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Abstract. In this work we generalize the case of scalar curvature zero the results of Simmons (Ann.
Math. 88 (1968), 62–105) for minimal cones in Rn+1. If Mn−1 is a compact hypersurface of the sphere
Sn(1) we represent by C(M)ε the truncated cone based on M with center at the origin. It is easy to
see that M has zero scalar curvature if and only if the cone base on M also has zero scalar curvature.
Hounie and Leite (J. Differential Geom. 41 (1995), 247–258) recently gave the conditions for the
ellipticity of the partial differential equation of the scalar curvature. To show that, we have to assume
n � 4 and the three-curvature of M to be different from zero. For such cones, we prove that, for
n � 7 there is an ε for which the truncate cone C(M)ε is not stable. We also show that for n � 8
there exist compact, orientable hypersurfaces Mn−1 of the sphere with zero scalar curvature and S3

different from zero, for which all truncated cones based on M are stable.
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1. Introduction

A natural generalization of minimal hypersurfaces in Euclidean spaces was known
to Reilly since 1973. Reilly considered the elementary symmetric functions Sr , r =
0, 1, . . . , n, of the principal curvatures k1, . . . , kn of an orientable hypersurface x :
Mn → Rn+1 given by

S0 = 1, Sr =
∑

i1<···<ir

ki1 . . . kir .

Here, ki1, . . . , kin are the eigenvalues of A = −dg, where g: Mn → Sn(1) is the
Gauss map of the hypersurface. Reilly showed in [8] that orientable hypersurfaces
with Sr+1 = 0 are critical points of the functional

Ar =
∫

M
Sr dM

for variations of M with compact support. Thus, such hypersurfaces generalize
the fact that minimal hypersurfaces are critical points of the area functional
A0 = ∫

M S0dM for compactly supported variations.
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A breakthrough in the study of these hypersurfaces occurred in 1995 when
Hounie and Leite [6, 7] found conditions for the linearization of the partial differ-
ential equation Sr+1 = 0 to be an elliptic equation. This linearization involves a
second order differential operator Lr (see the definition of Lr 2 in Section 2) and
the Hounie–Leite conditions read as follows:

Lr is elliptic ⇐⇒ rank(A) > r + 1 ⇐⇒ Sr+2 �= 0 everywhere.

In this paper, we will be interested in the case S2 = 0. For this situation, since
rank(A) cannot be two, the ellipticity condition is equivalent to rank (A) � 3.

In Alencar et al. [2], a general notion of stability was introduced for bounded
domains of hypersurfaces of Euclidean spaces with Sr+1 = 0. In the case we are
interested, namely S2 = 0, it can be shown that if we assume that L1 is elliptic, an
orientation can be chosen so that a bounded domain D ⊂ M is stable if

d2 A1

dt2

∣∣∣∣
t=0

> 0 for all variations with support in (the open set) D.

In what follows, we denote by Br (0) the ball of radius r centered at the origin
0 of Rn+1. Let Mn−1 be a smooth hypersurface of the sphere Sn(1). A cone C(M)
in Rn+1 is the union of half-lines starting at 0 and passing through the points of
M . It is clear that C(M) ∩ Sn(1) = M . It is easy to show that C(M) − {0} is a
smooth n-dimensional hypersurface of Rn+1. The manifold C(M) is referred to as
the cone based on Mn−1. The part of the cone contained in the closure of the ring
B1(0)\Bε(0), 0 < ε < 1, is called a truncated cone and is denoted by C(M)ε.

In this work we will prove the following two theorems which provide a nice
description of the stability of truncated cones in Rn+1 based on compact, orientable
hypersurfaces of Sn(1), with S2 = 0 and S3 �= 0 everywhere.

THEOREM 1. Let Mn−1, n � 4, be an orientable, compact, hypersurface of Sn(1)
with S2 = 0 and S3 �= 0 everywhere. Then, if n � 7, there exists an ε > 0 so that
the truncated cone C(M)ε is not stable.

