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Abstract Poisson fiber bundles are studied. We give sufficient conditions for the existence
of a Dirac structure on the total space of a Poisson fiber bundle endowed with a compatible
connection. We also provide some examples.
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1 Introduction

Several constructions of symplectic forms on the total space of a symplectic fiber bundle
have appeared in the literature, among others, Thurston’s construction (see [10,12]). One
also has the method of coupling forms developed by Guillemin, Lerman and Sternberg (see
[5,6,11]). Moreover in Ref. [7], Gotay, Lashof, Śniatycki and Weinstein gave necessary and
sufficient conditions for the existence of a pre-symplectic form on the total space of a sym-
plectic fiber bundle which restricts to the symplectic structure along its fibers. Symplectic
fiber bundles have been extensively studied in recent years. They have various applications
in gauge theories.

Unlike symplectic fiber bundles, generic Poisson fiber bundles are not well understood.
Although, they were considered by Marsden, Montgomery and Ratiu in connection with the
study of moving systems (see [9]). Based on Cartan’s theory of classical space-times, they
introduced the notion of a Cartan-Hannay-Berry connection, which is an important tool for
the study of moving systems such as the ball in a rotating hoop. Various examples of systems
having the Cartan connection as underlying geometric structure can be found in Ref. [9].
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It turns out that Cartan and Cartan-Hannay-Berry connections give rise to coupling Dirac
structures in the sense of Vaisman [13] (see Sect. 4 below). This suggests that a natural
framework for the study of certain moving systems is the setting of coupling Dirac structures
and, partly, motivates our study of the problem of finding conditions under which the Pois-
son structure along the fibers of a Poisson fiber bundle endowed with a Poisson–Ehresmann
connection can be extended to a (non-vertical) Dirac structure. Our aim is to investigate
that problem. Our main results are Theorems 3.2 and 3.4. In Ref. [3], we give another con-
struction of a coupling structure on the total space of a Poisson fiber bundle extending the
Sternberg–Weinstein phase space of particles in a Yang-Mills field to the setting of coupling
Dirac structures.

Here is an outline of the article. Section 2 provides the tools that will be used to prove the
main results. In Sect. 3, we establish Theorems 3.2 and 3.4. In Sect. 4, we show that Cartan
and Cartan-Hannay-Berry connections induce coupling Dirac structures.

Note: After submitting this work for publication, an interesting paper by Olivier Brahic and
Rui Loja Fernandès appeared Ref. [1]. It addresses some problems closely related to our
work.

2 Basic definitions and results

All manifolds are assumed to be paracompact, Hausdorff, smooth and connected. We also
assume that all maps between manifolds are smooth.

2.1 Poisson fiber bundles

Let (F,VF ) be a finite-dimensional Poisson manifold. A Poisson fiber bundle is a fiber bundle
F → E

π→ B whose structure group preserves the Poisson structure on F . In other words,
there is an open cover (Ui) of B and diffeomorphisms φi : π−1(Ui) → Ui × F satisfying
the properties:

1. The following diagram commutes

π−1(Ui)
φi−→ Ui × F

π ↘ ↙ pr
Ui

2. If b ∈ Ui ∩Uj then the transition map φij (b) = φi(b)◦φj (b)−1 is a Poisson isomorphism
of (F,VF ).

Notice that the Poisson tensor on each fiber Eb is given by Vb = (φi(b))−1∗ VF . It is indepen-
dent of the local trivialization map φi . Consider the vertical sub-bundle

Vert = Ker(T π) ⊂ T E.

There is a vertical Poisson bivector field V ∈ X2
Vert(E) which coincides with the Poisson

structure along the fibers, i.e. (ib)∗Vb = V , where ib : Eb → E is the injection map.

2.2 Ehresmann connections and integrable geometric data

Let E
π→ B be a fiber bundle. An Ehresmann connection on E is a smooth sub-bundle

Hor ⊂ T E such that T E = Hor ⊕ Vert and the following condition is satisfied: given any
smooth path
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c : [0, 1] → B

t 
→ c(t)

from b0 to b1 and for any x0 ∈ π−1(b0), there exists a horizontal lift γ : t 
→ γ (t) in
E starting from x0 with c(t) = π ◦ γ (t). There is an associated bundle projection map
� : T E → Vert, i.e. �2

e = �e for every e ∈ E. One has Hor = ker�.

