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identification up to genus and species level, respec-
tively. Data on pollutant concentrations were obtained 
from the Environmental Company of the State of 
São Paulo. The highest number of Colony-Forming 
Units/m3 (CFU/m3) of microorganisms was meas-
ured in the winter and summer seasons, respectively, 
but the greatest Spore-Forming Units (SFU) of fungi 
were found in the rural area, where pollutant con-
centrations were lower. Nitrogen dioxide (NO2) had 
a slightly positive influence on the concentration of 
SFU of fungi in both areas studied. Sulfur dioxide 
(SO2) pollutant concentrations had both positive and 
negative great relations showing influence on micro-
bial counts in the air of the rural area. In the rural 
area, the low bacteria count was influenced negatively 
by the low concentration of carbon monoxide (CO). 
The microbial counts were related to each other, as 
well as to the concentrations of pollutants, shown 
by all the correlations seen, indicating microorgan-
isms as biomarkers of pollution in outdoor areas. The 
influence of environmental factors on the population 
and outdoor air biome is also explicit.

Keywords  Fungi · Bacteria · Air pollutants · 
Environmental monitoring · Brazil bioaerosols as 
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Abstract  Bioaerosols are particles of great impor-
tance for several fields of research, and spores pro-
duced by fungi can exist as bioaerosols when sus-
pended in the air. Microbiological standards for 
environmental monitoring of outdoor air param-
eters can be achieved by analyzing the relationship 
between airborne microorganisms and the prevail-
ing environmental conditions. The outdoor air of the 
Metropolitan Region of São Paulo and the rural area 
in a city of the state of São Paulo (Ibiúna/SP), both 
in Brazil, were evaluated for the presence of microor-
ganisms using the MAS-100 ECO (Merck®, Fr.) and 
M Air T (Millipore®) air sample collectors. Dichlo-
ran Rose-Bengal Chloramphenicol and Tryptic Soy 
Agars were used for fungal and bacterial isolation, 
respectively. Bacterial colonies were counted, and the 
plates with fungal colonies were sent for phenotypic 
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1  Introduction

Aerosols are particles of great importance for sev-
eral areas of research involving atmospheric chem-
istry, physics, biosphere, climate, and public health 
(Farmer & Riches, 2020; Pöschl, 2005). These aero-
sols can be divided into two fractions: the fine frac-
tion, less than 2  μm and produced mainly by the 
conversion into particles of gases, and the coarse 
fraction, with particles greater than 2 μm (Theotônio 
et al., 2007; Andreeva et al., 2024). Aerosols of bio-
logical origin are generally part of this last fraction 
and are called bioaerosols, which consist of fragments 
of leaves, pollen grains, and fungi (Theotônio et  al., 
2007; Andreeva et al., 2024).

At certain places and times of the year, bioaerosols 
contribute up to 50% of the total number of aerosols 
or particles in the air (Morris et  al., 2004; Pescott 
et  al., 2015Yao, 2018). Bioaerosols can change 
atmospheric thermodynamic properties such as tem-
perature profile and variability of relative humidity, 
and they depend on these factors to circulate in the 
environment. The average length of stay in the atmos-
phere is variable, ranging from days to weeks. Many 
of these bioaerosols have defense mechanisms that 
allow them to withstand the environmental stresses 
of air transport, including exposure to UV radiation, 
dehydration, and pH in the cloud water, and also to 
survive long-range travel (Andreeva et al., 2024; Bur-
rows et al., 2009; Farmer & Riches, 2020; Rosenfeld 
et al., 2008).

These particles are not suspended in the air as 
independent elements, and cell agglomerations or 
airborne transport in plant or animal fragments, soil 
particles, pollen, or spores may occur. The intact par-
ticles that are part of bioaerosols have several sizes: 
Most pollen types grains are 17–58 μm, fungal spores 
are 1–30 μm, bacteria are 0.25–8 μm, and viruses are 
less than 0.3 μm in diameter (Jones et al., 2004).