THEOREM 2. For n � 8, there exist compact, orientable hypersurfaces Mn−1 of
the sphere Sn(1), with S2 = 0 and S3 �= 0 everywhere, so that, for all ε > 0, C(M)ε
is stable.

Although Theorems 1 and 2 are interesting in their own right, a further motivation
to prove these theorems is that, for the minimal case, they provide the geometric
basis to prove the generalized Bernstein theorem, namely, that a complete minimal
graph y = f (x1, . . . , xn−1) in Rn , n � 8, is a linear function (see Simons [9],
Theorems 6.1.1, 6.1.2, 6.2.1, 6.2.2).

For elliptic graphs in Rn with vanishing scalar curvature, the question appears in
a natural way. Of course, since we want to consider graphs with S2 = 0 and S3 that
are never zero, we must start with n � 4, and the solution cannot be a hyperplane.
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Thus the question is whether there exists an elliptic graph in Rn , n � 4, with
vanishing scalar curvature.

So far, the arguments leading to the above quoted Theorems 6.2.1 and 6.2.2
of [9], which depend on geometric measure theory, have not been extended to the
case of hypersurfaces of Rn with S2 = 0 and S3 nowhere zero. To the best of our
knowledge, one has not been able to solve a Plateau problem for the above situation,
even for the simplest case of n = 4.

2. Preliminaries

Given a manifold M̄ and an immersion Y : M̄n → Rn+1, we represent by A the
second fundamental form of Y . The elementary symmetric functions Sr of A are
defined by the identity

det(t I − A) =
n∑

r=0

(−1)r Sr tn−r

and the r -curvatures Hr by

Hr =
(

n
r

)−1

Sr .

The functions Sr can be considered as homogeneous polynomials of the principal
curvatures k1, k2, . . . , kn given by

Sr =
∑

1�i1<i2<···<ir �n

ki1ki2 . . . kir .

It is well known that the scalar curvature K of the immersion Y is equal to H2 and
its mean curvature is H1.

We are interested in studying the immersions with K = 0, or, in other words,
with H2 = 0. Such immersions are critical points to the functional

A1 =
∫

M̄
H1dM̄

with respect to variations of compact support. This variational problem has been
studied by Reilly [8], Hounie and Leite [6, 7], Alencar et al. [2] and various others.
To express its second variation formula, one has to consider the Newton Transfor-
mations Pr , that are inductively given by

P0 = I,
(1)

Pr = Sr I − APr−1,

and then define the differential operator L1 by

Lr f = trace{Pr Hess f }. (2)

It turns out that Lr is self-adjoint and that Lr f = div(Pr grad f ).
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The second variation formula for the mentioned variational problem is, up to a
positive constant, given by the functional

I ( f ) = −
∫

M̄
f (L1 f − 3S3 f ) dM̄ (3)

for test functions f of compact support in M̄ . For variational problems involving
the integral of Sr , Alencar et al. [2] have established a definition of stability. In our
case, if we assume that L1 is elliptic, it turns out that we can choose an orientation
so that a bounded domain D ⊂ M is stable if I ( f ) > 0 for all f supported in D.

Consider now a compact orientable (n − 1)-dimensional manifold M immersed
as a hypersurface of the unit sphere Sn(1) of the Euclidean space Rn+1. The cone
C(M) based on M is the immersed hypersurface of Rn+1 described by

M × (0, ∞) → Rn+1

(4)
(m, t) → tm

Given a positive number ε the truncated cone C(M)ε is the same application
restricted to M×[ε, 1]. The truncated cone is a compact hypersurface with boundary
of the Euclidean Space.