Definition 2.1 [9] Let π : E → B be a Poisson fiber bundle together with its associated
vertical Poisson bivector field V ∈ X2

Vert(E). An Ehresmann connection � on E is Poisson
if V is preserved by parallel transport. i.e.,

Lhor�(X) V = 0, for all X ∈ X(B),

where hor�(X) is the �-horizontal lift of X.

Definition 2.2 [14] Let π : E → B be a fiber bundle. A triple (V, �, F) formed by a vertical
bivector fieldV ∈ X2

Vert(E), an Ehresmann connection �, and a horizontal 2-form F ∈ �2(E)

is called geometric data. It is said to be integrable if the following properties are satisfied:

• V is a Poisson tensor, i.e. [V,V] = 0.

• � is a Poisson–Ehresmann connection with respect to V .
• The curvature 2-form of � is a Hamiltonian vector field given by:

Curv�(X, Y ) = V�
(
d(F(hor�(X), hor�(Y ))

)
, ∀ X, Y ∈ X(B).

• The 2-form F is horizontally closed.

Remark

(a) Define the operator ∂� : �k(B) ⊗ C∞(E) → �k+1(B) ⊗ C∞(E) by setting

∂�α(X0, . . . , Xk) =
k∑

i=0

(−1)iLhor�(X)(α(X0, . . . , X̂i , . . . , Xk))

+
∑
i<j

(−1)i+j α([Xi,Xj ], X0, . . . , X̂i , . . . , X̂j , . . . , Xk).

The fact that F is horizontally closed can be alternatively expressed by the following
equation (see [14])

∂�F = 0,

where F is the 2-form defined by

F(X, Y ) = F(hor�(X), hor�(Y )). (1)

(b) Let (V, �, F) be integrable geometric data. In general ∂2
� �= 0, but its restriction to

the Casimir valued k-forms, denoted by ∂V : �k(S) ⊗ Casim(E,V) → �k+1(S) ⊗
Casim(E,V), satisfies ∂2

V = 0.
(c) Let (V, �, F) be integrable geometric data on E → B. Every 	 ∈ �1(B)⊗Casim(E,V)

induces new integrable geometric data (V, �, F
′
), where the new horizontal 2-form is

defined by

F
′
(hor�(X), hor�(Y )) = F(hor�(X), hor�(Y )) + (∂�	)(X, Y ),

for any X, Y ∈ X(B). In this case, we say these geometric data are equivalent. This
defines an equivalence relation among the set of all integrable geometric data with a
fixed vertical Poisson structure and a fixed Poisson–Ehresmann connection.

123



210 Ann Glob Anal Geom (2008) 33:207–217

2.3 Coupling Dirac structures

2.3.1 Dirac structures

Let N be a finite-dimensional manifold. Consider the canonical symmetric pairing 〈·, ·〉+ on
the vector bundle T N ⊕ T ∗N defined by

〈(X1, ξ1), (X2, ξ2)〉+ = 1

2

(
ξ1(X2) + ξ2(X1)

)
.

The space of smooth sections of T N ⊕ T ∗N is endowed with a bilinear operation, called
the Courant bracket, which is an extension of the Lie bracket of vector fields to T N ⊕ T ∗N
defined by

[(X1, ξ1), (X2, ξ2)] = ([X1, X2], LX1ξ2 − iX2dξ1),

for all (X1, ξ1), (X2, ξ2) smooth sections of T N ⊕ T ∗N .

Definition 2.3 [2] An almost Dirac structure on a manifold N is a sub-bundle L of T N ⊕
T ∗N → N which is maximally isotropic with respect to the symmetric pairing 〈·, ·〉+. If, in
addition, the space of sections L is closed under the Courant bracket then L is called a Dirac
structure on M .

Basic examples of Dirac structures are regular foliations, Poisson and pre-symplectic
structures (see [2]).

2.3.2 Induced Dirac structures on sub-manifolds

Let L be a Dirac structure on a manifold N,Q a sub-manifold of N . At every point q ∈ Q,
one has a maximal isotropic vector space

(LQ)q = Lq ∩ (TqQ ⊕ T ∗
q N)

Lq ∩ ({0} ⊕ Ann(TqQ))
.