Kingdom Fungi can produce bioaerosols including 
fragments of hyphae, single-celled, and multicellular 
spores, allowing their dispersion. In general, diversity 
is inherent to the size of fungal particles, associated 
with the strong influence of their diameter. The taxo-
nomic composition of these anemophilous fungi can 
determine how they will be distributed in the atmos-
phere. All fungi are active participants in the cycle 
of elements in nature; approximately 28 to 50 tons of 
fungal materials are emitted annually in the Earth’s 

atmosphere, and fungal particles can constitute up 
to 420% of primary organic aerosol emissions (Ber-
nardi, 2007; Elbert et  al., 2006; Heald & Spracklen, 
2009; Yamamoto et al., 2012).

Microbiological analysis of the air can be per-
formed by several techniques, but sample collection 
using impactors can determine the exact value of the 
air analyzed; due to its flow control, it can determine 
the amount of air collected (Lacey & Venette, 2020). 
A successful fungal analysis depends largely on the 
used technique, as well as the choice of the appropri-
ate culture media in the collection, which allows a 
comprehensive evaluation of quantitative and quali-
tative characteristics (Gutarowska & Piotrowska, 
2007). The characterization of bioaerosols, of fungal 
origin, can be done by analyzing small air samples 
that can provide a reasonable estimate of the typical 
concentration of spores. These analyses may allow 
the identification of potentially harmful fungal con-
tamination, even when surface colonies are not easily 
visible (Egan et al., 2014).

Parameters on microbiological air conditions could 
be performed by analyzing the relationship between 
airborne fungi and bacteria present in outdoor air and 
the environment where they are isolated. However, 
other microorganisms are used in environmental con-
trols, for their sensitivity to pollution, especially in 
rural areas (Martins et al., 2008; Munzi et al., 2007; 
Ristic et al., 2017; Stamenković et al., 2016).

On the other hand, according to the World Health 
Organization (World Health Organization, 2003), 
air quality standards are variable according to the 
approach adopted to balance health risks, techni-
cal feasibility, economic considerations, and vari-
ous other political and social factors, which in turn 
depend, among other things, on the level of develop-
ment and the national capacity to manage air quality, 
in which the number of spores in the air is one of the 
factors (Resolução CONAMA No 491, 2018).

The measurement of anemophilous microorgan-
isms is necessary to evaluate the effectiveness of 
microbial control strategies integrated by environ-
mental monitoring.

Pollution influences on respiratory disorders have 
a great impact on public health and are related to 
anthropic activities producing pollutants, whether 
particulate matter or toxic gases such as sulfur diox-
ide (SO2), nitric dioxide (NO2), and carbon monox-
ide (CO), among others, which also cause enormous 
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inferences to the environment (Martins et al., 2002; 
Parsi and Görecki, 2006; Jasinski et al., 2011).

In Brazil, environmental control analyses of out-
door air are carried out characterizing the aerosols. 
The organic fraction has been mainly related to 
biomass burning and combustion, although there is 
a significant presence of green areas in cities that 
make biogenic emissions an additional source of 
organic carbon (Rackes & Waring, 2013; Ana Paula 
Mendes Emygdio, Cristiane Degobbib, Fábio Luiz 
Teixeira Gonçalves, 2018). This control does not 
focus on microorganisms in the atmosphere.

The Metropolitan Region of São Paulo (MRSP) 
is characterized by a large megalopolis with a high 
population and number of vehicles. This condition 
favors the emission on a scale of pollutants (particu-
late matter and toxic gases), creating its own biome 
in relation with the atmospheric and biological 
characteristics of the air of the region. The large cir-
culation of people and vehicles observed in highly 
populated and industrialized regions can produce 
a high dispersion of microorganisms in these areas 
(Chiquetto et al., 2021).

Several types of researches conducted with envi-
ronmental samples in China and India showed a 
strong correlation between air pollutants and the 
diversity of microorganisms, using culture tech-
niques for the bioaerosols identification, showing 
the influence of environmental factors on the con-
centration of Colony-Forming Units/m3 (CFU/m3) 
of fungi and bacteria, correlating the concentrations 
of pollutants with the amount of CFU of microor-
ganisms (Fan et al., 2019; Roy & Gupta Bhattacha-
rya, 2020).

