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Abstract We present some first insights into hourly

automatic pollen measurements from two campaigns

performed at MeteoSwiss (spring to early summer

2015 and 2016). While the focus of the campaigns was

on device validation, the data obtained provided the

possibility to carry out a statistical analysis to estimate

airborne pollen concentrations at hourly resolution.

We compare the time series from the automatic system

with reference manual measurements to assess the

validity of the automatic system. As expected, during

peak immission periods there is a strong correlation

between manual and automatic measurements. On

days with average pollen concentrations less than 100

grains per cubic metre, only the high-sampling

automatic system provides reasonable results. We

show how this system provides sub-daily exposition

patterns, which cannot easily be derived from the

manual measurements, and comment on their rele-

vance for patient information systems. Finally, we

present a selection of daily cycles for pollen immission

at the observation site and analyse the influence of

weather parameters on pollen emission and

immission.

Keywords Pollen � Automatic monitoring � Optical
methods � Real time � Airborne pollen � Comparative

study

1 Introduction

Understanding the potential of real-time pollen data is

essential for planning future pollen monitoring net-

works. The Swiss federal authorities investigated the

cost-benefit ratio of implementing real-time automatic

pollen monitoring and the associated information

systems (Swiss federal authorities 2017). This study

showed that, for the case of Switzerland, the benefits

associated with the implementation of an automatic

pollen monitoring network far outweighed any costs it

would incur. Progress is, however, still required to

ensure that a robust and stable network that functions

to an adequate level can be implemented. In previous

C. Chappuis � F. Tummon � B. Clot � T. Konzelmann �
B. Calpini � B. Crouzy (&)

Federal Office of Meteorology and Climatology

MeteoSwiss, Chemin de l’Aérologie, CH-1530 Payerne,
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work (Crouzy et al. 2016), we elaborated on four

aspects that are important to evaluate potential auto-

matic pollen-monitoring devices: reliability (1), iden-

tification capability (2), sampling/counting

representativeness (3) and faculty to additionally

operate as a general-purpose aerosol monitoring

device for air quality (4).

In this regard, the Swiss Federal Office of Meteo-

rology and Climatology MeteoSwiss has been testing

automatic pollen monitoring systems intensively,

motivated by the potential improvements such sys-

tems would provide to patient information systems. In

addition to the BAA500 (Helmut Hund GmbH),

various airflow cytometers, such as the Yamatronics

KH-3000 (Kawashima et al. 2007), theWIBS (Perring

et al. 2015; O’Connor et al. 2014; Healy et al. 2014;

O’Connor et al. 2014; Fernandez-Rodriguez et al.

2018), the Plair PA300 (Crouzy et al. 2016), or more

recently the Swisens Poleno, have been evaluated.

Airflow cytometers can be used to identify aerosols

by measuring scattered light and by inducing particle

fluorescence. The measurement is non-invasive and

requires no moving mechanical components except

for the pumps. As a result, airflow cytometers have

proven very reliable [see for example Crouzy et al.

(2016)]. Identification, however, requires advanced

data analytics, and pollen identification is currently

still restricted to a limited number of taxa. Based on a

completely different approach, the BAA500 (Oteros

et al. 2015) automatises the actions performed by

human operators in amanual Hirst-type network (Hirst

1952; Galán et al. 2014), from sample collection to

image identification. While data interpretation for

quality assurance/control (denoted QA/QC hereafter)

using this approach is more straightforward than with

airflow cytometers, other constraints on operation

result from the presence of moving parts and from the

need to regularly change consumable slides.

In this paper, we go beyond mere device validation

and focus on the real-time pollen data from two

measurement campaigns. We first compare the repre-

sentativeness of manual Hirst and automatic data and

then describe daily patterns for pollen immission at the

measuring site at different times in the season. The

high time resolution of the observations, comparable

with the typical timescale of certain weather pro-

cesses, also made possible a statistical analysis of the

link between pollen concentrations and meteorologi-

cal parameters measured at the same location. Finally,

with the perspective of improving pollen forecasts, we

comment on the potential use of real-time hourly

pollen data as input for numerical models.

