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Abstract. In this paper we use the real differential geometric definition of a metric (a unimodular
oriented metric) t t∗-bundle of Cortés and the author (Topological-anti-topological fusion equations,
pluriharmonic maps and special Kähler manifolds) to define a map � from the space of metric
(unimodular oriented metric) t t∗-bundles of rank r over a complex manifold M to the space of
pluriharmonic maps from M to GL(r )/O(p, q) (respectively SL(r )/SO(p, q)), where (p, q) is the
signature of the metric. In the sequel the image of the map � is characterized. It follows, that in
signature (r, 0) the image of � is the whole space of pluriharmonic maps. This generalizes a result of
Dubrovin (Comm. Math. Phys. 152 (1992; S539–S564).
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1. Introduction

t t∗-geometry is a geometry, which has its origin in physics. Around 1990 physicists
began to study topological field theories and their moduli spaces, in particular N = 2
supersymmetric field theories. A special geometric structure called topological-
anti-topolgical fusion was found and studied (see for example [2, 5]). A definition
of t t∗-geometry on abstract vector bundles was formulated in [8, 11]. The former
t t∗-geometries are included in this version by choosing TMc respectively T 1,0 M as
the bundle in the abstract version. Mathematically this geometry can be considered
as a generalization of variations of Hodge structures (VHS), as it was done in a
paper of Hertling [8]. From his results follows, that a special Kähler manifold gives
a t t∗-bundle. A definition in terms of real differential geometry was given in [4] and
used to give another proof of this result not using the methods of VHS. A further
interesting class of solutions are harmonic bundles first introduced by Simpson
[15]. These solutions are considered in [8, 12, 14].

A result of Dubrovin [5] associates to every t t∗-geometry with positive definite
metric a pluriharmonic map to GL(r )/O(r ) where r is the dimension of the base-
manifold and vice-versa to every such map a t t∗-geometry. This result was proven
by the author in his ‘Diplomarbeit’ [11] for the case of a t t∗-geometry on an abstract
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vector bundle and is presented here in a more general context. The explicit form of
this map in the special Kähler case, which implies its pluriharmonicity, was given in
[4]. In this context indefinite metrics can occur. This is the motivation to generalize
the above result to the case of t t∗-bundles carrying indefinite metrics. In [14] we
applied the above result to harmonic bundles with hermitian metric of arbitrary
signature and obtained a generalization of the correspondence between harmonic
bundles over a compact Kähler manifold X of complex dimension n and harmonic
maps from X to GL(n, C)/U(n).

May we illustrate now the main results: In Theorem 2 we show, that a metric
t t∗-bundle with a metric of signature (p, q) over a complex manifold (M, J ) gives
rise to a pluriharmonic map f from M to GL(r )/O(p, q) being admissible in the
following sense

DEFINITION 1. Let (M, J ) be a complex manifold and G/K a locally
Riemannian symmetric space with associated Cartan decomposition g = p ⊕ k.

A map f : (M, J ) → G/K is said to be admissible, if the linear extension of its
differential maps T 1,0

x M (respectively T 0,1
x M) to an Abelian subspace of pc for all

x ∈ M.

Conversely, an admissible pluriharmonic map f from M to GL(r )/O(p, q) gives
rise to a metric t t∗-bundle as is shown in Theorem 3. In other words we could say,
that our construction defines a map � from the space of metric t t∗-bundles of rank
r over a complex manifold (M, J ) to the space of pluriharmonic maps from M
to GL(r )/O(p, q). The image of the map � is characterized to be the admissible
pluriharmonic maps from M to GL(r )/O(p, q). The case of a metric t t∗-bundle
of rank r with metric of signature (r, 0) follows from this theorem, since in this
case the pluriharmonic are shown to be admissible using a result of Sampson [10].
It remains the question, if all these pluriharmonic maps are admissible or if there
are some counterexamples, which we do not know yet. The described results are
also proven for unimodular-oriented metric t t∗-bundles. Here the target space of
the pluriharmonic maps is SL(r )/SO(p, q).

We hope this approach enables a broader readership to understand this re-
sult relating physical/algebro-geometrical objects with well-known differential-
geometric objects.