Identification of airborne fungi, especially those 
belonging to the Ascomycota phylum, can provide 
important information which, when related to atmos-
pheric conditions or the pollutants concentration, 
would turn these microorganisms into strong predic-
tors of environmental conditions (Roy & Gupta Bhat-
tacharya, 2020).

In Brazil, there is a growing concern in monitoring 
indicators of environmental pollution and the need to 
expand the knowledge about these microorganisms in 
the atmosphere, as well as to analyze the relationship 
between these microorganisms and air pollutants; 
beyond that, we have a lack of studies on this board 
realized on Latin America. Based on this information, 
the aim of this study was to collect MRSP air samples 

and analyze their relationships with air pollutant con-
centrations during the period.

2 � Materials and methods

Outdoor air was evaluated in the MRSP and in the 
rural area of a city of the state of São Paulo (Ibiúna/
SP) regarding the presence of fungi and bacteria, for 
six years, amounting to 736 collections; each collec-
tion presented a sample for fungi and another for bac-
teria, respectively.

Two points were analyzed: one in the city of São 
Paulo at the Adolfo Lutz Institute (IAL), located at 
Cerqueira César neighborhood. The rural area ana-
lyzed was the Votorantim neighborhood in the city of 
Ibiúna/SP. The two cities are 60.6 km apart (Table 1; 
Fig.  1). The first point is located at the downtown, 
and Ibiúna is considered rural.

The distribution of the collected samples is 
described according to the collection site and during 
the season of the year (Table 2).

Air was sampled using the air compactors MAS-
100 ECO (Merck®, Fr.) and M Air T (Millipore®). 
Both have the same air flow capacity and final volume 
of sample collected (Moura, Caldas et al., 2015).

Three daily samples were collected at 1-h inter-
vals during the morning (9 AM, 10 AM, and 11 AM), 
based on mutual schedules with highest flow of peo-
ple and vehicles in the capital and the city of the 
interior. Each presented the final volume of 250  L 
(0.25  L/m3), totaling 750  L (0.75  L/m3), using the 
modified Dichloran Rose-Bengal Chloramphenicol 
(DRBCm) culture media (de Matos Castro e Silva 
et al., 2015) for isolation of fungi, while Tryptic Soy 
Agar (TSA) was supplemented with cycloheximide 
for count of CFU/m3 of bacteria.

Table 1   Geographic and numeric details of sites for collection 
of air samples in São Paulo and Ibiúna

Sites Location Number of sam-
ples collected

Coordinates

SITE 1 IAL 524 23º55′60″ S 
46º.66′81″ 
W

46º73′33″ W
SITE 2 IBIÚNA 212 23º39′23″ S

47º13′21″ O
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The samples collected from the TSA plates were 
incubated at 30 °C for three days. After this period, 
was performed the colony counting, and after that, 
the plates were discarded, since there is no need 
for more applied identifications for its correlation 
with the environment (Brągoszewska & Pastuszka, 
2018).

The DRBCm media inoculated with fungi were 
incubated for up to seven days at 30 °C. The resulting 
fungal colonies after the period of incubation were 
counted, and only one isolate of each fungal genera 
was identified using phenotypic characteristics such 
as the macro-micromorphology and the presence of 
pigments (hyaline and dematiaceous), among others 
(Hoog, Guarro, Gené, 2014).

Data on pollutant concentrations at the time of 
air collection were obtained from the Environmen-
tal Company of the State of São Paulo (CETESB) in 
daily online reports of the stations: Cerqueira César, 
Pinheiros, and Sorocaba.

2.1 � Statistical analysis

For statistical analysis, we applied the Kolmogo-
rov–Smirnov test, but it was seen that none of the var-
iables had normal distribution. Then, we performed 
the factorial analysis of variables and applied the Kai-
ser–Meyer–Olkin (KMO) and Bartlett’s tests to attest 
to the feasibility on factorial analysis, looking for 
the variance of the data, where the test could tell us 

Fig. 1   Land-use sampling points

Table 2   Distribution of 
air sampling for a six-year 
period based on season, 
date, and collection site

