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Abstract. In this work we generalize the case of scalar curvature zero the results of Simmons (Ann.
Math. 88 (1968), 62—105) for minimal cones in R"*!'. If M"~! is a compact hypersurface of the sphere
S$"(1) we represent by C(M), the truncated cone based on M with center at the origin. It is easy to
see that M has zero scalar curvature if and only if the cone base on M also has zero scalar curvature.
Hounie and Leite (J. Differential Geom. 41 (1995), 247-258) recently gave the conditions for the
ellipticity of the partial differential equation of the scalar curvature. To show that, we have to assume
n > 4 and the three-curvature of M to be different from zero. For such cones, we prove that, for
n < 7 there is an ¢ for which the truncate cone C(M), is not stable. We also show that for n > 8
there exist compact, orientable hypersurfaces M"~! of the sphere with zero scalar curvature and S;
different from zero, for which all truncated cones based on M are stable.
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1. Introduction

A natural generalization of minimal hypersurfaces in Euclidean spaces was known
to Reilly since 1973. Reilly considered the elementary symmetric functions S,, r =
0,1, ..., n,of the principal curvatures k1, . .. , k, of an orientable hypersurface x:
M" — R"*! given by

So=1 S= Y ki...k.
i1<--<iy
Here, k;,, ... , k;, are the eigenvalues of A = —dg, where g: M" — S"(1) is the
Gauss map of the hypersurface. Reilly showed in [8] that orientable hypersurfaces
with S, ; = 0 are critical points of the functional

A= S.dM
M

for variations of M with compact support. Thus, such hypersurfaces generalize
the fact that minimal hypersurfaces are critical points of the area functional
Ag= [, v SodM for compactly supported variations.
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A breakthrough in the study of these hypersurfaces occurred in 1995 when
Hounie and Leite [6, 7] found conditions for the linearization of the partial differ-
ential equation S,; = O to be an elliptic equation. This linearization involves a
second order differential operator L, (see the definition of L,2 in Section 2) and
the Hounie—Leite conditions read as follows:

L, is elliptic <= rank(A) > r + 1 <= S, 1, # 0 everywhere.

In this paper, we will be interested in the case S, = 0. For this situation, since
rank(A) cannot be two, the ellipticity condition is equivalent to rank (A) > 3.

In Alencar et al. [2], a general notion of stability was introduced for bounded
domains of hypersurfaces of Euclidean spaces with S,;; = 0. In the case we are
interested, namely S, = 0, it can be shown that if we assume that L, is elliptic, an
orientation can be chosen so that a bounded domain D C M is stable if

d?A,
dr? |,_,

In what follows, we denote by B,(0) the ball of radius r centered at the origin
0 of R"*!. Let M"~! be a smooth hypersurface of the sphere $"(1). A cone C(M)
in R"*! is the union of half-lines starting at 0 and passing through the points of
M. 1t is clear that C(M) N S§*(1) = M. It is easy to show that C(M) — {0} is a
smooth n-dimensional hypersurface of R"*!. The manifold C(M) is referred to as
the cone based on M"~'. The part of the cone contained in the closure of the ring
B1(0)\B:(0),0 < ¢ < 1, is called a truncated cone and is denoted by C(M),.

In this work we will prove the following two theorems which provide a nice
description of the stability of truncated cones in R"*! based on compact, orientable
hypersurfaces of §"(1), with §, = 0 and S; # 0 everywhere.

> 0 forall variations with support in (the open set) D.

THEOREM 1. Let M"~ ', n > 4, be an orientable, compact, hypersurface of S" (1)
with Sy = 0 and S5 # 0 everywhere. Then, if n < 7, there exists an ¢ > 0 so that
the truncated cone C(M), is not stable.

THEOREM 2. Forn > 8, there exist compact, orientable hypersurfaces M"~' of
the sphere S"(1), with S, = 0 and S5 # 0 everywhere, so that, for all ¢ > 0, C(M),
is stable.

Although Theorems 1 and 2 are interesting in their own right, a further motivation
to prove these theorems is that, for the minimal case, they provide the geometric
basis to prove the generalized Bernstein theorem, namely, that a complete minimal
graph y = f(xy,...,x,—1) in R", n < 8§, is a linear function (see Simons [9],
Theorems 6.1.1, 6.1.2, 6.2.1, 6.2.2).

