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Abstract. This paper is a continuation of Math. Res. Lett. 12 (2005), 493–512. We first construct
special Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on the
cotangent bundle of Sn by looking at the conormal bundle of appropriate submanifolds of Sn . We find
that the condition for the conormal bundle to be special Lagrangian is the same as that discovered by
Harvey–Lawson for submanifolds in R
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We also construct calibrated submanifolds in complete metrics with special holonomy G2 and Spin(7)
discovered by Bryant and Salamon (Duke Math. J. 58 (1989), 829–850) on the total spaces of appro-
priate bundles over self-dual Einstein four manifolds. The submanifolds are constructed as certain
subbundles over immersed surfaces. We show that this construction requires the surface to be minimal
in the associative and Cayley cases, and to be (properly oriented) real isotropic in the coassociative
case. We also make some remarks about using these constructions as a possible local model for the
intersection of compact calibrated submanifolds in a compact manifold with special holonomy.
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1. Introduction

The study of calibrated geometries begun in the paper [19] of Harvey and Law-
son. Calibrated submanifolds (in particular special Lagrangian submanifolds) are
believed to play a crucial role in mirror symmetry [40] and M-theory, and hence
they have recently received much attention. There has been extensive research
done on special Lagrangian submanifolds of C

n , most notably by Joyce but see
also [23] and the many references contained therein. Much less progress has been
made in studying associative, coassociative, and Cayley submanifolds even in flat
space. The earliest explicit nonflat examples of special holonomy metrics were
constructed on vector bundles. These explicit metrics are all cohomogeneity one
examples and are obtained by reducing the conditions for special holonomy to an
exactly solvable ordinary differential equation. Explicit Calabi–Yau metrics were
found on the cotangent bundle of spheres, initially discovered by Eguchi–Hanson
for S2 and Candelas and others for S3, but see Stenzel [39] for the general case.
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Similarly, Calabi discovered hyper-Kähler metrics on the cotangent bundle of the
complex projective space [8] and Bryant and Salamon [7] found explicit examples
of metrics of full holonomy G2 and Spin(7) on the bundles of anti-self-dual 2-forms
and negative chirality spinors over specific four manifolds (see Remark 4.7 for a
note on orientation conventions). These bundles, although noncompact, also serve
as local models for a general metric of special holonomy and they have also re-
ceived a lot of attention from mathematical physicists, who have generalized these
metrics and studied them in detail [2, 9, 10, 15, 16].

In our first paper [21], along with Marianty Ionel, we generalized a bundle
construction of Harvey and Lawson for special Lagrangian submanifolds in C

n

to analogous constructions of coassociative, associative, and Cayley submanifolds
in R

7 and R
8. In this paper, we further generalize this construction to the case of

several explicit, nonflat, noncompact manifolds with complete metrics of special
holonomy which are vector bundles over a compact base. The authors recommend
that readers first consult [21], as many of the calculations, especially in Section 4,
are very similar and are covered in more detail in [21]. In particular, without further
mention, all of our local calculations are done using normal coordinates.

In Section 2, we briefly review the relevant facts from calibrated geometry that
we will use, and set up some notation. In particular, it should be noted that in Propo-
sitions 2.3 and 2.5 we present alternative characterizations of the associative and
Cayley conditions. These characterizations are entirely in terms of the calibrating
forms and the associated cross-products and metrics (which are all derivable from
the forms). This is similar to the special Lagrangian and coassociative conditions.
In [21] our proofs in the associative and Cayley cases relied on a choice of identifi-
cation of the tangent spaces with octonions or purely imaginary octonions and was
perhaps not as satisfying. At least the invariant description of the Cayley condition
seems not to have appeared in the literature before.

In Section 3, we describe the Stenzel Calabi–Yau metrics on T ∗(Sn) and show
that the conormal bundle over an immersed submanifold X in Sn is special La-
grangian with respect to some phase (which depends on the codimension of X in
Sn) if and only if X is austere in Sn . This is the same result as Harvey and Lawson
found [19] for C

n but it is perhaps surprising, especially since the complex structure
on T ∗(Sn) is obtained in an extremely different way from that of C

n = T ∗(Rn),
namely by identifying it with a complex quadric hypersurface in C

n+1.
In Section 4, we construct coassociative and Cayley submanifolds in ∧2

−(S4)
and ∧2

−(CP
2) by taking vector subbundles over an immersed surface � in the

base. As in [21], the associative construction requires � to be minimal, while
the coassociative case needs � to be (properly oriented) isotropic. (Sometimes
also called superminimal.) In this case, it is perhaps not so surprising that the
results are the same as in the flat case, since the calculations are extremely similar,
differing bascially only by the presence of some conformal scaling factors. This is
entirely due to the fact that these cohomogeneity one metrics have a high degree
of symmetry. We also construct Cayley submanifolds in the negative spinor bundle
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�S (S4) over S4 by taking rank 2 vector bundles over a minimal surface � in S4.
The result is again the same as the flat case of R

8 found in [21], although this time
the calculation is done in a very different way. It should also be noted that in the
case of R

8, we obtained degenerate examples. That is, they were products of lower
order constructions. However, this time in the case of �S (S4) the Cayley examples
are not degenerate.

Finally, in Section 5, we make some remarks about how these constructions
might be used as local models for the intersections of compact calibrated subman-
ifolds of a compact manifold with special holonomy. We hope to expand on this
topic further in a subsequent paper.

Remark. Similar although different statements to some of the results of Section
4 appeared, without proof, in an unpublished preprint by S. H. Wang [42] back
in 2001. As remarked in [21], the original statement appeared in the preprint was
incorrect, but the authors were recently notified by Robert Bryant that a corrected
version of Wang’s paper will appear soon.

2. Review of Calibrated Geometries

In this section, we review the necessary facts about the calibrated geometries that we
study in this paper, and set up notation. Some references are [19, 23, 24]. Calibrated
submanifolds are a distinguished class of submanifolds of a Riemannian manifold
(M, g) which are absolutely volume minimizing in their homology class. Being
minimal is a second order differential condition, but being calibrated is a first order
differential condition.

DEFINITION 2.1. A closed k-form α on M is called a calibration if it satisfies
α(e1, . . . , ek) � 1 for any choice of k orthonormal tangent vectors e1, . . . , ek at
any point p ∈ M . A calibrated subspace of Tp(M) is an oriented k-dimensional
subspace Vp for which α(Vp) = 1. Then a calibrated submanifold L of M is a
k-dimensional oriented submanifold for which each tangent space is a calibrated
subspace. Equivalently, Lk is calibrated if

α|L = volL

where volL is the volume form of L associated to the induced Riemannian metric
from M and the choice of orientation.

Here are the four main examples of calibrated geometries. (More will be said
later about G2 and Spin(7) structures.)