2. tt*-Bundles

For the convenience of the reader we recall the definition of a t t∗-bundle given in
[4]:

DEFINITION 2. A tt*-bundle (E, D, S) over a complex manifold (M, J ) is a
real vector bundle E → M endowed with a connection D and a section S ∈
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�(T ∗M ⊗ End E) satisfying the tt*-equation

Rθ = 0 for all θ ∈ R, (2.1)

where Rθ is the curvature tensor of the connection Dθ defined by

Dθ
X := DX + cos(θ )SX + sin(θ )SJ X for all X ∈ T M. (2.2)

A metric tt*-bundle (E, D, S, g) is a tt*-bundle (E, D, S) endowed with a possibly
indefinite D-parallel fiber metric g such that S is g-symmetric, i.e. for all p ∈ M

g(SX Y, Z ) = g(Y, SX Z ) for all X, Y, Z ∈ Tp M. (2.3)

A unimodular metric tt*-bundle (E, D, S, g) is a metric tt*-bundle (E, D, S, g)
such that tr SX = 0 for all X ∈ T M . An oriented unimodular metric tt*-bundle
(E, D, S, g, or ) is a unimodular metric tt∗-bundle endowed with an orientation or
of the bundle E .

In the case of moduli spaces of topological quantum field theories [2, 5] and
the moduli spaces of singularities [8], the complexified t t∗-bundle EC is identified
with T 1,0 M and the metric g is positive definite. The case E = T M and, hence,
EC = T 1,0 M + T 0,1 M includes special complex and special Kähler manifolds, as
was proven in [4] and follows from [8].

Remark 1. (1) If (E, D, S) is a tt*-bundle then (E, D, Sθ ) is a t t∗-bundle for
all θ ∈ R, where

Sθ := Dθ − D = (cos θ )S + (sin θ )SJ . (2.4)

The same remark applies to metric t t∗-bundles.
(2) Notice that an oriented unimodular metric t t∗-bundle (E, D, S, g, or ) carries

a canonical metric volume element ν ∈ �(∧r E∗), r = rk E , determined by g and
or , which is Dθ parallel for all θ ∈ R.

The following proposition characterizes t t∗-bundles (E, D, S) in the form of
explicit equations for D and S. These equations are important in the later calcula-
tions

PROPOSITION 1. Let E be a real vector bundle over a complex manifold (M, J )
endowed with a connection D and a section S ∈ �(T ∗M ⊗ End E).

Then (E, D, S) is a tt*-bundle if and only if D and S satisfy the following
equations:

RD + S ∧ S = 0, S ∧ S is of type (1,1), d D S = 0 and d D SJ = 0. (2.5)
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Proof. As the attentive reader may observe, it is easier to show this proposition
after complexifying T M. But since one idea of the paper was to formulate these
results in real differential geometry, we give a real version of the proof.

To prove the proposition, we have to compute the curvature of Dθ .

Let X, Y ∈ �(T M) arbitrary:

Rθ
X,Y = RD

X,Y + [DX , cos(θ )SY + sin(θ )SJY ] + [cos(θ )SX + sin(θ )SJ X , DY ] +
+ [cos(θ )SX + sin(θ )SJ X , cos(θ )SY + sin(θ )SJY ] −
− cos(θ )S[X,Y ] − sin(θ )SJ [X,Y ]

= RD
X,Y + sin2(θ )[SJ X , SJY ] + cos2(θ )[SX , SY ] + cos(θ ) sin(θ ) ×

× ([SX , SJY ] + [SJ X , SY ]) + cos(θ )
(
[DX , SY ] + [SX , DY ] − S[X,Y ]

) +
+ sin(θ )

(
[SJ X , DY ] + [DX , SJY ] − SJ [X,Y ]

)
.

We now recall the Fourier expansion of

cos2(θ ) = 1
2 + 1

2 cos(2θ ) and sin2(θ ) = 1
2 − 1

2 cos(2θ )

to find

Rθ
X,Y = RD

X,Y + 1
2

(
[SX , SY ] + [SJ X , SJY ]

) +
+ cos(θ )

(
[DX , SY ] + [SX , DY ] − S[X,Y ]

) +
+ sin(θ )

(
[SJ X , DY ] + [DX , SJY ] − SJ [X,Y ]

) +
+ 1

2 cos(2θ )([SX , SY ] − [SJ X , SJY ]) +
+ 1

2 sin(2θ )([SX , SJY ] + [SJ X , SY ]).

Taking Fourier coefficients yields

0 = RD
X,Y + 1

2 ([SX , SY ] + [SJ X , SJY ]),

0 = [SX , SY ] − [SJ X , SJY ], 0 = [SX , SJY ] + [SJ X , SY ],

0 = [DX , SY ] + [SX , DY ] − S[X,Y ], 0 = [SJ X , DY ] + [DX , SJY ] − SJ [X,Y ]

and equivalently

RD
X,Y + [SX , SY ] = 0, S ∧ S(X, Y ) = [SX , SY ] = [SJ X , SJY ],

d D S = 0 and d D SJ = 0.