For elliptic graphs in R" with vanishing scalar curvature, the question appears in
a natural way. Of course, since we want to consider graphs with S, = 0 and S5 that
are never zero, we must start with n > 4, and the solution cannot be a hyperplane.
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Thus the question is whether there exists an elliptic graph in R", n > 4, with
vanishing scalar curvature.

So far, the arguments leading to the above quoted Theorems 6.2.1 and 6.2.2
of [9], which depend on geometric measure theory, have not been extended to the
case of hypersurfaces of R" with S, = 0 and S3 nowhere zero. To the best of our
knowledge, one has not been able to solve a Plateau problem for the above situation,
even for the simplest case of n = 4.

2. Preliminaries

Given a manifold M and an immersion Y: M" — R"*! we represent by A the
second fundamental form of Y. The elementary symmetric functions S, of A are
defined by the identity

det(t] — A) = Z(—l)’s,z"*’
r=0

and the r-curvatures H, by

-1
H, = (”) S,.
r

The functions S, can be considered as homogeneous polynomials of the principal
curvatures ki, ko, ... , k, given by

S, = Z ki ki, .. ki .
1<i<izg<<iy <n
It is well known that the scalar curvature K of the immersion Y is equal to H, and
its mean curvature is H;.
We are interested in studying the immersions with K = 0, or, in other words,
with H, = 0. Such immersions are critical points to the functional

Ay =/ HdM
M

with respect to variations of compact support. This variational problem has been
studied by Reilly [8], Hounie and Leite [6, 7], Alencar ef al. [2] and various others.
To express its second variation formula, one has to consider the Newton Transfor-
mations P,, that are inductively given by

Po=1,

1
P.=S,1—-AP 4, M\
and then define the differential operator L by
L, f = trace{ P,Hess f}. (2)

It turns out that L, is self-adjoint and that L, f = div(P, grad f).
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The second variation formula for the mentioned variational problem is, up to a
positive constant, given by the functional

1(f)=—/Mf(L1f—3S3f)d1\71 3)

for test functions f of compact support in M. For variational problems involving
the integral of S,, Alencar et al. [2] have established a definition of stability. In our
case, if we assume that L is elliptic, it turns out that we can choose an orientation
so that a bounded domain D C M is stable if /(f) > O for all f supported in D.

Consider now a compact orientable (n — 1)-dimensional manifold M immersed
as a hypersurface of the unit sphere S”(1) of the Euclidean space R"*!. The cone
C(M) based on M is the immersed hypersurface of R"*! described by

M x (0, 00) — R"!

(m,t)>tm

4

Given a positive number ¢ the truncated cone C(M), is the same application
restricted to M x [&, 1]. The truncated cone is a compact hypersurface with boundary
of the Euclidean Space.

Of course, the geometry of C(M)is closely related to the one of M. Let X describe
the immersion of M into the sphere. Then, Y = ¢ X describes parametrically C(M).
In fact, if the metric of M is given by ds?, the metric of C(M) is

do? = dr* + 17ds?; (5)
and if N (m) is the unit normal vector of M at the point m, then

N(@m,t) = N(m) (6)
is a unit normal vector to C(M) at the point (m, t). Let X = eq, €1, ... , €n_1,

e, = N be a local frame field, adapted to X in S”(1). Let 6; be the form dual to
ej, 1 < i < n— 1. Represent by 6;; the connection forms. Then, the structural
equations of the immersion X are

n—1
do;, = Z 9,'./' VAN 91', (7)
i=1

n—1
Q,’j :d@,-j — ZQik /\ij
k=1

=—0: A0 — Y R jmbi A O, ®)

where A = (h;;) is the matrix of the second fundamental form of X with respect
to the frame field.

Now, translating this frame field along the lines through the origin we may define
a frame field in the cone by

eO :XvelveZv""en—l’en:N'

g
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Let w; represent the dual forms and w;; represent the connection forms for this

frame. We have the structural equations

n—1
da),'Z E wij N\ wj,

,j_da),j E Wik N Wg;.

Since 0Y /ot = X we have that

dy :—dt+th th—l—tZ@e,

i=1
It follows that
wo = dr, w; = 16;.

From where one deduces

0=d(dt) =dwg =Y _ w; Aw;

and, fori > 0,
n—1
dw; =dt A 6; —f—tZ@,-j /\Gj
j=1
n—1
=—0; /\a)o—i-zeij /\9]'.
Jj=1
It follows that
wio = —b;,

w;j = 0;j.

