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reaching 65%–70% in the repeated tests. They also 
showed many false positives when applied to real-life 
time series collected by Rapid-E. Similar to the previ-
ous studies, fusion of the new scattering models with 
the fluorescence-based identification demonstrated 
almost 15% higher skills than either of the approaches 
alone reaching 77–83% of the overall classification 
accuracy.

Keywords  Airborne pollen; Image recognition · 
Flow cytometry · Real-time monitoring

1  Introduction

A significant fraction of the world population suffers 
from pollen allergy (Pawankar, 2014): rhinitis alone 
affects between 10 and 30% of the population, being 
particularly high in Europe and the USA. Continu-
ous real-time monitoring of airborne pollen concen-
trations is important to provide information to the 
health professionals and the public about changes in 
environmental exposure (Tummon et al., 2021). Real-
time monitors face the key challenge of identifying 
the pollen types in the air. The conventional method 
of collecting pollen by a Hirst-type sampler (Hirst, 
1952) and recognizing them manually through micro-
scopic analysis (CEN/EN 16,868:2019) is inapplica-
ble in real time due to its essentially off-line charac-
ter. It requires skilled personnel and substantial time, 
at least one full day, to perform the recognition tasks 
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and to announce the data. These limitations and sub-
stantial uncertainties associated with the Hirst method 
(Oteros et al., 2017) forced researchers to search for 
advanced methods of pollen monitoring (Maya-Man-
zano et al., 2021; Tummon et al., 2021).

Huffman et  al. (2020) distinguished 8 different 
types of the real-time bioaerosol monitoring meth-
ods. However, only two of them: (1) fluorescence 
spectroscopy; (2) image analysis based on scattering, 
microscopy, and holography, seem to be promising 
for airborne pollen monitoring.

The first group is based on a technique called laser-
induced fluorescence (LIF) (Pöhlker et  al., 2012; 
Pöhlker et al., 2013; O’Connor et al., 2011; O’Connor 
et al., 2014). It is based on induction of pollen grain 
fluorescence with monochromatic laser or LED light, 
which excites organic molecules of the particle top-
most layers. Each biomolecule radiates in a specific 
wavelength range with a characteristic spectrum. 
Since the signal is a superposition of response of 
many species comprising the pollen grain, the iden-
tification problem gets complicated. Nevertheless, 
experience shows that in many cases it is possible to 
distinguish pollen types from each other by their fluo-
rescence (Crouzy et  al., 2016; Šaulienė et  al, 2019). 
Field applications of these devices also showed sig-
nificant potential of the approach (Crouzy et  al., 
2016; Després et al., 2012; Tešendić et al., 2020).

The second group of methods discriminates pol-
len by optical properties, which depend on pollen 
size, form, and surface texture. There are several dif-
ferent approaches inside the group. One approach 
is to acquire photographic images of collected pol-
len and recognize them with computer vision algo-
rithms (Oteros et  al., 2015; Schaefer et  al., 2021). 
A generalization of this approach uses holographic 
imaging, which eliminates the problem of obtaining 
a focused image of a particle flying through detec-
tors in real time (Sauvageat et  al., 2020). An earlier 
method of pollen tracking (Kawashima et  al., 2007, 
2017) is based on laser optics, where light scattered 
by a pollen grain is measured at two angles. Despite 
its simplicity, that method proved to be capable of 
discriminating two key pollen types in Japan, which 
was enough to build a real-time monitoring network 
(Miki et al., 2021).

The above two groups of methods have been com-
bined in several devices, among which two-Rapid-
E of Plair S.A. and Poleno of Swisens-provide the 

most-comprehensive set of parameters for each par-
ticle. The current study concentrates on the technol-
ogy of Rapid-E and continues the developments of 
Crouzy et al. (2016), Šaulienė et al. (2019), Tešendić 
et al. (2020), and Daunys et al. (2021).