3. Pluriharmonic Maps

In this section we recall the notion of pluriharmonic maps and explain some
properties of pluriharmonic maps to S(p, q) := GL(r )/O(p, q) where O(p, q)
is the pseudo-orthogonal group of signature (p, q) respectively S1(p, q) :=
SL(r )/SO(p, q), which are needed later to prove the main theorem.
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In order to uniform the formulation of the paper we introduce the following
notions:

G0(r ) = GL(r ), G1(r ) = SL(r ), g0 = gl(r ), g1 = sl(r ),

K0(p, q) = O(p, q), K1(p, q) = SO(p, q), k0 = k1 = so(p, q),

S0(p, q) = S(p, q).

These objects are also written with an index i ∈ {0; 1}.

DEFINITION 3. Let (M, J ) be a complex manifold and (N , h) a pseudo-
Riemannian manifold with Levi-Civita connection ∇h , D a connection on M which
satisfies

DJY X = J DY X (3.1)

for all vector fields which satisfyLX J = 0 (i.e. for which X − i J X is holomorphic)
and ∇ the connection on T ∗M ⊗ f ∗T N which is induced by D and ∇h .

A map f : M → N is pluriharmonic if and only if it satisfies the equation

∇′′∂ f = 0, (3.2)

where ∂ f = d f 1,0 ∈ �(
∧1,0 T ∗M ⊗C (T N )C) is the (1, 0)-component of dc f and

∇′′ is the (0, 1)-component of ∇ = ∇′ + ∇′′.
Equivalently one regards α = ∇dφ ∈ �(T ∗M ⊗ T ∗M ⊗ φ∗T N ).
Then φ is pluriharmonic if and only if

α(X, Y ) + α(J X, JY ) = 0

for all X, Y ∈ T M.

Remark 2. (1) Note that f is pluriharmonic iff f restricted to every holomorphic
curve is harmonic. In fact, this gives a definition of pluriharmonic maps, which is
independent of the chosen connections. For a short discussion of this, the reader is
referred to [4].

(2) Any complex manifold (M, J ) admits a torsion free complex connection D
(complex means D J = 0) and consequently a connection satisfying (3.1). In the
rest of the paper, we therefore suppose, that the connection on (M, J ) is also torsion
free.

Let Symi
p,q(Rr ) be the symmetric r × r matrices in Gi (r ) of signature (p, q).

These define pseudo-scalar products of same signature by 〈·, ·〉A = 〈A·, ·〉Rr ,

where 〈·, ·〉Rr is the Euclidean scalar product. The natural action of an element
g ∈ Gi (r ) is given by 〈g−1·, g−1·〉A = 〈(g−1)t Ag−1·, ·〉Rr . This gives us an action of
Gi (r ) A �→ (g−1)t Ag−1 on Symi

p,q(Rr ) which we use to identify Symi
p,q(Rr ) with

Si (p, q) in the following
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PROPOSITION 2. Let � i be the canonical map � i : Si (p, q)→̃Symi
p,q(Rr ) ⊂

Gi (r ) where Gi (r ) carries the pseudo-Riemannian Ad-invariant trace-form. Then
� i is a totally-geodesic immersion and a map f from a complex manifold (M, J )
to Si (p, q) is pluriharmonic, iff the map � i ◦ f : M → Gi (r ) is pluriharmonic.

Proof. The proof is done by expressing the map � i in terms of the well-known
Cartan immersion. For further information see for example [3, 6, 7, 9].

(1) First we study the identification Si (p, q)→̃Symi
p,q(Rr ). By Sylvesters theorem

Gi (r ) operates on Symi
p,q(Rr ) via

Gi (r ) × Symi
p,q(Rr ) → Symi

p,q(Rr ), (g, B) �→ g · B := (g−1)t Bg−1.

The stabilisator of the point Ip,q = diag(Ip, −Iq) is Ki (p, q) and the above
action is transitive by Sylvesters theorem. Therefore, by the orbit stabilizer
theorem (compare Gallot, Hulin, Lafontaine [6] 1.100) we obtain a diffeomor-
phism � i : Si (p, q)→̃Symi

p,q(Rr ), g Ki (p, q) �→ g · Ip,q = (g−1)t Ip,q g−1.

(2) We recall some results about symmetric spaces (see: [3]). Let G be a Lie group
and σ : G → G a group homomorphism with σ 2 = IdG . Let K denote the
subgroup K = Gσ = {g | σ (g) = g}. The Lie algebra g of G decomposes in
g = h ⊕ p with dσI dG (h) = h, dσI dG (p) = −p. And we have the following
information: The map φ: G/K → G with φ: [gK ] �→ gσ (g−1) defines a
totally geodesic immersion called the Cartan immersion.

