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Abstract Pollen identification and quantification are

used in many fields of application and research has

been conducted to attain accurate automatic pollen

recognition aiming to reduce the laborious work and

subjectivity in human identification. The aim of our

study was to evaluate the capacity of Raman param-

eters of pollen spectra, calculated for only 7 common

band intervals in a limited spectral range, to be used as

future technique in pollen automatic identification.

There were analyzed 15 different pollen species

considered to induce allergic reactions. Raman spectra

were acquired at an excitation wavelength of 785 nm

in a spectral region from 1000 to 1800 cm-1, prepro-

cessed and deconvoluted to determine the Raman

parameters: wavenumber, full width at half maximum

of the band and integrated intensity. Seven common

band intervals of all Raman spectra, in the fingerprint

areas 1000–1010, 1300–1460 and 1500–1700 cm-1,

were chosen for the classification of the pollen species

using SVM (support vector machine). Our results

showed that the classification accuracy of all pollen

species was 100% in the training step, while in the

testing step 14 out of the 15 pollen species were

correctly assigned (93.3%), including the discrimina-

tion between 5 Poaceae species and between Betula

pendula and Corylus avellana. It was also observed

that all Raman parameters are important in the

classification as well as all wavenumber areas consid-

ered. So, our study indicates that the Raman param-

eters of pollen spectra can be a promising

methodology for automatic pollen recognition.

Keywords Pollen classification � Raman spectra �
Spectroscopy � Support vector machine

1 Introduction

Pollen analysis has been used in many fields of

application such as environmental monitoring

(Ribeiro et al. 2015), agriculture (Cunha et al. 2016),

paleobotany (Seddon et al. 2019; Schopf et al. 2016),

forensic science (Orijemie and Israel 2019; Pereira

et al. 2020) and medicine (Lo et al. 2019; Medek et al.
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2019). Pollen is one of the most common triggers of

season allergic reactions, in some individuals when

inhaled causes symptoms due to the proteins that it

carries and the numbers of individuals suffering from

allergies has grown exponentially in the last years

(Sedghy et al. 2017),

Traditionally, pollen identification and quantifica-

tion are performed manually by light microscope, a

process that is time consuming and requires a trained

observer to perform it objectively. Moreover, some

important pollen types inducing allergies, like Phleum

or Dactylis (Garcı́a-Mozo 2017) cannot be identify to

the genus level. The identification task would benefit

with a faster and more resolved identification of pollen

species and this is an area where research has been

carried out along the years (Rittenour et al. 2012;

Sharma-Ghimire et al. 2019).

Image-based applications have been used for pollen

identification and other biological particles for a few

years (France et al. 2000; Ranzato et al. 2007). It is

based on microscopic image analysis through image

processing detection techniques, and the introduction

of texture characterization in the identification has led

to improvements in the classification performance of

the distinct pollen types (Marcos et al. 2015). More

recently, the implementations of real-time automatic

pollen recognition systems based on image processing

techniques (Oteros et al. 2015) and digital holographic

images (Sauvageat et al. 2020), have showed good

results in the online identification of a number of

pollen taxa.

Besides pollen morphological features that provide

a good taxonomic distinction at the family, genus and

even in some cases at the species level, pollen grains

also present several differences concerning molecular

features and chemical composition that allow identi-

fication (Depciuch et al. 2018; Zimmermann 2018).

Recently, new methods in pollen identification and

quantification have been developed, foreseeing auto-

matic pollen identification (Šantl-Temkiv et al. 2020).

DNA-based techniques have been used for pollen

identification and quantification in order to substitute

the traditional methodology. The air samples analyze

are collected by standard methods, and the DNA

extraction occurs afterward following optimized

methodologies (Rojo et al. 2019; Bell et al. 2016)

specially because the pollen DNA extraction is

challenging and some problems involving pollen

abundance quantification may need other resolution

(Baksay et al. 2020). Some studies have showed that

this method could provide accurate qualitative dis-

crimination among grass species (Brennan et al. 2019;

Kraaijeveld et al. 2015) that until now were not

possible to distinguish with image processing

techniques.