Using the map (LQ)q → TqQ ⊕ T ∗
q Q defined by (u, v) 
→ (u, v|TqQ), one can identify

(LQ)q with a sub-space of TqQ ⊕ T ∗
q Q. Moreover, LQ defines a smooth sub-bundle of

T Q ⊕ T ∗Q if and only if Lq ∩ (TqQ ⊕ T ∗
q N) has constant dimension. The following result

was proved in Ref. [2].

Proposition 2.4 [2] If Lq ∩ (TqQ ⊕ T ∗
q N) has constant dimension then LQ defines a Dirac

structure on Q.

Definition 2.5 A Poisson fiber bundle F → E
π→ B is coherent if there exists a Dirac

structure L on E whose restriction to the fibers coincides with the Poisson structure along
the fibers and such that L ∩ (Vert ⊕ Ann(Vert)) = {0}.

We have the following result:

Proposition 2.6 Every coherent Poisson fiber bundle π : E → B admits a Poisson–
Ehresmann connection.

Proof Suppose F → E
π→ B is a coherent Poisson fiber bundle. Let L be a Dirac structure on

E that coincides with the Poisson structure on the fibers and such thatL∩(Vert⊕Ann(Vert)) =
{0}. Then Lx ∩(Vertx ⊕T ∗

x E) has constant dimension n = dimF . In fact, Lx ∩(Vertx ⊕T ∗
x E)
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is isomorphic to T ∗
x Eπ(x) since the restriction of L to Eπ(x) is the graph of the Poisson bivector

field Vπ(x). Set

Hx(L) = {Yx ∈ TxE | ∃βx ∈ Ann(Vertx) such that (Yx, βx) ∈ Lx}.
We have

Hx(L) ∼= Ann
(
pr2(Lx ∩ (Vertx ⊕ T ∗

x E))
)
.

It follows that

dimHx(L) = dimTxE − dim(T ∗
x Eπ(x)).

Hence

TxE = Vertx ⊕ Hx(L),

for all x ∈ E. This shows that the distribution Hor(L) defined by the sub-spaces Hx(L) ⊂
TxE is normal to the sub-bundle Vert. We will prove that Hor(L) is smooth. Fix a neigh-
borhood U of a point x ∈ E and let (Zi, ηi), (Xj , αj ) be local bases on U for L and
L ∩ (Vert ⊕ T ∗E), respectively. A vector Y tangent to the distribution Hor(L) has the form
Y = ∑

i fiZi with 〈Y, αj 〉 = 0, for all j . The existence of smooth solutions for such a system
of equations implies the smoothness of Hor(L). Consequently, there is an Ehresmann �L

connection associated with Hor(L). The fact that �L is Poisson is an immediate consequence
of the integrability of L, i.e. the sections of L are closed under the Courant bracket. �

Definition 2.7 Suppose the geometric data (V, �, F) defined on the fiber bundle E → B is
integrable. Set

L =
{
(X, iXF) + (V�α, α) | X ∈ Hor�, α ∈ Ann(Hor�)

}
. (2)

Then L is called a coupling Dirac structure.

We refer the reader to Ref. [13] for a more general definition of a coupling Dirac structure
on a foliated manifold. Coupling Dirac structures naturally appeared in Ref. [4] when we
considered the transverse Poisson structure at a pre-symplectic of a Dirac manifold.

Remark 2.8 (a) The Dirac structure L defined in (2) satisfies L ∩ (T E ⊕ {0}) = {0} if and
only if F is non-degenerate. In other words, L is the graph of a Poisson bivector field if
and only if F is non-degenerate.

(b) The distribution D given by the set of all horizontal vector fields X satisfying iXF = 0
is integrable. It defines a foliation F , called the characteristic foliation or the null foliation
of L. Moreover, E/F is a Poisson manifold when L is reducible (see [8]). �

We have the following result:

Theorem 2.9 Let E → B be a fiber bundle. The integrability of geometric data (V, �, F)

is equivalent to the fact that the space of smooth sections of the corresponding sub-bundle
L ⊂ T E ⊕ T ∗E (defined as in Eq. 2) is closed under the Courant bracket.

Proof Consider geometric data (V, �, F) and define its corresponding almost Dirac structure
as in Eq. 2. Set

e
X

=
(

hor�(X), ihor�(X)F

)
and eα = (V�(α), α),

123



212 Ann Glob Anal Geom (2008) 33:207–217

for all X ∈ X(B) and for all α ∈Ann(Hor�). Since

Curv�(X, Y ) = hor�([X, Y ]) − [hor�(X), hor�(Y )],
we get

[e
X
, e

Y
] =

(
hor�([X, Y ]) − Curv�(X, Y ), Lhor�(X)(ihor�(Y )F) − ihor�(Y )d(ihor�(X)F)

)

=
(

hor�([X, Y ]) − Curv�(X, Y ), i[hor�(X),hor�(Y )]F − d(F(hor�(X), hor�(Y )))
)
.