Of course, the geometry ofC(M) is closely related to the one of M . Let X describe
the immersion of M into the sphere. Then, Y = t X describes parametrically C(M).
In fact, if the metric of M is given by ds2, the metric of C(M) is

dσ 2 = dt2 + t2ds2; (5)

and if N (m) is the unit normal vector of M at the point m, then

N (m, t) = N (m) (6)

is a unit normal vector to C(M) at the point (m, t). Let X = e0, e1, . . . , en−1,
en = N be a local frame field, adapted to X in Sn(1). Let θi be the form dual to
ei , 1 � i � n − 1. Represent by θi j the connection forms. Then, the structural
equations of the immersion X are

dθi =
n−1∑

i=1

θi j ∧ θ j , (7)

�i j = dθi j −
n−1∑

k=1

θik ∧ θk j

= −θi ∧ θ j −
∑

hikh jmθk ∧ θm, (8)

where A = (hi j ) is the matrix of the second fundamental form of X with respect
to the frame field.

Now, translating this frame field along the lines through the origin we may define
a frame field in the cone by

e0 = Y

|Y | = X, e1, e2, . . . , en−1, en = N .
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Let ωi represent the dual forms and ωi j represent the connection forms for this
frame. We have the structural equations

dωi =
n−1∑

j=0

ωi j ∧ ω j , (9)

�̄i j = dωi j −
n−1∑

k=0

ωik ∧ ωk j . (10)

Since ∂Y/∂t = X we have that

dY = ∂Y

∂t
dt + tdX = Xdt + t

n−1∑

i=1

θi ei =
n−1∑

i=0

ωi ei (11)

It follows that

ω0 = dt, ωi = tθi . (12)

From where one deduces

0 = d(dt) = dω0 =
∑

ω0 j ∧ ω j

and, for i > 0,

dωi = dt ∧ θi + t
n−1∑

j=1

θi j ∧ θ j

= −θi ∧ ω0 +
n−1∑

j=1

θi j ∧ θ j .

It follows that

ωi0 = −θi , (13)

ωi j = θi j . (14)

To compute the second fundamental form Ā of C(M) in terms of the second fun-
damental form A of M , we proceed as follows. Since

dN = den =
n−1∑

j=0

ωnj e j =
n−1∑

j=1

θnj e j ,

we have

ωn0 = 0, (15)

ωni = θni =
n−1∑

j=1

hi jθ j = 1

t

n−1∑

j=1

hi jω j . (16)

Hence, if we set ωni = ∑n−1
j=0 h̄i jω j , we obtain

h̄0 j = 0 for 0 � j � n − 1,

h̄i j = 1
t hi j for 1 � i, j � n − 1.
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PROPOSITION 2.1. If S̄r represents the elementary symmetric function of order
r of C(M) and P̄r its Newton transformations, then

(a) S̄r = (1/tr )Sr ,
(b) S̄r = 0 if and only if Sr = 0,
(c) | Ā| = (1/t)|A|,

(d) P̄r = (1/tr )





Sr
|
| 0

− − − − + − − − −−
|

0 | Pr|




.

Proof. The proof is obvious except for the last item. But this can be done using
finite induction and the definition of P̄r . For that, we may assume the matrix of A
and Ā are diagonalized. Then, for r = 1 we have

P̄1 = S̄1 Ī − Ā = (1/t)S1 Ī − Ā

= (1/t)




S1

. . .
S1



 − (1/t)





0 |
| 0

−− − + − − − −
|

0 | A
|





= (1/t)





S1
|
| 0

−− − + − − − −−
|

0 | S1 I − A
|




= (1/t)





S1
|
| 0

−− −+ −−
|

0 | P1|




.

Assume now the result is true for P̄r and let us prove it for P̄r+1.

P̄r+1 = S̄r+1 Ī − Ā P̄r = (1/tr+1)Sr+1 Ī − Ā P̄r

= (1/tr+1)




Sr+1

. . .
Sr+1



 − (1/tr+1)





0 |
| 0

− + − −
|

0 | APr|




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= (1/tr+1)





Sr+1
|
| 0

− − − + − − − − −−
|

0 | Sr+1 I − APr|





= (1/tr+1)





Sr+1
|
| 0

− − − + − − −
|

0 | Pr+1|




. (17)

This concludes the proof.

Let F : C(M) → R be a C2 function. For each t > 0 define F̃ t : M → R by
F̃ t (m) = F(m, t).