2 Material and methods

The study site, the optical device and the reference

counts are described extensively in our previous work

on device validation (Crouzy et al. 2016). Here, we

simply provide a brief overview of the most important

aspects.

2.1 Study site [adapted from Crouzy et al. (2016)]

Measurements were performed on the roof of the two-

storey MeteoSwiss building (height 7m, ground alti-

tude 490 m and WGS84 coordinates 46�4804800N,
6�5603500E), located in a rural environment close to

Payerne, Switzerland (Fig. 1). Two volumetric Hirst-

type pollen traps operating in parallel at the site were

used to provide manual pollen counts. One detector

was used for reference and the other as backup in case

anything went wrong with the primary device. Payerne

was chosen as campaign location because a wide

variety of pollen types can be measured there, the

combinations of which are typical for what can be

found on the Swiss Plateau, home to over two-thirds of

the Swiss population.

2.2 Description of the automatic measurement

system [adapted from Crouzy et al. (2016)]

We used the first unit of the commercially available

PA-300 detector produced by Plair SA (see Fig. 2).

Although the device is not the focus of the present

study, we provide a general description here; a

comprehensive technical description can be found in

Kiselev et al. (2011, 2013). Particles first pass through

red laser beams (658 nm), and time-resolved scatter-

ing data are recorded by two photo-detectors. The

scattering signal helps to characterise the optical size,

shape and surface properties of the particles. A third

laser beam in the UV range (337 nm) excites the

particles, and the wavelength-resolved fluorescence
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signal is recorded using a diffraction grating and an

array of 32 photo-detectors (32 equal bins with overall

range 390–600 nm). In addition, the phosphorescence

(long-time response) is recorded by the two photo-

detectors used for the scattering signal and the short-

time response by an ultrafast photo-detector. For a

summary of the time resolution and wavelength

detection range of the different detectors, see Crouzy

et al. (2016).

Air is pumped into the detector at a flow rate of 2

l=min. To increase the sampling rate, a concentrator

based on the virtual impactor principle was used with

A B

C

1 2

3
4

Fig. 1 Validation set-up with boxes for automatic detectors

(panel A, 1 and 2) and volumetric Hirst-type samplers (panel A,

3 and 4); MeteoSwiss study site in Payerne, Switzerland (panel

B); the arrow indicates the location of the pollen monitoring

devices; Details of the Sigma-2 inlet used for the automatic

counting device (panel C). Reproduced from Crouzy et al.

(2016)

Fig. 2 Schematics of the Plair PA-300 detector (courtesy of Plair S.A.)
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the instrument. The concentrator was provided by

Plair SA as an option to the PA-300. The major air

outlet of the concentrator was connected to the second

pump (flow rate 30 l=min) while the minor outlet was

connected to the device. As a result, an effective

sampling flow rate of 30 l=min is obtained for particles

larger than 10 lm. Finally, a Sigma-2 inlet (Verein

Deutscher Ingenieure 2013) was put on top of the

concentrator to protect the detector from rain (see

panels A and B of Fig. 1).

2.3 Manual counts [adapted from Crouzy et al.

(2016)]

We used the current standard method in aerobiological

networks (Galán et al. 2014; Hirst 1952) as a reference

against which to compare the automatic pollen counts.

Hirst-type volumetric samplers (we used a detector

from Burkard Manufacturing Co.) collect airborne

particles on a rotating drum, with efficient impaction

for particle sizes larger than 5 lm. The pollen counts

were made at MeteoSwiss using the same procedure as

for operational monitoring during the pollen season

(optical microscope Olympus BX45 magnification

600�). Results were aggregated as average hourly and

daily concentrations of 47 pollen types, plus one

category for unidentified pollen. As for operational

pollen measurements, counting all the grains present

on the drum was not feasible for the entire duration of

the pollen campaign and instead two lines per slide

were counted (approximately 5% of the slide). Note

that in this regard, the operational practice differs from

(Galán et al. 2014). For the average daily total pollen

concentration, comparison from a preceding campaign

among three Hirst samplers running in parallel shows

a relative fluctuation over the season of around 30% on

average.