A specific challenge discovered by the previous 
study of Rapid-E (Šaulienė et  al., 2019), hereinafter 
referred to as S19, was the strikingly low accuracy 
of the scattering-based convolutional neural network 
(44%) despite the rich multi-channel signal provided 
by the device. A fluorescence-only algorithm scored 
67%, whereas the approach using both principles 
showed an accuracy of 74%. This difference was 
surprising because the classical manual recognition 
method is based on just visual analysis of micro-
scopic image (the approach also used by BAA500 of 
Hund Wetzlar without any fluorescence component—
Oteros et al. (2015), Schaefer et al. (2021)). A practi-
cal dimension of the problem is that the fluorescence-
inducing laser of Rapid-E is the most expensive and 
the least reliable component of the device. Accord-
ing to our experience, its lifetime is about two years, 
whereas its replacement requires a full recalibra-
tion of the device and re-training of the recognition 
algorithm.

Motivated by the above problem, this study aimed 
at optimizing the performance of the scattering-only 
recognition by employing several modern computer 
vision models. The second aim was to estimate the 
added value of combining the new scattering-based 
model with the fluorescence-based model of S19 and 
to evaluate the practical feasibility of restricting the 
real-life device operations to the scattering signal 
alone.

The paper is organized as follows. The next sec-
tion outlines the principles of operations of Rapid-E, 
presents the sample datasets, and lists the analytical 
approaches tested in the study. The pollen identifica-
tion outcome is presented in the Results section. The 
skills of the newly tested methods are compared with 
previously developed algorithms in Discussion.

2 � Materials and methods

2.1 � A protocol of the experiment

The experiment was set as an N-fold cross-validation 
of a series of modern and classical image analysis 
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methods. To maintain the amount of computations 
under control, just two folds were made. However, 
we selected the sub-samples in a way to explore the 
maximum diversity between the folds.

All tried methods were trained with a reference set 
of scattering images of known pollens (about 10,000 
of each pollen type) and subsequently tested with the 
pollen grains withheld from the training. The skills 
of each method were recorded in a form of confusion 
matrix and multilabel classification accuracy (further 
in text referenced as accuracy) calculated from it as a 
percentage of true classifications from all items.

The second step involved the neural network 
designed in S19 for the fluorescence signal. Its results 
were merged with the scattering recognition by a sim-
ple summation of probabilities. The procedure was 
repeated for both folds revealing the uncertainty of 
the comparison.

Upon completion of the individual-methods exper-
iments, the best approaches were selected and fused 
together in various combinations.

2.2 � Plair Rapid‑E device

Rapid-E of Plair S.A. makes use of two physical prin-
ciples, scattering of a laser beam and a laser-induced 
fluorescence, to describe each particle that passes 
through the inspection camera (Kiselev et  al., 2011, 
2013).

In theory, the multi-angle scattering images 
strongly depend on the particle morphology, such 
as size and shape, and thus, can identify the pollen 
grain if a sufficient number of channels and view 
angles are available. Rapid-E has 24 high-frequency 
sensors, which register the scattered light while 
particle passes through the laser beam (Fig. 1, left-
hand panel). The passage time depends on particle 
size, position in the air jet, and orientation. There-
fore, the height of the image is always 24 pixels, 

while its width is specific to each particle (see 
Fig.  1, left panel, and examples in Šaulienė et  al., 
2019). Particles do not move through the beam in a 
perfectly consistent position and can even be spin-
ning, which is arguably the most-complicated part 
of the problem, potentially causing the low identi-
fication skills in scattering-based classifiers. The 
mean scattering image depends on the size of the 
specific pollen and primary scattering directions 
(Fig.  1, middle panel). Importantly, this signal is 
not identical across the Rapid-E devices: even small 
difference in the laser alignment and sensors sensi-
tivity leads to noticeable differences in the images 
(Fig. 1, right-hand panel shows the mean scattering 
for the same Betula pendula pollen sample recorded 
by the Rapid-E of Finnish Meteorological Institute). 
These issues largely complicate the development of 
unified recognition algorithms applicable to sev-
eral devices and reiterate the necessity of using the 
modern computer vision techniques as they might 
be more robust than the classical convolution neural 
network.

The scattering signal allows for construction 
of integral morphological features suggested by 
Crouzy et  al. (2016) and used by Šaulienė et  al. 
(2019), Tešendić et  al. (2020) and Boldeanu et  al. 
(2021). These studies employed deep neural net-
works (DNN) with convolutional blocks for analysis 
of this dataflow.

