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Abstract Prediction of allergic pollen concentration

is one of the most important goals of aerobiology. Past

studies have used a broad range of modeling tech-

niques; however, the results cannot be directly com-

pared owing to the use of different datasets, validation

methods, and evaluation metrics. The main aim of this

study was to compare nine statistical modeling

techniques using the same dataset. An additional goal

was to assess the importance of predictors for the best

model. Aerobiological data for Corylus, Alnus, and

Betula pollen counts were obtained from nine cities in

Poland and covered between five and 16 years of

measurements. Meteorological data from the AGRI4-

CAST project were used as a predictor variables. The

results of 243 final models (3 taxa � 9 cities � 9

techniques) were validated using a repeated k-fold

cross-validation and compared using relative and

absolute performance statistics. Afterward, the vari-

able importance of predictors in the best models was

calculated and compared. Simple models performed
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poorly. On the other hand, regression trees and rule-

based models proved to be the most accurate for all of

the taxa. Cumulative growing degree days proved to

be the single most important predictor variable in the

random forest models of Corylus, Alnus, and Betula.

Finally, the study suggested potential improvements in

aerobiological modeling, such as the application of

robust cross-validation techniques and the use of

gridded variables.

Keywords Allergenic pollen � Pollen concentration

in the air � Betulaceae � Regression models � Predictive

modeling � Machine learning

1 Introduction

Modeling and forecasting of pollen concentration and

pollen season properties are among the most important

goals of aerobiology. Models are used to provide

better understanding and broaden the knowledge of

pollen release and dispersion. Such models could also

be used for prediction purposes; therefore, their results

would be useful for allergists and their patients.

Two main groups of models—numerical and sta-

tistical—are used in aerobiological studies. Numerical

models are based on mathematical equations and

algorithms of atmospheric dispersion. They estimate

pollen concentration using information about the

distribution of pollen sources and phenological, aer-

obiological, and meteorological data (Vogel et al.

2008; Sofiev et al. 2013b). On the other hand,

statistical models determine the relationship between

dependent variables (such as pollen data) and one or

more independent variables. Statistical models in

aerobiology describe the numerical relations between

pollen characteristics and explanatory variables, and

they aim to predict the pollen concentration or pollen

season properties. Importantly, statistical models do

not require an understanding of the physical processes

of pollen emission and dispersion.

Several studies using statistical modeling and

forecasting of Corylus, Alnus, and Betula pollen

concentrations properties were conducted in the past.

Multiple regression was used by Bringfelt et al. (1982)

and Ritenberga et al. (2016) to predict daily pollen

concentrations of Betula, and by Laaidi (2001),

Emberlin et al. (1993) and Myszkowska (2013) to

model Betula pollen season characteristics. Daily

pollen concentration levels were predicted by Cotos-

Yáñez et al. (2004), who used a generalized additive

model and a partially linear model on data from Vigo

(Spain), and by Castellano-Méndez et al. (2005), who

used artificial neural networks on data from Santiago

de Compostela (Spain). Puc (2012) used an artificial

neural networks technique to model daily pollen

concentrations of Betula in Szczecin (Poland). Alnus

pollen concentration was predicted by Rodrı́guez-Rajo

et al. (2006) using ARIMA in four cities in northeast-

ern Spain. Hilaire et al. (2012) built models for daily

pollen concentrations of Alnus and Betula using

stochastic gradient boosting in Switzerland. Nowosad

(2016) and Nowosad et al. (2016) created predictive

models for Corylus, Alnus, and Betula using a random

forest technique in Poland.

A validation was performed in most of these

studies, with the exception of Bringfelt et al. (1982).

Different model validation techniques and different

measures of models performance were used. Puc

(2012) validated the results on 15% of randomly

chosen days; Hilaire et al. (2012) used the most recent

25% of the data; Nowosad (2016) used a stratified

random split of 1/3 of the data; and Nowosad et al.

(2016) created two testing sets—for temporal and

spatial validation. In the remaining studies, either 1, 2,

or 3 years of data were used as a validation set. In

addition, the set of independent variables differs

between these studies. Overall, therefore, it is impos-

sible to explicitly compare the performance of these

models against each other.