PROPOSITION 2.2. With the above notation we have

L̄r F = 1

tr
Sr

∂2 F

∂t2
+ n − r − 1

tr+1
Sr

∂ F

∂t
+ 1

tr+1
Lr (F̃ t ).

Proof. Since L̄1 F = trace(P̄1Hess(F)), we start by computing Hess (F). In
the following computation we use the frame field and equations deduced earlier
and represent by dM the differential of functions on M . First of all, observe that

dF =
n−1∑

i=0

Fiωi = ∂ F

∂t
dt +

n−1∑

i=1

Fiωi ,

dM F̃t =
n−1∑

i=1

(F̃ t )iθi =
n−1∑

i=1

Fiωi .

It follows that

t Fi = (F̃ t )i , for i > 0,
(18)

F0 = ∂ F/∂t.

Now we compute the diagonal of the Hessian of F .

DF0 = ∂2 F

∂t2
dt +

∑ (
∂ F

∂t

)

i

ωi +
∑

Fjω j0

= ∂2 F

∂t2
dt +

∑ (
∂ F

∂t

)

i

ωi − 1

t

∑
Fjω j .

Since DF0 = ∑
F0kωk , the above equality tells us that

F00 = ∂2 F/∂t2. (19)
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For i > 0 we have

DFi = ∂

∂t

(
1

t
(F̃ t )i

)
dt + 1

t
dM ((F̃ t )i ) + 1

t

∑
(F̃ t ) jω j i + ∂ F

∂t
ω0i

= − 1

t2
(F̃ t )i dt + 1

t

∑
(F̃ t )i jθ j + ∂ F

∂t
θi .

Since DFi = ∑
Fi jω j , we conclude that

Fi j = 1

t2
(F̃ t )i j + 1

t

∂ F

∂t
δi j . (20)

Then we have

P̄r Hess(F) =





1
tr Sr | 0

− − − + − − −
|

0 | 1
tr Pr|









∂2 F
∂t2 | (∗)

− − − + − − − − − −
|

(∗) | (
1
t2 (F̃ t )i j + 1

t
∂ F
∂t δi j

)
|





=





1
tr Sr

∂2 F
∂t2 | 0

− − − + − − − − − −
|

0 | (
1

tr+2 Pr (F̃ t )i j + 1
tr+1 Pr

∂ F
∂t δi j

)
|



 .

From there we compute

L̄r F = trace (P̄r Hess(F))

= 1

tr
Sr

∂2 F

∂t2
+ 1

tr+1
trace (Pr )

∂ F

∂t
+ 1

tr+2
trace(Pr Hess(F̃ t )).

Since the dimension of M is n − 1, trace(Pr ) = (n − 1 − r )Sr (see Barbosa and
Colares [4]). Using this plus the fact that trace(Pr Hess(F̃ t )) = Lr (F̃ t ) we conclude
the proof of the Proposition.

3. The Main Theorem

In this section we are going to prove the following theorem:

THEOREM 3.1. Let Mn−1 be a compact, orientable, immersed hypersurface of
Sn(1). Assume that n � 4, that the immersion has S2 identically zero and that
S3 �= 0 for all points of M. Then, if n � 7, for some ε, 0 < ε < 1, the truncated
cone C(M)ε is not stable.

Proof. First of all let us observe that, according to Proposition 2.1, our hypothe-
ses imply that, for the cone C(M), we have S̄2 ≡ 0 and S̄3 never zero. It was proved
by Hounie and Leite [7] that, for a hypersurface of Rn+1 with S̄r ≡ 0, 2 � r < n,
the operator L̄r−1 is elliptic if and only if S̄r+1 is never zero.
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LEMMA 3.2. Under the same hypothesis of the theorem and choosing properly
the normal vector to M, we have that

(a) S1 and S̄1 are positive,
(b) L1 and L̄1 are elliptic.