Several spectrophotometric techniques have been

tested and applied aiming automatic pollen identifi-

cation. Fourier transformation infrared spectroscopy

(FTIR Muthreich et al. 2020; Xu et al. 2018;

Zimmermann and Kohler 2014), ultraviolet light

induced fluorescence (UV-LIF) (Ruske et al. 2018;

Forde et al. 2019), fluorescent spectroscopy (Mular-

czyk-Oliwa et al. 2012; Zhang et al. 2019) and Raman

spectroscopy (Wang et al. 2015). At first, the different

approaches were used only to discriminate bioaerosol,

and in some cases even pollen, from other materials,

biological or not, present in the air. In particular, the

UV-LIF technique has evolved to a more elaborated

system to distinguish between pollen families and

genus. Fluorescence-based equipment is being used in

the discrimination of materials in the air, nonbiolog-

ical and biological compounds are easily distinguished

due to intrinsic characteristics; however, bioaerosols

like pollen and fungal spores are proving more

challenge (Forde et al. 2019). Bağcıoğlu et al. (2015)

tested 7 different FTIR and Raman spectroscopy

methodologies to the same pollen samples and con-

clude that Raman microspectroscopy measurements,

which are focused on the corpus region of pollen

grains, achieved one of the best taxonomic-based

differentiation of pollen.

The detection system and the collection of the data

are just a part of an automatic pollen identification

protocol, the data analysis/classification (Okwuashi

and Ndehedehe 2020) is presently one important

subject. Development in data science has given a

valuable input into pollen classification based on

pollen spectroscopic features. Some studies are using

machine learning techniques for classification as

supervised learning, where the whole data set is

divided into training and testing set, as it happen in

SVM (support vector machine), NN (neural networks)

or k-nearest neighbors, while others choose unsuper-

vised learning algorithms, where the data are analyzed

as 1 group as, e.g., hierarchical cluster analysis or

k means (Swanson and Huffman 2020).

The use of Raman spectroscopy in the pursuit of

automatic pollen identification is not a new research
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field (Mondol et al. 2019; Wang et al. 2015; Ivleva

et al. 2005; Schulte et al. 2008) but recent develop-

ments in term of classification algorithms, high-

throughput screening (Mondol et al. 2019) and pos-

sible identification of airborne pollen (Doughty and

Hill 2020; Guedes et al. 2014) can allow the increase

in single pollen’s spectra resolution and therefore

better discrimination of pollen samples.

Raman spectroscopy is a nondestructive technique,

that doesn’t require sample preparation, which comes

as an advantage to other techniques suggested for

pollen identification and yet it is possible to analyze

aqueous or air samples with minimal interference

(Weiss et al. 2019; Guedes et al. 2014).

Raman spectroscopy evolved along the years, in the

beginning was used to identify pollen of known

samples (controls) to separate them and in the testing

of different wavelengths to ascertain the best suited for

pollen (Ivleva et al. 2005). Also, the bands in a Raman

spectrum are characteristic and may be assigned to

specific chemical compounds which makes it possible

to discriminate them. The assignment of the pollen

spectrum bands and the correlation of distinct pollen

taxa that they seem to generate another important use

of Raman spectroscopy to pollen identification and

characterization (Schulte et al. 2008). Pollen grains

have a characteristic of high fluorescence spectrum,

and that has been a working issue that researchers

using Raman spectroscopy must address. To enhance

the information extracted and reduce noise, a variety

of spectrum preprocessing techniques have been used

as a baseline correction, normalization and smoothing

(Fukuhara et al. 2019).