There follows

〈[e
X
, e

Y
], eα〉+ = 1

2

〈
V�

(
d(F(hor�(X), hor�(Y )))

)
− Curv�(X, Y ), α

〉
+,

for any X, Y ∈ X(B) and for any α ∈ Ann(Hor�). Hence

〈[e
X
, e

Y
], eα〉+ = 0, ∀eα ⇐⇒ Curv�(X, Y ) = V�

(
d(F(hor�(X), hor�(Y ))

)
. (3)

Moreover, we have

〈[e
X
, e

Y
], e

Z
〉 = 0 ⇐⇒ dF

(
hor�(X), hor�(Y ), hor�(Z)

)
= 0 (4)

for all X, Y,Z ∈ X(B). We also have

[eα, eβ ] =
(
[V�(α),V�(β)], LV�(α)β − iV�(β)dα

)

=
(
V�(LV�(α)β − iV�(β)dα) + [V,V](α, β, ·), LV�(α)β − iV�(β)dα

)

for all α, β ∈ Ann(Hor�). Therefore, [eα, eβ ] is a smooth section of L if and only if
[V,V](α, β, ·) = 0 for all vertical 1-forms α, β. Since the trivector field [V,V] is verti-
cal this is equivalent to say that all brackets [eα, eβ ] are smooth sections of L if and only
if

[V,V] = 0. (5)

Furthermore, we have

[e
X
, eα] =

(
[hor�(X), V�(α)], Lhor�(X)α − iV�(α)d(ihor�(X)F

)
,

for any X ∈ X(B), α ∈ Ann(Hor�). Using the fact that

[hor�(X),V�(α)] =
(
Lhor�(X) V

)
(α, ·) + V�(Lhor�(X)α),

one gets

〈[e
X
, eα], eβ〉 = 0, ∀α, β ∈ Ann(Hor�) ⇐⇒ Lhor�(X) V = 0. (6)

Relations (3)–(6) show that if L is a Dirac structure then (V, �, F) is integrable. The converse
is true because of (3)–(6) and the fact that
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〈[e
X
, eα], e

Y
〉+ = ihor�(Y )ihor�(X)dα − V�

(
α, d(F(hor�(X), hor�(Y )

)

= −
〈
[hor�(X), hor�(Y )] + V�

(
d(F(hor�(X), hor�(Y ))

)
, α

〉
+

=
〈
Curv�(X, Y ) − V�(d(F(hor�(X), hor�(Y ))), α

〉
+.

This completes the proof of Theorem 2.9. �

3 Dirac extensions of Poisson fiber bundles

In this section, we give constructions of Dirac structures on the total space of certain Poisson
fiber bundles. First, we recall from Ref. [16] the following definition:

Definition 3.1 A classical Yang-Mills-Higgs setup is a triple (G, P, F ) formed by a finite-
dimensional Lie group G, a principal G-bundle P , and a Hamiltonian Poisson G-space F .

3.1 Dirac structures and principal bundles

We have the following result:

Theorem 3.2 Let (G, P, F ) be a classical Yang-Mills-Higgs setup. Then every connection
 on P gives rise to a coupling Dirac structure on the associated bundle E = P ×G F .

Proof Let π
P×F

: P × F → P ×G F denote the canonical projection. Define the vertical
bivector field V on E as follows

V = (π
P×F

)∗VF .