(i) Complex submanifolds L2k (of complex dimension k) of a Kähler manifold
M where the calibration is given by α = ωk/k!, and ω is the Kähler form on M.
Kähler manifolds are characterized by having Riemannian holonomy contained in
U(n), where n is the complex dimension of M. These submanifolds come in all even
real dimensions.
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(ii) Special Lagrangian submanifolds Ln with phase eiθ of a Calabi–Yau man-
ifold M where the calibration is given by Re(eiθ�), where � is the holomorphic
(n, 0) volume form on M. Calabi–Yau manifolds have Riemannian holonomy con-
tained in SU(n). Special Lagrangian submanifolds are always half-dimensional,
but there is an S1 family of these calibrations for each M, corresponding to the
eiθ freedom of choosing �. Note that Calabi–Yau manifolds, being Kähler, also
possess the Kähler calibration.

(iii) Associative submanifolds L3 and coassociative submanifolds L4 of a G2

manifold M7. Here the calibrations are given by the 3-form ϕ and the 4-form ∗ϕ,
respectively, where ϕ is the fundamental 3-form corresponding to the G2-structure.
G2 manifolds have Riemannian holonomy contained in G2. These calibrated sub-
manifolds only come in dimensions 3 and 4.

(iv) Cayley submanifolds L4 of a Spin(7) manifold M8. Here the calibration is
given by the 4-form � which is the fundamental 4-form corresponding to the Spin(7)
structure. Spin(7) manifolds have Riemannian holonomy contained in Spin(7).
These calibrated submanifolds only come in dimension 4.

Remark 2.2. If M4n is a hyper-Kähler manifold, which means its Riemannian
holonomy is contained in Sp(n), then it has an S2 family of Kähler structures and
each one is Calabi–Yau. There is thus a wealth of calibrated submanifolds in the
hyper-Kähler case. Also, a Calabi–Yau manifold M8 of complex dimension 4 is
always a Spin(7) manifold, and thus contains special Lagrangian, complex, and
Cayley submanifolds.

In practice, it is not easy to check if α|L = volL but there are alternative,
equivalent conditions for a submanifold to be calibrated which we now describe.

(i) Complex submanifolds L of a Kähler manifold M are characterized by the
fact that their tangent spaces are invariant under the action of the complex structure
J on M.

(ii) Harvey and Lawson showed in [19] that, up to a possible change of orienta-
tion, L is special Lagrangian of phase eiθ if and only if

ω|L = 0 (1)

and

Im(eiθ�)|L = 0. (2)

Condition (1) say that L is Lagrangian, while (2) is the special condition.
(iii) A Riemannian manifold M7 which possesses a G2 structure has a globally

defined, two-fold vector cross-product

×: T (M) × T (M) → T (M)

(v, w) �→ v × w
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which satisfies

v × w = −w × v × is alternating,

〈v × w, v〉 = 0 ∀v, w (orthogonal to its arguments),
|v × w|2 = |v ∧ w|2 ∀v, w,

where 〈·, ·〉 is the Riemannian metric on M and | · | is its associated norm. The
metric, cross-product, and fundamental 3-form ϕ are related by

ϕ(u, v, w) = 〈u × v, w〉 (3)

from which it follows that

(u × v)� = v�u�ϕ, (4)

where � is the isomorphism from vector fields to 1-forms induced by the Riemannian
metric. It is shown in [19] that a three-dimensional submanifold L3 is associative if
and only if its tangent space is preserved by the cross product ×. Similarly, a four-
dimensional submanifold L4 is coassociative if and only if u × v is a normal vector
for every pair of vectors u, v tangent to L4. There exist vector valued alternating 3-
and 4-forms on M called the associator and coassociator which vanish on associative
and coassociative submanifolds, respectively, but these are difficult to work with
directly as they are related to octonion algebra. In [19] Harvey and Lawson showed
that the coassociative condition is equivalent (up to a change of orientation), to the
vanishing of the 3-form ϕ:

ϕ|L4 = 0. (5)

This reformulation should be compared to (1) and (2).
We now present an alternative characterization of the associative condition. Let

u, v, w be a linearly independent set of tangent vectors at a point p ∈ M . We
want to check when the three-dimensional subspace that they span is an associative
subspace. Now if we have chosen an identification of Tp M with Im O, then we
need to check the vanishing of the associator:

[u, v, w] = u(vw) − (uv)w.

When u and v are imaginary octonions, their product is uv = −〈u, v〉 + u × v, in
terms of the inner product and the cross-product. Thus, we have

[u, v, w] = u(−〈v, w〉 + v × w) − (−〈u, v〉 + u × v)w

= −〈v, w〉u − 〈u, v × w〉 + u × (v × w) +
+〈u, v〉w + 〈u × v, w〉 − (u × v) × w

= 〈u, v〉w − 〈v, w〉u + u × (v × w) − (u × v) × w

where we have used (3) to cancel two of the terms. Now from Lemma 2.4.3 in [27]
we have the formula

u × (v × w) = −〈u, v〉w + 〈u, w〉v − (u�v�w� ∗ ϕ)#.
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Substituting this into the above expression for the associator and simplifying, we
obtain

[u, v, w] = −2(u�v�w� ∗ ϕ)#

Thus, we have proved the following proposition:

PROPOSITION 2.3. The subspace spanned by the tangent vectors u, v, w is an
associative subspace if and only if

u�v�w� ∗ ϕ = 0. (6)

Remark 2.4. The left-hand side of (6) is (using the metric isomorphism) a vector
valued 3-form which is invariant under the action of G2. Therefore, representation
theory arguments say it must be the associator, and here we show this directly.

(iv) A Riemannian manifold M8 which possesses a Spin(7) structure has a
globally defined, three-fold vector cross-product

X : T (M) × T (M) × T (M) → T (M)

(u, v, w) �→ X (u, v, w)

which satisfies

X (u, v, w) is totally skew-symmetric,
〈X (u, v, w), u〉 = 0 ∀u, v, w (orthogonal to its arguments),
|X (u, v, w)|2 = |u ∧ v ∧ w|2 ∀u, v, w.

where 〈·, ·〉 is the Riemannian metric on M and | · | is its associated norm. As in the
G2 case, the metric, cross product, and fundamental 4-form � are related by

�(u, v, w, y) = 〈X (u, v, w), y〉 (7)

from which it follows that

X (u, v, w)� = w�v�u��. (8)

It is shown in [19] that a four-dimensional submanifold L4 is Cayley if and only
if its tangent space is preserved by the cross product X. As in the G2 case, there exists
a rank 7 bundle valued 4-form η on M that vanishes on Cayley submanifolds. This
form η is defined in terms of octonion multiplication. Let u, v, w, y be a linearly
independent set of tangent vectors at a point p ∈ M . We want to check when
the four-dimensional subspace that they span is a Cayley subspace. Assuming an
explicit identification of Tp M with O, the form η is:

η = 1
4 Im(ū X (v, w, y) + v̄X (w, u, y) + w̄X (u, v, y) + ȳ X (v, u, w)).

We now describe a characterization of the Cayley condition which is analogous
to (6), that does not seem to have explicitly appeared in the literature before. The
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fact we use is the following. The space of 2-forms on M splits as ∧2 = ∧2
7 ⊕ ∧2

21,
where at each point ∧2

k is k-dimensional (see [22, 27]). One can check by explicit
computation that if u and v are tangent vectors, identified as octonions, then

Im(ūv) ∼= π7(u� ∧ v�),

where π7 is projection onto ∧2
7. Thus, up to isomorphism, the expression for the

form η becomes

η = π7(u� ∧ X (v, w, y)� + v� ∧ X (w, u, y)� + w� ∧ X (u, v, y)� +
+y� ∧ X (v, u, w)�).