R: Rural area
U: Urban area

Season Collection year

2013 2014 2015 2016 2017 2018 Total

R U R U R U R U R U R U

Winter 24 24 24 25 15 15 4 5 15 16 40 41 248
Autumn 41 42 – – – – 4 4 – – 62 63 216
Spring 21 21 8 8 – – 4 5 39 39 – – 145
Summer – – – – – – 4 5 9 9 50 50 127
Total 173 65 30 35 127 306 736
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whether factor analysis was appropriate or not. Spear-
man’s nonparametric correlation test was performed 
to verify the strength of the relationships between 
the variables, and where p > 0.005, we applied the 
Mann–Whitney U test to verify whether the compari-
son of two unpaired groups (≤ 100 and ≥ 101  CFU/
m3) was statistically significant. All tests were per-
formed using the Biostat software.

3 � Results

No molecular analysis was performed to adjust or 
categorize the methodology errors due to the scarcity 
of resources for these analyses. All samples collected 
showed the presence of bacteria and fungi, respec-
tively (Fig. 2).

The concentrations of microorganisms were dis-
tributed in a similar way, but in the winter season, 
there was an increase in CFU/m3 of fungal spores, 
while in the summer season, the increase was in the 
CFU/m3 of bacteria (Fig. 3).

During sampling campaign, 1630 fungal isolates 
were obtained; 219 did not present reproduction 
structures and were classified as non-sporulating 
species. According to phenotypic analyses per-
formed in 1411 isolates, 17 different genera were 
identified (Table 3).

The highest incidence of different fungal genera 
in the same air sample occurred in the rural area, 
with up to seven concomitant genera (Table 4).

Statistical analyses were based on factorial data 
represented in Table 5.

Fig. 2   Collection plates 
with samples. A: DRBCm 
plates with fungal colonies. 
B: TSA plates with bacte-
rial growth

Fig. 3   Distribution of 
CFU/m3 of microorganisms 
in rural and urban areas by 
seasons
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In the rural area, by the KMO–Bartlett’s test, the 
analyzed data showed no significant relevance in 
the correlation of bacterial and fungal counts with 
the other variables, different from the relationship 
observed in the low positive influence of pollut-
ant concentration on the number of bacterial counts 
(Table  6) dispersed on the air in the urban area 
(p ≤ 0.001).

Analyzing the differences in the concentrations 
of SO2 in the samples collected between urban and 
rural areas, the result was quite expressive. In the 
rural area, when it presented low rates, it promoted 
a positive influence with the increase of up to 45% 
in the presence of microorganisms in the samples 
(p ≤ 0.001), mainly fungi. The low concentration 
of bacterial counts was negatively influenced by the 
low concentration of CO (p = 0.003); on the other 
hand, the fungi showed a significant positive influ-
ence in relation with the low concentrations of NO2 
(p = 0.014) (Table 7).

On the other hand, in the urban area, the concen-
trations of SO2 in the analyzed data did not impact 
the concentration of microorganisms. High CO con-
centrations did not decrease bacterial concentrations, 
and even NO2, with high levels in the air, continued to 
have a slight significant positive influence (p = 0.006) 
with CFU/m3 of fungi (Table 8).

For the Mann–Whitney U test, the variable of 
microorganisms was split into two groups (≤ 100 
and ≥ 101  CFU/m3) for the analyses, and the results 
of their frequency are described in Table 9.

It was observed that NO2 showed positive influ-
ences in relation with the fungal counts in both 
studied areas and had no correlation with the con-
centrations of bacteria in the analyzed samples. 

Table 3   Airborne fungi genera

Genera Number of isolates Percentile

Acremonium 2 0,14
Aureobasidium 2 0,14
Alternaria 62 4,39
Aspergillus 367 26,01
Bipolaris 8 0,57
Cladosporium 42 2,98
Curvularia 175 12,4
Fusarium 138 9,78
Mucor 9 0,64
Neurospora 141 9,99
Nigrospora 9 0,64
Paecilomyces 16 1,13
Penicillium 234 16,58
Phoma 6 0,43
Rhizopus 101 7,16
Syncephalastrum 9 0,64
Trichoderma 90 6,38
Total 1411 100