The main goals of this study were to compare the

predictive modeling techniques using one dataset for

each taxa and to assess the variable importance of the

best models.
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2 Materials and methods

2.1 Data

2.1.1 Aerobiological data

Aerobiological sampling was performed in nine cities

in Poland (Bydgoszcz, Gdańsk, Kraków, Łódź,

Lublin, Poznań, Rzeszów, Sosnowiec, Szczecin) and

covered between 5 and 16 years of measurement

(Fig. 1). More information on the study area can be

found in the Material and Methods section in Nowosad

et al. (2016).

A volumetric spore-trap of the Hirst design was

used at all sites (Hirst 1952). The pollen grains of

Corylus, Alnus, and Betula were counted in accor-

dance with the method recommended by the European

Aerobiology Society’s Working Group on Quality

Control (Galán et al. 2014), and the values were

expressed as the number of grains/m3 of air per 24 h.

2.1.2 Grid data

AGRI4CAST Interpolated Meteorological Data were

used as a source of the daily meteorological data

(Baruth et al. 2007). This contains meteorological

parameters interpolated to a 25 � 25-km grid for the

European Union member states, neighboring Euro-

pean countries, and the Mediterranean countries.

Meteorological variables include temperature, vapor

pressure, wind speed, precipitation, evaporation, radi-

ation, and snow depth. For the purpose of this study,

the meteorological data of the grid cells containing the

sites analyzed were used.

2.2 Methods

One of the main goals of this study was to evaluate

modeling techniques used for the prediction of Cory-

lus, Alnus, and Betula pollen concentrations in the air.

The workflow for each taxon and location was as

follows:

Bydgoszcz

Kraków

Lublin

Rzeszów
Sosnowiec

Szczecin

(2007−2011)

(2000−2011)

(1998−2011)

(2003−2011)

(2001−2011)

(1996−2011)

(1997−2011)

(2001−2011)

(2002−2011)

GERMANY

CZECH REP.

SLOVAKIA

RUSSIA
LITHUANIA

BELARUS

UKRAINE

BALTIC SEA

49
°N

51
°N

53
°N

55
°N

14°W 16°W 18°W 20°W 22°W 24°W

Fig. 1 Sites used for the

study of forecasting the

daily pollen concentrations

in Poland. A time period of

aerobiological

measurements for each site

is shown in parentheses
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1. Ten independent, meteorological variables were

extracted from the grid cell where the monitoring

station was located. In addition, an eleventh

independent variable (cumulated growing degree

days) was calculated for the same grid cell.

2. Dependent (aerobiological) and independent vari-

ables were combined into one dataset.

3. Nine modeling techniques were used to build

models. Models were validated using a repeated k-

fold cross-validation procedure.

4. Final models were compared in terms of predic-

tive performance.

5. For the best models, cluster analysis was per-

formed based on performance statistics.

6. For the best models, independent variable impor-

tance was calculated and compared.

All the calculations were performed using R (R Core

Team 2016) and R packages (Kuhn 2016; Wickham

2009; Grolemund and Wickham 2011). Models were

built using pls (Mevik et al. 2015), elasticnet (Zou and

Hastie 2008), elmNN (Gosso 2012), kernlab (Karat-

zoglou et al. 2004), earth (Milborrow 2016), rpart

(Therneau et al. 2015), randomForest (Liaw and

Wiener 2002), and Cubist (Kuhn et al. 2014)

packages.

2.2.1 Predictor variables

Eleven meteorological parameters from the same day

as pollen concentration values were used as indepen-

dent variables, and the daily pollen concentration was

used as a dependent variable. Ten meteorological

properties (maximum temperature, minimum temper-

ature, average temperature, vapor pressure, wind

speed, sum of precipitation, potential evaporation

from a free water surface, potential evapotranspiration

from a crop canopy, potential evaporation from a

moist bare soil surface, and total global radiation) are

available in the AGRI4CAST Interpolated Meteoro-

logical Data. An additional property, cumulated

growing degree days (GDD), was calculated as

follows:

DailyGDD ¼ Tmax þ Tmin

2
� Tbase

where Tmax is the daily maximum temperature, Tmin is

the daily minimum temperature, and Tbase is the base

temperature. A value of 5 �C was used as the base

temperature. This value is the standard threshold

temperature for growth in temperate species (Dahl

et al. 2013). The cumulated GDD were calculated as

the sum of degree days from January 1. If the daily

mean temperature [calculate as ðTmax þ TminÞ=2] is

higher than the base temperature, then degree days

accumulate.