Proof. Elementary computation tell us that

(S1)2 = |A|2 + 2S2 = |A|2 � 0, (21)

where the last equality is a consequence of the hypothesis S2 ≡ 0. Therefore, if
there is a point where S1 is zero, then, at this point, all the entries of the matrix A are
zero and, consequently, each Sr is zero at this same point. Since this contradicts our
hypothesis that S3 is never zero, we conclude that (S1)2 > 0. By properly choosing
the normal vector we may assume, from now on, that S1 > 0. Using Proposition
2.1 this implies that S̄1 > 0. (b) follows immediately from Proposition (2.1) and
the above result of Hounie and Leite.

To prove the theorem, we are going to show the existence of a truncated cone
C(M)ε for which the second variation formula attains negative values. Hence, from
now on we are going to work on a truncated cone, with test functions f that have
a support contained in the interior of the truncated cone. As we did before, for
each test function f : C(M)ε → R and each fixed t we define f̃ t : M → R by
f̃ t (m) = f (m, t). From Proposition 2.2 we have that

L̄1 f = 1

t
S1

∂2 f

∂t2
+ n − 2

t2
S1

∂ f

∂t
+ 1

t3
L1( f̃ t ). (22)

From (5), the volume element of C(M) is given by

dM̄ = tn−1dt ∧ dM. (23)

Hence, using (3), (22) and the expression of the volume, the second variation
formula on f becomes

I ( f ) = −
∫

M×[ε,1]
f (L̄1 f − 3S̄3 f )tn−1dt ∧ dM

= −
∫

M×[ε,1]
( f̃ t L1( f̃ t ) − 3S3( f̃ t )

2)tn−4dt ∧ dM −

−
∫

M×[ε,1]

(
t2 f

∂2 f

∂t2
+ (n − 2)t f

∂ f

∂t

)
tn−4S1dt ∧ dM. (24)

Since S1 > 0 according to Lemma 3.2, then tn−4S1dt ∧ dM is a volume element
in C(M), in particular in C(M)ε . We will represent it by dS. In fact, dS is a product
of two measures. The first one on the real line: dξ = tn−4dt ; the second, on M ,
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given by dµ = S1dM . So, dS = dξ ∧ dµ. We can then rewrite the second variation
formula on f as

I ( f ) = −
∫

M×[ε,1]

1

S1
( f̃ t L1( f̃ t ) − 3S3( f̃ t )

2) dξ ∧ dµ −

−
∫

M×[ε,1]

(
t2 f

∂2 f

∂t2
+ (n − 2)t f

∂ f

∂t

)
dξ ∧ dµ. (25)

Define, now, the following two operators:

L1 : C∞(M) → C∞(M) by L1 f = −(1/S1)L1 f + 3(S3/S1) f.

L2 : C∞[ε, 1] → C∞[ε, 1] by L2g = −t2g′′ − (n − 2)tg′.
(26)

Observe that we are considering the space C∞(M) with the inner product

〈〈 f1, f2〉〉 =
∫

M
f1 f2 dµ (27)

and C∞[ε, 1] with the inner product

〈g1, g2〉 =
∫ 1

ε

g1g2dξ. (28)

Since L1 is elliptic and M is compact then L1, and so L1, is strongly elliptic. The
same is true for the operator L2. Let λ1 � λ2 � · · · ↗ ∞ be the eigenvalues of L1

and δ1 < δ2 < · · · ↗ ∞ be the eigenvalues of L2.

LEMMA 3.3. For any test function f we have

I ( f ) � (λ1 + δ1)
∫

M×[ε,1]
f 2dξ ∧ dµ.

There exists a test function f such that I ( f ) < 0 if and only if λ1 + δ1 < 0
Proof. Let { fi (m); 1 � i < ∞} and {g j (t); 1 � j < ∞} be orthonormal bases

of proper functions for C∞(M) and C∞[ε, 1] respectively, chosen in such way that,
for each i and j , fi corresponds to eigenvalue λi and g j to the eigenvalue δ j . A test
function f : C(M)ε → R can now be expressed as

f (m, t) =
∑

ai j fi (m)g j (t). (29)
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Using (25) we then have

I ( f ) =
∫

M×[ε,1]
f (L1 f + L2 f )dξ ∧ dµ

=
∫

M×[ε,1]