We have an explicit formula for the projection π7 in terms of the 4-form �. (See
[27], for example, although we differ by a sign here because of the opposite choice
of orientation.) This formula is

π7(u� ∧ v�) = 1
4 (u� ∧ v� + u�v��).

Combining these expressions, we have proved the following proposition.

PROPOSITION 2.5. The subspace spanned by the tangent vectors u, v, w, y is
a Cayley subspace if and only if the ∧2

7 valued 2-form η vanishes:

η = u� ∧ X (v, w, y)� + u�X (v, w, y)�� + v� ∧ X (w, u, y)� +
+v�X (w, u, y)�� + w� ∧ X (u, v, y)� + w�X (u, v, y)�� +
+y� ∧ X (v, u, w)� + y�X (v, u, w)�� = 0.

Remark 2.6. It should be evident that calibrated submanifolds seem to fall into
two different categories. There are those whose tangent spaces are preserved by a
cross-product operation. These are the complex, associative, and Cayley submani-
folds, whose tangent spaces are preserved by J , ×, and X , respectively. These are
called instantons. There are also those which are determined by the vanishing of
differential forms, namely the special Lagrangian and coassociative submanifolds,
and these are called branes. Branes have a nice, unobstructed deformation theory,
which was first studied by McLean [35]. Instantons, on the other hand, are gener-
ally obstructed and are more complicated to study. See [29] for more details on the
differences between branes and instantons.

3. Special Lagrangians in T∗(Sn) with the Stenzel Metric

In this section, we construct special Lagrangian submanifolds in T ∗(Sn) with the
Calabi–Yau metric discovered by Stenzel [39] and discussed in detail in [9].

It is a classical fact that if X p is a p-dimensional submanifold of R
n , then the

conormal bundle N ∗(X ) is a Lagrangian submanifold of the symplectic manifold
T ∗(Rn), with its canonical symplectic structure. Harvey and Lawson found con-
ditions ([19, Theorem III.3.11]) on the immersion X ⊂ R

n that makes N ∗(X ) a



378 SPIRO KARIGIANNIS AND MAUNG MIN-OO

special Lagrangian submanifold of T ∗(Rn) ∼= C
n , in terms of the second funda-

mental form of the immersion. We generalize this construction to the case of the
Calabi–Yau metric on T ∗(Sn), which we now describe.

Following Szöke [41], we can map the space

T ∗(Sn) = {(x, ξ ) ∈ R
n+1 × R

n+1‖x | = 1, 〈x, ξ〉 = 0}
diffeomorphically and equivariantly with respect to SO(n; R) ⊂ O(n; C) onto the
complex quadric

Q =
{

(z0, . . . , zn) ∈ C
n+1

∣∣∣∣
∑

z2
k = 1

}

in C
n+1 by

� : T ∗Sn → Q

(x, ξ ) �→ x cosh |ξ | + i
ξ

|ξ | sinh(|ξ |). (9)

In this way Q ∼= T ∗(Sn) inherits a complex structure, since it is a complex hy-
persurface of C

n+1. It also posseses a holomorphic (n, 0) form � which is defined
by

�(v1, . . . , vn) = (dz0 ∧ dz1 · · · ∧ dzn)(Z , v1, . . . , vn), (10)

where

Z = z0
∂

∂z0
+ z1

∂

∂z1
+ · · · + zn

∂

∂zn

is the holomorphic radial vector field on C
n+1. With respect to this complex struc-

ture, Stenzel showed ([39]) that there exists a Ricci-flat Kähler metric on T ∗(Sn),
thought of as the quadic Q, whose Kähler form ωSt in a neighbourhood of a point
where z0 �= 0, is given by

ωst = i

2

n∑
j,k=1

a jkdz j ∧ dz̄k, (11)

where we have (see also Anciaux [1] for more details) that

a jk =
(

δ jk + z j z̄k

|z0|2
)

u′ + 2Re

(
z̄ j zk − z̄0

z0
z j zk

)
u′′. (12)

Here u is a function of the radial variable r = |z| and satisfies a certain ordinary
differential equation that makes the metric Ricci-flat. The precise form of u depends
on the dimension n but it will not concern us, since our results depend only on the
fact that u is a function of r. We note that r2 = cosh2 |ξ | + sinh2 |ξ |. It is easy to
check from (11) and (12) that when restricted to the zero section, this gives the
standard round metric on Sn . In dimension n = 2 this metric coincides with the
well-known Eguchi–Hanson and Calabi metrics on T ∗(S2) ([8–10, 13]).
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Now let X be a p-dimensional submanifold of the standard round sphere Sn

with the induced metric. The conormal bundle of X p in Sn will be denoted by
L = N ∗(X ) ⊂ T ∗(Sn). Then L is a submanifold of dimension n and can be locally
parametrized as

(s, t) �→ (
x(s), �tkν

k
)

s = (s1, . . . , sp), t = (tp+1, . . . , tn),

where x = (x0, . . . , xn) ∈ X ⊂ Sn and ν = (ν p+1, . . . , νn) ∈ R
n+1 are or-

thonormal conormal vectors in N ∗(X ). Let e1, . . . , ep be an orthonormal base of
tangent vectors to X. Then (e0 = x(s), e1, . . . , ep, ν

p+1, . . . , νn) form an adapted
orthonormal moving frame of R

n+1 along the submanifold X.
We restrict the map in (9) to the subbundle L = N ∗(X ):

�(x(s), �tkν
k) = x(s) cosh |t | + i ν̂(s, t) sinh |t |,

where |t |2 = t2
p+1 + · · · + t2

n , and ν̂ = �tkνk/|t | is a unit conormal vector. Note
that ν̂ is homogeneous as a function of t. That is, ν̂(s, λt) = ν̂(s, t) for all λ �= 0
and v̂(s, t) sinh |t | is well defined for t = 0.

THEOREM 3.1. The conormal bundle L of a submanifold X ⊂ Sn is special
Lagrangian in T ∗(Sn) equipped with the Ricci-flat Stenzel metric if and only if X is
austere in Sn.

Proof. We show that the tangent space of L at each point is a special Lagrangian
subspace. Fix a point (x, ξ ) ∈ L . By the equivariance of the embedding we can
choose an orthonormal basis (e0, . . . , en) of R

n+1 so that at the point (x, ξ ) the
moving frame is given by these vectors and so the point has coordinates (x(0) =
e0, �tkνk) with νk(0) = ek , for k = p + 1, . . . , n. In fact, since we still have the
freedom of rotating the conormal vectors, we can assume that ν̂ = ν p+1 = ep+1.
In other words, we can rotate so that the point we are considering has t coordinates
tp+1 = |t | = t � 0 and tk = 0 for k = p + 2, . . . , n.