Additionally, Raman parameters obtained after

deconvolution of the spectrum such as the wavenum-

ber and other parameters as the intensity, the inte-

grated intensity and the FWHM (full width at half

maximum of the band) remarks to chemical com-

pounds of the pollen wall and can be characteristic for

a specific taxa.

Therefore, in this work we aim to evaluate the

capacity of the Raman parameters of pollen spectra to

be used as future technique in pollen automatic

identification by simplifying the data acquisition and

reducing the volume of information to analyze. We

tested the use of parameters of only 7 common band

intervals for all pollen species tested and used support

vector machine with a data science software for the

classification.

2 Material and methods

2.1 Pollen collection

The pollen samples analyzed by Raman microspec-

troscopy were collected, during the flowering season

in 2018, in the Porto city, from gardens of the Faculty

of Sciences of the University of Porto campus and in

public parks. 15 different pollen species were analyzed

from trees, shrubs and weeds (Table 1) consider to

induced allergic reactions (Galán et al. 2017). Three

plants per each species were sampled, and flow-

ers/catkins were randomly collected from all quad-

rants of the plants, in different branches, until a small

plastic box was filled. After separation of the anthers

from the other plant structures, the anthers were dried

at 25 �C during 24 h, after that time, shivered through

different grades of sieves to separate the pollen from

the rest of the plant materials. Pure pollen was then

collected. The samples were stored at - 20 �C until

analysis (Ribeiro et al. 2017).

2.2 Raman spectra acquisition and processing

Before the analyses, pollen samples were taken from

the storage and left 10 min at room temperature.

Table 1 Pollen analyzed in the study, divided in type of plant

and in pollen family

Plant type Pollen family Pollen species

Aceraceae Acer negundo

Asteraceae Artemisia vulgaris

Betulaceae Alnus glutinosa

Betula pendula

Corylus avellana

Trees and shrubs Cupressaceae Cupressus lusitanica

Fagaceae Quercus robur

Oleaceae Fraxinus floribunda

Platanaceae Platanus x acerifolia

Salicaceae Salix atrocinerea

Grasses Poaceae Anthoxanthum adoratum

Dactylis glomerata

Holcus lanatus

Lagurus ovatus

Lolium perenne
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Raman spectra were acquired by an XploRATM

Raman microscope (Horiba Scientific, France) that

combines optical microscopy with a Raman spec-

troscopy using a laser radiation which allows a ‘‘one

shot’’ analysis. A 100 9 objective lens was used to

focus the laser beam on the sample and also to collect

the Raman scattered radiation in backscattering

geometry. The Raman signal was detected on a highly

sensitive cooled charge-coupled device (CCD)

detector.

Prior to each measurement, the Raman spectrum

wavenumber was calibrated using a Si reference

standard (520.6 ± 0.1 cm-1). Pollen samples were

placed on a glass slide, and for each species 3 spectra

from 3 different pollen grains were collected at an

excitation wavelength of 785 nm from a diode laser at

a power of 25 mW with a range of diffraction gratings

with 1200 lines mm-1 and slit of 300 lm. Extended

scans were performed, with 5 scans of 50 s each

measured on each pollen grain, in a spectral region

from 1000 to 1800 cm-1 with approximately 1 cm-1

resolution.

Raman spectra were preprocessed involving an

automatic polynomial baseline correction to attenuate

the fluorescence influence followed by a denoise

procedure using the Savitsky–Golay algorithm to

increase spectra quality. The spectra were then

normalized to a constant area, where the area under

the curve is set to 100 (a.u.).

Afterward, each spectrum was deconvoluted using

a mixed Gaussian–Lorentzian curve-fitting procedure

to determine the precise Raman parameters:

wavenumber (W), full width at half maximum of the

band (FWHM) and integrated intensity (A). To reduce

the influence of the natural variability of the intensity

of the spectrum a new parameter was calculated,

R_area (pondered area), the ratio between the inte-

grated intensity with the total integrated intensity of

the deconvolution curve. For the fit of the spectral sets,

18 bands were used, which correspond to the aggre-

gate of principal bands present in the distinct pollen

spectra.