Two Hirst samplers were run in parallel to ensure

completeness of the reference data throughout the

season (See Fig. 1). The reference Hirst device

suffered two failures, resulting in the loss of fourteen

days of data. Out of those missing days, twelve could

be replaced using data from the second Hirst sampler

running in parallel.

2.4 Pollen identification

The 2015 validation of the algorithms presented in

(Crouzy et al. 2016) was extended by repeating the

comparison exercise in 2016. This provided informa-

tion on device stability and better validation. To

improve discrimination, we performed 25 additional

calibrations. Fresh pollen was collected and inserted

into the device by blowing small quantities into the

Sigma-2 inlet within a few hours of collection. The

following species were calibrated: Alnus glutinosa,

Betula pendula, Carpinus betulus, Corylus avellana,

Cupressus sempervirens, Dactylis glomerata, Fagus

sylvatica, Fraxinus excelsior, Phleum pratense, Pinus

sylvestris, Plantago lanceolata, Populus alba, Quer-

cus robur, Taxus baccata and Ulmus glabra. The

events generated in the detector were labelled accord-

ing to pollen taxa and used to perform a finer training

using the algorithms developed in Crouzy et al.

(2016). Pollen concentrations were also obtained

using the algorithms introduced in Crouzy et al.

(2016). For discriminating pollen from other aerosols,

thresholds on optical size and fluorescence were

applied; however, the identification of single-pollen

taxa required more complex techniques. The best

results were obtained by combining predictions from a

support vector machine classifier (SVM) and an

artificial neural network (for more details see Crouzy

et al. (2016)). It is important to note that while a

retraining was performed, the overall algorithms

remain unchanged.

2.5 Meteorological data

An operational station of SwissMetNet, the MeteoS-

wiss operational automatic weather monitoring net-

work, provided meteorological parameters used to

investigate the relationship between pollen immission

and local weather conditions. The SwissMetNet

station is located on the meadow bordering the

MeteoSwiss study site (Fig. 1). The distance between

pollen measurements and the weather station is

approximately 200 metres. The data were subjected

to manual and automatic quality control procedures.

3 Results

3.1 Pollen identification and counting: daily data

The extended detection algorithm described above

was used to estimate the time series of three pollen

taxa (grass, beech and pine pollen) as well as of total

123

162 Aerobiologia (2020) 36:159–170



pollen from the automatic real-time pollen measure-

ments. Figure 3 shows daily data from the 2016 pollen

season for total pollen as well as the three individual

pollen taxa. Note that although Pinus sylvestris was

calibrated, the monitoring results should be under-

stood as a proxy for Pinus spp. Similarly, Dactylis

glomerata calibrations were merged with Phleum

pratense calibrations and used as a proxy for Poaceae.

In general, there is reasonable agreement between the

automatic and manual observations on most days. For

the three taxa as well as for total pollen, there are

certain days where either the manual or automatic

measurements show higher values, but given the

uncertainty in both of these observations, it is difficult

to establish which, if any, of the two is correct.

Repeating the analysis performed in Crouzy et al.

(2016) is not the purpose of this paper, nevertheless

there is an improvement from Crouzy et al. (2016)

who showed results for just total pollen and grasses.

Such development is essential given that pollinosis

sufferers require information about specific taxa.

Single-pollen taxa are typically present in the air

only for short periods of time; thus time series analysis

on the airborne concentration of individual pollen taxa

requires a data record covering more than just the two

years available for this paper. In addition,

Fig. 3 Average daily pollen concentrations for total pollen, grass pollen, Fagus sylvatica pollen and Pinus spp. pollen, recorded by two

different devices (Hirst or Manual and Plair or Automatic) during the 2016 pollen season
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identification algorithms introduce a further source of

uncertainty: single-pollen classification is run after

pollen vs other aerosols identification. We therefore

focus just on total pollen for the rest of the paper, the

state of the art for pollen identification is discussed in

detail elsewhere (Šauliene et al. 2019).