The second information channel is the fluores-
cence recordings. The fluorescence data are col-
lected in two ways: for 32 wavelengths at 8 con-
secutive time moments and for 4 high-frequency 
channels, which register the fluorescence evolution 
with time (Šaulienė et  al., 2019). At the first and, 
sometimes, the second time moments, the fluores-
cence signal could get saturated. However, we left 
such particles for processing.

Fig. 1   Example of a scattering image of a single pollen par-
ticle (left panel, courtesy of J. Palamarchuk), mean scattering 
image over > 1000 particles (middle panel), mean scattering 

image over > 1000 particles for another Rapid-E device (right-
hand panel, Helsinki, FMI)
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2.3 � Experimental data

We used an extension of the S19 dataset, which 
was obtained following the procedure described in 
Šaulienė et al. (2019). The Rapid-E device was sup-
plied with samples of 15 pollen taxa (Table 1; Vali-
ulis et  al., 2020, 2021). In comparison with the S19 
study, we added 5 new species (groups of species) 
marked with an asterisk in Table 1.

Laboratory work of supplying known pollens to 
the device was supplemented with ambient air obser-
vations to collect recordings for a non-pollen class 
of particles. This class consisted of ambient-air par-
ticles, which were registered by the device during 
days when pollen concentrations in the air (according 
to the standard pollen trap of Hirst type) were much 
lower (< 1%) than the total coarse particle concen-
trations observed by the device. Therefore, the vast 
majority of the “non-pollen” class are the coarse par-
ticles of various origin (over 5 μm in diameter, filter 
applied by Rapid-E at the time of collection).

To cope with a large variety of these particles 
and a possible small fraction of pollen in this class, 
the number of samples in it was made very large 
(Table 1). In total, 16 classes (15 genus pollen mor-
photypes and one class of non-pollen) comprised the 
datasets for identification models.

The dataset was split to training and testing sub-
sets. For the fold-1, the last 1000 particles of each 
type supplied to the device were withheld from the 
training subset. For the fold-2, the first 1000 parti-
cles were taken for testing. Being a deviation from 
the classical N-fold evaluation procedure, which 
requires random splits, this method ensures the larg-
est possible difference between the testing sets of the 
folds. Despite cleaning the device by isolating it from 
the ambient air and leaving it idle for a while before 
starting the next pollen type, contamination by pol-
len from the previous round was still possible (also 
noticed by other groups working with Rapid-E). As a 
result, the samples might have a slightly inhomogene-
ous quality, where the first fold might be more con-
taminated and the second fold less contaminated.

2.4 � Pollen classification algorithms

We used classification models from two families of 
neural networks: Convolutional Neural Networks and 
Vision Transformers. Experiments were performed 
with different architectures within each family, 
selected in accordance with the model performance. 
Each architecture had several setups with varying 
number of layers and number of neurons within each 
layer (marked as “a,” ‘b,” etc., indices added to the 
method abbreviation).

To compare the results with the previous studies 
and reveal the added value of the new methodolo-
gies, the identification has been done twice for each 
method: once based on the scattering images alone 
and once fusing the result of the scattering and the 
S19 fluorescence model.

A Pytorch deep learning framework was used for 
training and evaluation of all models. They were 
trained on one GPU using Adam optimizer with a 
learning rate scheduler.

2.4.1 � Computer vision models based 
on convolutional neural networks

ConvNets (Convolutional neural networks) were first 
introduced in the 1990s (LeCun et  al., 1998) and 
became popular after 2012 when AlexNet (Kriz-
hevsky et al., 2012) won the 2012 ImageNet competi-
tion. Many ConvNets modifications have been devel-
oped, but most of them have not been used to classify 

Table 1   Number of images per pollen taxa used for model 
training and evaluation

Plant family Species Number of particles

Betulaceae Alnus glutinosa 10,447
Betula pendula 11,838
Corylus avellana 10,763

Oleaceae *Fraxinus excelsior 12,181
Fagaceae Quercus robur 8384
Salicaceae Populus tremula 10,807

*Salix caprea 13,403
Aceraceae Acer negundo 8546
Cupressaceae Juniperus communis 10,015
Pinaceae *Picea abies 5276

Pinus sylvestris 8293
Asteraceae *Ambrosia artemisiifolia 12,677

Artemisia vulgaris 13,235
Poaceae *Dactylis glomerata 10,442

Festuca pratensis 7611
Non-pollen any particle 326,577
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scattering images of airborne particles of biological 
origin.