Table 4   Diversity of fungal genera in sample sites

Genera by sample Urban Rural Percentile

1 197 41 32,87
2 197 59 35,36
3 92 51 19,75
4 29 32 8,43
5 12 10 3,04
6 – 3 0,41
7 – 1 0,14
Total 347 197 100%

Table 5   Factorial statistics 
descriptive about fungal and 
bacterial counts in relation 
to the air pollutants

Area Mean Standard deviation Total (N)

Fungi Bacteria Fungi Bacteria Fungi Bacteria

Urban CFU/m3 52.15 43.06 54.98 41.01 166 158
SO2 20.68 21.66 33.76 34.32 166 158
NO2 55.98 56.49 27.56 28.14 166 158
CO 20.98 22.01 34.90 35.47 166 158

Rural CFU/m3 201.77 105.31 72.34 78.85 13 13
SO2 5.95 5.95 2.78 2.78 13 13
NO2 11.28 11.28 4.65 4.65 13 13
CO 5.85 5.85 4.08 4.08 13 13
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Mann–Whitney U test (Table  10) verified statisti-
cal significance in the adequacy of data from these 
populations, for fungi (p = 0.004) and bacteria 
(p ≤ 0.001).

4 � Discussion

The role of the atmosphere in the dispersion of fungi 
is quite nonlinear (Franić et al., 2023), in which each 

Table 6   KMO–Bartlett’s test about the relationships between fungal and bacterial counts and the pollutants in the studied areas

df: degrees of freedom
Sig.: p value

Area Value

Kaiser–Meyer–Olkin (KMO) Test for Sampling 
Adequacy

Fungal Bacterial

Urban Measure 0.710 0.724
Bartlett’s Test of Sphericity
≈ Chi-squared 368.495 348.054
df 6 6
Sig.  ≤ 0.001  ≤ 0.001

Kaiser–Meyer–Olkin (KMO) Test for Sampling 
Adequacy

Fungal Bacterial

Rural Measure 0.620 0.419
Bartlett’s Test of Sphericity
≈ Chi-squared 9.470 24.172
df 6 6
Sig. 0.149  ≤ 0.001

Table 7   Spearman’s rank 
correlation between the 
concentrations of total 
CFU/m3, fungal counts, and 
bacterial counts and NO2, 
SO2, and CO in the rural 
area

Sig.: p value

NO2 SO2 CO CFU/m3 CFU/m3 of fungi CFU/m3 of bacteria

NO2 Correlation 1.000 − 0.014 − 0.224 − 0.248 0.336 0.072
Sig. – 0.947 0.462 0.073 0.014 0.621

SO2 Correlation – 1.000 − 0.375 0.675 − 0.378 0.377
Sig. – – 0.207  ≤ 0.001* 0.057 0.076

CO Correlation – – 1.000 − 0.316 − 0.116 − 0.642
Sig. – – – 0.187 0.635 0.003

Table 8   Spearman’s rank correlation between the concentrations of total CFU/m3, fungal counts, and bacterial counts and NO2, 
SO2, and CO in the urban area

Sig.: p value

NO2 SO2 CO CFU/m3 CFU/m3 of fungi CFU/m3 of bacteria

NO2 Correlation 1.000 0.446 0.486 − 0.002 0.204 0.086
Sig. –  ≤ 0.001*  ≤ 0.001* 0.978 0.006 0.266

SO2 Correlation – 1.000 0.601 − 0.053 0.036 − 0.007
Sig. – –  ≤ 0.001* 0.493 0.636 0.929

CO Correlation – – 1.000 − 0.005* − 0.022 − 0.069
Sig. – – – 0.942 0.773 0.367



	 Aerobiologia

1 3
Vol:. (1234567890)

biological, pollution, and meteorological variable 
can have antagonistic or summation effects depend-
ing on the situation. What is known is that there are 
few investigations on microbial bioaerosols, among 
them, that they can be indicators of the level of bio-
logical pollution of the air and the attention that has 
been given to their relations as well. Since fungi and 
bacteria can be found as part of the microbial flora in 
the atmosphere, they deserve a more detailed analy-
sis of their particles present and transported by air, 
as fungal spores provide a better understanding of 
these phenomena, and a more detailed survey of air-
borne particles is required (Grinn-Gofroń et al., 2011; 
Nowakowicz-Dębek et al., 2017).