2.2.2 Regression models

Nine modeling techniques were used to predict the

pollen concentrations of Corylus, Alnus, and Betula.

These techniques can be divided into three groups: (1)

linear regression models; (2) nonlinear regression

models; and (3) regression trees and rule-based

models:

Linear regression:

• Linear model (LM) (Nelder and Wedderburn

1972)

• Partial least square (PLS) (Wold et al. 1983)

• The Lasso (Tibshirani 1996)

Nonlinear regression models:

• Neural networks (NN) (Bishop 1995)

• Support vector machines (SVM) (Drucker et al.

1997)

• Multivariate adaptive regression splines (MARS)

(Friedman 1991)

Regression trees and rule-based models:

• Basic regression tree (BRT) (Breiman et al. 1984)

• Random forest (RF) (Breiman 2001)

• Cubist (Kuhn and Johnson 2013)

2.2.3 Model validation and comparison

A repeated k-fold cross-validation was used to obtain

the best combinations of algorithms’ parameters and

to assess the accuracy of the models (Kuhn and

Johnson 2013). For each city, data were divided into

yearly subsets. One of the yearly data subsets was

omitted, while the other k � 1 data were used to train

the model. The omitted subset was predicted, and the

prediction was summarized as the coefficient of

determination (r2), mean absolute error (MAE), and

symmetric mean absolute percentage error (SMAPE).

The validation procedure was repeated for each year of
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data, and the k estimates of performance for each

combination of parameters were averaged. Finally, the

optimal model was determined as the one with the

highest coefficient of determination (r2).

The quality metrics were selected to describe

different aspects of the models’ performance. An r2

value is the squared correlation coefficient between

the observed and predicted value. It ranges between 0

and 1 and thus allows for comparison between models

of different taxa. However, it does not describe the size

of error. SMAPE also allows for comparison between

models of different taxa, but focuses on the differences

between predicted and actual values. It measures the

performance of models in relative terms. A modified

version of SMAPE (Makridakis 1993) was calculated

as follows:

SMAPE ¼
Pn

t¼1 jFt � AtjPn
t¼1ðFt þ AtÞ

where Ft is a predicted value for day t, and At is an

observed value for day t. The MAE is an average of the

absolute errors and therefore can be only used for

comparison between models of the same taxon. The

advantage of this metric is that it is on the same scale

of data being measured.

2.2.4 Error analysis

Partitioning around medoids (PAM) (Kaufman and

Rousseeuw 2005) was used as a clustering algorithm.

The L method (Salvador and Chan 2004) was applied

to determine the optimal number of clusters. For each

taxon and using the best model:

1. Values of r2, MAE, and SMAPE were centered

and scaled.

2. A distance matrix was computed for each pollen

season in each city (combination of site and year)

using Euclidean distance.

3. The optimal number of clusters was determined

using the L method based on the total within-

clusters sum of squares.

4. PAM clustered combinations of site and year in

the number of clusters were given by the L

method.

5. A medoid (the most representative object) was

selected for each cluster and visualized by com-

paring the time series of observed (measured)

values and predicted values of pollen

concentration.

Afterward, a PERMANOVA (Anderson 2001) test

was used to verify if there was a difference in average

values of meteorological parameters between clusters.

2.2.5 Variable importance

The general effect of independent variables on the

Corylus, Alnus, and Betula pollen concentration

models was determined using permutation importance

(mean decrease in accuracy) (Breiman 2001; Liaw and

Wiener 2002). Based on the best modeling technique,

values of variable importance were obtained sepa-

rately for each model and scaled to have a maximum

value of 100. Afterward, for each taxon the mean and

standard errors of variable importance were

calculated.