We want to utilize this:
Therefore we define σ : Gi (r ) → Gi (r ), g �→ (g−1)† where g† = Ip,q gt Ip,q

is the adjoint with respect to the pseudo-scalar product 〈·, ·〉Ip,q = 〈·, Ip,q ·〉Rn .

σ is obviously a homomorphism and an involution with Gi (r )σ = Ki (p, q).
By a direct calculation one gets dσI dG = −h† and hence

h = {h ∈ gl(r ) | h† = −h} = o(p, q) = so(p, q),

p = {h ∈ gl(r ) | h† = h} =: symi (p, q).

Thus we end up with

φ : Si (p, q) → Gi (r ), (3.3)

g �→ gσ (g−1) = gg† = gIp,q gt Ip,q = RIp,q ◦ � i ◦ 
(g). (3.4)

Here Rh is the right multiplication by h and 
 is the map 
: Gi → Gi , h �→
(h−1)t . Both maps are isometries of the invariant metric. Hence, � i is a totally-
geodesic immersion.

(3) Pluriharmonicity is independent of the connection satisfying (3.1) chosen on
M . Therefore, we can take it torsion free (see Remark 2). We calculate the tensor

∇d f (X, Y ) = ∇N
X (d f (Y )) − d f (DX Y ).
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for holomorphic vector fields X, Y . The (1,1) part of the second term vanishes
for holomorphic X, Y, since

DX Y + DJ X JY = DX Y + J DJ X Y = DX Y + J 2 DX Y = 0.

Hence, we have only to regard the Levi-Civita connections on Gi and
Gi/Ki = Si (p, q). Let X, Y ∈ �(T M) holomorphic and calculate:

∇Gi
X d(� i ◦ f )(Y ) = ∇Gi

X d� i (d f (Y )) = ∇Gi
X � i

∗(d f (Y ))

= � i
∗
(∇Gi /Ki

X d f (Y )
) + I I (X, Y )

where I I is the second fundamental form which vanishes, as the immersion
is totally geodesic. This implies with the notation αGi = ∇Gi d(� i ◦ f ) and
αGi /Ki = ∇Gi /Ki d f

αGi (X, Y ) + αGi (J X, JY ) = ∇Gi
X d(� i ◦ f )(Y ) + ∇Gi

J X d(� i ◦ f )(JY )

= � i
∗
(∇Gi /Ki

X d f (Y ) + ∇Gi /Ki

J X d f (JY )
)

= � i
∗
(
αGi /Ki (X, Y ) + αGi /Ki (J X, JY )

)
.

Since � i is an immersion, the left side is zero iff the right is and the proof is
finished.

Remark 3 (compare [4]). Above we have identified Gi (r )/Ki (p, q) with
Symi

p,q(Rr ) via � i .
Let us choose o = eKi (p, q) as base point and suppose that � i is chosen

to map o to I = Ip,q . By construction � i is Gi (r )-equivariant. We identify the
tangent-space TSSymi

p,q(Rr ) at S ∈ Symi
p,q(Rr ) with the (ambient) vector space

of symmetric matrices:

TSSymi
p,q(Rr ) = Symi (Rr ) := {A ∈ gi (r ) | At = A}. (3.5)

For � i (S̃) = S, the tangent space TS̃ Si (p, q) is canonically identified with the
vector space of S-symmetric matrices:

TS̃ Si (p, q) = symi (S) := {A ∈ gi (r ) | AS = S At}. (3.6)

Note that symi (Ip,q) = symi (p, q).

PROPOSITION 3. The differential of ϕi := (� i )−1 at S ∈ Symi
p,q(Rr ) is given

by

Symi (Rr ) � X �→ − 1
2 S−1 X ∈ S−1Symi (Rr ) = symi (S). (3.7)

Using this proposition we relate now the differentials

d fx : Tx M → Symi (Rr ) (3.8)
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of a map f : M → Symi
p,q(Rr ) at x ∈ M and

d f̃ x : Tx M → symi ( f (x)) (3.9)

a map f̃ = ϕ ◦ f : M → Si (p, q): d f̃ x = dϕ d fx = − 1
2 f (x)−1d fx .

One can interpret the 1-form A = −2d f̃ = f −1d f with values in gi (r ) as
connection form on the vector bundle E = M × R

r . We note, that the definition
of A is the pure gauge. This means, that A is gauge-equivalent to A′ = 0, as for
A′ = 0 one has A = f −1 A′ f + f −1d f = f −1d f . The curvature vanishes, since
it is independent of gauge. Thus we get:

PROPOSITION 4. Let f : M → Gi (r ) be a C∞-mapping and A :=
f −1d f : T M → gi (r ). Then the curvature of A vanishes, i.e. for X, Y ∈ �(T M)

Y (AX ) − X (AY ) = A[X,Y ] − [AX , AY ]. (3.10)

In the next proposition we give the equations for pluriharmonic maps from a
complex manifold to Gi (r ).