Now we compute a basis for the tangent space at this point �(x, ξ ) =
e0 cosh |t | + iep+1 sinh |t |. We differentiate the immersion with respect to the s
and t coordinates and evaluate at the point. From s1, . . . , sp we have

E j = cosh |t |e j + i sinh |t |Aν̂(e j ) j = 1, . . . , p, (13)

where Aν̂ is the second fundamental form in the direction of the unit normal vector
ν̂ of the submanifold X in Sn . That is, Aν̂(u) = ∇̄u ν̂, where ∇̄ is the Levi-Civita
connection for the standard round metric on Sn . When we differentiate with respect
to tk we get

Fk = x(s)
sinh |t |

|t | tk + i

(
νk sinh |t |

|t | +
(∑

t

tlν
l

)( |t | cosh |t | − sinh |t |
|t |3 tk

))
.
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Now we evaluate at our fixed point by putting s = 0, tk = 0 for k �= p + 1, and
tp+1 = |t | to obtain

Fp+1 = sinh |t |e0 + i cosh |t |ep+1,

Fk = i
sinh |t |

|t | ek k = p + 2, . . . , n. (14)

At the point e0 cosh |t | + iep+1 sinh |t |, z0 = cosh |t | �= 0, z p+1 = i sinh |t | and
all the other coordinates z1, . . . , z p, z p+2, . . . , zn are zero. This simplifies (and in
fact diagonalizes) the Stenzel metric in (11) and (12) and, at that point, we have

a jk = u′, j, k �= p + 1,

ap+1,p+1 = (1 + tanh2 |t |)u′ + 4 sinh2 |t |u′′.

and so

ωSt = u′ i

2

n∑
k=1

dzk ∧ dz̄k + i

2
(u′ tanh2 |t |u′ + 4u′′ sinh2 |t |)dz p+1 ∧ dz̄ p+1.

Since from (13) the E j ’s have a zero component in the ep+1-direction, dz p+1∧dz̄ p+1

vanishes on E j ∧ Ek for all j, k and we have

ωSt (E j , Ek) = u′ sinh |t | cosh |t |(〈Aν̂(e j , ek)〉 − 〈Aν̂(ek, e j )〉)
= 0

since the second fundamental form is symmetric. From (13) and (14) we see that
E j has nonzero components only in the z1, . . . , z p directions and Fk for k =
p + 2, . . . , n has a nonzero component only in the zk-direction. Hence,

ωSt (E j , Fk) = 0 j = 1, . . . , p and k = p + 2, . . . , n.

Similarly, Fp+1 has nonzero components only in the direction of z0 and z p+1. Thus,

ωSt (E j , Fp+1) = 0,

ωSt (Fk, Fp+1) = 0.

Thus, we have shown that that L = N ∗(X ) is always Lagrangian with respect to
the symplectic form associated to the Stenzel metric for any submanifold X of Sn .

In order to find the conditions for L to be special Lagrangian, we have to evaluate
the holomorphic (n, 0)-form � on the tangent vectors E j and Fk of our submanifold.
In a neighbourhood of a point where z0 �= 0, it follows from (10) that

� = 1

2z0
dz1 ∧ · · · ∧ dzn. (15)

This calculation is very similar to the original calculation done by Harvey and
Lawson [19], except that we have factors involving the function u and the hyperbolic
trigonometric functions of the radial variable |t |.
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We can choose e1, . . . , ep to diagonalize the second fundamental in the direc-
tion ν̂ at the point under consideration. Let λ j be the corresponding eigenvalues
(principal curvatures). Then we have

E j = cosh |t |e j + iλ j sinh |t |e j j = 1, . . . , p,

Fp+1 = sinh |t |e0 + i cosh |t |ep+1,

Fk = i
sinh |t |

|t | ek, k = p + 2, . . . , n

and, hence, plugging into (15),

�(E1 ∧ · · · ∧ E p ∧ Fp+1 ∧ · · · ∧ Fn)

= 1

2 cosh |t | cosh |t |
(

sinh |t |
|t |

)n−p−1

i n−p
p∏

j=1

(cosh |t | + iλ j sinh |t |)

= (∗ ∗ ∗)i n−p
p∏

j=1

(1 + iλ j tanh |t |),

where (∗ ∗ ∗) denotes an always positive factor. Hence from (2) we see that L will
be special Lagrangian with phase i p−n if the product on the right-hand side in the
earlier equation vanishes for all t. This happens if and only if all odd symmetric
polynomials in the eigenvalues λ j have to be zero, or equivalently if all eigenvalues
occur in pairs of opposite signs. This has to be true in all normal directons ν and
so the submanifold must be austere as defined by Harvey and Lawson [19]. This
completes the proof.

Remark 3.2. The first symmetric polynomial is the trace, so the submanifold
M p is necessarily minimal. If p = 1, 2 this is the only condition, but for p � 3 the
austere condition is much stronger than minimal.

Remark 3.3. It is interesting to note that we cannot construct special Lagrangian
submanifolds in this way of arbitrary phase. The factor of i p−n means that the al-
lowed phase (up to orientation) depends on the codimension n− p of the immersion.
We will say more about this in Section 5.

Austere submanifolds have been studied, for example, in [6, 11]. A particularly
simple (and in some sense trivial) example comes from equators: a sphere S p

immersed in Sn as an equator is totally geodesic and, hence, the conormal bundle
N ∗(S p) is a special Lagrangian submanifold of T ∗(Sn) with respect to the Stenzel
metric. (Of phase i n−p.)

4. Calibrated Submanifolds for the Bryant–Salamon Metrics

In this section, we will construct calibrated submanifolds as subbundles inside the
Bryant–Salamon metrics [7] of exceptional holonomy G2 or Spin(7) which are



382 SPIRO KARIGIANNIS AND MAUNG MIN-OO

themselves defined on appropriate bundles over four manifolds with a self-dual
Einstein metric. The subbundles are defined exactly in the same way as in [21],
except that the ambient manifold, instead of being flat R

7 or R
8 is the total space

of a vector bundle over a four manifold X4.

4.1. CALIBRATED SUBMANIFOLDS OF ∧2
−(X4)

Let (X4, g) be an oriented self-dual Einstein manifold. The examples for which
Bryant and Salamon obtained complete G2 metrics are those with positive scalar
curvature CP

2 and S4. Let M7 = ∧2
−(T ∗ X4) be the bundle of anti-self-dual 2-forms

on X4. This vector bundle has a connection induced by the Levi-Civita connection
of (X, g). The tangent space Tω M of M at a point ω ∈ ∧2

−, has therefore a canonical
splitting Tω M ∼= Hω ⊕ Vω into horizontal and vertical subspaces.

The projection map is a submersion and maps the horizontal space isometrically
onto the tangent space of the base manifold at that point. The metric g on the base
X4 has a unique lift to the horizontal space gH. The vertical space Vω, which can
be identified with the vector space (the fibre) ∧2

−(T ∗
x X ) also has a natural metric

gV induced by g.