Regarding the presence of pigments in fungal colo-
nies, some species of dematiaceous fungi may take up 
to 21 days to develop (Sterflinger et al., 2012), creat-
ing a bias in the differentiation of hyaline and dema-
tiaceous fungi in the seven-day period of growth.

Spore-forming units varied according to seasons, 
thus characterizing the seasonal number of fungi 
dispersed. Locality and seasons have already been 
described as influencing the aerial dispersion of the 
fungi most commonly isolated in the outdoor air of 
the city of São Paulo, and this influence was recorded 
during this study (Amend et al., 2010; Onofre., 2010; 
Borges, Monteiro, Monteiro, 2012; Filali Ben Sidel 
et al., 2015).

Table 9   Frequency of microorganism groups (CFU/m3) for Mann–Whitney U test analysis

CFU/m3 Frequency Percentile (%) Valid percent 
(%)

Cumulative 
percent (%)

Fungi Valid N  ≤ 100 183 75 75 75
 ≥ 101 61 25 25 100
Total 244 100 100 –

Frequency Percentile (%) Valid percent 
(%)

Cumulative 
percent (%)

Bacteria Valid N  ≤ 100 204 83.6 87.6 87.6
 ≥ 101 29 11.9 12.4 100
Total 233 95.5 100 –

Missing values System 11 4.5 – –
Total 244 100 – –

Table 10   Mann–Whitney U test analysis between the microbial counts and air pollutants

SD: Standard Deviation
N: Total

Parameters N Mann–Whitney U test

 ≤ 100 CFU/m3  ≥ 101 CFU/m3 Total

Mean ± SD Mean ± SD Median p value

Fungi SO2 199 18,47 ± 27,38 30,25 ± 55,69 19,15 ± 31,13 5,3 0,212
NO2 230 46,31 ± 27,91 36,26 ± 46,79 44,76 ± 30,23 42,5 0,004
CO 201 18,29 ± 30,21 25,60 ± 49,80 18,35 ± 32,35 2 0,788

N  ≤ 100 CFU/m3  ≥ 101 CFU/m3 Total

Mean ± SD Mean ± SD Median p value

Bacteria SO2 199 20,51 ± 32,58 13,55 ± 23,82 19,15 ± 31,13 5,3 0,460
NO2 230 49,92 ± 29,30 28,34 ± 27,33 44,76 ± 30,23 42,5  ≤ 0,001
CO 201 19,91 ± 33,78 11,21 ± 23,89 18,35 ± 32,35 2 0,433
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The relationships between fungal and bacterial 
communities are not fully understood yet. Since the 
environmental conditions of an area (temperature, 
humidity, physical and chemicals patterns) can allow 
the high concentration of fungi, it is more than likely 
that bacterial communities can proliferate in these 
environments, given their ease of assembly (Schmidt 
et al., 2014).

Previous studies have shown that regardless of 
the area analyzed, the greatest diversity and number 
of fungi occur during the winter season, which cor-
roborates the finding of this research, where there 
was a significant increase in the number of fungal 
spores during the winter season (Dannemiller et  al., 
2016; Fan et  al., 2019; Oliveira et  al., 2009; Tem-
perini et  al., 2019). In other studies, conducted in 
the city of São Paulo, the highest concentrations of 
CO, NO2, and SO2 were recorded during the winter 
period, between the months of May and September, 
because of low rainfall rates, weak winds, and higher 
occurrence of temperature inversions, which cor-
roborate the findings of this research (Aguiar, 2015; 
Carvalho et al., 2015; Grinn-Gofroń et al., 2011). On 
the flip side, these same parameters are related to the 
increase in the number of fungal spores dispersed and 
may be related to the values of the relationships found 
between microorganisms and pollutants (Arbex et al., 
2012; Dong et al., 2016; El-Batrawy, 2010; Mitchell 
et al., 2007).

Pollution concentrations have a strong impact on 
the diversity of genera and the number of microor-
ganisms present in the air. Similarly, in this study, 
in the rural region where there is less pollution, the 
diversity of fungal genera is greater, and, as pollutant 
concentrations increase, there is a progressive decline 
of the diversity of microorganisms dispersed in the 
air, safeguarding the concentrations of bacteria that 
did not get affected by the presence of CO (Liu et al., 
2019; Oliveira et al., 2009).

