame field along hypersurface M in M (¢) where
N is a normal vector field, and {wy, ..., ®,, w41} its dual coframe field. We have the
structure equations (see [10,13,14])

- n
dx = E w;e;,
i=1

n n
de; =Za)ijej+2hija)jN—cxwi, 1<i<n, 4)
j=1 j=1
n
dN = — z h,-jwjei,
i,j=1
where hj; = hj;, Be; = Zj hije;.
For any smooth function f on M, we define f; and f;; by (see [13,14])

n
df = fio, ®
i=1
n n
d.fi+zfjwji =Zfijwj, (6)
j=1 j=1
where fi;j = fji.
Then the gradient V f and Hessian Hess(f) of f are defined by
n
V=2 fie @)
i=1
and
n
Hess(f)e,'=Zfijej, 1<i<n, 3)
j=1
respectively.

In [10], Cheng and Yau introduced an operator O0: C*®(M) — C®(M),
Of = trace(®Hess(f)), where & = >, ; ¢ijwjw; is a symmetric tensor. They also have
shown that [ is self-adjoint if and only if Zj ¢ijj = 0 forall i. It is a simple consequence
of their computation that under the above condition,

Of = div(®V f),

where div stands for the divergence operator on M.
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For each T, defined by (2), we have a second order differential operator L, defined by
L, f = trace(THess(f)).

From the Codazzi equation, and Cheng-Yau’s result above we have L, = div(7,Vf). A
proof of this fact was done by Reilly [15] (see also Rosenberg in [16]). Thus, we have the
following lemma by Stokes theorem:

Lemma 3.1 (see [5]) For any function f, g on M, we have

/ Lo(f)dM =0, ©
M
and
/ FL()dM = — / (T,V f. Vg)dM. (10)
M M

We need the following theorem:

Theorem 3.2 (see [5,9]) Letx: M — M(c) bea hypersurface with unit normal vector field
N. Then we have

Lx=(r+1)S+1N—{m—r)cSrx, (11
LrN = —VSr+1 — (S]Sr+1 — (r + 2)S;‘+2)N + C(r + 1)S,+1x. (12)
1
For a hypersurface M in R"*!, taking f = (x, N) and g = §|x|2 in (10), we can obtain

the following lemma:

Lemma 3.3 Let x: M — R"! be a hypersurface with unit normal vector field N. Then we
have

/ (x, NY{(n — )8y 4+ (r + 1)Syq1 (x, N)}dM =/ (T, BxT, xTydM, (13)
M M

where xT denotes the tangent component of x.

Proof Through a direct calculation, we have
8ij = 8ij + hij(x, N),
n
Vf=- Zhij<x»ej>ei = —BxT,

i j=1
n

Vg = Z(X, eiye; = x7,

i=1
and using Lemma 2.1, we have
n
Lig = > (T)ijsij
i,j=1
= trace(T},) + trace(7, B){(x, N)
=m—r)S+ @+ 1)S41{x, N).

From these formulas and (10) of Lemma 3.1, we have (13). ]
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We define an operator L, by

Sr+1
S

L(f)y=L.f— Af. (14)

We have the following proposition:

Proposition 3.4 Let M be an n-dimensional connected, compact without boundary and ori-
ented Riemannian manifold, let M (c) be (n + 1)-dimensional Euclidean space R an
open hemisphere of the unit sphere S"+1 (1) or the hyperbolic space H*'(—1) according to
¢ =0,1o0r—1, respectively. Let x: M — M(c) be an isometric immersion. If S1 and Sy 41
are all positive, then for 1 < j <,

(1) both the operators L j and L j are elliptic;

(2) each jth mean curvature H; is positive.

Proof The ellipticity of L; and the positiveness of H; were proved in [5]. We note for odd
r, the positiveness of S, can not derive the positiveness of H; for I < j < r unless we
choose the unit normal vector field N such that all the principal curvatures of x are positive
at a point p. Hence, we add the condition that S; is positive. Thus, we only need to prove L j
is elliptic. But ij(f) = trace[(T; — S-g—JlrlI)Hess(f)], and S is positive, so it is equivalent
to the positiveness of the eigenvalues of $17; — S;411.