3.2 Pollen identification and counting: hourly data

To look in more depth at the real-time observations,

hourly data from a few selected days from both the

2015 and 2016 pollen seasons are shown in Fig. 4.

While these data provide just a snapshot for certain

days, they highlight two main issues relevant at the

daily scale. Firstly, the daily mean value (grey bars)

Fig. 4 Hourly values of total pollen concentrations recorded by two different devices (Hirst or manual and Plair or automatic) for six

selected days. Note the grey bar in the background which denotes the daily average value obtained from the manual measurements
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gives very little indication of the actual fluctuation of

pollen concentrations at the sub-daily scale, providing

strong evidence for important hourly information to be

delivered to allergy sufferers, or used for studies on the

interplay between weather and pollen immission.

Secondly, when pollen levels are relatively high

(Fig. 4 middle and lower panels), the automatic and

manual measurements agree, as for the daily average

values, remarkably well. However, when pollen

concentrations are low (Fig. 4 upper panels), only

the automatic system is able to provide data which

show a coherent daily cycle. The manual observations

on the other hand present a noisy signal with erratic

jumps. This suggests that not only is the automatic

system capable of providing hourly measurements, but

its higher sampling rate makes such observations

much more certain.

This is further demonstrated in Fig. 5, which shows

how the correlation between manual and automatic

measurements increases as data are aggregated over an

increasing number of hours (moving towards the right

in each graph). The correlation increases significantly

as one aggregates data at the daily scale, from around

20 hours onwards. Note that the correlations beyond

approximately 100 hours are less meaningful since for

the periods considered (either April–May or just June)

these correlations are computed for a small number of

data points. Also to note is the fact that the correlations

are considerably lower for the April-May 2016 period;

a result of the fact that a large number of pollen

calibrations for training the recognition algorithm

were carried out during this period, resulting in a

perturbation of the automatic system (interruption of

data collection and pollution of the measuring system,

hence the choice to present separate periods). The

perturbation of the system by calibrations was more

extensive in 2016 than in 2015 (19 vs 14 calibrations).

As discussed in Crouzy et al. (2016), the Pearson

correlation provides an over-optimistic measure of the

performance of the automatic system since it mostly

reflects the peak values of pollen immission; signif-

icant pollinosis symptoms already appear for moder-

ate exposition values. On the other hand, the Kendall

tau penalizes mismatches in the ordering of points of

the time series regardless of the exposition level (even

for extremely low concentrations). Both indicators

therefore need to be considered with some caution, by

examining the details of the time series and identifying

eventual pitfalls.

3.3 Interplay between airborne pollen and weather

parameters

Throughout this paper, pollen immission values are

discussed, indicating ground level airborne pollen

concentration relevant for human exposure. These

concentrations are the result of pollen release, trans-

port and deposition. The high temporal resolution of

the automatic system opens up a wide range of new

research avenues. The sub-daily scale data provide, for

example, the possibility to look in more detail at the

relationship between airborne pollen and meteorolog-

ical parameters, thus helping to derive a better

understanding of the processes controlling airborne

pollen concentrations and potentially improving

numerical models and pollen forecasts. Figure 6

provides such an example for the month of May

2016. The relative humidity and temperature (top

panel) clearly correlate with the hourly pollen con-

centrations (lower panel), the former showing a

negative relationship but the latter a positive correla-

tion. No such relationship is obvious considering just

the daily mean values (grey bars, bottom panel). As

mentioned above, the daily mean values, which are

regularly reported around the world, are in general

poor indicators of the actual variability of airborne

pollen concentrations.