E w;€;

&)

(10)

(11)

(12)

(13)
(14)

To compute the second fundamental form A of C(M) in terms of the second fun-
damental form A of M, we proceed as follows. Since

n—1 n—1
dN = den = E a)njej = E anej,
j=0 j=1

we have
wnO = Oa

n—1 1 n—1
Wy =i = Zhijej =7 Zh;ja)j.

=1 j=1

~.

. -1 .
Hence, if we set w,; = Z?:o h;jw;, we obtain
hoj =0 for 0<j
Eij:%hij for léz,] <I’l—1.

(15)

(16)
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PROPOSITION 2.1.  If S, represents the elementary symmetric function of order
r of C(M) and P, its Newton transformations, then

(a) Sr = (1/tr)Sr,
(b) SC =0ifand only if S, = 0,
(©) |Al = (1/0)Al
S, : 0

@ Po=a/| T T T

|
0 : P,
Proof. The proof is obvious except for the last item. But this can be done using

finite induction and the definition of P,. For that, we may assume the matrix of A
and A are diagonalized. Then, for r = 1 we have

=(1/1) o =a/m

Assume now the result is true for P, and let us prove it for P,

Pry=8I — AP, =(1/t"™)S, 1] — AP,

Sr—H
:(1/[r+]) " _(l/tr+])
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I Sr+l : 0
=/t | T T T
0 : Sy1l — AP,
[ S |0
=y | T T T (17)
0 : Pr+1
This concludes the proof. O

y Let F: C(M) — R be a C? function. For each t > 0 define F;: M — R by
F.(m) = F(m,1).

PROPOSITION 2.2. With the above notation we have

ZF—1S82F n—r—1_0F
ST T2 T 9t

Proof. Since L|F = trace(PHess(F)), we start by computing Hess (F). In
the following computation we use the frame field and equations deduced earlier
and represent by d,, the differential of functions on M. First of all, observe that

n—1 oF n—1
dF = ;Fiwi = Edl“i‘;Fiwi»

n—1 n—1
dyF, = Z(Ft)igi = Z Fo;.
i=1 i=1

It follows that

1
+ g Le(F).

tFi=(F,);, fori>0,
(18)
Fo=0F)/ot.

Now we compute the diagonal of the Hessian of F.
2

0°F oF
DFO:—8t2 dl‘+Z<—at )iwi+ZFjwj0
?F F 1
:Wdl—i-g (E)ia}[—; E Fja)j.

Since DFy = ) Forwy, the above equality tells us that
Foo = 0*F /91> (19)
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Fori > 0 we have

5 /1 . 1 _ 1 - JdF
DFi= oo\ (Fon ) dt 4 2duFo0 + 3 3 ((Foj0p + 5 ron

1 . 1 ~ oF
= _t_z(F’)idt t7 Z(Fz)ij9j + 59;'-

Since DF; =) F;jw;, we conclude that

1 . 10F
F;j = t—z(Fz)ij + ;55;]’- (20)
Then we have
ls. 1 0 oL ()
i —— ||t - - = = -
P,Hess(F)= | |
O b ] & EE )
1 ¢ 9°F
857 | 0
= |
0 : (,r%Pr(Fz)ij + %Pr%—ffsij)

From there we compute
L, F =trace (P,Hess(F))

1 9F N
- tr r 8t2 tr+l

oF 1 -
trace (Pr)a + Etrace(P,Hess(F,)).

Since the dimension of M is n — 1, trace(P,) = (n —~1 —r)S, (s~ee Barbosa and
Colares [4]). Using this plus the fact that trace( P,Hess(F;)) = L,(F;) we conclude
the proof of the Proposition. O

3. The Main Theorem

In this section we are going to prove the following theorem:

THEOREM 3.1. Let M"~! be a compact, orientable, immersed hypersurface of
S™(1). Assume that n > 4, that the immersion has S, identically zero and that
Sy #£ 0 for all points of M. Then, if n < 7, for some ¢, 0 < ¢ < 1, the truncated
cone C(M), is not stable.

Proof. Firstof all let us observe that, according to Proposition 2.1, our hypothe-
ses imply that, for the cone C(M), we have §, = 0 and S never zero. It was proved
by Hounie and Leite [7] that, for a hypersurface of R"™ ! with S, =0,2 <r < n,
the operator L,_;is elliptic if and only if S, 1 is never zero. O
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LEMMA 3.2. Under the same hypothesis of the theorem and choosing properly
the normal vector to M, we have that

(a) Sy and SL | are positive,
(b) Ly and L are elliptic.