From (1) of Lemma 2.1 and (3), the eigenvalues of $17; — S/ are:

S18;(Bi) — Sj+1 = (S1(B;) + ki)S;j(Bi) — Sj+1 = S1(Bi)S;(Bi) — Sj+1(Bi).

‘We define Hj(Bi)=Sj(Bi)/Cj 1 < j <n—1, then we have

n—1°
S1(B:)S;(Bi) — Sj+1(Bi) = (n — DC!_ Hy(B)H;(B;) — C) T Hyy 1 (By)

From the ellipticity of L; and (1) of Lemma 2.1, H;(B;) > O foreach 1 < j <r, so we
have H\(B;)H;(B;) > H;1(B;) (see [11] and [17]). So we have
S1(B)S;(Bi) — Sj1(By) = ((n — DC)_, — CJT ) H\(B)H;(B)

= jCIT Hy (B H;(Bi) > 0. (15)

Corollary 3.5 Under the same assumptions of Proposition 3.4, we have

r+2)S1S42 — 288,41 < 0. (16)
Proof From (see [11] and [17])
H? — H;_1H;41 >0,

14

and the positiveness of Hy, ..., H,4+1, we have,
H H H,
B H o He
H ~— H Hy 1

So H1H, 47 < HyH,41. Thus, we have
(r +2)S1Sr42 — 282841 = (r + 2nC P Hi Hyp — n(n — DC T HoHyy
((r +2nCr 2 —n(n — HCITYHyH, 4y
= —I’er;+1H2Hr+1
< 0. m|

IA
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4 The area-preserving variational problem

We set foreachr, 0 <r <n,

o = / FrdM, (17)
M
where the functions F; are defined inductively by
Fo=1
Fi =35
cn—r+1) (18)
F,=S,+71F,_2, for 2<r<n-—1.
r—

Clearly <7 e o is the area of M.

Let X: M x (—¢,¢) — M(c) be a variation of x. That is, for each t € (—¢, €), x;(p) =
X(p,t), p € Misanimmersion, xo = x. We denote the unit normal vector field of immersion
x; by N;. Variation X is said to be area-preserving if for any t € (—¢€,€), &/ (t) = .

We consider the variational problem of minimizing <7 keeping the area of M, wherer > 1.
By a standard argument involving Lagrange multipliers, this means that we are considering
critical points of the functional

Jr(t) = (1) + 1 (1). 19)
Let the variational vector field 0 X /9t be decomposed to
X
FY §+ fN, (20)

where £ is tangent to M. then we have the following lemmas (see [5] and [15]):
Lemmad.l S, = L,(f) + (S1Sr+1 — (r +2)S,42) f +c(n —1)S; f + (VS 41, §).
Lemma 4.2 (9/3t)(dM;) = (=S, f + divE)dM,.

Lemma 4.3 /(1) = — [,, S| f(1)dM,.

Lemma 4.4 Ifc =0, then «7)(t) = —(r + 1) [}, Sr1 f()dM,.

Proof 1In this case, we have o7, = fM S,dM, so from Lemmas 4.1, 4.2 and (9), we have the
conclusion. ]

Lemma 4.5 Ifc # 0 and r is even, /(1) = —(r + 1) fM Sy1 f(t)dM;.

Proof We prove Lemma 4.5 inductively. For r = 0, it is Lemma 4.3. Suppose Lemma 4.5 is
true for r — 2, then we have

, , cn—r+1) ,
/(1) = / S,dM; + / S, (@/00 M) + T2 (o)
M M

r—1

= /M(erl(f) =+ DSrp1f + (VS ) + S divE)dM,

. 1)/ Spe1 f(DdM,. 0
M
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From Lemmas 4.4 and 4.5, we immediately get the following variational formula:

Proposition 4.6 (the First Variational Formula) Suppose ¢ = 0, or ¢ # 0 and r is even,
1 <r <n — 1, then for any variation of x, we have

J(t) = —/M{(r+1)sr+1 +AS1}f(HdM,.