3 Results

3.1 Performance of the models

The performances of final models were compared

using the r2, MAE, and SMAPE. The comparison

revealed several patterns (Fig. 2). Firstly, random

forest gave the overall highest average value of r2

(0.39) and the lowest SMAPE (0.56). Random forest

had the smallest value of SMAPE in 20 models and the

highest value of r2 in 19 models. Its result was

comparable to the cubist models, which had an

average r2 of 0.35 (the highest r2 in 5 models) and

an average SMAPE of 0.57 (the lowest SMAPE in 6

models). Multivariate adaptive regression splines and

basic regression tree average performances were

moderate, with an r2 of 0.33 and 0.29 and SMAPE

of 0.83 and 0.59, respectively. Basic regression tree

gave the highest r2 and the smallest SMAPE in one

model. Multivariate adaptive regression splines was

the best in terms of r2 in two models. The rest of the

models (neural networks, lasso, linear model, support

vector machines, and partial least square) performed

poorly. Their average r2 values were 0.08–0.13, and

their average SMAPE values were 0.89–0.94.

Random forest models gave the best average model

performance for all of the taxa analyzed. Corylus
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random forest models had an average r2 of 0.38; Alnus

had an average r2 of 0.36; and Betula had an average

r2 of 0.41. However, there were differences between

model performances at the sites studied. The r2 of

Corylus random forest models varied between 0.12 at

Bydgoszcz and 0.50 at Rzeszów and Kraków. Alnus

random forest models gave r2 between 0.22 at

Bydgoszcz and 0.48 at Sosnowiec. The results of

Betula models were more stable, with r2 between 0.31

at Sosnowiec and 0.51 at Bydgoszcz (Table 1).

MAE is scale-dependent accuracy measures, and

therefore its results are not comparable between taxa.

However, its values can be used for a comparison of

modeling techniques. MAE gave low values in all

Corylus models. Average values of MAE in Corylus

models were between 4.4 (linear model, partial least

square, lasso) and 2.6 (cubist). On the other hand,

values of MAE separated Alnus models into two

groups: those with values of approximately 29 (linear

model, partial least square, lasso, neural networks, and

multivariate adaptive regression splines), and those

with values of approximately 19 (neural networks,

basic regression tree, random forest, cubist). Betula

models followed a similar pattern. The linear model,

partial least square, lasso, and neural networks had the

highest MAE value (approx. 87), while the values of

the cubist were the lowest (53.1).

3.2 Error analysis

Model performance statistics (r2, MAE, SMAPE)

of random forest models were clustered using the

partitioning around medoids (PAM) method (Fig. 3).

The optimal number of clusters was chosen using the L
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Fig. 2 A comparison of Corylus, Alnus, and Betula models’ performance. The height of bars shows the mean value of the models

performance statistic for all of the sites. Error bars represent one standard error
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method for each taxon, based on the total within-

cluster sum of squares.

Three clusters were extracted from the Corylus

model results for each site and year (107 objects). The

first cluster (23%) consists of situations with the

lowest values of r2 and the highest values of SMAPE.

In this cluster, the temporal scope of a pollen season is

predicted with good agreement; however, models

overestimate or underestimate pollen concentration.

Cases in the second cluster (40%) show an average

performance. The third cluster (37%) has the best

values of model performance statistics. Its most

representative object (medoid) is the model for

Rzeszów in 1997, with an r2 of 0.79, MAE of 2.1,

and SMAPE of 0.38.

The performance of Alnus models of pollen

concentration was more heterogeneous over five

clusters. The first cluster (17%; medoid—Rzeszów

2011) consists of the lowest r2 and the highest

SMAPE. The second cluster (27%) has medium

values of r2, but high values of SMAPE and MAE.