(∑
ai j g jL1 fi +

∑
ai j fiL2g j

) ∑
akm fk gmdξ ∧ dµ

=
∑

akmai jλi

∫

M
fi fkdµ

∫ 1

ε

g j gmdξ +

+
∑

akmai jδ j

∫

M
fi fkdµ

∫ 1

ε

g j gmdξ

=
∑

a2
i jλi +

∑
a2

i jδ j

� (λ1 + δ1)
∑

a2
i j = (λ1 + δ1)

∫

M×[ε,1]
f 2dξ ∧ dµ. (30)

Hence, if I ( f ) < 0 then λ1 + δ1 < 0. On the other hand, if λ1 + δ1 < 0 we choose
f (m, t) = f1(m)g1(t), what gives I ( f ) = λ1 + δ1 < 0. This completes the proof
of the lemma.

LEMMA 3.4. The operator L2 has eigenvalues

δk =
(

n − 3

2

)2

+
(

kπ

log ε

)2

, (31)

where 1 � k < ∞.
Proof. One search for solutions in the form g(t) = tα sin ϕ(t). Then one

computes

g′(t) = αtα−1 sin ϕ(t) + tαϕ′(t) cos ϕ(t),

g′′(t) = α(α − 1)tα−2 sin ϕ(t) + 2αtα−1ϕ′(t) cos ϕ(t) +
+ tαϕ′′(t) cos ϕ(t) − tα(ϕ′(t))2 sin ϕ(t).

Substitution of this values in the equation −t2g′′ − (n − 2)tg′ = δg yields

(α(α − 1)tα − tα+2(ϕ′)2 + (n − 2)αtα + δtα) sin ϕ +
+ (2αtα+1ϕ′ + tα+2ϕ′′ + (n − 2)tα+1ϕ′) cos ϕ ≡ 0.

Since sin ϕ and cos ϕ are linearly independent, each one of the terms in parentheses
are zero. It follows that ϕ′(t) = c/t , where c is a constant and, consequently,

α(α − 1) − c2 + α(n − 2) + δ = 0,

2α − 1 + (n − 2) = 0.

It follows that α = −(n − 3)/2 and δ = c2 + (n − 3)2/4 and so
g(t) = t (n−3)/2 sin ϕ(t), being ϕ(t) = c log t . Since g must be zero in the
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boundary of [ε, 1], then c log ε = kπ for k = 1, 2, 3, . . . . Therefore, the
functions gk = t (n−3)/2 sin(kπ log t/ log ε) are eigenfunctions corresponding to
the eigenvalues δk = ((n − 3)/2)2 + (kπ/ log ε)2. It is now a simple matter to
verify that the functions gk and gm , k �= m, are orthogonal with respect to the inner
product defined in (28). This proves the lemma.

LEMMA 3.5. Let Mn−1 be a compact, orientable, immersed hypersurface of Sn(1)
with S2 ≡ 0 e S3 never zero. Suppose that n � 4. The first eigenvalue of the operator
L1 in M satisfy λ1 � −(n − 2).

Proof. According to recent work of Alencar et al. [1] (Lemmas (3.7) and
(4.1))(see also [3]), we have

L1S1 = |∇ A|2 − |∇S1|2 + (n − 1)|A|2 − S2
1 + 3S1S3 (32)

and

1∇ A|2 � |∇S1|2. (33)

Using this and (21), we deduce that

L1S1 � −(n − 2)S1. (34)

Hence
∫

M
S1L1S1dµ � −(n − 2)

∫

M
S2

1dµ. (35)

But

λ1 = min f

∫
M S1L1S1dµ∫

M S2
1dµ

� −(n − 2). (36)

This concludes the proof of the lemma.

LEMMA 3.6. Let Mn−1 be a compact, orientable, immersed hypersurface of Sn(1)
with S2 ≡ 0, S3 never zero and n � 4.

If n � 7 then there exists ε > 0 such that the truncated cone CMε is not stable.

We observe that the lemma completes the proof of the theorem.