PROPOSITION 5. Let (M, J ) be a complex manifold, f : M → Gi (r ) a C∞-map
and A defined as in Proposition 4.

The pluriharmonicity of f is equivalent to the equation

Y (AX ) + 1
2 [AY , AX ] + JY (AJ X ) + 1

2 [AJY , AJ X ] = 0, (3.11)

for holomorphic X, Y ∈ �(T M).
Proof. Again, pluriharmonicity of f does not depend on the connection satis-

fying (3.1) on M . Hence, the (1,1)-part of the second term of ∇d f (X, Y ) vanishes
for holomorphic X, Y , as in the proof of Proposition 2. Therefore, we only have to
regard the pulled-back Levi-Civita connection ∇ on Gi (r ).

Let X, Y ∈ �(T M). To find these equations we write d f (X ) and d f (Y ) that are
sections in f ∗T Gi (r ), as linear combination of left invariant vector fields f ∗ Ẽ i j =
Ẽ i j ◦ f , with Ẽ i j (g) = gEi j , ∀g ∈ Gi (r ) and a basis Ei j , i, j = 1 . . . r of gi (r ).

In this notation we have

d f (X ) =
∑

i j

ai j Ẽ i j ◦ f =
∑

i j

ai j f Ei j

and

d f (Y ) =
∑

i j

bi j Ẽ i j ◦ f =
∑

i j

bi j f Ei j ,

with functions ai j and bi j on M and further

AX = f −1d f (X ) =
∑

i j

ai j Ei j and AY = f −1d f (Y ) =
∑

i j

bi j Ei j .
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With this information we compute

( f ∗∇)Y d f (X ) = ( f ∗∇)Y

∑

i, j

ai j Ẽ i j ◦ f

=
∑

i j

Y (ai j )Ẽi j ◦ f +
∑

i j

ai j ( f ∗∇)Y Ẽ i j ◦ f

=
∑

i j

Y (ai j )Ẽ i j ◦ f +
∑

i j

ai j∇d f (Y ) Ẽ i j ◦ f

=
∑

i j

Y (ai j ) f Ei j +
∑

abi j

ai j bab
(∇Ẽab

Ẽ i j
) ◦ f

︸ ︷︷ ︸
1
2 f [Eab,Ei j ]

= f (Y (AX ) + 1
2 [AY , AX ]).

Therefore the pluriharmonicity is equivalent to the equation

Y (AX ) + 1
2 [AY , AX ] + JY (AJ X ) + 1

2 [AJY , AJ X ] = 0

for holomorphic X, Y.

Suppose that N is a locally Riemannian symmetric space with universal cover
G/K with noncompact semi-simple Lie group G, maximal compact subgroup K
and associated Cartan decomposition g = h ⊕ p. In each point one identifies the
tangent space of N with p. This is unique up to right action of K and left action
of the fundamental group. All relevant structures are preserved by these actions.
Therefore, given a f : M → N , we can regard d fx (T 1,0

x M), x ∈ M as a subspace
of pc. For the ‘complexified’ sectional curvature of N holds using the Killing form
b

b(R(X, Y )Ȳ , X̄ ) = −b([X, Y ], [Ȳ , X̄ ]) � 0. (3.12)

It is a well-known result of Sampson [10], that a harmonic map of a compact com-
plex manifold to a locally symmetric space of noncompact type is pluriharmonic
and that its differential sends T 1,0 M to an Abelian subspace of pc. The second
claim, that the image of T 1,0 M under the differential of a pluriharmonic map is
Abelian is true on noncompact manifolds, too. To illustrate this, we are going to
prove, that pluriharmonicity implies this property.

THEOREM 1 (compare [10]). Let (M, J ) be a complex manifold and N = G/K
be a locally Riemannian symmetric space as above.

Then the complex linear extended differential of a pluriharmonic map f : M →
N maps for all x ∈ M T 1,0

x M (respectively T 0,1
x M) to an Abelian subspace of pc.