The software LabSpec 6 (Horiba Scientific, France)

was used for spectra acquisition and deconvolution.

2.3 Data analysis and pollen classification

A matrix with all the Raman parameters obtained for

each of the 18 bands considered in the deconvolution

process was created. Only the seven common band

intervals to all Raman spectra, chosen by visual

inspection were used in the classification of the pollen

species. The common band intervals were the ones in

the fingerprint areas: 1000–1010, 1300–1460 and

1500–1700 cm-1 and therefore the data matrix pre-

sented a total of 21 feature classifiers.

For the pollen classification analysis, it was used

the open-source Orange 3.24.1. software package,

with tools for data visualization and analysis, data

mining and machine learning (Demsar et al. 2013).

The potential of Raman parameters to accurately

classify the distinct pollen species was evaluated

applying a supervised learning algorithm—SVM

(support vector machine). SVM is based on the

concept of finding a design function that best separates

the analyzed features in different groups. A hyper-

plane represents that separation and the best hyper-

plane is the one that maximizes the distance between

features and therefore gives the best classification or

regression. This represents a linear classifier, but its

usual to find nonlinear distribution for the data, and in

that case, kernel functions are used (set of mathemat-

ical functions that allow for a nonlinear decision

surface to be transformed into a linear higher dimen-

sional space), the objective remains but the hyperplane

adjusts differently to the data.

Our data matrix is composed of 45 spectra 9 21

classifier features and in order to minimize fitting

problems at the classification algorithm, we randomly

divided the data into 2 sets, one training group with

66.7% of the spectra (2 per pollen species, 30 total

spectra) to estimate the best classification model and a

separate testing group with 33.3% of the study cases (1

per pollen species, 15 total spectra). A radial basis

function (RBF) kernel was selected and the tuning of

its c and c parameters was performed by testing

several combinations until the best train-test classifi-

cation was met (c = 1.6 and c = 0.05). RBF kernel is a

commonly used general kernel functions in SVM

classification and is defined as KRBF(x,

x0) = exp[- ckx - x0k2]. The c parameter allows to

define how far is the influence reach of a single

training example, while the c parameter (common to

all SVM kernels) will act as a trade-off between a

correct classification of training examples against

maximization of the decision function’s margin, the

smaller the value of c the larger margin will be

accepted at the cost of training accuracy (Sammut and
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Webb 2011). The precision (ratio of correctly classi-

fied objects to all object that should truly be correctly

classified) and classification accuracy (ratio of correct

classification to total classifications made) attained

was analyzed, and a confusion matrix (two-dimen-

sional table, where one dimension corresponds to the

true class of an object and the other to the class that the

classifier assigns) was used to summarize the perfor-

mance of the classification algorithm (Sammut and

Webb 2011).

3 Results and discussion

3.1 Spectra analysis

Raman spectra give information about the pollen

chemical characterization, containing specific signals

of macronutrients such as lipids, proteins, carbohy-

drates, water and even some pigments (Zimmermann

2010; Schulte et al. 2008; Zimmermann and Kohler

2014; Bağcıoğlu et al. 2015; Pummer et al. 2013;

Kend̄el and Zimmermann 2020; Weglinska et al.

2020). As a result, the spectra are quite complex and

variable between different genera and even species,

which can also be noticed in our results.

The Raman spectra obtained for the 15 different

pollen species show distinct 18 bands, characteristic of

each pollen species, and were selected due to being the

ones that improve the deconvolution fitting line, in the

functionality region between 1000 and 1800 cm-1

(Fig. 1), but only 7 band intervals were common to all

studied species, distributed in three fingerprint regions

(Fig. 2). In fact, the average Raman spectra present

some differences between the studied species, being

possible to distinguish particularities between the

spectra of tree and grass species.