From Proposition 4.6 we know, the critical points of the above variational problem are the
immersion x for which

A
S, S1 = ——— = constant.
r+l/ 1 e+ 1

In order to decide if x is or not a local minimum, we restrict ourselves to area-preserving
variations and compute the second derivative of «7.(t) at t = 0. As &/(t) = </, we have
" (0) = J'(0). So we can get the following proposition by a direct calculation using
Lemma 4.1:

Proposition 4.7 (the Second Variational Formula) Let x : M — M (c) be a hypersurface for
which Sy is positive, Sy +1/S1 = constant, where c = 0, orc # Oandr iseven, 1 <r <n—1.
For area-preserving variations, the second derivative of <7, at t = 0 is given by

d
A 0) = —(r + 1)/M§[(r+ DSys1 + 28110 fdM
=+ 1)/ f[er BN f[% — 2842
M Sl Sl

s,
fe(n—r)S, — C"SJ] ]dM.
1

5 Stability of hypersurfaces in M(c)

A variation X of the immersion x is called a normal variation if the variational vector field
is parallel to N. We have the following lemma:

Lemma 5.1 For any function f: M — R that satisfying

/M £S1dM =0, @1

there exists an area-preserving normal variation X of the immersion x such that the varia-
tional vector field is fN.

Proof Let g: M — R be a smooth function such that f u 851dM #~ 0. We consider the two
parameter variation

X, 1) Y exp,{(tf +g)N), (22)

where exp is the exponential map on M (c). Denote the area of M under the induced metric
from immersion X (¢, 7) by &/ (¢, ), and consider the following equation:

&/ (t, 1) = constant. (23)
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From the property of exponential map we have

0X
gh:t’:o = fN, 24
X
ﬁh:t’:o =gN. (25)
Thus, from Lemma 4.4 we have
Bd(t )
—li=i=0 = fSldM =0. (26)
0. (t,1)
Th:f:o = _/ gS1dM # 0. 27
t M

Hence, from implicit function theorem, in a neighborhood of (¢, 7) = (0, 0), we can get a
solution 7 = s5(¢) of Eq.23 satisfies s(0) = 0. Thus we obtain an area-preserving variation

X (@) =exp, {(tf +s()g)N}. (28)
Observe that

0.9/ 0./
s’(0>=—[ L N8, ”]bto— /fsldM// ¢S1dM =0,

we obtain that the variational vector field of X (¢) is
0X (t)

li=o = (f +5"(0)g)N = fN. o

From Lemma 5.1 and Proposition 4.7, the expression of <7/ (0) depends only on the
immersion x and on the function f which can be any function satisfies (21).
So, we fix the following notation:

Ir(f)=—/Mf[L f- ’Tl Af
[2525r+1
N

+f

s,
— r +2)Sy42 +c(n—1)S, — C”S 1 } ]dM. (29)
1

Definition 5.2 We say that a hypersurface x: M — M(c) with $; positive and S,4+1/S1 =
constant is r-stable if I, (f) > 0 for any function f: M — R thatsatisfies (21), where ¢ = 0,
orc#0andriseven, 1 <r <n-—1.

Proposition 5.3 Totally umbilical hypersurfaces of M (c) which are not totally geodesic are
r-stable, where c =0, orc #0andriseven, 1 <r <n — 1.

Proof Let ¥ be a totally umbilical hypersurfaces of M(c), and suppose ¥ is not totally
geodesic. We choose normal vector such the principal curvatures of X are equal to k > 0.
Then we have

S;=Clk/, S;(B)=Cl_K,
and

Lr(f) = Cp_ K" Af.
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Hence, ¥ is a hypersurface with S§; > 0 and S,1/S; is a constant, and from (29) we have
L(f) = —/E [(c;_l — %C,’l“)k’fAf + (%c,’,“c,% — (r +2)C, k2 f2
+c((n—r)Ch — c;“)k’]dM
- _%c;“k’ /E{fAf +n(k® + ) f2}dM

> ﬁc;“k’/{xl a2 + o)) f2dM
n )
=0,

where A stands for the first eigenvalue of the Laplacian A of X. The last equality is because
¥ is isometric to an Euclidean n-sphere with constant curvature k*+c.Henced; =n (k2 +c).
Therefore, X is r-stable. ]

Now we state our main theorems

Theorem 5.4 Let M be an n-dimensional connected, compact without boundary and ori-
ented Riemannian manifold, 1 < r < n — 1. An isometric immersion x: M — RA+1 for
which Sy is positive and Sy11/S\ is a constant is r-stable if and only if M is a sphere and x
is its inclusion as a totally umbilical hypersurface.