On T M the differential of a pluriharmonic map f : M → N obeys the equation

[d fx (X ), d fx (Y )] = [d fx (J X ), d fx (JY )]

with X, Y ∈ Tx M, x ∈ M.
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Proof. The strategy is to show the vanishing of the curvature.
Let X, Y, Z , W ∈ �(T 1,0 M) be holomorphic

RN ( f∗ X, f∗Y ) f∗ Z̄ = R f ∗∇N
(X, Y ) f∗ Z̄

= ( f ∗∇N )X ( f ∗∇N )Y f∗ Z̄ − ( f ∗∇N )Y
(

f ∗∇N
X

)
f∗ Z̄ −

− ( f ∗∇N )[X,Y ] f∗ Z̄

We remark now, that the pluriharmonic equation for holomorphic vector fields de-
pends not on the connection chosen on the manifold M. Hence, it reduces to the
equation ( f ∗∇N )X f∗Ȳ = 0, which implies RN ( f∗ X, f∗Y ) f∗ Z̄ = 0. From Equa-
tion (3.12) we get b([ f∗ X, f∗Y ], [ f∗ Z̄ , f∗W̄ ]) = 0 and in the end [ f∗ X, f∗Y ] = 0
for all X, Y.

Let Z , W ∈ �(T 1,0 M) be of the form Z = X − i J X and W = Y − i JY
with X, Y ∈ �(T M) and compute [ f∗Z , f∗W ] = [ f∗ X, f∗Y ] − [ f∗ J X, f∗ JY ] −
i([ f∗ X, f∗ JY ] + [ f∗ J X, f∗Y ]). Hence, we conclude that [d f (X ), d f (Y )] =
[d f (J X ), d f (JY )].

COROLLARY 1. Let (M, J ) be a complex manifold, f : M → Symi
r,0(Rr )

ι
↪→

Gi (r ) a pluriharmonic map induced by a pluriharmonic map to Gi (r )/Ki (r ) and
A defined as in Proposition 3. If f is a pluriharmonic map, then the operators A
satisfy for all X, Y ∈ Tx M, with x ∈ M, the equation [AX , AY ] = [AJ X , AJY ].

Proof. First, we apply Theorem 1 to A = −2d f̃ : M → G1 = SL(r ). This
yields the corollary for G1 = SL(r ).

For S0(p, q) = S(p, q) we have the de Rham decomposition S(p, q) = R ×
S1(p, q), where R corresponds to the connected central subgroup R

>0 = {λId | λ >

0} ⊂ G0 = GL(r ). Hence we have the decomposition of gl(r ) = R ⊕ sl(r ),
where the R-factor is central. Therefore, we are in the situation to apply the result
for G1.

Remark 4. Since the trace form on SL(r ) is a multiple of the Killing-form and on
GL(r ) it corresponds to the metric on the decomposition S(p, q) = R × S1(p, q),
we can choose the trace form as metric and obtain the same result as in Theorem 1
and Corollary 1.

4. t t∗-Geometry and Pluriharmonic Maps

In this section we are going to state and prove the main results. Like in Section 3
one regards the mapping A = f −1d f as a map A: T M → gi (r ).

We now suppose, that the complex manifold (M, J ) is simply connected. Using
the same considerations as in [11] the main theorems, Theorems 2 and 3, can
be extended to nonsimply connected manifolds by pulling back the metric t t∗-
bundles to the universal cover of M . Accordingly, the pluriharmonic maps have to
be replaced by twisted pluriharmonic maps.
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THEOREM 2. Let (M, J ) be a simply-connected complex manifold. Let
(E, D, S, g[, or ]) be a metric [a unimodular-oriented metric] tt∗-bundle where
E has rank r and M dimension n.

Then the representation of the metric g in a Dθ -flat frame of

E f : M → Symi
p,q(Rr )

induces an admissible pluriharmonic map f̃ : M
f→ Symi

p,q(Rr )→̃Si (p, q), where
Si (p, q) carries the metric induced by the biinvariant pseudo-Riemannian trace-
form on gi (r ).

Let s ′ be another Dθ -flat frame. Then s ′ = s · U for a constant matrix and the
pluriharmonic map associated to S′ is f ′ = U t f U.

Remark 5 (see also [4]). Before proving the theorem we make some remarks on
the condition on d f̃ .Let x ∈ M and f̃ (x) = uo. If d f̃ (T 1,0

x M) consist of commuting
matrices, then dL−1

u d f̃ (T 1,0
x M) is commutative, too. This follows from the fact,

that

dLu: ToSi (p, q) → TuoSi (p, q) = T f̃ (x)S
i (p, q)

equals

Adu : symi (p, q) = symi (Ip,q) → symi (u · Ip,q) = symi f̃ (x),

which preserves the Lie bracket.

Proof. Using Remark 1.1 it suffices to prove the case θ = π.