A simple ConvNets structure with 2 convolutional 
blocks used in the S19 study formed a starting point 
for the experiment. That model is marked as version 
“ConvNets_a” in Table  2. Recently, it was demon-
strated by Boldeanu et al. (2021) that the architecture 
with 3 layers gives better accuracy-the version “Con-
vNets _b” in Table  2. On the other hand, it is well 
known that increase in the network layers can lead to 
worse results because of overfitting (Bishop, 1995). 
Training the deep neural networks is also challenging 
because of the problems of vanishing or exploding 
gradient. Therefore, we limited the experiment with 
these two setups.

RepVGG architecture has been introduced quite 
recently (Ding et  al., 2021). In comparison with 
the simple ConvNets, it has several advantages: 
the RepVGG topology is feed-forward without any 
branches, the convolutional part uses only 3 × 3 
convolutions and ReLU activation. We tested the 
RepVGG_A0 configuration (https://​github.​com/​
DingX​iaoH/​RepVGG) changing the input chan-
nels from three (RGB image) to one (monochro-
matic image). Several configurations were tested 
with different number of layers in blocks and width 
multipliers.

ResNet (He et  al., 2015) architecture introduces 
shortcut connections, which help solving the issue 
of the vanishing gradient. The 1 × 1 convolution 
allowed not only to reduce the number of parameters 
in the network but also to improve the network abil-
ity to handle nonlinearities ResNet has models with 
a different number of layers (18, 34, 50, 101, 152). 
Because the scattering image is quite small, we tried 
Resnet-18 and ResNet-34 architectures. Models were 
built using Pytorch ResNet implementation (https://​
pytor​ch.​org/​vision/​0.​8/_​modul​es/​torch​vision/​models/​
resnet.​html).

EfficientNet (Tan & Lee, 2019; Tan & Lee, 2021) 
is an easily scalable neural network structure. For our 
experiments, we used the EfficientNetV2-S configu-
ration (https://​github.​com/d-​li14/​effic​ientn​etv2.​pytor​
ch).

2.4.2 � Transformer‑based architectures

Vision transformers have been successfully employed 
for natural language processing tasks. Recently, there 

have been many attempts to apply them to object rec-
ognition in computer vision tasks.

ViT Vision Transformer (Dosovitskiy et al., 2020) 
was selected for its high capacity and several success-
ful modifications suitable for image analysis (https://​
github.​com/​lucid​rains/​vit-​pytor​ch). Its application 
involved several steps: (i) the input image is divided 
to fixed-size parts, (ii) their feature vectors (called 
tokens) are calculated, (iii) feature vectors related to 
position–position embeddings are calculated, (iv) 
tokens and position embeddings are supplied to the 
transformer.

The method, however, has two significant draw-
backs (Yuan et  al., 2021a): (i) the direct token cal-
culation from the input images by a hard split makes 
ViT unable to model the image local structures like 
edges and lines, thus requiring much larger samples; 
(ii) the attention backbone of ViT is redundant and 
leads to limited feature richness and difficulties in the 
model training.

ViT-CCT​, ViT Compact Convolutional Trans-
former (Hassani et  al., 2021), is one of the recently 
proposed ViT modifications (Khan et al., 2021). The 
introduced modifications reduced the needs in large 
databases for the model training. The model elimi-
nates the requirement for positional embeddings 
through a novel sequence pooling strategy and use of 
convolutions.

VOLO is another transformer-based model (Yuan 
et  al., 2021b). It addresses the low ViT efficacy in 
encoding the fine-scale features and contexts into the 
token representations. The modification used small 
image patches for token calculations: 8 × 8 instead of 
16 × 16 pixels. It also involved a structure called Out-
looker to generate more expressive token representa-
tions at the fine level. In the second stage of the algo-
rithm, another patch embedding module is utilized to 
down-sample the tokens. A sequence of transformers 
is then adopted to encode global information. The 
authors proposed five versions of the model: VOLO-
D1—VOLO-D5, where VOLO-D1 is the simplest. 
We used VOLO-D1 and its even further simplified 
versions (https://​github.​com/​lucid​rains/​vit-​pytor​ch).