Proof of the lemma. From Lemmas 3.4 and 3.5 we have

λ1 + δ1 � −(n − 2) +
(

n − 3

2

)2

+
(

π

log ε

)2

.

It is trivial to verify that the sum of the first two terms of the right-hand side of
this inequality is a quadratic polynomial, with positive second-order term, whose
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roots are approximately 2.2 and 7.8. Hence, it is strictly negative for values of
n ∈ {4, 5, 6, 7}, in fact, it is less than or equal to −1. Hence,

λ1 + δ1 ≤ −1 +
(

π

log ε

)2

Choosing ε sufficiently small we can guarantee that the right-hand side is negative.
Now, by Lemma 3.3 we see that CMε is not stable. This proves the lemma and
completes the proof of the theorem.

4. Existence of Stable Cones

In this section we will prove the following theorem:

THEOREM 4.1. If n � 8 there exist compact, orientable hypersurfaces of Sn(1)
with S2 ≡ 0 and S3 never zero whose cone C(M)ε for all ε, 0 < ε < 1, is stable as
a hypersurface of Rn+1.

Proof. The following example has been considered in [3] for another purpose.
Consider R p+2 = Rr+1 ⊕ Rs+1, r + s = p. Write down the vectors of R p+2 as
ξ1 + ξ2, with ξ1 ∈ Rr+1 and ξ2 ∈ Rs+1. If ξ1 describes Sr (1) ⊂ Rr+1 and ξ2

describes Ss(1) ⊂ Rs+1 and if a2
1 + a2

2 = 1, where a1 and a2 are positive numbers,
then

X = a1ξ1 + a2ξ2 (37)

describes a submanifold M of dimension p = r + s of the sphere S p+1(1) of
R p+2. The manifold M is diffeomorphic to Sr (1) × Ss(1) and so it is compact and
orientable. It is clearly embedded as a hypersurface of the unit sphere of R p+2. We
are going to show that it is possible to choose values for a1 and a2 so that C(M) is
stable as a hypersurface of Rn+1 when r + s + 1 = 8.

A normal vector field for M is given by

N = −a2ξ1 + a1ξ2 (38)

Then we have

dX = a1dξ1 + a2dξ2,

dN = −a2dξ1 + a1dξ2.

Hence, if dσ 2
1 is the metric of Sr (1) and dσ 2

2 is the metric of Ss(1), the first funda-
mental form of M is

ds2 = a2
1dσ 2

1 + a2
2dσ 2

2 (39)

and its second fundamental form is

I I = a1a2dσ 2
1 − a1a2dσ 2

2 (40)
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whose matrix is

A =
(

(a2/a1)Ir | 0
− − − − − + − − − − −

0 | −(a1/a2)Is

)
,

where Ir and Is are the identity matrices of Rr and Rs respectively. Since A is
already diagonalized, we conclude that its eigenvalues are

a2

a1
, . . . ,

a2

a1︸ ︷︷ ︸
r

, −a1

a2
, . . . , −a1

a2︸ ︷︷ ︸
s

. (41)

Since this eigenvalues are constant, then its r -mean curvature are constant for any
value of r . It is clear that

S1 = r (a2/a1) − s(a1/a2)

and

|A|2 = r (a2/a1)2 + s(a1/a2)2.

Thus, using (21), we obtain

2S2 = |A|2 − S2
1 = r (r − 1)

(
a2

a1

)2

− 2rs + s(s − 1)

(
a1

a2

)2

. (42)

Hence, S2 ≡ 0 if and only if

r (r − 1)a4
2 − 2rsa2

1a2
2 + s(s − 1)a4

1 ≡ 0. (43)

To find values of a1 and a2 that solve this equation one may transform it into a
quadratic equation in (a2/a1)2 by simply dividing it by a4

1 . Solving this equation
and discarding the negative root, we obtain

(
a2

a1

)2

= rs + √
rs(p − 1)

r (r − 1)
. (44)

Since a2
1 + a2

2 = 1, we may solve this to obtain

a2
1 = r (r − 1)/(r (p − 1) +

√
rs(p − 1)),

a2
2 = (rs +

√
rs(p − 1))/(r (p − 1) +

√
rs(p − 1)).

