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Abstract Forecasting daily airborne pollen concen-

trations is of great importance for management of

seasonal allergies. This paper explores the perfor-

mance of the pollen calendar as the most basic

observation-oriented model for predicting daily con-

centrations of airborne Ambrosia, Betula and Poaceae

pollen. Pollen calendars were calculated as the mean

or median value of pollen concentrations on the same

date in previous years of the available historic dataset,

as well as the mean or median value of pollen

concentrations of the smoothed dataset, pre-processed

using moving mean and moving median. The perfor-

mance of the models was evaluated by comparing

forecasted to measured pollen concentrations at both

daily and 10-day-average resolutions. This research

demonstrates that the interpolation of missing data and

pre-processing of the calibration dataset yields lower

prediction errors. The increase in the number of

calibration years corresponds to an improvement in

the performance of the calendars in predicting daily

pollen concentrations. However, the most significant

improvement was obtained using four calibration

years. The calendar models correspond well to the

shape of the pollen curve. It was also found that daily

resolution instead of 10-day averages adds to their

value by emphasising variability in pollen exposure,

which is important for personal assessment of dose-

response for pollen-sensitive individuals.

Keywords Airborne pollen � Ragweed � Birch �
Grass � Data-driven predictive modelling

1 Introduction

A recent review of allergenic pollen highlighted

twelve pollen types: Ambrosia, Alnus, Artemisia,

Betula, Amaranthaceae (includes former goosefoot

family Chenopodiaceae), Corylus, Cupressaceae/Tax-

aceae, Olea, Platanus, Poaceae, Quercus and Pari-

etaria/Urtica for their allergenic potency and

abundance in the atmosphere (Skjøth et al. 2013).

The majority of pollen sensitisations in Europe are

caused by Betula and Poaceae (Bousquet et al. 2007).

Ambrosia is the second most important cause of

seasonal asthma and rhinitis in many areas of its native
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distribution range (i.e. North America), and in the past

decade, its clinical relevance has increased notably

throughout Europe (Smith et al. 2013 and references

therein). It is estimated that the number of allergic

people in Europe will more than double by 2060 (Lake

et al. 2017). Hence, the ability to predict the variability

of daily pollen concentrations for the most important

allergenic pollen would be beneficial for a great

number of pollen-sensitive individuals.

Avoidance of airborne pollen is an important part of

allergic symptoms management (Peden and Reed

2010). In order to be effective, avoidance requires

temporally resolved forecasts on the quantity of the

airborne pollen present in the atmosphere over the

year. Forecasting in aerobiology is commonly based

on either observation-oriented models or source-

oriented models (Scheifinger et al. 2013; references

therein). The former relate pollen records to one or

more measurable variables (Norris-Hill 1995), while

the latter use mathematical formulae of atmospheric

transport and diffusion to calculate concentrations at

various distances from a known source (Skjøth et al.

2010). Despite the advantages of both modelling

approaches, their implementation requires a signifi-

cant amount of data for calibration and running (i.e.

pollen concentrations and meteorology); substantial

information about the location, abundance and emis-

sion characteristics of the pollen source (Skjøth et al.

2010; Pauling et al. 2012); and significant computa-

tional resources. As a result, none of these models are

available in many regions.

The emission of allergenic pollen from its source is

directly linked to seasonality of the flowering

phenophase (Dahl et al. 2013), which makes pollen

calendars the simplest observation-oriented approach

for predicting the time of occurrence of airborne

pollen in a given area (Scheifinger et al. 2013).

Although pollen calendars are commonly used all over

the world to depict seasonal distribution of pollen in

the atmosphere (e.g. El-Ghazaly and Fawzy 1988;

Cadman 1990; O’Rourke 1990; Kok Ong et al. 1995;

Kaya and Aras 2014; Jae-Won et al. 2012; Piotrowska-

Weryszko and Weryszko-Chmielewska 2014; Martı́-

nez-Bracero et al. 2015; Calderón-Ezquerro et al.

2016), most of the calendars are produced using

Spieksma’s model (Spieksma and Wahl 1991). How-

ever, the 10-day temporal resolution of this model

limits its application in predicting day-to-day vari-

ability of pollen concentrations.

The aims of this study are to build calendars for

airborne Ambrosia, Betula and Poaceae pollen and to

explore their performance in forecasting daily con-

centrations of these important allergens over the

course of the season. The study also tests the

suitability of different interpolation methods for

completing short missing datasets (up to 7 days) that

commonly occur in routine pollen monitoring using

Hirst-type samplers (e.g. electric power loss, clock

device stoppage).

2 Materials and methods

2.1 Airborne pollen data

Daily average concentrations of airborne Betula,

Poaceae and Ambrosia pollen were collected in three

Serbian cities: Novi Sad (45.25�N, 19.85�E), Sombor

(45.77�N, 19.11�E) and Niš (43.32�N, 21.90�E) using
the 7-day volumetric spore trap of the Hirst design

(Hirst 1952). It was positioned above the local pollen

sources to ensure regional representativeness of

obtained data. The collected samples were prepared

and analysed to retrieve daily average pollen concen-

trations expressed as particles per cubic metre of air

(P m-3) following European Aerobiology Society’s

minimum recommendations (Galán et al. 2014). The

main part of the research was conducted using the data

from Novi Sad that was collected between 2000 and

2015. This dataset was the largest and the most

representative, since it included both seasons with

high and low pollen records (Table 1). The datasets

from Sombor and Niš were collected from 2009 to

2015 and from 2007 to 2011, respectively. There were

at least 5 years in both of them, which exceeded the

minimum number required for calibrating a calendar

model. These two datasets were used for exploring the

performance of the models in other locations.