2.4.3 � Weakly Supervised Object Detection

Today’s state-of-the-art object detector can achieve 
near-perfect performance with fully supervised 
settings, i.e., Fully Supervised Object Detection 

https://github.com/DingXiaoH/RepVGG
https://github.com/DingXiaoH/RepVGG
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html
https://github.com/d-li14/efficientnetv2.pytorch
https://github.com/d-li14/efficientnetv2.pytorch
https://github.com/lucidrains/vit-pytorch
https://github.com/lucidrains/vit-pytorch
https://github.com/lucidrains/vit-pytorch
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Table 2   Setups tested in the experiments. The starting point, the setup used in S19 study is ConvNet_a, highlighted with bold font 
and a shadow

Layers Width multipliers

RepVGG
 a [2, 4, 14, 1] [0.75, 0.75, 0.75, 2.5]
 b [2, 4, 6, 1] [0.75, 0.75, 0.75, 2.5]
 c [2, 3, 3, 1] [0.75, 0.75, 0.75, 2.5]
 d [1, 2, 2, 1] [0.75, 0.75, 0.75, 2.5]
 e [1, 2, 2, 1] [0.5, 0.5, 0.5, 1.0]
 f [1, 2, 2, 1] [0.5, 0.5, 0.5, 0.5]
 g [1, 1, 1, 1] [0.75, 0.75, 0.75, 2.5]
 h [1, 1, 1, 1] [0.5, 0.5, 0.5, 1.0]
 i [1, 1, 1, 1] [0.5, 0.5, 0.5, 0.5]
 j [2, 3, 3, 1] [0.5, 0.5, 0.5, 1.0]
 k [2, 3, 3, 1] [0.5, 0.5, 0.5, 0.5]

Channels Squeeze-excitation

EfficientNet
 a [24, 48, 64, 128, 160, 256] [0,0,0,1,1,1]
 b [12, 24, 32, 64, 80, 128] [0,0,0,1,1,1]
 c [24, 48, 64, 128, 160, 256] [0,0,0,0,0,0]

Patch size MLP dim

ViT
 a [12, 12] 128
 b [6, 12] 128
 c [6, 12] 256
 d [12, 12] 256
 e [24, 2] 256

Num. heads Embed. Dims

VOLO
 a [3, 6, 6, 6] [192, 384, 384, 384]
 b [3, 6, 6, 6] [192, 192, 192, 192]
 c [3, 3, 3, 3] [192, 384, 384, 384]

Nbr of conv. blocks

ConvNet
 a 2
 b 3

Layers

ResNet
 a, ResNet-18 [2, 2, 2, 2]
 b [1, 2, 2, 1]
 c [1, 1, 1, 1]
 d, ResNet-34 [3, 4, 6, 3]
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(FSOD). Unfortunately, these methods suffer from 
two inevitable limitations: (i) the large-scale instance 
annotations are difficult to obtain and labor intensive, 
(ii) labelling the input data may inadvertently intro-
duce annotation biases.

To avoid these problems, the community starts to 
solve the object detection with weakly supervised 
settings, i.e., Weakly Supervised Object Detec-
tion (WSOD). WSOD classifies and locates object 
instances using only image-level labels in the training 
phase. We tested the WSOD Wildcat method (Durand 
et al., 2017).

2.4.4 � Tested setups

A full set of tested setups is summarized in Table 2. 
Each method has up to two parameter(s) to alter—
shown in the table for each method.

3 � Results

The main results of the experiment are presented in 
Fig. 2. The computations revealed a few poorly work-
ing models and setups but for every method at least 
one setup was reaching or exceeding the level of 65% 
for scattering-only skills of the fold-1 (a few % less 
for the fold-2). Both folds show the same relations 
between the different classification models, i.e., the 
small difference was only in the absolute skills of the 
methods, not in their relation to each other. There-
fore, the obtained ranking of the models and setups 
is robust.

The second important result is that the S19 algo-
rithm, the left-most bar in Fig.  2, has been sub-
stantially outperformed by most of the modern 
approaches. The best model, Wildcat, outperformed it 
by almost 10%.

From a practical standpoint, however, the higher 
skill of the scattering-based classification was still 
way below the dual-channel model quality. For the 
fusion of scattering- and fluorescence-based methods, 
the maximum skills were almost 15% higher than 
those for scattering: close to 83%.