THEOREM 4.1 (Bryant–Salamon [7]). There exist positive functions u and v,
depending only on the radial coordinate in the vertical fibres and satisfying a
certain set of ordinary differential equations such that the metric

gM7 = u2gH ⊕ v2gV (16)

on the total space M7 = ∧2
−(T ∗ X4) of a self-dual Einstein 4-manifold has G2-

holonomy with fundamental 3-form ϕ given by

ϕ = v3 volV + u2vdθ,

where θ is the canonical (soldering) 2-form on ∧2
−(T ∗ X4) and volV is the volume

3-form of gV on the vertical fibres.

Remark 4.2. The canonical p-form θ on ∧p(T ∗ X ) for any manifold X is defined
to be θ (u1∧· · ·∧u p)ω = ω(π∗u1∧· · ·∧∗u p), at the point ω where π is the projection
onto the base manifold. For p = 1 this is the usual canonical 1-form on T ∗(X ).

Let e0, e1, e2, e3 be an orthonormal coframe for T ∗(X ) and f 1, f 2, f 3 be an
(orthonormal) basis of anti-self-dual 2-forms in the vertical fibres defined by f i =
e0 ∧ ei − e j ∧ ek with i, j, k forming a cyclic permutation of 1, 2, 3. We denote
horizontal lifts of tangent vectors ei on the base to H by ēi , with dual horizontal
1-forms ēi . Similarly, we think of the anti-self dual two forms f i as being vertical
tangent vectors f̌ i in V on the total space with dual vertical 1-forms f̌i . Then,
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locally, the fundamental three form ϕ is given by

ϕ = v3( f̌1 ∧ f̌2 ∧ f̌3) + u2v f̌1 ∧ (ē0 ∧ ē1 − ē2 ∧ ē3) + (17)

+ u2v f̌2 ∧ (ē0 ∧ ē2 − ē3 ∧ ē1) + u2v f̌3 ∧ (ē0 ∧ ē3 − ē1 ∧ ē2).

On this basis, the dual 4-form is given by
∗ϕ = u4(ē0 ∧ ē1 ∧ ē2 ∧ ē3) − u2v2 f̌2 ∧ f̌3 ∧ (ē0 ∧ ē1 − ē2 ∧ ē3) −

− u2v2 f̌3 ∧ f̌1 ∧ (ē0 ∧ ē2 − ē3 ∧ ē1) − u2v2 f̌1

∧ f̌2 ∧ (ē0 ∧ ē3 − ē1 ∧ ē2). (18)

It was proved in [7] that the functions u and v are globally defined and the
Bryant–Salamon metric is complete only in the cases where X is either S4 or CP

2

with the standard metrics (round metric on Sn and Fubini–Study metric on CP
2). In

other cases, like for hyperbolic space, the functions are not globally defined and we
only obtain an incomplete metric defined near the zero section of the vector bundle
∧2

−(T ∗ X4). Our later constructions of associative and coassociative submanifolds
are of a general nature and hence works in both cases (complete or incomplete).

An oriented surface �2 ⊂ X4 equipped with the induced metric defines a canon-
ical lift

f 1
�: �2 −→ M7 = ∧2

−(X4)

locally defined by the anti-self-dual 2-form f 1 = e1 ∧ e2 − ν1 ∧ ν2, where e1, e2

are orthonormal co-tangent vectors and ν1, ν2 are orthonormal conormal vectors
to the surface �. That is, (e1, e2, ν1, ν2) is an oriented adapted co-frame along the
surface. It is easily seen that f 1

� is globally well defined and is independent of the
local frame. More invariantly we can define it by

f 1
� = vol� − ∗vol�,

where vol� is the induced volume form on � and ∗ is the Hodge star operator
on X4. The span of f 1 defines a line bundle L3 ⊂ M7 = ∧2

−(X ). We also define
L⊥ = {ω ∈ ∧2

− | ω ⊥ ω1} to be the (real) two-dimensional subbundle orthogonal
to L with respect to the Bryant–Salamon metric. Locally, L⊥ is spanned by the two
anti-self-dual 2-forms

f 2 = e1 ∧ ν1 − ν2 ∧ e2 f 3 = e1 ∧ ν2 − e2 ∧ ν1.

We want to determine necessary and sufficient conditions on the second funda-
mental form of � for L to be associative and L⊥ to be coassociative with respect
to the Bryant–Salamon G2-structure on M7.

THEOREM 4.3. The bundle L defined earlier which is canonically associated to
a surface � in a four-dimensional self-dual Einstein manifold (X4, g) is associative
in M7 = ∧2

−(T ∗ X ) equipped with the G2 metric of Bryant and Salamon if and only
if � is a minimal surface in X4. The bundle L⊥ is coassociative if and only if � is
a (propertly oriented) real isotropic surface in X4.
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Proof. We check that at each point, the tangent space is a calibrated subspace.
We begin with the associative case. At a point t1 f 1 ∈ L , the following three vectors
form a basis of the tangent space Tt1 f 1 of L. (We denote the dual vectors with a
lower index.)

Ei = ēi + t1α(ei , f 1) i = 1, 2, (19)

F1 = f̌ 1,

where the bar denotes the horizontal lift and α(ei , f 1) = (∇̄ei f 1)V is a vertical
vector, which can be expressed (locally) in terms of the second fundamental form
of the submanifold as follows:

α(ei , f 1) = (−Aν1 (ei , e1) − Aν2 (ei , e2)) f̌3 + (−Aν1 (ei , e2) + Aν2 (ei , e1)) f̌2,

where we use the notation Aν(u, v) = 〈∇̄uu, v〉 = −〈∇̄uu, ν, 〉 for u, v ∈ T (X )
and ν ⊥ T (X ).

From Proposition 2.3 we have that the subbundle L is associative if and only
if the 1-form E1�E2�F1� ∗ ϕ vanishes at all points of L. Using (19) and (18) we
compute:

F1� ∗ ϕ = −u2v( f̌ 2 ∧ (ē1 ∧ ν̄2 − ē2 ∧ ν̄1) − f̌ 3 ∧ (ē1 ∧ ν̄1 − ν̄2 ∧ ē2)),

where u, v are just functions. Using the symmetry of the second fundamental form
A and the index notation Ai

jk = Aνi (e j , ek), we continue to compute:

E2�F1� ∗ ϕ

= −u2v
(

f̌ 2 ∧ ν̄1 + f̌ 3 ∧ ν̄2 + t1
(

A1
12 + A2

22

)
(e−1 ∧ ν̄1 − ν̄2 ∧ ē2)

) −
− u2v

(
t1

( − A1
22 + A2

12

)
(ē1 ∧ ν̄2 − ē2 ∧ ν̄1)

)
and further

E1�E2�F1� ∗ ϕ

= −u2v
(
t1

(
A1

12 + A2
22

)
ν̄1 + t1

(−A1
22 + A2

12

)
ν̄2

) −
− u2v

(
t1

(−A1
11 − A2

12

)
ν̄2 + t1

(−A1
12 + A2

11

)
ν̄1

)
= −t1u2v

((
A2

11 + A2
22

)
ν̄1 − (

A1
11 + A1

22

)
ν̄2

)
.