These 3 fingerprint regions are defined by the

following 7 common band intervals at about

[1000–1010 cm-1], [1305–1335 cm-1], [1340–1375

cm-1], [1440–1460 cm-1], [1525–1600 cm-1],

[1600–1615 cm-1] and [1650–1665 cm-1].

In the 1500–1700 cm-1 fingerprint area, the bands

assigned to nucleic acids (adenine and guanine)

by Diehn et al. (2020) were found mostly at

& 1580–1590 cm-1 for trees and at approximately

1565 cm-1 in the grass species. The exception is

Anthoxanthum adoratum with a peak & 1530 cm-1,

assigned to carotenoids (Diehn et al. 2020), this is the

band with more heterogeneity of peak values.

The tree spectra also present a well-defined band in

the interval [1600–1615 cm-1] and 1 or 2 less intense

bands (at 1525–1600 and 1650–1665 cm-1), one

before and other after one higher intensity peak in

the region [1600–1615 cm-1], most of times showed

as shoulders more or less defined, while in grasses, 2, 3

or 4 medium–low intensity bands are observed in the

same region. The band with the higher intensity in all

tree spectra, is around 1608 cm-1 and has been

assigned to mitochondrial activity but also to the

ferulic acid and coumaric acid building blocks in

sporopollenin (Diehn et al. 2020). This band is present

Fig. 1 Example of a spectrum of Artemisia vulgaris with a total of 18 bands deconvolution
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in all pollen species analyzed, less in Lolium perenne

where the higher intensity peak appears at

& 1600 cm-1, and has been assigned to phenylalanine

and tyrosine (Guedes et al. 2014) or to ring stretches of

phenyl structures (Ivleva et al. 2005).

A common band observed in the interval

[1650–1665 cm-1] was the one at & 1662 cm-1 that

has been assigned to vibrations of proteins (Diehn

et al. 2020; Schulte et al. 2008) and is present in all

pollen species with the exception of Artemisia

vulgaris pollen where a band is observed in the

1650 cm-1 position and may be assigned to Amide I

system (C = O) (Guedes et al. 2014; Ivleva et al.

2005).

The fingerprint area between 1300–1460 cm-1 can

be considered characteristic of grass species. In this

region, compared with other species, a wide band with

high intensity is observed in the interval

[1340–1375 cm-1], with most grass species present-

ing the peak at & 1370 cm-1, the exception is

Dactylis glomerata. For tree species, this area is quite

different, being observed a set of smaller bands around

1360 cm-1, that can be assigned to nucleic acids

(adenine and guanine) (Diehn et al. 2020). Also, in this

fingerprint area (1300–1460 cm-1) 2 peaks are found

at & 1450 cm-1 (in all species) and at & 1313 cm-1

(in all trees and in Dactylis glomerata pollen) that

correspond, respectively, to deformation made of C–

H2 groups of aliphatic carbon chains (Guedes et al.

2014) and to ferulic acid and coumaric acid building

blocks in sporopollenin. In the other grass species, the

peak is shifted to & 1322 cm-1, that is associated to

carbohydrates (Diehn et al. 2020).

Finally, in a third fingerprint area

(1000–1010 cm-1) a band at & 1006 cm-1 is char-

acteristic of all pollen and can be assigned to

carotenoids (Diehn et al. 2020; Schulte et al. 2008).

3.2 Classification analysis

The Raman spectra complexity and variability

between distinct pollen types also enables its identi-

fication and classification, by applying data analysis,

to taxonomic levels that are many times not possible to

be discriminated by humans under light microscopy

(Kraaijeveld et al. 2015; Mondol et al. 2019).

Our study assessed the possibility of the Raman

parameters of the seven common bands to all pollen

species to be sufficient for the classification process, a

different approaches to what has been usually done in

other studies that use information of the full or reduced

spectral range. We must highlight that this was a

preliminary proof-of-concept for the methodological

approach using a smaller spectra data set.