Looking at the details of the methods performance 
(see the supplemental information for the quantita-
tive scores), there is a tendency of lower model per-
formance when the number of layers or general com-
plexity of the network is reduced. Such reduction in 
scores is significant for scattering-only analysis and 
only partially alleviated by the dual scattering-fluo-
rescence fused model. It also suggests that complex-
ity of some models might be even increased with 
minor risk of over-fitting.

The efficiency of the methods was measured as 
time needed for processing one image with a sin-
gle CPU core (Fig.  3). The absolute values strongly 
depend on nuances of the hardware and software 
configuration and therefore are only indicative. But 
their ratios show the relative costs of each method 
compared to others (can still be influenced by cache 
size, speed of memory vs CPU efficiency, etc.). Fig-
ure  3 plot shows very strong differences between 
the models. Processing time varies from about 1 ms 
(milliseconds) for ConvNet_a up to over 40  ms 
for EfficientNet_c. Two tendencies can be noticed: 
(i) simpler methods are faster but less accurate, 
e.g., ConvNet_a is the fastest and the worst; (ii) for 
sophisticated methods, the higher complexity does 
mean low speed but does not necessarily correspond 
to proportional gain in accuracy. In particular, the 
most-accurate WildCat, while slow, is by no means 
the slowest: 19  ms is the 4-th slowest result among 
the tested algorithms. A graphical representation of 
tradeoff between model accuracy and its processing 
time is presented in Fig.  4. There are included only 

Table 2   (continued)

Num. layers

ViT-CCT​
 a 14
 b 12
 c 10

Wildcat (no parameters to alter)
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models which accuracy is higher 68% and processing 
time is less 20 ms.

Selecting an optimal combination of acceptable 
speed (Supplement 1) and high accuracy (Supplement 
1, according to scattering + fluorescence), three mod-
els-RepVGG_c, ResNet_b, and VOLO_a-were taken 
to the next round of the fusion experiments. The mod-
els were fused pairwise in all possible pairs, and also 
a fusion of all three of them was generated as an “ulti-
mate” method (Table 3). As expected, a fusion of all 
three models gave the best result, but the difference 
between ResNet and VOLO models was insignificant 
in most cases. Scattering-only processing was only 

a tiny bit worse than ResNet + VOLO. One can also 
notice a strong performance of the VOLO_a setup: it 
outperformed other two leading methods and did not 
lose much to any of other combinations.

Confusion matrices (Fig.  5) provide an in-depth 
view of the VOLO_a performance for individual 
pollen types and their families listed in Table  1. 
They can also be compared with the corresponding 
matrices in S19 (except for the newly added spe-
cies). One can notice the substantial similarities 
with the S19 conclusions. As repeatedly pointed 
out in S19 and in other earlier works, pollen of the 
Betulaceae family (Alnus, Betula, Corylus) are all 

Fig. 2   Skills of different 
approaches applied to the 
extended pollen set of S19. 
Upper panel: fold-1, lower 
panel: fold-2
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but indistinguishable from each other. In the current 
case, the scattering skills inside this group are about 
40% (a pure random attribution would evidently 
give 33%). For the dual model scattering + fluo-
rescence, the results are somewhat better-accuracy 
reaches 50%.

The confusion matrix (Fig.  5) also explains an 
otherwise unexpected fact that the skills of the refer-
ence method ConvNet_a, in the current experiment 
(62%) are noticeably higher than those reported by 
S19 (44%). This is because the set of pollens was 
enriched with 5 species, which turned out to be well 
recognized (almost 90% of correct recognition of 
Ambrosia, Picea, and Fraxinus, 85% of Dactylis, and 
97% of non-pollen particles). The example of Fig. 5 
is for VOLO_a, but the same tendency exists in other 
methods.