Novi Sad is situated on the Pannonian Plain, one of

the centres of European distribution of Ambrosia

artemisiifolia L. (Smith et al. 2013), and is therefore

surrounded by abundant sources of ragweed pollen.

Conversely, local sources of Betula airborne pollen are

limited to trees planted as ornamentals in the streets

and parks, thus making the aerobiological situation

notably dependent from atmospheric transport of birch

pollen from distant sources. There are no large

grasslands in the study region, and most of the
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Poaceae pollen sources are limited to cereal crop fields

and public and private green areas, which are heavily

managed. Conditions in Sombor are very similar, as it

is also located on the Pannonian Plain, less than

100 km from Novi Sad, while Niš is situated in south-

eastern Serbia in the Nišava river valley. It is

surrounded by hills, and thus, vegetation, pollen

sources and pollen transmission are different to those

observed on the Pannonian Plain.

There is a distinct seasonality in occurrence of

airborne Betula, Poaceae and Ambrosia pollen on the

Pannonian Plain (Radišić 2013), which results from

seasonality in flowering phenology of pollen sources.

In order to avoid overestimation of correlation coef-

ficients in long all-zero sequences of the dataset, the

analysis focused on principal pollination periods of

Betula, Poaceae and Ambrosia in the study region. The

limits of these periods were determined as calendar

months in which pollen is not accidentally recorded

(i.e. at least for 1 day in 16-year average[ 1 P m-3 is

recorded): (1) for BetulaMarch–May, (2) for Poaceae

April–October, (3) for Ambrosia July–September. In

comparison with commonly used percentage methods

(Emberlin et al. 1997; Pathirane 1975), our approach

includes long tails with low and intermittent records at

the beginning and the end of the flowering period,

which allows for testing models both during peak

flowering period and outside of it.

2.2 Data analysis

Data analysis was performed in R (R core Team 2016),

and charts were produced in Microsoft Excel and

Mathworks MATLAB. The R Code along with

instructions on how to use it for calibrating and testing

calendar models is given in Online Resources 1–3.

2.2.1 Interpolation of missing data

Hirst-type samplers were used to continuously sample

airborne particles until the drum has to be changed.

Most devices in current operation (i.e. Lanzoni

‘‘VPPS2000’’ and ‘‘VPPS 2010,’’ Burkard ltd.,

Burkard Scientific) allow for uninterrupted sampling

for up to 7 days. This was convenient for long-term

monitoring with unattended sampling, but could result

in 7-day data gaps if the device stops working (i.e. due

to electricity issues, issues with clock device that

rotates the drum or due to clogged sampling orifice).

Missing values in the calibration dataset could

affect the performance of the constructed prediction

model. For example, when producing the calendar

model, missing values will result in a decrease in the

number of calibration years and therefore limit

robustness of the model. In order to be able to predict

pollen concentration for any day with the highest

possible accuracy, it was decided to interpolate

missing data in the calibration dataset. However,

missing data in the validation dataset were not

interpolated in order to avoid comparison of modelled

to interpolated data.

Three common methods available in R Zoo pack-

age (Zeileis and Grothendieck 2005) were tested: (1)

last-observation-carried-forward interpolation, (2)

linear interpolation and (3) cubic spline interpolation.

All of the possible 7-day sequences, for which the

measured data were available, were consecutively

declared as a gap week. After the missing values were

interpolated, the performance of each method was

evaluated by comparing the calculated and measured

pollen concentrations by using the same indicators that

were used for comparing predicted and measured

concentrations. For all analysed pollen types, linear

interpolation had the highest correlation coefficient,

while NRMSE (normalised root-mean-square error)

was the lowest (Table 2) and thus it was selected as the

method of choice for the interpolation of the missing

pollen data in the calibration dataset.

2.2.2 Calendar model

Standard calendar models predict the pollen concen-

tration based on observed pollen concentrations on the

same day in the calibration dataset. By calculating the

mean or the median of available historic concentra-

tions on the same day of the year, the model takes into

account seasonal variability of the pollen concentra-

tion signal.

Standard calendar models typically follow Spieks-

ma’s model which presents concentrations as 10-day

means (Spieksma and Wahl 1991). This approach

overcomes season-specific short-term shifts in pollen

occurrence, but hides day-to-day variability in pollen

concentrations and so has limited potential for allergy

management. In order to limit the influence of short-

term shifts while keeping day-to-day variability in

pollen signal, advanced calendar models were devel-

oped, in which the concentration for a given day was

206 Aerobiologia (2018) 34:203–217
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calculated as the mean or the median using signals that

were pre-processed by either moving average or

moving median. This pre-processing resulted in four

types of calendar models: mean of moving mean

signals (MNMN), mean of moving median signals

(MNMD), median of moving mean signals (MDMN)

and median of moving median signals (MDMD).