Proof From Proposition 5.3, the condition is sufficient. Now we prove that it is also necessary.
By Proposition 3.4, the operator L, is elliptic.
Let [,, xS1dM = C, constant vector in R"*! then

I
S B
S T

satisfies f y £81dM = 0. Because the qualities of (29) are same for x and X, so without loss
of generality, we can assume that

/ xS1dM = 0.

M

Take an orthonormal basis E1, E», ..., E,4+1 of R™*! and define functions fa, g4 by
fa=(N,Ea), ga=({x, Ea). (30)

The hypothesis of r-stability implies that /(g4) > O for each A, 1 < A < n + 1. Hence,
using (29) and Theorem 3.2 in the case ¢ = 0, we obtain

Sra1 285 85r+1
0<1I(ga) = —/ gA[LrgA — T Aga +8A|:7r+ —(r+ 2)5r+2“dM
M Sl Sl
25,8,
= / [ - [% —(r +2)Sr+2]gi - rSr+1ngA]dM. 3D
M

Adding these equations for 1 < A < n + 1 and noting Z’}:;ll (X, EA)(E4, Y)Y =(X,Y), we
conclude that

25,8,
0< / {—rsr+1<x,1v>—( 251’“ —(r+2>sr+2) lx[2}dM
M

_ / [—rSr+1(x,N) - (23255’“ —(r+2)Sr+2) (IxTI2+(x,N)2)]dM~ (32)
M 1
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Notice that S,41/S] is a constant, and using Lemma 3.3, through a direct calculation, we
derive from (13),

S
Tovt — 207 ) BxT T Vdm
+ S
M 1

28,8
- _/ [—rsm <x, N> —( ZS’“ —(r+2)S42) <x, N >2] dM. (33)
M 1

Combining (32) with (33), we get

25,5, S,
0< / [((r £ 2)Sr40 — %) T2+ <(Tr+1 - S*‘ Tl) BxT, xT>] dM. (34)
M 1 1

Letey, ez, ..., e, be orthonormal principal vectors corresponding to the principal curvatures
ki, ko, ..., k, respectively. Then we have by use of (1) of Lemma 2.1 and (3)

25,8 S,
((r +2)S40 — %) T2+ <(Tr+1 - ’S“ Tl) BxT,xT>
1 1

2S25r+l SrJrl
—— 4+ k; S B;) —
s + ki Sy+1(Bi) s,

=D (+2DSr42— ki S1(Bi)} (x, €;)?

i=1

1 n
= 5 2 AT+ 2815042 = 2928041 + K (S41(B) = S1(B)S; (B} (. @) (35)

i=1
But, from (15) and (16),
(r +2)S1Sr42 — 282841 + k7 (Sp41(Bi) — S1(B) Sy (B)) < 0.

From (34) and (35), we must have x7 = 0, this means x = kN for some function k. But
then we have

d|x|* = 2(dx, x) = 2k(dx, N) = 0.
This means |x|? is a constant, i.e. M is a sphere. This completes the proof of Theorem 5.4.0

Remark 5.5 When r = 1, Theorem 5.4 has been proved in [12].

In the case of M is a hypersurface of an open hemisphere of the unit sphere S"*!(1) or the
hyperbolic space H"*+!(—1), we have the following theorem:

Theorem 5.6 Let M be an n-dimensional connected, compact without boundary and ori-
ented Riemannian manifold, let M(c) be an open hemisphere of the unit sphere S"T1(1)
or the hyperbolic space H"T'(—1) according to ¢ = 1 or —1 respectively. Let r be even,
1 <r <n-—1.Anisometric immersion x: M — M(c)for which Sy is positive and S, 1/ 51
is a constant is r-stable if and only if M is a sphere and x is its inclusion as a non totally
geodesic, totally umbilical hypersurface.

Proof From Proposition 5.3, the condition is sufficient. Now we prove that it is also neces-
sary. By Proposition 3.4, the operator L, is elliptic. We consider separately the two cases.