It satisfies [V,V] = 0 since VF is Poisson. Moreover, every connection  on P induces a
connection � on E. The �-horizontal lift of X ∈ X(B) is given by

(hor�(X))([p,m]) = T(p,f )πP×F
(Xp, 0f ), ∀ [p,m] ∈ P ×G F, (7)

where 0f is the zero tangent vector at f ∈ F and Xp ∈ TpP is the -horizontal lift of X at
p. Consequently, one gets

Lhor�(X) V = 0,

for all X ∈ X(B). Recall that the curvature of  is a vertical g-valued 2-form. Moreover, for
all X, Y ∈ X(B), we have

(Curv�(X, Y ))([p, f ]) = T(p,f )πP×F

(
0p, (�F ◦ Curv(Xp, Yp))f

)
, (8)

where �F : g → X(F ) is the infinitesimal action associated to the G-action on F . Let
J : F → g∗ be the momentum map associated with the G-action on F . Now, define the
horizontal 2-form F as follows

(
F(hor�(X), hor�(Y ))

)
([p, f ]) =

〈
J (f ), Curv(Xp, Yp)

〉
, (9)

for all X, Y ∈ X(B), and for all [p, f ] ∈ E. Using Relations (8) and (9) and the fact that the
G-action on F is Hamiltonian, one obtains

Curv�(X, Y ) = V�
(
d(F(hor�(X), hor�(Y ))

)
, for all X, Y ∈ X(B).
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To check that F is horizontally closed, it is enough to notice that if we set

	[p,f ](Âp, Bf ) =
〈
J (f ), p(Ap)

〉
,

for all tangent vectors

(Âp, Bf ) = T(p,f )πP×F
(Ap, Bf )

then we get

F

(
hor�(X), hor�(Y )

)
= d	

(
hor�(X), hor�(Y )

)
,

for all X, Y ∈ X(B). The fact that F is horizontally closed follows from d2	 = 0. We have
constructed integrable geometric data (V, �, F). Finally, we can apply Theorem 2.9 which
gives the result we sought. �

3.2 Fat bundles

Let P → B be a (left) principal G-bundle, g∗ the dual of the Lie algebra of G, and S a sub-set
of g∗. A connection  on P is S-fat [15] if for every µ ∈ S, µ ◦ Curv is non-degenerate.

Proposition 3.3 Let (G, P, F ) be a classical Yang-Mills-Higgs setup. Then every J (F )-fat
connection  on P gives rise to a Poisson structure on the associated bundle E = P ×
GF → B.

The proof of Proposition 3.3 is similar to that of Theorem 3.2. Precisely, one can notice
that the 2-form defined by Eq. 9 is nondegenerate when the given connection  is J (F )-fat
connection. So using Remark 2.8, we conclude that the Dirac structure obtained (as in the
proof of Theorem 3.2) is the graph of a Poisson bivector field on E. �

3.3 Another construction of a Dirac extension of a Poisson fiber bundle

Theorem 3.4 Let (F,VF ) be a compact Poisson manifold whose first Poisson cohomology
group H 1

VF
(F ) vanishes. Let F → E

π→ B be a Poisson fiber bundle. Then every Poisson–
Ehresmann connection on E gives rise to an equivalence class of coupling Dirac structures
on E such that each representative restricts to the Poisson structure on the fibers.

Proof Consider the structure group G =Iso(F,VF ) which consists of all Poisson isomor-
phisms of (F,VF ). The Poisson frame bundle, denoted by P , is the principal G-bundle whose
fiber over b is the set of all Poisson isomorphisms ϕb : (F,VF ) → (Eb,Vb). We can identify E

with P ×GF . The vertical Poisson vector field V (defining the Poisson fiber bundle structure)
can be viewed as the push-forward of VF by the projection map π

P×F
: P × F → P ×G F .

Moreover, every Poisson–Ehresmann connection � on E induces a connection  on P . These
connections are related as in Eq. 7.

Consider the R-linear map J from the Lie algebra of G into C∞(F )/{Casimir functions}
such that J (Z) = g

Z
is the unique function on F (up to Casimir functions) whose Hamil-

tonian vector field equals Z. Notice that the Lie algebra of G coincides with the space of
Hamiltonian vector fields of (F,VF ) because of the hypothesis H 1

VF
(F ) = {0}. Using this

map J and the connection 1-form (p) : TpP → Ham(F,VF), we define a class of 1-forms
� on E as follows: (

�(Y)
)
(e) =

(
J ◦ ((p)(Y 1

p)
)
(f ),
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for every e = [p, f ] ∈ E and for all Y ∈ X(E) defined by

Y ([p, f ]) = T(p,f )πP×F
(Y 1

p, Y 2
f ).