Aspergillus sp. showed as the most present fungi 
in the samples in all seasons and in both areas 
analyzed, corroborating other studies of the same 
area (Liu et  al., 2019; Oliveira et  al., 2009). Some 
species of this genus can cause opportunistic dis-
eases, such as aspergillosis, especially in people 
with immunity issues (Cuervo-Maldonado et  al., 
2010); other species found, such as Trichoderma 
sp., Penicillium sp., and Alternaria sp., are much 

less harmful to human health, even though they also 
can cause infections in immunosuppressed patients 
(Stathakis et  al., 2015; Recio et  al., 2019; ‘BI17: 
Opportunistic fungal infection with Alternaria in 
the immunosuppressed’, 2021), but these species 
are excellent indicators in the areas of pollution and 
biotechnology (Tiwari, Misra and Sangwan, 2013; 
Filali Ben Sidel et  al., 2015; Morales-Oyervides 
et al., 2020).

The number of fungi and bacterial counts in the 
samples between urban and rural areas remained the 
same throughout the seasons; however, there was 
a big growth in the presence of fungal and bacte-
rial spores during the winter and summer seasons, 
respectively. In addition, the genera diversity was 
lower in the urban area samples, where SO2, NO2, 
and CO concentrations were higher, revealing 
that the pollutants do not impact in the number of 
microorganisms dispersed, but at the variety of gen-
era found (Liu et al., 2019; Oliveira et al., 2009).

The relation between low SO2 concentrations and 
the number of microorganisms present in the air of 
the rural area could be explained by the action of 
this substance in the germination of spores (fungi), 
when high levels of this pollutant can lead to form 
H2SO4, which is toxic to fungi and bacteria. This 
action mechanism has been used in the agricultural 
sector, and its usefulness is now revealed and stud-
ied in the monitoring of outdoor air (Schoenlein-
crusius et  al., 2001; Ana Paula Mendes Emygdio, 
Cristiane Degobbib, Fábio Luiz Teixeira Gonçalves, 
2018).

In studies already published, NO2 concentrations 
negatively impacted the concentration of fungi dis-
persed in the air (Schoenlein-crusius et  al., 2001), 
different from the slightly positive correlation found 
in the period studied. However, other studies reveal 
that the influence of this pollutant on the concen-
tration of microorganisms depends on other param-
eters and changes temporally (Abdel Hameed et al., 
2012; Gao et al., 2016).

The analysis of these pollutants, such as CO, has 
already revealed positive and negative influences 
according to the environmental conditions. As in 
this study, CO concentrations impacted the diversity 
and number of bacteria dispersed mainly in urban 
areas, where the concentration of this pollutant is 
higher (Dong et al., 2016; Liu et al., 2019).
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5 � Conclusions

During the collection of samples carried out in the 
urban region of São Paulo and in the rural region of 
Ibiúna for six years and in the four seasons, the high-
est concentration of fungi occurred in the winter sea-
son, and the concentration of bacteria did not vary 
during the study period. The greatest diversity of fun-
gal genera was found in the rural area, where pollut-
ant concentrations were lower.

Regarding the influence of pollutants NO2, CO, 
and SO2, dispersed in the air from the MRSP, the 
presence of NO2 had a positive influence in the con-
centration of fungi in both studied areas. The presence 
of low CO concentrations had a negative influence on 
the concentration of bacteria, and the low concentra-
tion of the pollutant SO2 impacted positively on the 
concentration of airborne microorganisms in the rural 
area.

The results indicated negative influences on the 
correlations between bacteria and CO concentration.

The monitoring of airborne fungi allows further 
studies to assist the analyses, determining bioindica-
tors, based on their frequency and sensitivity to pol-
lutants, which may be the most appropriate way to 
obtain parameters directly linked to environmental 
conditions for the benefit of human health.

This study has provided a possible baseline for 
further studies on analyzing the relationship between 
microorganisms and chemical components in outdoor 
air.
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