Proof. Elementary computation tell us that
(S = |AP +25, = |A]* > 0, @1

where the last equality is a consequence of the hypothesis S, = 0. Therefore, if
there is a point where S| is zero, then, at this point, all the entries of the matrix A are
zero and, consequently, each S, is zero at this same point. Since this contradicts our
hypothesis that S; is never zero, we conclude that (S;)?> > 0. By properly choosing
the normal vector we may assume, from now on, that S; > 0. Using Proposition
2.1 this implies that §; > 0. (b) follows immediately from Proposition (2.1) and
the above result of Hounie and Leite.

To prove the theorem, we are going to show the existence of a truncated cone
C(M). for which the second variation formula attains negative values. Hence, from
now on we are going to work on a truncated cone, with test functions f that have
a support contained in the interior of the truncated cone. As we did before, for
each test function f: C(M). — R and each fixed ¢ we define f .+ M — R by
f ((m) = f(m,t). From Proposition 2.2 we have that

_ 1 3%f n—2_0f 1 .
Lif=-S—+—8——+—=L : 22
1f ot Sig T3 1(f) (22)

From (5), the volume element of C(M) is given by
dM = ""'dr AdM. (23)

Hence, using (3), (22) and the expression of the volume, the second variation
formula on f becomes

10f)=— f FLLf =383 )" Ndr A dM
M x[e, 1]

= _/ (ftLl(.fl) - 3S3(f,)2)t”_4dt ANdM —
M x[e,1]

/ 2 f ” +(n—2tf of 48 dt A dM (24)
— —+ - — .
Mxle1] ot? ot !

Since §; > 0 according to Lemma 3.2, then "~48,dr A dM is a volume element
in C(M), in particular in C(M).. We will represent it by dS. In fact, d.S is a product
of two measures. The first one on the real line: d§é = #"~*dt; the second, on M,
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given by du = S1dM. So, dS = d§ A du. We can then rewrite the second variation
formula on f as

1 . - »
1(f)=— / L) = 3850 d6 A du
M x[e, 1] ©1
of

_/ <t2 2f — 2y )d Ad 25)
. fﬁ (n f@ EAdu. (

Define, now, the following two operators:

L1:C¥M) — C*(M) by Lif=—(1/S)L1f+3(S3/S)f.

2.1 1 (26)
Lr: C®[e, 1] > C®[e,1] by Lrg=—-tg"—(n—2g'.
Observe that we are considering the space C*°(M) with the inner product
(Whe = [ s en
M
and C*[e, 1] with the inner product
1
(81, 82) = / g182d§. (28)

Since L is elliptic and M is compact then L}, and so Ly, is strongly elliptic. The
same is true for the operator £,. Let A| < Ay < -+ /' 0o be the eigenvalues of £,
and §; < &, < --- /" oo be the eigenvalues of L. O

LEMMA 3.3. For any test function f we have

I(f) = (g +61) F2dE Adu.
M x[e,1]

There exists a test function f such that I(f) < 0ifand only if .y + 6, <O

Proof. Let{fi(m);1 <i < oo}and {g;(t);1 < j < oo} be orthonormal bases
of proper functions for C*°(M) and C*°[e, 1] respectively, chosen in such way that,
foreachi and j, f; corresponds to eigenvalue A; and g; to the eigenvalue §;. A test
function f: C(M). — R can now be expressed as

fon, ) =" aij fi(m)g;(1). (29)
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Using (25) we then have

I(f)=/M S+ L A
:/M . (Z aij8;L1fi + Zaijfiﬁzgj) Zakmfkgmdé Adp
1
=Y amahs [ fifidn [ gende +

1
+ Y awnad; [ fifidn [ jende
M €
Y+ Vel
> 00 +80) ) aj =00 +8) f2ds Adp (30)
M x[e,1]

Hence, if I(f) < O then A; + §; < 0. On the other hand, if A; + §; < 0 we choose
f(m,t) = fi(m)g(t), what gives I(f) = A; + 8; < 0. This completes the proof
of the lemma. O

LEMMA 3.4. The operator L, has eigenvalues

s _(P3Y L (Y .
=057 i) o

where 1 <k < oo.
Proof. One search for solutions in the form g(¢) = *sin¢(t). Then one
computes

g () =at* sinp(r) + 1%¢'(t) cos (1),
g () =ale — Dr* 2sinp(t) + 20t ¢'(t) cos o(1) +
+ 19" (1) cos (1) — 1(¢'(1))* sin g (1).