Since u, v, are positive functions and since this expression must vanish at all points
on L (that is, for all t1), we must have A1

11 + A1
22 = 0 and A2

11 + A2
22 = 0. Thus, L

is associative if and only if � is a minimal surface in X4, proving the first half of
the theorem.

We now move on to the coassociative case. For the subbundle L⊥ we have
the following description of a basis of four tangent vectors at a given point f =
t2 f 2 + t3 f 3:

Ei = ēi + t2α(ei , f 2) + t3α(ei , f 3), i = 1, 2,

Fj = f̌ j , j = 2, 3.
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Here the vertical correction terms are given by:

α(ei , f 2) = (∇̄ei f 2
)
V = (Aν1 (ei , e2) − Aν2 (ei , e1)) f̌ 1,

α(ei , f 3) = (∇̄ei f 3
)
V = (Aν2 (ei , e2) + Aν1 (ei , e1)) f̌ 1.

In order to check coassociativity, by (5) we need to check that ϕ|L⊥ = 0. As in
[21] we define ν = t2ν1 + t3ν2 and ν⊥ = −t3ν1 + t2ν2 and thus

E1 = ē1 + (
Aν

12 − Aν⊥
11

)
f̌ 1,

E2 = ē2 + (
Aν

22 − Aν⊥
12

)
f̌ 1.

It is easy to compute that

ϕ(E1, E2, ·) = E2�E1�ϕ
= u2v( f̌ 1 + (· · · )ē1 + (· · · )ē2)

and, hence, since Fj = f̌ j we see that ϕ(E1, E2, F2) = ϕ(E1, E2, F3) = 0 always.
It remains to check when ϕ(F2, F3, E j ) = 0 for j = 1, 2. Since ϕ(F2, F3, ·) = v3 f̌ 1

and v is always positive, these become the conditions

Aν
12 − Aν⊥

11 = 0, Aν
22 + Aν⊥

12 = 0. (20)

for the tangent space at (x0, t2, t3) to be coassociative. We get two more conditions
that must be satisfied by demanding that the tangent space at (x0, −t3, t2) also be
coassociative. This corresponds to changing t2 �→ −t3 and t3 �→ t2 in the earlier
equations, which is equivalent to ν �→ ν⊥ and ν⊥ �→ −ν. This gives

Aν⊥
12 + Aν

11 = 0, Aν⊥
22 + Aν

12 = 0. (21)

Conditions (20) and (21) are exactly the same as those obtained in the case
of R

7 in [21]. These surfaces are called isotropic (with negative orientation) or
superminimal surfaces. These surfaces are necessarily minimal, but the condition
is in fact stronger (and overdetermined). See [3, 14, 21, 37] and the references
contained therein for more details.

Remark 4.4. Although the associative case is computed using a different
method from that of [21], the calculations here and in Section 4.2 are very similar to
[21], basically differing by the presence of certain conformal scaling factors. This
is due to the high degree of symmetry in the cohomogeneity one metrics.

4.2. CAYLEY SUBMANIFOLDS OF �S (S4)

In order to construct Cayley submanifolds, we now look at the Bryant–Salamon
construction on the negative spin bundle of four manifolds. Let (X4, g) be an
oriented self-dual Einstein spin manifold of positive scalar curvature. The only
example now is S4, since CP

2 is not spin. Let M8 =�S−(X4) −→ X be the complex
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two-dimensional vector bundle of negative chirality spinors on S4. This is in fact
the quaternionic Hopf bundle of the quaternionic projective line HP

1 ∼= S4. Its unit
sphere bundle S7 −→ S4, can be viewed as the associated principal Sp(1) ∼= SU(2)-
bundle. Note that Spin(4) ∼= SU(2) × SU(2). This vector bundle has a natural
Hermitian inner product and a connection induced by the Levi-Civita connection
of the standard metric on S4. The tangent space Ts M of M at a point s ∈ �S−
has therefore a canonical splitting Ts M ∼= Hs ⊕ Vs into horizontal and vertical
subspaces. It is well known that this connection defines the standard SU(2)-instanton
on S4 with (anti-) self-dual curvature. The horizontal space of the connection is
orthogonal to the vertical space with respect to the standard metric on S7 and the
curvature, which is the Lie bracket of horizontal vector fields identifies the anti-
self-dual 2-forms on the base with the vertical fibres which form the Lie algebra
su(2) ∼= R

3. The projection map is a submersion and maps the horizontal space
isometrically onto T (S4). The vertical space Vs also has a natural induced metric
gV and the connection form is an isomorphism between anti-self-dual 2-forms and
the Lie algebra of SU(2).

THEOREM 4.5 (Bryant–Salamon [7]). There exist positive functions u and v,
depending only on the radial coordinate in the vertical fibres and satisfying a
certain set of ordinary differential equations such that the metric

gM8 = u2gH ⊕ v2gV (22)

on the total space M8 = �S (S4) has Spin(7)-holonomy with self-dual fundamental
4-form � given by

� = u4volH + u2v2β + v4volV ,

where volH, volV are the volume 4-forms of gH, gV on the horizontal and vertical
spaces respectively and β is the 4-form defined as follows:

β =
3∑

k=1

ωk ∧ σ k,

where ωk is an orthonormal basis for anti-self-dual 2-forms on the horizontal space
and σ k is the corresponding orthonormal basis for anti-self-dual 2-forms on the
vertical space.

Remark 4.6. Given an orthonormal basis of three anti-self-dual 2-forms, we get
the corresponding vertical vectors at a spinor s by Clifford multiplication, since the
curvature of the connection is anti-self-dual.

Remark 4.7. A note on orientations. With our chosen convention for the Spin(7)
4-form �, the natural local model for this structure is the negative spinor bundle
over R

4. With the opposite choice of orientation, we would be working with the
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positive spinor bundle. See [28] for more about sign conventions and orientations.
As we are working only on S4 in this paper, it does not make a difference.

Let e1, e2, e3, e4 be an oriented orthonormal frame for S4 with horizontal lifts
to the total space �S (S4) denoted by ēi with dual 1-forms ēi . Let f̌ 1, f̌ 2, f̌ 3, f̌ 4

be the corresponding oriented orthonormal basis for the fibres. Then (dropping the
wedge product symbols for clarity), the form � can be written as

� = u4ē1ē2ē3ē4 + u2v2(ē1ē2 − ē3ē4)( f̌ 1 f̌ 2 − f̌ 3 f̌ 4) +
+ u2v2(ē1ē3 − ē4ē2)( f̌ 1 f̌ 3 − f̌ 4 f̌ 2)

u2v2(ē1ē4 − ē2ē3)( f̌ 1 f̌ 4 − f̌ 2 f̌ 3) + v4 f̌ 1 f̌ 2 f̌ 3 f̌ 4 (23)

Now let �2 ⊂ S4 be an oriented surface equipped with the induced metric and
let (e1, e2, ν1, ν2) be an oriented adapted frame along the surface. That is, (e1, e2)
are orthonormal tangent vectors and (ν1, ν2) are orthonormal normal vectors to the
surface. We are interested in the operator

� = γ (e1 ∧ e2) = ±γ (ν1 ∧ ν2) on �S±

acting on spinors. The operator � leaves �S± invariant and it is easily seen that �

is well defined globally and is independent of the local frame. Moreover, � is a
skew-Hermitian operator satisfying �2 = −1. The eigenspace decomposition of
�S− with respect to � defines a natural splitting of the spinor bundle �S− restricted
to the surface: �S−|� ∼= �S+

−⊕ �S−
− , where

�S± = {s ∈�S− | �(�) = γ (e1 ∧ e2)s = ±i s}.
The two bundles �S+

− and �S−
− are complex line bundles and are orthogonal

to each other. We want to determine necessary and sufficient conditions on the
second fundamental form of � for the total space of these bundles to be Cayley
submanifolds with respect to the Bryant–Salamon Spin(7)-structure on M8.