Predicted values are underestimated or overestimated,

but follow true changes in values. The third cluster

(14%) has high values of r2 and medium values of

SMAPE; however, its values of MAE are high, and the

predicted values are underestimated. Cases in the

fourth cluster (13%) have medium values of r2 and

SMAPE and low values of MAE. They occurred

primarily in seasons with low annual values of Alnus

pollen concentration. The last cluster (29%; medoid—

Rzeszów 1997) contains the cases with the highest

model accuracy. In this cluster, predicted values

follow true values closely, even in seasons with rapid

changes in pollen concentration.

Four clusters were obtained for Betula models. The

first cluster (23%) has the worst values of model

performance statistics. The second (31%) and third

(27%) clusters have similar r2 and SMAPE values,

although their MAE values differ greatly. Observa-

tions in the second cluster have extreme values of

pollen concentration and therefore they are underes-

timated by the model, while small values are overes-

timated. The third cluster consists primarily of pollen

seasons with low or medium annual pollen concen-

tration values and only single extreme events. The last

cluster (19%) has seasons with the highest prediction

accuracy. Its medoid (Gdańsk) has an r2 of 0.77,

SMAPE of 0.4, and MAE of 32.1.

PERMANOVA was used to test for differences

between average values of independent variables in

clusters for each site and taxon. Tests showed

significant differences in meteorological parameter

values between clusters in four cities for Corylus

models, in six cities for Alnus models, and in five cities

for Betula models (Table 2).

3.3 Variable importance

Random forest models had the highest average value

of r2. Therefore, the variable importance for these

types of models was obtained and averaged (Fig. 4).

Table 1 A summary of Corylus, Alnus, and Betula random

forest models of pollen concentration in the air, at each

location

Taxon Site R2 MAE SMAPE

Corylus Rzeszów 0.50 2.59 0.46

Corylus Kraków 0.50 2.91 0.45

Corylus Sosnowiec 0.47 3.12 0.44

Corylus Lublin 0.46 5.99 0.51

Corylus Łódź 0.43 1.90 0.51

Corylus Poznań 0.38 1.76 0.53

Corylus Gdańsk 0.31 1.32 0.62

Corylus Szczecin 0.26 3.52 0.56

Corylus Bydgoszcz 0.12 1.86 0.64

Alnus Sosnowiec 0.48 13.55 0.54

Alnus Rzeszów 0.45 19.66 0.56

Alnus Kraków 0.41 10.87 0.56

Alnus Lublin 0.40 32.27 0.55

Alnus Poznań 0.39 30.54 0.60

Alnus Łódź 0.37 23.89 0.63

Alnus Szczecin 0.31 21.12 0.54

Alnus Gdańsk 0.25 11.95 0.61

Alnus Bydgoszcz 0.22 16.51 0.69

Betula Bydgoszcz 0.51 28.93 0.47

Betula Kraków 0.48 27.87 0.54

Betula Poznań 0.42 63.20 0.51

Betula Łódź 0.42 83.15 0.57

Betula Gdańsk 0.41 32.68 0.54

Betula Rzeszów 0.40 43.52 0.59

Betula Lublin 0.39 94.43 0.54

Betula Szczecin 0.34 58.50 0.56

Betula Sosnowiec 0.31 85.58 0.66
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Cumulated GDD was the single most important

variable in all of the Corylus, Alnus, and Betula

models. The other variables had distinctly lower

importance. In the Corylus models, the next important

variables were maximum temperature, potential evap-

otranspiration from a crop canopy, and vapor pressure.

Maximum temperature, potential evapotranspiration

from a crop canopy, and total global radiation were

next most important in the Alnus models. The

influence of daily precipitation sum varied between

models of different taxa. It had a low importance in

Corylus models, higher importance in Alnus models,

and was the fifth most important in Betula models. In

the Betula models, the other important variables were

vapor pressure and maximum temperature. In addi-

tion, wind speed was the least important variable in

most of the Corylus, Alnus, and Betula models.
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Fig. 3 Examples of observed and predicted pollen concentrations for each cluster of Corylus, Alnus, and Betula random forest models.