A simple analysis of the hourly automatic data

shows that for both the 2015 and 2016 pollen seasons

there are significant correlations between hourly

pollen concentrations and measurements of precipita-

tion, solar radiation, 2 m temperature and relative

humidity (see Table 1). The latter two variables show

the strongest correlations, particularly for the month of

May in both 2015 and 2016. Consequently, highly

correlated (or anti-correlated in the case of relative

humidity) daily cycles between the airborne pollen

concentrations and these meteorological variables are

most obvious in May. Considering the fact that grass

pollen was dominant when the correlation was the

highest, we can infer that the release, transport and

deposition of grass pollen are most sensitive to these

meteorological parameters, in particular during the

early stages of the grass pollen season. Correlations

are most evident when the analysis is applied to hourly

data (probably an effect of the much larger dataset

obtained when considering hourly data), time series

aggregated to a daily resolution do not present the

same significance of correlations (not shown).

123

Aerobiologia (2020) 36:159–170 165



4 Discussion

While there is still considerable room for develop-

ment, the potential of high temporal resolution auto-

matic pollen measurements is clear. Data at hourly

resolution show, for total pollen, an obvious diurnal

cycle which is not captured in real time and with the

same sampling by the daily-average manual measure-

ments typically made. This sub-daily variability has

consequences, for example, for the treatment of

allergy patients who usually present symptoms above

a particular threshold of pollen concentration. This is

seen in Fig. 7 which shows that a far greater percent-

age of days have hours with high levels of pollen when

compared to just the percentage of days with daily

mean values above that particular level. Even when

averaging over several hours, for example, mornings

Fig. 5 Pearson correlation coefficient (blue crosses) and Kendall tau (orange triangles) between manual and automatic measurements

aggregated over a range of hours for different periods of the 2015 and 2016 pollen seasons
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(yellow dots) or afternoons (pink crosses), this signal

is present for a higher number of days.

These high temporal resolution data need, however,

to be delivered as close to real time as possible. When

the hourly pollen data are autocorrelated over various

lags, it can be seen that the memory of the system

drops off very rapidly (Fig. 8). Autocorrelations fall to

near zero after just 3-4 hours, regardless of whether

hourly automatic or manual data are used. Beyond this

time horizon, pollen information systems cannot be

purely measurement-based and need to resort to

forecasts. While expert forecasts or statistical models,

Fig. 6 Hourly weather and total pollen parameters measured over May 2016. Top panel: relative humidity (%) and 2m temperature

(�C). Bottom panel: total pollen concentration (Pollen/m3)

Table 1 Pearson

correlation coefficient

between hourly total pollen

concentration and following

meteorological parameters:

precipitation, 2 m

temperature, sunshine

duration, relative humidity,

vapour pressure and wind

speed

APRIL P value MAY P value JUNE P value APR-JUN P value

2015

ppt - 0.13 5.7E-04 - 0.19 3.6E-07 - 0.06 9.3E-02 - 0.09 9.0E-06

t2m 0.29 4.7E-15 0.53 3.4E-54 0.36 3.6E-23 0.08 3.5E-04

sun 0.18 2.3E-06 0.34 7.6E-22 0.28 1.8E-14 0.18 1.7E-17

rh - 0.30 5.3E-16 - 0.57 3.8E-65 - 0.42 1.0E-32 - 0.34 7.6E-62

vp 0.00 1.0E?00 - 0.11 1.9E-03 - 0.06 8.3E-02 - 0.25 3.9E-32

ws - 0.05 1.9E-01 0.39 1.8E-28 0.33 7.1E-20 0.11 1.4E-07

2016

ppt - 0.17 6.3E-06 - 0.18 1.0E-06 - 0.08 3.7E-02 - 0.13 4.2E-10

t2m 0.42 1.1E-31 0.41 3.3E-32 0.19 1.4E-07 0.16 4.6E-14

sun 0.20 1.1E-07 0.35 5.8E-23 0.25 1.9E-11 0.26 6.1E-34

rh - 0.42 1.5E-31 - 0.49 1.2E-45 - 0.31 1.5E-17 - 0.42 7.9E-93

vp 0.09 1.2E-02 0.01 7.2E-01 - 0.09 1.5E-02 - 0.14 1.14E-11

ws 0.08 4.1E-02 0.07 4.5E-02 0.24 8.3E-11 0.12 6.2E-09
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see, e.g. Hilaire et al. (2012) still play an important

role, pollen transport has also been introduced into

operational numerical weather models (Pasken and

Pietrowicz 2005; Schueler et al. 2006; Sofiev et al.