4 � Discussion

4.1 � Sampling uncertainty and the device “memory”

Comparing the panels of Fig. 2, one can see about-5% 
lower recognition skills for the fold-2 dataset, which 
used first 1000 particles as the test subset. It confirms 
that at the beginning of each experiment a few % of 
extra contamination is routinely recorded in compari-
son with the rest of the dataset, despite the precau-
tions taken against it. For this study, such tendency 
was rather beneficial as it gave a possibility to test the 
methods for different levels of contamination of the 
sample. For practical applications, this feature can 
cause problems in daily operations. Indeed, with an 
air flow rate of 2 l min−1, the device sucks about 2.6 
m3 day−1. Pollen concentrations in the middle of, e.g., 
birch season, can exceed 1000 grains m−3 as a daily 
average. As a result, within a day or two, the device 
will deal with about the same number of particles as 
in the samples of Table 1. The device “memory” can 
then noticeably affect the following days and sug-
gest a longer season than it is in reality. This real-life 
problem can be even more significant than in the cur-
rent experiment because in this study the device was 
cleaned and flushed between the samples, whereas on 
real-life applications it will be operating on a continu-
ous basis. This issue deserves further investigation in 
follow-up studies.

Fig. 3   Time needed for analysis of one image by a pre-trained 
model, [ms]. Tests were performed with a single-CPU Intel(R) 
Core(TM) i5-9400F CPU @ 2.90 GHz, RAM 64.0 GB

Fig. 4   Model’s processing time versus its accuracy for best 
models

Table 3   Results of best models and their fusion

Model Accuracy for fold-1

Scatter-
ing-only 
(%)

Scatter-
ing + fluo-
rescence 
(%)

RepVGG_a 69.6 83.1
ResNet_b 69.3 82.6
VOLO_a 70.3 83.2
RepVGG_a + ResNet_b 71.3 83.6
RepVGG_a + VOLO_a 71.6 83.7
ResNet_b + VOLO_a 71.7 83.7
RepVGG_a + ResNet_b + VOLO_a 72.4 83.8
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4.2 � Best models for scattering‑based particle 
classification

Considering the results of the tested methods and set-
ups, one can see that the best methods are quite close 
to each other (about 70% and 65% for the folds 1 and 
2, respectively). However, the poorly scoring meth-
ods lost more in the fold-2. ConvNet_a had the worst 
performance (less by almost 10%); however, it is also 
the simplest, fastest, and arguably the most-classical 
among all tested algorithms. It looks like the sim-
pler methods are more sensitive to the cleanness of 
the datasets. Since pollen in real atmosphere can be 
noticeably different from those supplied in labora-
tory conditions, one has to pay particular attention to 
choose the robust approaches despite their relatively 
high costs.

For both datasets, the best results were shown by 
the Wildcat model with the ResNet backbone. But the 
gain in accuracy is not significant compared to the 
VOLO model, which is about 4 times faster (Fig. 4). 
The reason for high costs is that the algorithm Wild-
cat, in the full image, tries to detect a true place of 
the pollen fingerprint. Wildcat also had a larger frac-
tion of false positives. The result of VOLO corrobo-
rates with the results obtained on computer vision 
datasets (Yuan et al., 2021b), thus confirming that the 

attention-based DNN architectures are promising for 
scattering image processing.

Most of the tested computer vision models show 
better performance than simple ConvNet used in the 
S19 study or recently by other researchers (Boldeanu 
et al., 2021). Combination of the best models resulted 
in only slightly higher recognition accuracy.

4.3 � Scattering and fluorescence recognition channels

One of the practical motivations for the current study 
was high costs associated with the fluorescence sig-
nal. We tried to find a method that might reach an 
acceptable level of recognition skills using only scat-
tering signal of Rapid-E, thus extending the interval 
between the major device maintenance and recali-
bration. That idea was in line with earlier attempts 
to recognize pollen with two scattered-light sensors 
(Kawashima, 2007). Unfortunately, that goal of the 
study has been reached only partly. From one side, the 
added value of fluorescence channel has been reduced 
from ~ 20% of the skills gain in S19 to < 15% of this 
study. From the other side, these 15% extra accuracy 
is still far too large to be ignored. We conclude that 
usage of both channels is necessary to reach a mini-
mally acceptable level of skills of 80%.