Detailed description can be found in subsection

Table 2 Results of PERMANOVA tests of average meteoro-

logical parameter value differences between the quality clus-

ters of the models for each taxon and site

Site Corylus Alnus Betula

Bydgoszcz 0.0026 0.1003 0.169

Gdańsk 0.0964 4e204 1e204

Kraków 0.1721 0.011 0.2699

Lublin 0.2726 0.0949 0.084

Łódź 0.0019 2e204 0.0071

Poznań 0.5967 2e204 0.0224

Rzeszów 0.0011 7e204 0.0016

Sosnowiec 0.0898 0.0933 0.4428

Szczecin 0.0111 0.0136 0.004

Statistically significant results (p\0:05) are given in boldface
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4 Discussion

Modeling of pollen concentration in the air is one of

the main goals of aerobiological studies, and there are

many potential benefits from accurate aerobiological

modeling. It could help (1) to understand temporal and

spatiotemporal changes of numbers of pollen grains in

the air, (2) to quantify relationships between pollen

concentration in the air and external factors (such as

spatial, environmental, weather), and (3) to predict

pollen concentration values. The decision on what

kind of modeling technique should be used depends on

the modeling purpose. In this study, nine different

statistical modeling techniques were compared based

on their ability to correctly predict pollen concentra-

tion values.

The minimum requirements for pollen monitoring

networks (Galán et al. 2014) state that ‘‘[...] the

sampler must be placed on a readily accessible, flat,

horizontal surface’’ on the roof of a building. This

requirement is vital to assure that pollen count is

representative for a large region and is not affected by

local factors. Therefore, it is also important in

aerobiological modeling to use independent variables

which are representative for an extensive area. The

majority of past aerobiological studies relied on in situ

meteorological measurements from one loca-

tion/point. Meteorological instruments were located

either in the same place as pollen traps (on a roof), in

the close vicinity (at ground level), or even several

kilometers further away (e.g., at a local airport). For

this analysis, meteorological variables from a regular

grid (25 � 25 km) were used to represent weather

conditions over a large region. This approach is more

appropriate for modeling of pollen concentration.

However, it remains to be further clarified (1) what the

optimal grid size is, and (2) whether (and how) the

optimal value varies among the taxa analyzed.

The Corylus, Alnus, and Betula model perfor-

mances varied distinctly among modeling techniques.

For each taxon, the linear model, partial least square,

lasso, neural networks, and support vector machines

were the least correct; multivariate adaptive regression

splines and basic regression tree gave better results;

random forest and cubist proved to be the most

accurate. Random forest models showed similar

values of relative performance statistics for Corylus,

Alnus, and Betula (average r2 between 0.38–0.41 and

average SMAPE of 0.53–0.59). On the other hand,

large differences in MAE could be observed among
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Fig. 4 Averaged scaled variable importance of each predictor for Corylus, Alnus, and Betula random forest models of pollen

concentration in the air. Error bars represent one standard error
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the models for each taxa. The mean value of MAE for

all models was about 3.6 in Corylus models, 24.9 in

Alnus models, and 71.5 in Betula models. Average

values were smaller for random forest: 2.8, 20.0, and

57.5, respectively, for Corylus, Alnus, and Betula

models. These results showed that while meteorolog-

ical parameters have a similar influence on pollen

concentration in the air, the absolute errors are

connected with the abundance of pollen grains of the

given taxon. In addition, values of MAE in Corylus

and Alnus models were distinctly lower than thresh-

olds, based on first-symptom values for patients

allergic to each taxon [35 grains/m3 for Corylus, 45

grains/m3 for Alnus (Rapiejko et al. 2007)]. The

models’ performances also differed among the sites

studied. The most distinct examples were the models

for Bydgoszcz, where data covered only 5 years of

observations. Random forest models for Corylus and

Alnus gave the lowest values of performance statistics,

and models for Betula had the highest values of

performance statistics in comparison with the other

cities. This could be an indication of a low stability of

models built on short time-series data. Variations of

the models’ performances among the sites could be

also explained by differences in the relative position of

samplers as well as a technician variability.

Final random forest model results were clustered

based on the model performance statistics (r2, MAE,

SMAPE). Three clusters were created for Corylus

models, five for Alnus models, and four for Betula

models. A PERMANOVA test was used to verify the

impact of average values of meteorological parame-

ters on models’ performance. While significant dif-

ferences were found for 55% (15 of 27) of the taxon/

city pairs, some disagreements between clusters

remained unexplained. Thus, the variation in model

quality could also be explained by the differences of

the other meteorological parameter characteristics,

such as distribution and variability of values, or time

course.