Case 1 Suppose M (c) = open hemisphere of §"11(1) c R*+2.
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Set N = fM NS;dM. Assume N = 0. Take an orthonormal basis Eg, Ej, ..., E, 41 of
R"*2 and define f4, g4 as in (30). The hypothesis of r-stability implies that I (f4) > 0 for
each A,0 < A < n + 1. Hence, using theorem 3.2, we obtain

0< —/ fA|L fa— ’“AfA

258 ns,
+fa [ 2orkl r+2)Si2+m—r)S — ;H :| ]dM
S1 1

Sy
2/ { — 7S 11fa8a — |:(n —7)S — nS+lj|f,§]dM~
M 1

(36)

Adding these equations for all A, using (x, N) = 0 and |N|> = 1, we obtain

0< / [—rSrH(x, N) — [(n —r)S — nS,+1] INIZ] dmM
M S

1
:_/ 51 [(n—r)SlSr—nSr_H]R}dM

/ — [n(n —r)C,H H, —nC}, r+l H,_H]] 37
M

/ — [n(n = CH, 1 - nC;HHrH]] dM
M

/ anr—H
M

So, N cannot be zero. _
Thus, we assume that N # 0. Let Ey, Ey, ..., E,+1 be orthonormal basis of R"*2 quch
that Eg = N/|N|, and define f4 and g4 as in (30). Now we have

/fASldMZO, for 1<A<n+1.
M

For these functions r-stability implies the validity of (36). We may add them from 1 ton + 1
to obtain

n+1 nSy41 n+1
Os/M[—rSmeAgA—[(n—r)S -, }ZfA]
= / {rSr+1fo80 — [(n—r)sr— S’H](l—foz)}dM. (38)
M 1

On the other hand, we have
1 =|Eol* > (Eo. x)* + (Eo. N)* = g§ + fi-
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Therefore, using Theorem 3.2 and the ellipticity of L,, we can get

S,
0=< / [rSr+1ngO - |:(n —r)S, — . r+1]g%]dM
M S
=/ {goirgo}dM
M

S
- —/ <(T, - ’“1) Vgo,Vg0>dM
M S

<0. (39)

Hence all the inequalities must be equalities. In particular, we obtain that Vgo = 0, so go
is a constant. Thus, the image of x is contained in the intersection of a hyperplane and the
sphere S+ (1). Therefore, x (M) is a non-geodesic hypersphere of s,

Case 2 Suppose M (c) = H"t' (1) R'IHZ, where R’f*z is the Lorentz space.
We define ¥ = [, xS1dM. From
n+1
(rx) = —xg + > xj = -1,
A=l

and xo > 0, we have

Hence, from the Minkowski integral formula, we have

2 ntl 2
M A+l VM M

Thus, we have

2 n+1 2 2
(i,f)z—(/ xoSldM) + (/ xASIdM) 5—(/ S]dM) < 0.
M A+l MM M

We choose Ep = x/|x| and complete it into an orthonormal basis of R’I’H. For such a basis,
define f4 and g4 as in (30). It is clear that fM gaS1dM =0for1 < A <n + 1. Thus, for
such g4, r-stability implies:

n+1

2
L+ > x38i1dM =(/ xoSldM) :
M

A=1

Sr41
0=<1I(ga)=—[ gayLrga— Aga
M S

25,8, ns,
+ 24 [% — 4282 — (=18 + §+1] ]dM (40)
1 1

288,11
= / H(V +2)S42 — TH] 8- rSr+1ngA] dMm.
M

Adding these equations for 1 < A < n + 1 and using the fact that

n+1

—fogo+ D faga = (x,N)=0

A=1
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and
n+1
—g+ D gh=(x.x)=—1,
A=1
we conclude that
= [—rSr+1fogo + [% —o+ 2>Sr+2] (1- gé)] . @D

On the other hand, we have

—1 = (Eo, Eo) > —(Eo, x)> + (Eo, N)? = —g& + f2.

Therefore, using Theorem 3.2 and the ellipticity of L,, we can get

25,8,
0 5/ [—rSr+1f0go— [% —(r+2)sr+z] f&]dM
M 1
=/ {fOerO]dM
M

—/ <(T _ Sra 1) v fo, Vf0>dM
M S1

<0. (42)

This implies that fj is constant and — g(z) + fo2 = 1. Hence g is also a constant and the proof
can be concluded as in Case 2. This completes the proof of Theorem 5.6. O
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