The classification potential was evaluated in three

combinations: all 15 tested species data sets, and by

plant�s habitat only tree species and only grass species.

The best classification possible of these data sets is

achieved when used the Raman parameters of the

wavenumber (W), full width at half maximum of the

band (FWHM) and integrated intensity (A) (Table 2).

In our study, the R_area (pondered area) parameter did

not improve the classification.

The classification performance using all pollen

species was very high, being perfect in the training

step with a classification accuracy (CA) of 100% and a

precision of 100%, while in the testing step 14 out of

the 15 pollen species were correctly assigned (preci-

sion of 90% and CA of 93.3%). The exception was

Salix atrocinerea pollen, which was misclassified as

Acer negundo. It was possible to perform the distinc-

tion between pollen from Betula pendula and Corylus

avellana, 2 taxa belonging to the same family

presenting very similar morphologies, which can pose

some classification challenges for the methods based

on image processing (Sauvageat et al. 2020).

Comparing our classification accuracy with the

ones obtained when the full or reduced spectral range

is used by other authors in the pollen discrimination

(Diehn et al. 2020; Ivleva et al. 2005; Zimmermann

and Kohler 2014), it is possible to see that the Raman

parameters can be a good alternative to pollen good

classification, but it must be kept in mind that our

spectra data set is small. As observed by Schulte et al.

(2008), even though pollen taxa related to the genus

and family level present chemical similarities, which

are indicative of both phylogenetic relationship and

mating behavior, in our study it was possible to

discriminate between the distinct pollen species.

Using the information of only seven common band

intervals, we are able to reduce the volume of data

necessary to classify the pollen species as well as the

bFig. 2 Average Raman spectra of the 15 pollen species

analyzed and main fingerprint areas marked in gray

(1000–1010, 1300–1460 and 1500–1700 cm-1)
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time of analysis and spectra acquisition due to the

small spectral region studied.

Table 3 shows the confusion matrix for the tree

pollen species classification corresponding to the test

step.

The trees CA declined a little compared when all

species were used, but the majority were accurately

classified. The exceptions were Salix atrocinerea that

remains misclassified as Acer negundo and now Alnus

glutinosa is classified as Quercus robur. For this

analysis we obtained a CA of 77.8% and a precision

value of 66.7%. As it happens for the total species

SVM analysis, in the train step, the CA and precision

value were 100%.

It is interesting to observe that Alnus pollen was

correctly discriminated when all studied species were

considered. When we use only the Raman parameters

of common band in tree pollen, we are distinguishing

among more similar spectra. The Raman spectrum of

Quercus robur pollen in the 1300–1460 cm-1 finger-

print areas has much more similarities to the grass

spectra and therefore when grasses are included in the

training step the Q. robur would be set further from the

tree species. Additionally, for the same fingerprint

area, Salix atrocinerea and Acer negundo spectra are

very similar and for that these similarities can cause

the CA decline.

When only grass species are tested, the classifica-

tion renders the best performance with all species

being correctly classified in both the training and

testing steps (Table 4), with a CA and precision value

of 100%.

Through high-throughput screening Raman spec-

troscopy (HTS-RS), Mondol et al. (2019) used the

Raman spectra fingerprint region (758–1800 cm-1)

from pollen of 15 genera belonging to the Poaceae

family and applied PCA-SVM for their classification.

The predictions among Poaceae genera were high

(around 79% accuracy and sensitivity of 80%), but the

number of pollen grains/species analyzed was much

higher compared with our study, which justify the

lowest classification performance. In our study, we

tested a small data set to ascertain the possibility of the

Raman parameters to be sufficient for the classifica-

tion process.