THEOREM 4.8. The total space of either rank 2 bundle �S±
− over � is a Cayley

submanifold of �S−(S4) if and only the immersion � ⊂ S4 is minimal.
Proof. We show every tangent space to the total space of �S+

− is a Cayley
subspace of the corresponding tangent space to �S−(S4). The proof for �S−

− is identical.
Let �̇ denote the covariant derivative of the operator � along the surface. Since

�2 = −1, we have ��̇ + �̇� = 0, so � and �̇ anti-commute and �̇ interchanges
the two eigenspaces of �. Differentiating the eigenvalue equation �s = is, we get
(� − i)ṡ = −�̇s and hence

ṡ = −1

2
i �̇s .

Now at a fixed point on S4 let s1 be a unit spinor in the fibre �S+
− . Then s2 =

�s1 = i s1 is another unit spinor in �S+
− orthogonal to s1. Therefore, the fibres of

the negative spinor bundle at a point are given by t1s1 + t2s2 where t1, t2 ∈ R.
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Thus, the following four vectors form a basis of the tangent space at t1s1 + t2s2

of �S+
− :

E1 = ē1 − i

2
t1∇e1 (�)(s1) − i

2
t2∇e1 (�)(s2),

E2 = ē2 − i

2
t1∇e2 (�)(s1) − i

2
t2∇e2 (�)(s2),

E1 = s1,

F2 = s2 = is1,

where the bar denotes the horizontal lift and the ∇ei (�)(s j ) are vertical vectors which
can be expressed in terms of the second fundamental form of the submanifold as
we now describe.

Using the adapted frame (e1, e2, ν1, ν2), we have at a given point (recall we are
always using normal coordinates)

∇ek � = (γ (∇ek e
1)γ (e2) + γ (e1)γ (∇eke2))

= −A1
k 1γ (ν1 ∧ e2) − A2

k 1γ (ν2 ∧ e2) − A1
k 2γ (e1 ∧ ν1) − A2

k 2γ (e1 ∧ ν2),

where we have used the notation Al
k j = 〈∇ek e j , νl〉. Note that the operators γ (e j ∧νl)

all anti-commute with � = γ (e1 ∧ e2) as expected and hence they permute the two
subbundles �S±

− . Let f̌ 1 be the 1-form dual to the vertical tangent vector f̌ 1 which
corresponds to the spinor s1. Then one can check easily that f̌ 2, f̌ 3, f̌ 4 correspond
to the spinors

s2 = ω1

2
· s1, s3 = ω2

2
· s1, s4 = ω3

2
· s1,

respectively. It can also be checked that

γ (e1)γ (ν1) = γ (e2)γ (ν2) and γ (e1)γ (ν2) = −γ (e2)γ (ν1),

since we are on the negative spinor bundle so Clifford multiplication by
−γ (e1e2ν1ν2) is equal to −1. Using all these facts, the tangent vectors can be
expressed as

E1 = ē1 + t1
2

(( − A1
11 − A2

12

)
f̌ 3 + ( − A2

11 + A1
12

)
f̌ 4

) +

+ t2
2

((
A2

11 − A1
12

)
f̌ 3 + ( − A1

11 − A2
12

)
f̌ 4

)
,

E2 = ē2 + t1
2

(( − A1
12 − A2

22

)
f̌ 3 + ( − A2

12 + A1
22

)
f̌ 4

) +

+ t2
2

((
A2

12 − A1
22

)
f̌ 3

( − A1
12 − A2

22

)
f̌ 4

)
,

F1 = f̌ 1,

F2 = f̌ 2.

In order to check that the space spanned by E1, E2, F1, F2 is Cayley, we need to
check the vanishing of the ∧2

7 form η from Proposition 2.5 using the explicit form
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of � in (23). Recall that from (22) we have that e−b
k = u2ēk and f̌ �

k = v2 f̌ k . Then
(again omitting the wedge product symbols), one can tediously compute that

η = 2u2v2
(
t1

(
A1

11 + A1
22

) − t2
(

A2
11 + A2

22

)) ×
× (

ē1 f̌ 3 − ē2 f̌ 4 − ē3 f̌ 1 + ē4 f̌ 2
)

+ 2u2v2
(
t2

(
A1

11 + A1
22

) + t1
(

A2
11 + A2

22

)) ×
× (

ē1 f̌ 4 + ē2 f̌ 3 − ē3 f̌ 2 − ē4 f̌ 1
)

which clearly vanishes for all t1, t2 if and only if � is minimal in S4.

An obvious example again in this case is to take an equatorial S2 sitting inside
S4, which is totally geodesic. Then there exist two different real rank 2 vector
bundles over this S2 which are Cayley with respect to the Bryant–Salamon metric
on �S−(S4). In fact, by the results of Bryant [3], any genus Riemann surface may be
immersed in S4 as a minimal surface and, hence, we can find Cayley submanifolds
of �S− (S4) which are rank 2 bundles over any possible compact surface.

5. Local Intersections of Calibrated Submanifolds

In this section, we make some remarks about possible uses of these constructions
to study the local intersections of compact calibrated submanifolds in a compact
manifold with special holonomy. In [35] McLean studied the local moduli spaces
of compact calibrated submanifolds. One of his observations was the following.

THEOREM 5.1 (McLean [35]). Let X be a compact calibrated submanifold of a
manifold M with special holonomy. A small neighbourhood of X in M is naturally
isomorphic to a small neighbourhood of the zero section of the normal bundle
N (X ) of X in M. We also have the following explicit identifications of N (X ) for the
various cases of calibrations:

Calibration Normal bundle N(X) is isomorphic to

Special Lagrangian Cotangent bundle T ∗(X ) (intrinsic)
Coassociative Bundle of anti-self-dual 2-forms ∧2

−(X ) (intrinsic)
Associative Twisted spinor bundle �S⊗H E over X (nonintrinsic)
Cayley Twisted negative spinor bundle �S⊗H F over

X (nonintrinsic)

where E and F are some explicitly described quaternionic line bundles.