2006; Vogel et al. 2008; Sofiev 2017; Zink et al.

2012). Numerical weather models offer high resolu-

tion in time and space and the quality of the output

does not depend on the skill of an individual

forecaster. It is, however, difficult to quantify the

quality of the numerical model output due to the low

spatial resolution of pollen monitoring networks

(Buters et al. 2018), and because of the mismatch

between the daily resolution of manual pollen mea-

surements and the sub-hourly resolution of numerical

models. Another weakness of models lies in their

input; precise vegetation maps and models for pollen

emission (timing and quantity) are essential (Schuck

et al. 2002; Masson et al. 2003; Ulmer 2006; Zink

et al. 2017; Pauling et al. 2012). The variability of

biological processes is, however, large, and emission

maps remain imprecise. The cost of online pollen

monitoring devices currently means a high-density

observational network is not foreseeable, and direct

assimilation of measurements into numerical models

is not, at present, feasible. However, the real-time

availability of data offers the possibility to constrain

emission models by correcting them in real time,

increasing or decreasing emissions, or adjusting the

timing of the start of the pollen season for individual

taxa.

Fig. 7 Percentage of days with airborne pollen concentrations above particular thresholds (as shown in the legend) for 2015 (left panel)

and 2016 (right panel)

Fig. 8 Autocorrelation of the hourly total-pollen time series
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5 Conclusion

In this paper, we present a brief analysis of two seasons

of real-time hourly pollen measurements performed at

MeteoSwiss (spring to early summer 2015 and 2016).

In contrast to previous studies on automatic pollen

monitoring, the focus is not on the measurement

technology but on the real-time data itself. The time

series obtained provide the possibility to carry out

statistical analyses to estimate airborne pollen con-

centrations for three individual pollen species as well

as total pollen at hourly resolution for both seasons.

When compared to reference manual measurements,

the automatic system performs well, showing consid-

erably better results particularly for days with average

pollen concentrations less than 100 grains per cubic

metre; this is a result of the higher sampling rate of the

automatic device. Daily mean values are neither

representative of the daily maximum values attained

nor do they correlate well with meteorological

parameters at this time scale. We also show that the

hourly data need to be delivered rapidly, at least to

improve measurement-based pollen forecasts, since

the sub-daily variability is high and there is little

memory in the system. Finally, we also present a brief

analysis of the possible avenues that could be explored

relating hourly pollen concentrations with meteoro-

logical parameters. Results show that the airborne total

pollen concentrations were most sensitive to fluctua-

tions in temperature and relative humidity, particu-

larly in May with the start of the grass pollen season.

Continuous hourly observations made over entire

seasons provide the possibility to investigate in depth

the relationship between patient exposure, symptoms

occurrence and actual airborne pollen concentrations.

Such research could in turn be used to better define

critical exposure levels and allow patients to take

appropriate actions in terms of activity planning and

the use of medication. The high sampling rates of

automatic systems mean that statistically robust con-

clusions can be drawn, thus opening up new research

directions in the fields of aerobiology and allergology.

While the automatic pollen monitoring system

presented here provides promising results, the algo-

rithms used to estimate the concentrations of individ-

ual pollen taxa need to be extended to include other

important allergenic species to fulfil the needs of

allergic patients and their doctors (Šauliene et al.

2019). Assuming this requirement can be satisfied,

maximizing the impact of these measurements

requires considering the whole product chain going

from the measurements, via forecasts and models, to

communicating information to doctors and patients.
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