We tested also if the Raman peaks observed for

Poaceae pollen species in the fingerprint area

1300–1460 cm-1, with distinct spectral features

among the tested species, could be enough for a

correct classification among them. It was observed that

Table 3 Confusion matrix resulted from the SVM analysis on

test step of the Raman parameters (wavenumber, full width at

half maximum of the band and integrated intensity) of the 7

common wavenumbers from the Raman spectra of the pollen

from tree plant species

Classification

%

Acer
negundo

Alnus
glutinosa

Betula
pendula

Corylus
avellana

Cupressus
lusitanica

Fraxinus
floribunda

Platanus x
acerifolia

Quercus
robur

Salix
atrocinerea

Acer negundo 100 0 0 0 0 0 0 0 0

Alnus
glutinosa

0 0 0 0 0 0 0 100 0

Betula
pendula

0 0 100 0 0 0 0 0 0

Corylus
avellana

0 0 0 100 0 0 0 0 0

Cupressus
lusitanica

0 0 0 0 100 0 0 0 0

Fraxinus
floribunda

0 0 0 0 0 100 0 0 0

Platanus x
acerifolia

0 0 0 0 0 0 100 0 0

Quercus
robur

0 0 0 0 0 0 0 100 0

Salix
atrocinerea

100 0 0 0 0 0 0 0 0
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it was not sufficient for a good classification, in the

train step the value of accuracy was 80% and the

precision of 83.3% where A. adoratum was misclas-

sified as H. lanatus and H. lanatus as L. ovatus.

Distinction among airborne Poaceae genera, or

even species if possible, is important in terms of

pollen-related allergy issues. Grass species are one of

the most common and higher allergenic species and

their wide distribution around the globe as well as

number of species, causing several allergic reactions

in susceptible individuals (Garcı́a-Mozo 2017). How-

ever, not all grass species induce allergies, but a few

genera like Lolium spp., Dactylis spp., Anthoxanthum

spp., Phleum spp., among others, are the most allergic

ones (Brennan et al. 2019; Garcı́a-Mozo 2017). With

an extensive flowering season, that lasts around

4–5 months between March–July and September,

and with several annual peaks in airborne pollen

concentration it makes months of suffering for grass

pollen allergen suffers (Ribeiro and Abreu 2014).

Presently, the grass airborne pollen season is not

discriminated by the different genera or species, and

the pollen season of the most allergenic ones may be

common to other type of pollen season what may

enhance the allergic individual reaction (Garcı́a-Mozo

2017). So, it becomes clear the importance to identify

the different airborne pollen contributors, and among

the Poaceae it is a real challenge to exactly defined the

traits of the flowering seasons, beginning and ending,

for the different genera (Brennan et al. 2019). In fact,

the morphological similarities among the airborne

pollen from the different Poaceae genera makes

almost impossible their distinction. Features such as

number of apertures, shape and texture are quite

similar, posing great analytical challenges to image

processing algorithms (Ronneberger et al. 2002),

although Poaceae pollen morphology is so typical

that are easily distinguished among other airborne

non-Poaceae pollen. With our study it was possible to

distinguish between 5 different species of Poaceae by

using the Raman parameters of only 7 common band

intervals from the full pollen Raman spectrum.

In our study, we also tested the contribution of each

Raman parameter or their different combinations in

pollen classification (Fig. 3).

It was observed that the combination of two or more

parameters gave better results than using only a single

parameter. In Fig. 3 (left side), we can see the

precision values obtained in the training and testing

steps.

Considering each Raman parameter alone, the

integrated intensity (A) is the one that less contributes

to the classification (in training: 59% and in testing:

37%). The wavenumber (W) and full width at half

maximum of the band (FWHM) showed equal preci-

sion in the testing step (63%) but the FWHM achieved

best classification in the train step (90%).

When the parameters are combined in groups of 2,

the W ? FWHM gave better performance than the

other combinations. However, only the combination of

all parameters allows the best classification with 100%

CA in the training step and 90% in the test one.