When r + s = p = 7, which corresponds to n = 8, we have five distinct solutions
which correspond to the pairs (r, s) ∈ {(2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. For all of
them we have S2 ≡ 0 and S1 > 0, in fact equal to (a1/a2)[s +√

rs(p − 1)]/(p−1).

LEMMA 4.2. For each one of these cones S3 = −(p − 1)S1/3.
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Proof. It is well known that trace(A2 P1) = S1S2 − 3S3. Since S2 = 0 then we
have

S3 = −(1/3)trace(A2 P1) = −(1/3)trace{A2(S1 I − A)}. (45)

Since A is diagonal and the entries of its diagonal are given in (41), we obtain

trace{A2(S1 I − A)}

= r

(
a2

a1

)2(
(r − 1)

a2

a1
− s

a1

a2

)
+ s

(
a1

a2

)2(
r

a2

a1
− (s − 1)

a1

a2

)

= r (r − 1)

(
a2

a1

)3

− rs
a2

a1
+ sr

a1

a2
− s(s − 1)

(
a1

a2

)3

= a1

a2

{
r (r − 1)

(
a2

a1

)4

− rs

(
a2

a1

)2
}

− a2

a1

{
s(s − 1)

(
a1

a2

)4

− sr

(
a1

a2

)2
}

.

Using (43) to substitute the terms inside braces, we obtain

trace{A2(S1 I − A)}

=
(

−s(s − 1) + rs

(
a2

a1

)2
)

a1

a2
−

(
−r (r − 1) + rs

(
a1

a2

)2
)

a2

a1

= −s(s − 1)
a1

a2
+ rs

a2

a1
+ r (r − 1)

a2

a1
− rs

a1

a2

= a2

a1
r (s + r − 1) − a1

a2
s(r + s − 1)

= (p − 1)S1

This proves the lemma.

A corollary of this lemma is that, for the surfaces we have been studying, S3 is
zero if and only if S1 is zero. Since we already know that S1 > 0, then we conclude
that S3 is never zero.

Now observe that the L1 operator in M is given by

L1 f =
p∑

i=1

(S1 − ki ) fii

=
[

(r − 1)
a2

a1
− s

a1

a2

] r∑

i=1

fii +
[

r
a2

a1
− (s − 1)

a1

a2

] p∑

i=r+1

fii

=
[

(r − 1)
a2

a1
− s

a1

a2

]
�r f +

[
r

a2

a1
− (s − 1)

a1

a2

]
�s f,

where �r and �s represent the Laplace operator in the Euclidean spheres Sr (a1)
and Ss(a2) respectively. Since the metric on M is that of the product of these two
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spheres and the first nonzero eigenvalue of the Laplace operator on a sphere Sk(b)
is known to be k/b2, then the first nonzero eigenvalue of L1 will be

λ̃1 = min

{[
(r − 1)

a2

a1
− s

a1

a2

]
r

a2
1

,

[
r

a2

a1
− (s − 1)

a1

a2

]
s

a2
2

}
. (46)

It then follows that, for the operator

L1 = − 1

S1
L1 + 3

S3

S1

the first eigenvalue is going to correspond to the constant functions, for which the
corresponding eigenvalue is simply

λ1 = 3S3/S1 = −(p − 1), (47)

where the last equality comes from Lemma 4.2.
For our manifold M we have been able to effectively compute the value of λ1.

The value of δ1 was already computed in Lemma 3.4. Observe that, in our case
n = p + 1. So, using Lemma 3.4 and (47) we obtain

λ1 + δ1 = −(n − 2) +
(

n − 3

2

)2

+
(

π

log ε

)2

(48)

Taking n = 8, the sum of the first two terms on the right-hand side becomes 1/4.
Hence, we have λ1 + δ1 > 0 for any choice of ε. This completes the proof of the
theorem.
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