Cumulated GDD and maximum temperature

proved to be the most important variables in Corylus,

Alnus, and Betula random forest models. Potential

evapotranspiration from a crop canopy and potential

evaporation from a moist bare soil surface were clearly

important in Alnus models. Vapor pressure was the

second most important variable in Betula random

forest models. These results on variable importance

are in accord with a previous predictive study of high

pollen concentration levels (Nowosad 2016) and can

be explained by the biological requirements of these

trees (Dahl et al. 2013). Precipitation scavenging

affects deposition of pollen grains (Sofiev et al.

2013a). However, the impact of the daily sum of

precipitation varied greatly among the taxa. This could

be partially explained by the length and intensity of the

pollen seasons of Corylus, Alnus, and Betula. Betula

pollen seasons are relatively short and have a high

pollen count. On the other hand, Corylus pollen

seasons are usually longer but with a lower number of

pollen grains in the air. Therefore, models supposedly

could not detected the impact of precipitation on a

pollen concentration. Moreover, the impact of precip-

itation could be delayed in time, with a greater

importance of rainfall from one or two previous days.

Finally, wind speed had the lowest impact on the

models. This predictor is highly changeable during the

course of a day, and thus, daily averages can hide

important information. In addition, wind impact on

pollen concentration cannot be fully understood

without a knowledge of wind direction.

The decision on which modeling techniques should

be applied needs to be based on the final purpose of the

model. Linear models or basic regression tree provides

one with the ability to interpret results simply;

however, they are not the best choice in cases of

complicated, nonlinear predictive problems. This

study showed that more complex models, such as

random forest or cubist, can provide better predictions.

These models are often falsely described as ‘‘black

boxes.’’ In fact, they have indirect methods for

interpreting their results, such as measures of predic-

tors’ importance and visualizations of relationships

between output and independent variables.

Previous studies varied greatly in terms of their

modeling techniques, predictor variables, and valida-

tion methods. Therefore, the model results in these

studies cannot be directly compared. Betula linear

models of Bringfelt et al. (1982) gave correlation

coefficient values up to 0.81, which corresponds to r2

of 0.66. Rodrı́guez-Rajo et al. (2006) predictions of

Alnus pollen concentration using ARIMA lacked

numerical information on the model’s quality. Authors

reported only that ‘‘the estimated curve[s] accurately

describe the Alnus pollen grains’ behaviour.’’ Stochas-

tic gradient boosting models created by Hilaire et al.
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(2012) showed values up to 0.78 (Geneva) and 0.87

(Locarno) of pseudo-R2 based on deviance residuals

for Alnus and Betula, respectively. However, their

study did not provide any information about the lowest

values of pseudo-R2 or about the distribution of errors.

The artificial neural network model of the relationship

between Betula pollen and meteorological factors of

Puc (2012) using raw variables showed an accuracy of

R lower than 0.5. Transformed values of Betula pollen

concentration using logðx þ 1Þ gave better results,

with a root mean square error of 0.14. Nevertheless,

the use of logarithmic transformation of dependent

variables does not permit the use of these results for

forecasting purposes. The Ritenberga et al. (2016)

model of Betula concentration gave an r2 of 0.24,

based on untransformed data. The performance of a

predictive model is overestimated when determined

simply on basis of the sample that was used to

construct the model. The magnitude of overfitting

depends on the modeling technique, on a number of

predictors, and on the complexity of the relationship

between output and predictors. There are several

possible combinations of highly overfitted Corylus,

Alnus, and Betula pollen concentration models. One

combination consists of simple models with a small

number of predictors. A linear model with only a few

predictors could produce falsely high values of

performance statistics. However, with an increased

number of predictors, the quality of linear models will

decrease—even without using validation. On the other

hand, more complex models (e.g., random forest)

could produce greatly overfitted results in both cases.