Finally, with the question in mind if all the 7

common wavenumbers are important to the discrim-

ination of the pollen from the 15 studied species and

therefore avoid overfitting of the classification algo-

rithm, we tested removing the parameter’s data of each

wavenumber considered at a time without any other

change in the remaining data. It was observed that all

wavenumbers are important for the correct classifica-

tion of the pollen species. CA in the training step and

even less in the test one was very low when any

wavenumber is removed (Fig. 3).

Table 4 Confusion matrix resulted from the SVM analysis of the Raman parameters (wavenumber, full width at half maximum of

the band and integrated intensity) of the 7 common band intervals from the Raman spectra of the pollen from 5 grass species

Classification % A. adoratum Dactylis glomerata Holcus lanatus Lagurus ovatus Lolium perenne

Anthoxanthum adoratum 100 0 0 0 0

Dactylis glomerata 0 100 0 0 0

Holcus lanatus 0 0 100 0 0

Lagurus ovatus 0 0 0 100 0

Lolium perenne 0 0 0 0 100
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One interesting observation was when we test the

removal of only the last band interval

[1650–1670 cm-1], the discrimination in the train

step is negatively affected although in a smaller

percentage (precision value of 94%) when compared

with the removal of the other intervals.

The results shift from no misclassification, to 50%

wrong classification for a few species but all trees

(Alnus glutinosa pollen misclassify as Betula pendula,

Salix atrocinerea as Acer negundo, Corylus avellana

as Fraxinus angustifolia) being still possible to make

distinction between the tree and the grass species. This

behavior was not observed when all the other intervals

were removed at a time, and grasses were misclassified

as trees and vice versa. So, the band interval

[1650–1670 cm-1], seems to contribute to the classi-

fication between trees and grasses as well as among the

different tree species. This band has been assigned to

the vibrations of proteins (Diehn et al. 2020; Schulte

et al. 2008) and the differences can be due to distinct

molecular conformations arrising from distict protein

content in each species.

All parameters are important in the classification,

the wavenumber values are one of the most important

though this parameter alone can be tricky. The

calibration made in the equipment it is basically a

calibration of the wavelength, and that if not taken as a

routine can induce differences in this parameter.

Zimmerman et al. (2014) described small shifts in

the wavenumber position, even in pollen spectra of the

same species in different geographical regions. In fact,

in our study, in the test group the performance of this

parameter alone is not good.

The proposed methodology in our study could be a

promising approach for Raman-based automatic pol-

len classification, however, one drawback in the small

data set used in the training and testing of the

classification algorithm. It would be interesting to test

in the future the efficiency of the 7 common band

intervals in discriminating between the studied pollen

types using high-throughput analysis methodology.

4 Conclusion

Our study focused on testing the possibility of using

the band Raman parameters: wavenumber (W), full

width at half maximum of the band (FWHM) and

integrated intensity (A) instead of the all spectrum into

pollen classification. All parameters are important in

the classification, with the wavenumber and FWHM,

contributing the most to the classification.

The results obtained proved to be possible, using

the Raman parameters of 7 band intervals, common to

all pollen types, to achieve a successful classification

of different pollen species. Fourteen out of 15 pollen

species were discriminated including some that are

morphologically very difficult or even impossible to

identified by the human eye, e.g., between 5 Poaceae

species and between 2 species of Betulaceae, as Betula

pendula and Corylus avellana.

It would be interesting to further test the proposed

methodology using a larger number of species,

including fresh pollen and more Poaceae species, as

well as the minimal acquisition time to still achieve a

precise classification.

Fig. 3 Contribution of each Raman parameter (wavenumber

(W), full width at half maximum of the band (FWHM) and

integrated intensity (A)) or their combination (graphic on the

right) and each of the 7 common band intervals (graphic on the

left) in the pollen classification performance. Values of the

precision obtained using SVM analysis in Orange software with

the same configuration used in the classification of the species.

Both train and test sets of data were analyzed
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