Define the class of horizontal 2-forms

F

(
hor�(X), hor�(Y )

)
= d�

(
hor�(X), hor�(Y )

)
,

which is determined up to elements of the form ∂�	, where 	 ∈ �1(B) ⊗ Casim(F,VF )

and

∂�	
(

hor�(X), hor�(Y )
)

= (∂�	)
(
X, Y

)
,

for X, Y ∈ X(B). By construction, each representative element, also denoted by F, is hor-
izontally closed. Furthermore, by arguments similar to those used in the proof of Theorem
3.2, one gets

Curv�(X, Y ) = V�
(
d(F(hor�(X), hor�(Y ))

)
, for all X, Y ∈ X(B).

There follows Theorem 3.4. �

4 The Cartan-Hannay-Berry connection

In this section, our goal is to show that the notion of a Cartan-Hannay-Berry connection
provides specific examples of coupling Dirac structures. We will use the following lemma.

Lemma 4.1 Let π : F × B → B be a Poisson fiber bundle together with its associated
vertical Poisson bivector field V . Consider an Ehresmann connection � on E such that

�(0, X) = V�(d	(X)), ∀ X ∈ X(B),

for some 	 ∈ �1(B) ⊗ C∞(E). Set

F(X, Y ) = d	(X, Y ) − {	(X),	(Y )}V , ∀ X, Y ∈ X(B).

Then the curvature of � is given by

Curv�(X, Y ) =
(
V�(d(F(X, Y )), 0

)
,

for any X, Y ∈ X(B). Moreover, the associated horizontal 2-form F (defined as in Eq. 1) is
horizontally closed.

The proof of this lemma is straightforward. It is left to the reader. Now, we recall from Ref.
[9] the definition and properties of a Cartan connection. Let S be a Riemannian manifold,
Q the configuration space of a given mechanical system, and B a finite-dimensional space
of embeddings of Q into S. Given a vector field U ∈ X(B) and a point b ∈ B, the tangent
vector Ub ∈ TbB is a map Ub : Q → T S with Ub(q) ∈ Tb(q)S. There is a canonical vector
field Ub ∈ X(Q) associated with Ub. It is defined as follows: let U⊥

b (q) be the orthogonal
projection of Ub(q) to Tb(q)b(Q) then

Ub(q) = (T b)−1(U⊥
b (q)).

The Cartan connection γ0 on the trivial fiber bundle Q × B → B is given by

(γ0(V ,U))(q, b) = (Vb + Ub(q), 0b).
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Consider the Poisson fiber bundle T ∗Q × B → B with typical fiber (T ∗Q,ωcan). Denote
by V ∈ X2

V ert (T
∗Q × B) the vertical Poisson structure determined by the Poisson structure

on the fibers.

Definition 4.2 [9] The induced Cartan connection on E = T ∗Q×B is the map �0 : T E →
Vert defined by

�0(W,U) = (W + XP(U), 0),

where P ∈ �(B) ⊗ C∞(T ∗Q × B) is the 1-form defining the momentum function of U .
Precisely, we have

(P(U))(αq, b) = 〈αq, Ub(q)〉 ∀ αq ∈ T ∗
q Q, ∀ b ∈ B,

and XP(U) is the Hamiltonian vector field of P(U) relative to V . Moreover,

(hor�0
U) = (0, U) + (−XP(U), 0), for every U ∈ X(B).

Let G be a compact Lie group. Given a left action of G on T ∗Q with equivariant momentum
map J : T ∗Q → g∗, we denote by 〈·, ·〉G the averaging operation (see [9]).

Definition 4.3 [9] The Cartan-Hannay-Berry connection on T ∗Q×B is the vertical valued
1-form � defined as follows:

�(W,U) = (W + X〈P(U)〉G, 0),

for any W ∈ X(T ∗Q),U ∈ X(B). In other words, the horizontal lift for U ∈ X(B) is given
by

(hor�U)(αq, b) = (−X〈P(U)〉G(αq, b), U(b)).

Now we are going to define the integrable data associated with the Cartan-Hannay-Berry
connection. We set

F0(U1, U2) = U1 · P(U2) − U2 · P(U1) − P([U1, U2]) − {P(U1),P(U2)}V ,

and

F(U1, U2) = 〈F0(U1, U2)〉G.

for all U1, U2 ∈ X(B). Lemma 4.1 implies that (V, �0, F0) and (V, �, F) are integrable
geometric data on T ∗Q × B. Their associated coupling Dirac structures are defined as in
Eq. 1. In other words, every Cartan (resp. Cartan-Hannay-Berry) connection gives rise to a
coupling Dirac structure. �
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