Substitution of this values in the equation —t2g” — (n — 2)tg’ = 8g yields

(a(a — Dr* —t*72(@")? + (n — 2)at® + 5t%) sing +
+ Qat* Mg + 129" + (n — 2)1* ¢ cos ¢ = 0.

Since sin ¢ and cos ¢ are linearly independent, each one of the terms in parentheses
are zero. It follows that ¢'(¢#) = c¢/t, where c is a constant and, consequently,

alc—D=c*+an—2)+8=0,
200 — 1+ (n—2)=0.

It follows that « = —(n — 3)/2 and § = ¢*> + (n — 3)*/4 and so
g(t) = t" I 2sing(t), being ¢(t) = clogt. Since g must be zero in the
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boundary of [e, 1], then cloge = km for k = 1,2,3,.... Therefore, the
functions gy = t"~3/2sin(km logt/loge) are eigenfunctions corresponding to
the eigenvalues §; = ((n — 3)/2)> + (km/loge)>. It is now a simple matter to
verify that the functions g and g,,, kK # m, are orthogonal with respect to the inner
product defined in (28). This proves the lemma. O

LEMMA 3.5. Let M"~! be a compact, orientable, immersed hypersurface of S"(1)
with S, = 0 e S3 never zero. Suppose thatn > 4. The first eigenvalue of the operator
Ly in M satisfy Ay < —(n — 2).

Proof. According to recent work of Alencar et al. [1] (Lemmas (3.7) and
(4.1))(see also [3]), we have

LiS) = |VA? = |VS||* 4+ (n — D|A|* — ST + 35,55 (32)
and
IVAI> > |VS; % (33)

Using this and (21), we deduce that

L’lSl < —(l’l — 2)51 (34)
Hence
/ SiLi1Sidp < —(n — 2)/ SZdu. (35)
M M
But
S1£181d
= minfM <—(n—-2). (36)
fM Spdu
This concludes the proof of the lemma. O

LEMMA3.6. Let M"~" be a compact, orientable, immersed hypersurface of S"(1)
with S» = 0, S5 never zero and n > 4.
If n <7 then there exists € > 0 such that the truncated cone CM. is not stable.

We observe that the lemma completes the proof of the theorem.

Proof of the lemma. From Lemmas 3.4 and 3.5 we have

2 2
n—3 b4
MA+HLS - —-2)+ +{— .
2 loge

It is trivial to verify that the sum of the first two terms of the right-hand side of
this inequality is a quadratic polynomial, with positive second-order term, whose
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roots are approximately 2.2 and 7.8. Hence, it is strictly negative for values of
n € {4,5, 6,7}, in fact, it is less than or equal to —1. Hence,

z \2
MmAs <14 (—
loge

Choosing € sufficiently small we can guarantee that the right-hand side is negative.
Now, by Lemma 3.3 we see that CM, is not stable. This proves the lemma and
completes the proof of the theorem. O

4. Existence of Stable Cones

In this section we will prove the following theorem:

THEOREM 4.1. Ifn > 8 there exist compact, orientable hypersurfaces of S"(1)
with S, = 0 and S; never zero whose cone C(M), for all ¢, 0 < ¢ < 1, is stable as
a hypersurface of R"*!.

Proof. The following example has been considered in [3] for another purpose.
Consider RP*? = R @ R**!, r + s = p. Write down the vectors of R”*? as
£ + &, with & € Rt and & e R**!. If & describes S"(1) ¢ R™*! and &
describes S*(1) C R**! and if af + a% = 1, where a; and a, are positive numbers,
then

X = a1§) + a2, 37

describes a submanifold M of dimension p = r + s of the sphere SP*!(1) of
RP*2. The manifold M is diffeomorphic to S”(1) x S*(1) and so it is compact and
orientable. It is clearly embedded as a hypersurface of the unit sphere of R”*2. We
are going to show that it is possible to choose values for a; and a; so that C(M) is
stable as a hypersurface of R"*! whenr +s5 +1 = 8. O

A normal vector field for M is given by
N = —ax§; +ai1é (38)
Then we have
dX =a1d§| + a,dé,,
dN = —ayd§| + a,dé;.