We first consider a metric t t∗-bundle (E, D, S, g).
Let s := (s1, . . . , sr ) be a Dπ -flat frame of E (i.e. Ds = Ss), f the matrix

g(sk, sl) and further Ss the matrix-valued 1-form representing S in the frame s. For
X ∈ �(T M) we get:

X ( f ) = Xg(s, s) = g(DX s, s) + g(s, DX s)

= g(SX s, s) + g(s, SX s)

= 2g(SX s, s) = 2 f · Ss(X ) = 2 f · Ss
X .

Consequently AX = 2Ss
X . We now prove the pluriharmonicity using

d D S(X, Y ) = DX (SY ) − DY (SX ) − S[X,Y ] = 0, (4.1)

d D SJ (X, Y ) = DX (SJY ) − DY (SJ X ) − SJ [X,Y ] = 0. (4.2)

The Equation (4.2) implies

0 = d D SJ (J X, Y ) = DJ X (SJY ) + DY (SX )︸ ︷︷ ︸
(4.1)= DX (SY )−S[X,Y ]

−SJ [J X,Y ]

= DJ X (SJY ) + DX (SY ) − S[X,Y ] − SJ [J X,Y ].
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In local holomorphic coordinate fields X, Y on M we get in the frame s

J X
(
Ss

JY

) + X
(
Ss

Y

) + [
Ss

X , Ss
Y

] + [
Ss

J X , Ss
JY

] = 0.

Now A = 2Ss gives Equation (3.11) and proves the pluriharmonicity of f.
Using AX = 2Ss

X = −2d f̃ (X ), we find the property of the differential, as S ∧ S
is of type (1,1) using the t t∗-equations, see Proposition 1.

The last statement is obvious.
In the case of an oriented unimodular metric t t∗-bundle (E, D, S, g, or ) we

can take the frame s to be oriented and of volume 1, with respect to the canonical
Dθ -parallel-metric volume ν. Therefore the map f takes values in Sym1

p,q(Rr ) and
the above arguments show the rest.

THEOREM 3. Let (M, J ) be a simply-connected complex manifold and put
E = M × R

r .

Then a pluriharmonic map f̃ : M → Si (p, q) gives rise to a pluriharmonic map

f : M
f̃→ Si (p, q)→̃Symi

p,q(Rr )
ι

↪→ Gi (r ).
If f̃ is admissible, then the map f induces a metric tt∗−bundle [a unimodular-

oriented metric tt∗-bundle] (E, D = ∂ + S, S = −d f̃ , g = 〈 f ·, ·〉Rr [, or ]) on M
where ∂ is the canonical flat connection on E and or is the canonical orientation
on E .

Remark 6. We observe, that for Riemannian surfaces M = � the condition on
the differential holds, since T 1,0� is one-dimensional.

Proof. Let f̃ : M → Si (p, q) be a pluriharmonic map. Then, by Proposition 3
we know, that f : M→̃Symi

p,q(R)
ι

↪→ Gi (r ) is pluriharmonic.
Since E = M × R

r , we can regard sections of E as r -tuples of C∞(M, R)-
functions.

In the spirit of Section 3 we regard the one form A = −2d f̃ = f −1d f with
values in gi (r ) as a connection on E . We recall that the curvature of this connection
vanishes (Proposition 4).

(a) First, we check the conditions on the metric:

LEMMA 1. The connection D is compatible with the metric g and S is
symmetric with respect to g.

Proof. This is a direct computation with X ∈ �(T M) and v, w ∈ �(E)
using the relations (∗)S = 1

2 f −1d f , (∗∗), d fx : Tx M → T f (x)Symi
p,q(Rr ) =

Symi (Rr ) (compare Remark 3) and g = 〈 f ·, ·〉Rr = 〈·, f ·〉Rr which follows
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from f : M → Symi
p,q(Rr ):

X (g(v, w)) = X (〈 f v, w〉Rr ) = 〈X ( f )v, w〉Rr + 〈 f (∂Xv), w〉Rr +
+ 〈 f v, ∂Xw〉Rr

(∗∗)= 1
2〈X ( f )v, w〉Rr + 1

2〈v, X ( f )w〉Rr + 〈 f (∂Xv), w〉Rr +
+ 〈 f v, ∂Xw〉Rr

= 1
2〈 f · f −1(X ( f ))v, w〉Rr + 1

2〈v, f · f −1(X ( f ))w〉Rr +
+ 〈 f ∂Xv, w〉Rr + 〈 f v, ∂Xw〉Rr

(∗),(∗∗)= g(X.v + SXv, w) + g(v, X.w + SXw) = g(DXv, w) +
+ g(v, DXw).

For x ∈ M d f̃ x takes, by Remark 3, values in symi ( f (x)). This shows that
S = −d f̃ is symmetric with respect to g = 〈 f ·, ·〉Rr .