Now in all the explicit noncompact manifolds with complete metrics of special
holonomy that we have been discussing in this paper, the base of the bundle (the
zero section), is an example of a calibrated submanifold. (In fact, the zero section
is always rigid with respect to deformations through calibrated submanifolds by
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the results of McLean [35].) Explicitly, Sn is special Lagrangian in T ∗(Sn) with
respect to the Stenzel metric, CP

2 is coassociative in ∧2 (CP
2) with respect to the

Bryant–Salamon metric, and so on. The ambient manifolds in all cases are complete
versions of the local neighbourhoods described in Theorem 5.1. This is immediate
for the special Lagrangian and coassociative cases. In the case of S4, McLean shows
that the quaternionic line bundle F is trivial in this case so the normal bundle is
isomorphic to �S (S4), which is the ambient space of the complete Bryant–Salamon
Spin(7) metric. Finally, there is also a complete G2 metric on �S(S3) that was
discovered by Bryant and Salamon [7]. We do not discuss this metric in the current
paper because the calculations are almost identical to the �S (S4) case, but see [21]
for some brief remarks on this metric. The zero section S3 is associative in �S(S3),
and the quaternionic line bundle E mentioned in Theorem 5.1 is again trivial in this
case.

Hence, we see that these noncompact manifolds (at least near the zero section)
are good local models for a small neighbourhood of a rigid, compact calibrated
submanifold. Furthermore, one can check that in all these cases the fibres of the
vector bundle total space are also calibrated submanifolds. The fibres are examples
of calibrated submanifolds which intersect the base calibrated submanifold in only
a point. However, the calibrated submanifolds which we constructed in Sections 3
and 4 were defined as subbundles of the total space restricted to a submanifold of
the base. These calibrated submanifolds interesect the base calibrated submanifold
in a surface in the exceptional cases, and in submanifolds of many different possible
dimensions in the special Lagrangian case.

From the characterizations of calibrated submanifolds in terms of cross-product
structures and calibrating forms in Section 2, one can deduce that (nonsingular)
calibrated submanifolds can only intersect in submanifolds of certain allowable
dimensions. For instance, since an associative 3-plane is closed under the cross
product, two associative 3-planes can only intersect in 0, 1, or 3 dimensions. This
is because if they intersect in two dimensions spanned by orthogonal vectors e1

and e2, the fact that they are both associative means that must also both contain
the third direction e1 × e2. Now because co-associative 4-planes are orthogonal
complements to associative 3-planes, one can use a similar argument to show that
two co-associative submanifolds can only intersect in 0, 2, or 4 dimensions. Simi-
larly, since Cayley 4-planes are closed under the triple cross-product X, it is easy to
deduce that they too can only intersect in 0, 2, or 4 dimensions. Finally, consider the
local model of R

n ⊂ C
n of a special Lagrangian of phase 0 in C

n , with coordinates
z j = x j +iy j . Then the real n-plane with coordinates (x1, . . . , x p, iy p+1, . . . , iyn)
is a U(n) rotation of R

n with determinant i n−p and, hence, is special Lagrangian in
C

n with phase i n−p, and intersects R
n in p dimensions. Thus, we have essentially

shown the following.

PROPOSITION 5.2. Let X1 and X2 be two nonsingular calibrated submanifolds
of a manifold M with special holonomy. Suppose that X1 and X2 intersect at some
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point x, and that in a neighbourhood U of x the intersection X1 ∩ X2 is not just the
point x and not all of X1 ∩ U (and equivalently not all of X2 ∩ U ). Then we must
have

Calibration Intersection of X1 and X2 near x must be

Special Lagrangian p-dimensional, when phases of X1, X2 differ by in−p

Coassociative a surface (two-dimensional)
Associative a curve (one-dimensional)
Cayley a surface (two-dimensional)

The constructed calibrated submanifolds in this paper all intersect the base (zero
section) calibrated submanifold in precisely the dimensions expected by Proposi-
tion 5.2. (Compare Remark 3.3.) Furthermore, our constructions required strong
conditions on the intersection with the base, thought of as an isometrically im-
mersed submanifold of the base. Based on this evidence, it is natural to ask the
following question.

QUESTION 5.3. Let X1 and X2 be two compact calibrated submanifolds of a
compact manifold M with special holonomy. Recall that both X1 and X2 inherit
induced Riemannian metrics g1 and g2 from M, respectively. Suppose that X1 and
X2 intersect at some point x, and that in a neighbourhood U of x the intersection
X1 ∩ X2 is not just the point x and not all of X1 ∩ U (and equivalently not all of
X2 ∩ U ). Then is it true that we must have the following:

• If X1 and X2 are special Lagrangian, with phases differing by i n−p, then the local
intersection of X1 and X2 near x is a p-dimensional submanifold, which is an
austere immersion with respect to (X1, g1) or (X2, g2).

• If X1 and X2 are coassociative, then the local intersection of X1 and X2 near
x is a two-dimensional surface, which is a properly oriented isotropic (that is,
negative superminimal) immersion with respect to (X1, g1) or (X2, g2).

• If X1 and X2 are associative, then the local intersection of X1 and X2 near x is
a one-dimensional curve, which is a geodesic (minimal) immersion with respect
to (X1, g1) or (X2, g2).

• if X1 and X2 are Cayley, then the local intersection of X1 and X2 near x is a
two-dimensional surface, which is a minimal immersion with respect to (X1, g1)
or (X2, g2).

We are currently investigating this question. A related problem is the following.
In symplectic geometry, a neighbourhood of a Lagrangian submanifold X in a
symplectic manifold M is naturally identified with a neigbourhood of the zero
section in T ∗(X ). It would be useful to have similar neighbourhood theorems in
the case of calibrated submanifolds, describing the Ricci-flat metric on the ambient
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space to a certain order of approximation. Topologically, this was done by McLean
[35].

It would also be useful to discover to what extent these bundle constructions
of calibrated submanifolds generalize to other explicitly known metrics. There is a
wealth of new explicit examples of G2 and Spin(7) metrics, for example, that have
been recently discovered by physicists. (See [9, 10], and the references therein.)

6. Conclusion

Besides the possible applications to the study of intersections of calibrated subman-
ifolds discussed in Section 5, there are several other future directions to explore. It
would be interesting to study the possible singularities that can occur in such exam-
ples. It should be noted that even when the submanifold over which we build our
calibrated subbundle is only immersed in the base, with self-intersections, the result-
ing calibrated submanifold which we construct is in fact embedded. It is also worth
studying how these calibrated submanifolds can be deformed. This would require
extending the work of McLean [35] to the case of noncompact calibrated subman-
ifolds. Some study has been made of deformations of noncompact asymptotically
conical [25, 33, 34, 36] or asymptotically cylindrical [26] calibrated submanifolds.
This, of course, is closely related to the possible nonexistence of other kinds of cal-
ibrated submanifolds built as bundles over the same submanifold, discussed at the
end of Section 5. It may be that the only way to deform our constructed calibrated
submanifolds through calibrated submanifolds would be to deform the base of the
subbundle. For example, the moduli space of associative three-folds near a fixed
associative submanifold L which is a rank 1 line bundle over a minimal surface �

as constructed in Section 4 may be just those which arise via the same construction
by deforming the minimal surface inside the base, through minimal surfaces. These
moduli of course always exist as possible deformations, the only question being
whether or not there are any others.
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