Hence, if do} is the metric of $"(1) and do; is the metric of S°(1), the first funda-
mental form of M is

ds? = aldo} + aidoi (39)
and its second fundamental form is

11 = ayaydo? — ayardo; (40)
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whose matrix is

( (ar/apl, | 0 )
a=(--"=="- to—— = ,
0 | —(a1/a2)l;

where I, and I; are the identity matrices of R” and R® respectively. Since A is
already diagonalized, we conclude that its eigenvalues are

az ap aj aj
e 41)

611’” aj a a

r s

Since this eigenvalues are constant, then its 7-mean curvature are constant for any
value of r. It is clear that

Sy =r(ax/a)) — s(a/az)
and
|A]> = r(az/ar)* + s(ai /az)*.

Thus, using (21), we obtain

2 2
28 = AP =Si=r(r—1) (%) —2rs +s(s — 1) (ﬂ> . (42)
ai a
Hence, S, = 0 if and only if
r(r — Daj — 2rsata? + s(s — Daj = 0. (43)

To find values of a; and a, that solve this equation one may transform it into a
quadratic equation in (az/a;)* by simply dividing it by a}. Solving this equation
and discarding the negative root, we obtain

(a_g)z _rs+a/rs(p—1)

a r(r—1)

(44)

Since af + a% = 1, we may solve this to obtain

al=r@r —D/r(p—1)+/rs(p— 1),
a3 =(rs +/rs(p — 1)/(r(p — 1) + /rs(p — D).

When r + s = p = 7, which corresponds to n = 8, we have five distinct solutions
which correspond to the pairs (r, s) € {(2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. For all of
them we have S, = Oand S; > 0, infactequal to (a;/ax)[s ++/rs(p — D]/(p—1).

LEMMA 4.2. For each one of these cones Sz = —(p — 1)S1/3.
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Proof. It is well known that trace(A2P;) = S5, — 3S;. Since S, = 0 then we
have

Sy = —(1/3)trace(A? Py) = —(1/3)trace{A*(S11 — A)}. (45)
Since A is diagonal and the entries of its diagonal are given in (41), we obtain

trace{A%(S,1 — A)}
2 2
:r(@) ((r_ He _sﬂ) +(_) (_ . 1)0_1)
ay ay ap a aj az
3 3
=r(r—1) (%> —rsa—2+srﬂ—s(s—1) <a_1>
ay aq an ay

ar 4 ar 2} ar { aq 4 a) 2
—) —rs (—) ——1s(s—1) <—) —sr (—> .
aj aj aj ap a

Using (43) to substitute the terms inside braces, we obtain

I
Ql&
o | =
e,

~

~
~

|

—_

p—
7N

trace{A%(S,1 — A)}

2 2
(—s(s— D +rs <%> ) @ (—r(r —1)+rs (a_1> ) @
ai ap ar a

aj a a a
=—s6c—-—1D)—+rs—+r(r—1)——rs—
a a a a

az ai
=—r(s+r—1)——sr+s—1)

ai az
=(p - DS
This proves the lemma. O

A corollary of this lemma is that, for the surfaces we have been studying, Ss is
zero if and only if S is zero. Since we already know that S; > 0, then we conclude
that S5 is never zero.

Now observe that the L operator in M is given by

p
Lif =Y (Si —k)fi
i=1

r P
a a; a ai
= [(r - 1— —s—] Y fi+t [r— — (s — 1)—} > fi
ag aj i=1 ai az i=r+1
a ai a ai ‘
= |:(r - 1H— —s—] A" f+ |:r— — (s — 1)—i| A f,
ai a ai a
where A" and A® represent the Laplace operator in the Euclidean spheres S"(a;)
and S°(ay) respectively. Since the metric on M is that of the product of these two
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spheres and the first nonzero eigenvalue of the Laplace operator on a sphere S¥(b)
is known to be k/b?, then the first nonzero eigenvalue of L; will be

i =min{|:(r—1)%—sﬂi| . [r@—(s—l)ﬂ]iz}. (46)
a a a; aq ar ay
It then follows that, for the operator
1 S3
Li=——L{+3—
1 S, 1 S,

the first eigenvalue is going to correspond to the constant functions, for which the
corresponding eigenvalue is simply

A =385/S1=—-(p—- D), (47)
where the last equality comes from Lemma 4.2.
For our manifold M we have been able to effectively compute the value of A;.

The value of §; was already computed in Lemma 3.4. Observe that, in our case
n = p+ 1. So, using Lemma 3.4 and (47) we obtain

n—3\° T\’
MFESH=—m-2)+|— ) + (48)
2 loge
Taking n = 8, the sum of the first two terms on the right-hand side becomes 1/4.

Hence, we have A; + §; > 0 for any choice of €. This completes the proof of the
theorem.
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