To finish the proof, we have to check the t t∗-equations. The second t t∗-equation

[SX , SY ] = [SJ X , SJY ] (4.3)

for S follows from the assumption that the image of T 1,0 M under dc f̃ is Abelian.
In fact, this is equivalent to [d f̃ (J X ), d f̃ (JY )] = [d f̃ (X ), d f̃ (Y )] ∀X, Y ∈
TM.

d D S(X, Y ) = [DX , SY ] − [DY , SX ] − S[X,Y ]

= ∂X (SY ) − ∂Y (SX ) + 2[SX , SY ] − S[X,Y ] = 0

is equivalent to the vanishing of the curvature of A = 2S interpreted as a
connection on E (see Proposition 4).

Finally one has for holomorphic coordinate fields X, Y ∈ �(T M)

d D SJ (J X, Y ) = [DJ X , SJY ] + [DY , SX ]

= [∂J X + SJ X , SJY ] + [∂Y + SY , SX ]

= ∂J X (SJY ) + ∂Y (SX ) + [SJ X , SJY ] − [SX , SY ]
(4.3)= 1

2 (∂J X (AJY ) + ∂Y (AX ))
(3.10)= 1

2 (∂J X (AJY ) + ∂X (AY ) + [AX , AY ])

(4.3)= 1
2 (∂J X (AJY ) + ∂X (AY ) + 1

2 [AX , AY ] + 1

2
[AJ X , AJY ])

(3.11)= 0.

This shows the vanishing of the tensor d D SJ .
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It remains to show the curvature equation for D. We observe, that D + S =
∂ + A and that A is flat, to find

0 = RD+S
X,Y = RD

X,Y + d D S(X, Y ) + [SX , SY ]
d D S=0= RD

X,Y + [SX , SY ].

(b) With the same proof as in part (a) we get a metric t t∗-bundle. The orientation
is given by the orientation of E = M × R

r .

It remains to check the condition on the trace of S. This property is clear,
since in this case d f̃ x takes values in sym1( f (x)) for all x ∈ M .

We want to emphasize the last result in the positive definite case:

THEOREM 4. Let (M, J ) be a simply-connected complex manifold and put
E = M ×R

r . Then a pluriharmonic map f̃ : M → Si (r, 0) is admissible. Moreover,
it induces a second pluriharmonic map f : M

f̃→ Si (r, 0)→̃Symi
r,0(Rr )

ι
↪→ Gi (r )

and a metric tt∗-bundle (E, D = ∂ + S, S = −d f̃ , g = 〈 f ·, ·〉Rr [, or ]) on M
where ∂ is the canonical flat connection on E and or is the canonical orientation
of E.

Proof. In the case of signature (r, 0) Corollary 1 implies that for all x ∈ M the
image of d f̃ x is Abelian and the differential of any pluriharmonic map f̃ : M →
S(r, 0) is admissiable as required in Theorem 3.

In the situation of Theorem 3 the two constructions are inverse in the following
sense:

PROPOSITION 6.

(1) Let (E, D, S, g [, or ]) be a metric [a unimodular-oriented metric] tt∗-bundle
on a complex manifold (M, J ) and let f̃ be the associated pluriharmonic map
constructed to a Dθ -flat frame s in Theorem 2. Then f̃ is admissible and the met-
ric [unimodular-oriented metric] tt∗-bundle (M × R

r , D̃ = ∂ + S̃, S̃, g̃, [or ])
associated to f̃ in Theorem 4 is the representation of (E, D, S, g [, or ]) in the
frame s.

(2) Given a pluriharmonic map f̃ from a complex manifold (M, J ) to Si (p, q),
then one obtains via Theorem 3 a metric [a unimodular-oriented metric] tt∗-
bundle (M × R

r , D, S, g [, or ]). The pluriharmonic map associated to this
metric tt∗-bundle is conjugated to the map f̃ by a constant matrix in Gi (r ).

Proof. Using again Remark 1.1 we can set θ = π.

(1) The maps f, f̃ and the metric g̃ = 〈 f ·, ·〉Rr express the metric g in the frame
s. In the computations of Theorem 2 and with Theorem 3 one finds 2S̃ = A =
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f −1d f = 2Ss . From 0 = Dπs = Ds − Ss we obtain that the connection D in
the frame s is just ∂ + Ss = ∂ + A

2 = ∂ + S̃ = D̃.

(2) To find the pluriharmonic map associated to (M × R
r , D, S, g [, or ]) we have

to express the metric g in a Dπ -flat frame s. But Dπ = ∂ + A
2 − A

2 = ∂. Hence
we can take s as the standard-basis of R

r and we get f. Every other basis gives
a conjugated result.
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