Therefore, one of the main challenges in predictive

modeling is to determine the true quality of the model.

Cross-validation must be used for this purpose. The

majority of aerobiological studies use 1 or 2 years’

pollen data as a validation (testing) set (Emberlin et al.

1993; Laaidi 2001; Cotos-Yáñez et al. 2004; Castel-

lano-Méndez et al. 2005; Rodrı́guez-Rajo et al. 2006;

Myszkowska 2013). This can provide a wrong

estimation of model performance in cases when the

validation dataset consists of years with an average

pollen season (model quality could be overestimated)

as well as in cases when extreme years are in a

validation set (model quality will therefore be under-

estimated). Thus, partitioning a sample of data into

two subsets—one for training and the other for

testing—is not recommended. There are many

alternative re-sampling techniques whose purpose is

to provide a more robust estimation of model perfor-

mance, such as the bootstrap, leave-one-out cross-

validation, Monte Carlo cross-validation, and k-fold

cross-validation. Repeating k-fold cross-validation

was used in this study as it increases the precision of

model performance estimation (Molinaro et al. 2005).

Hyndman and Athanasopoulos (2013) proposed a

cross-validation for time series, which could be used

for prediction of taxa with long pollen seasons.

However, the short seasons of Corylus, Alnus, and

Betula and the large number of days per year without

pollen grains in the air make its difficult to decide on

the proper parameters for time-series validation.

Finally, there is a lack of robust techniques for

spatiotemporal validation.

The goal of this study was to compare predictive

techniques, not to build the best model possible. There

are several aspects which should be taken into

consideration in the predictive modeling of pollen

concentration. Firstly, in this study only meteorolog-

ical data from the same day as pollen concentration

values were used as a independent variable. Although

the results clearly showed the importance of meteo-

rological variables, they did not explain all of the

variability in pollen count values. Additional predic-

tors could improve performance of pollen concentra-

tion models. Potential predictors include other

meteorological parameters (e.g., wind direction,

humidity, snow occurrence), past pollen concentration

characteristics (average pollen concentration values),

and spatial variables (local land cover/land use, share

of analyzed taxa in local flora, spatial distribution of

flowering trees). Past pollen count values can also be

used, but only if there is a possibility of obtaining

pollen concentration in a relevant time. These data

could be more accessible within a short time with the

advancement in automatic pollen concentration mea-

surements. Moreover, variables with different tempo-

ral scope (e.g., lagged data, monthly data) should

improve pollen concentration models. In addition,

predictive statistical models of pollen concentration

for one site cannot explain nor properly predict the

episodes of long-distance transport from remote

sources. A potential solution to this problem might

be a combination of many point models with a

numerical forecast of air mass trajectories. It should

also be noted that aerobiological data are available on

genus level (Alnus, Corylus, Betula). Therefore, it is
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possible that a quality of models is lower when several

species (for example Alnus incana, Alnus alnobetula,

Alnus glutinosa) occupy the same area, but differ in

terms of phenology. Finally, the results of modeling

techniques substantially depend on model parameters;

thus, the parameters for models should be very

carefully chosen.

5 Conclusion

• Nine modeling techniques were compared in this

study based on pollen concentrations of Corylus,

Alnus, and Betula and on meteorological variables.

The use of rigid cross-validation provided reliable

assessment of quality for 243 final models.

• Linear regression and nonlinear regression models

performed poorly. Regression trees and rule-based

models proved to be the most accurate for all of the

taxa analyzed.

• Cumulated GDD was the most important variable

in the random forest models of Corylus, Alnus, and

Betula. In addition, maximum temperature was an

important variable for the models. The importance

of precipitation varies between the models, with an

average importance for Betula models and low

importance for Corylus models. Wind speed was

the least important for all of the models.

• The main goal of this study was to compare

different predictive modeling techniques. How-

ever, it would be worthwhile to try to improve

model results. Potential enhancements include the

use of additional meteorological, aerobiological,

or spatial variables. In addition, a combination of

statistical models with numerical forecasts of air

mass trajectories could improve the prediction of

high pollen concentration influenced by long-

distance transport.
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