Fig. 5   Confusion matrices of the VOLO_a method. Noise in the matrices (the last row and the right-most column) indicate the non-
pollen particles
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Such a conclusion, albeit in line with previous 
studies, is still somewhat surprising. The angular 
distribution of elastically scattered light is a more 
comprehensive signal than the fluorescence spectral 
records made with just one excitation wavelength 
and, in theory, contains more information. Images 
of the grains (both photographs and holograms) 
are used by other devices with quite decent results 
(Oteros et  al., 2015; Schaefer et  al., 2021). On the 
other hand, scattering image depends on factors not 
directly associated with the particle type: it might 
rotate while passing the laser beam, can be swollen 
or dehydrated, damaged in various ways, etc. All 
these factors may substantially complicate the anal-
ysis and, in the end, make this signal noisy. Updated 
with “In addition, devices are already available on 
the market that use only morphological character-
istics of pollen to identify bioaerosol particles in 
near real-time. The BAA500 device take an image 
of each detected particle and provide results after 
image processing. The noninvasive measurement 
method based on pollen shape and size is imple-
mented at Swisens Poleno, where the structure of 
airborne particles is recognized from holographic 
images.” Measuring polystyrene spheres showed 
that the image-based approach works better than 
the scattering signal one; however, it can only be 
applied to larger particles (Lieberherr et al., 2021).

Fluorescence addresses a different dimension-
chemical composition of the particle skin, which is 
independent from the particle motion (but in ambi-
ent-air conditions can be affected by its water con-
tent or physical damage). As a result, the compara-
tively limited signal appears more informative than 
the complicated scattering image. It is worth men-
tioning that in ambient air, pollen can have smaller 
particles stuck to their surface, which can substan-
tially alter both scattering and fluorescence signals. 
Such particles will, most-probably, not classified as 
pollen by this technology.

To save the resource of the expensive and short-
lived fluorescence-inducing laser, one might con-
sider some hybrid approaches. For instance, the 
fluorescence channel might be activated for a frac-
tion of time to provide a reference profile of pol-
lens in the air, which is used as a “default” template 
between the full-signal intervals. Feasibility and 
quality of such approaches need to be clarified in 
follow-up studies.

4.4 � Classification inside families of similar pollens: 
still problematic

As seen from the confusion matrix, a majority of 
incorrect recognitions is related to the miss-classifi-
cation inside the same plant family. It is particularly 
important for Betulaceae. Three tested genera from 
Betulaceae, Alnus, Betula, Corylus, are heavily mis-
classified inside the family even by the best setup of 
the study (Fig.  5). Significant misclassification was 
found in the Salicaceae family (tested pollen of gen-
era Populus, Salix, 10% of a mix-up with each other). 
Exceptional behavior was found only for two repre-
sentatives of the Asteraceae family: Ambrosia and 
Artemisia are practically never mixed with each other. 
These conclusions are common also for other stud-
ies that include the corresponding pollens (Boldeanu 
et al., 2021; Šaulienė et al., 2019).

5 � Conclusions

A set of 32 different computer vision models and 
model setups has been applied to the problem of clas-
sification of 15 pollen types based on their scattering 
images generated by the Rapid-E flow cytometer.

Several models showed similar performance, 
but clear differences in the skills were observed for 
many approaches and reproduced through the twofold 
cross-evaluation. The best recognition accuracy from 
the scattering image was achieved with the Wildcat 
model, which uses the ResNet model as the back-
bone. However, this model is three times more expen-
sive computationally than several methods that took 
the second place with a small margin: RepVGG_a, 
ResNet_b, and VOLO_a.

In real-life recognition systems, it would be appro-
priate to use the VOLO model setup “a” (Table  2) 
because it showed fewer false-positive recognitions 
than other methods (albeit still too many for a stand-
alone real-life applications). No combination of the 
three winning methods was found to be substantially 
superior to a single-model setup.

Fusing the scattering model and fluorescence-
based recognition approach described in our previ-
ous publication significantly improved the overall 
skills and reduced the number of false positive rec-
ognitions, finally approaching a minimally acceptable 
level of recognition skills of 80%. The gain compared 
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to the scattering-only algorithm has been reduced 
from over 20% in the previous studies to ~ 15% here, 
which is still a very significant contribution.

The resulting overall accuracy of the combined 
new scattering + fluorescence recognition models 
reached 83%, more than 10% up from the previous-
study recognition algorithm. However, the bulk of 
the improvement was due to addition of 5 new pollen 
types, which appeared well-recognizable.

The experiment showed that methods based on 
scattering alone cannot be considered for the real-life 
monitoring, i.e., the expensive fluorescence data are 
necessary to obtain acceptable identification skills.
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