Different interval lengths (1, 2, …, 30 days) for

calculating moving means/medians were tested in

order to choose the most appropriate value resulting in

the best performing calendar model. Odd window

lengths are standard for moving mean and median

filters, as they take the concentrations on the chosen

date ± n days (n [ N0). However, in R, they are

defined for even numbers as well. In that case, the

number of days in advance is for one greater than the

number of previous days.

The relationship between the number of available

years for the calibration dataset and the model

performance for both standard calendar model and

the best advanced calendar model were also analysed.

2.2.3 Measures of model performance

The performance of the calendar models developed in

this study was assessed by comparing calculated and

measured pollen concentrations. Correlation coeffi-

cients were used to analyse the strength of the

relationship between two signals (i.e. simultaneous

increase/decrease). The Shapiro–Wilk test (Razali and

Wah 2011) indicated that daily pollen concentrations

were not normally distributed and therefore Spear-

man’s rank correlation coefficient (q) was calculated,
which indicates how well the ranking order of

predicted and measured concentrations correspond.

In order to provide comparable assessments of

model performance with respect to predicting the

magnitude of pollen concentrations, the root-mean-

square error (RMSE) was calculated, which is a

commonly used measure for comparing the predicted

and measured values in aerobiology (Astray et al.

2010; Makra and Matyasovszky 2011; Kasprzyk

2009; Csépe et al. 2014), but also in other areas such

as agriculture (Marko et al. 2016; Bornn and Zidek

2012), geosciences (Chai et al. 2009; McKeen et al.

2005) and telecommunications (Altiparmak et al.

2009). RMSE overestimates large deviations due to

squaring. However, the context of the season is not

accounted for. RMSE of 50 P m-3 may be rather

insignificant for seasons with huge amounts of pollen,

but it can also be very significant in case pollen

concentrations were small during the season. This

could be misleading when comparing the model

performance for pollen types with notably different

abundance (like Poaceae with Ambrosia or Betula in

the study) and also for the same pollen type that shows

notable seasonal variability (like Betula in the study).

Therefore, for assessing the accuracy of the model to

predict the magnitude of daily pollen concentrations

we followed the suggestion by Makra et al. (2011) and

normalised root-mean-square error by the mean con-

centration in the analysed year (NRMSE).

Leave-one-year-out cross-validation procedure was

applied to test the performance of calendar models.

Each year from the dataset was chosen at one point as

the test dataset, while the remaining 15 years were

taken as the calibration dataset. This procedure was

repeated 16 times, so that each year would serve as the

test year for which Spearman’s q and NRMSE were

calculated. In order to get a single measure of model

performance, average of obtained Spearman’s q and

NRMSE was calculated. Independent-samples Krus-

kal–Wallis test was conducted to explore whether

Table 2 Performance of interpolation of 7-day data gaps using

last-observation-carried-forward (LOCF), linear interpolation

and cubic spline measured by average normalised root-mean-

square error (NRMSE) and average Spearman’s rank correla-

tion coefficient (q)

Interpolation method Betula Poaceae Ambrosia

q NRMSE q NRMSE q NRMSE

LOCF – 8.63 – 1.21 – 1.53

Linear 0.29 2.05 0.16 0.85 0.22 0.96

Cubic spline 0.20 69,741.83 0.08 47.23 0.11 36.12
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there is a difference in distribution of Spearman’s q
and NRMSE between different calendar models.

3 Results

There was notable seasonal variability in the amounts

of recorded pollen (Table 1). The lowest value was

recorded in 2000 for all analysed pollen types. The

year 2001 was the one with the highest concentrations

of both Poaceae and Ambrosia pollen and was the

second lowest for Betula pollen. In general, Betula and

Ambrosia pollen were more abundant than Poaceae

pollen in the atmosphere of Novi Sad. Above-average

seasons of Betula and Poaceae pollen were better

represented in the analysed 16-year dataset. The most

distinctive pattern in season-to-season variability was

observed for Betula pollen where both sums of

concentrations and average concentration showed

biannual variability starting from 2006, with high

values in even and low values in odd years. Time

series of measured pollen concentrations revealed

notable variability in magnitude and temporal distri-

bution of peaks, which is the most pronounced in

Betula (Supplementary material Figure S1), followed

by Poaceae (Supplementary material Figure S2) and

Ambrosia (Supplementary material Figure S3). Betula

and Ambrosia pollen signals resemble Gaussian shape,

with most of the pollen recorded during about one-

third of the analysed period. On the other hand, the

Poaceae season was longer, with notable amounts of

airborne Poaceae pollen recorded during the entire

analysed period. The only exception was a distinctive

peak at the very beginning of the season.

Statistically significant positive correlations

(p\ 0.05) between measured daily pollen concentra-

tions and values calculated by standard calendar

model were observed for all pollen types except for

Betula in 2013 (Table 3). On average, the highest

intensity of correlation was measured for Ambrosia

airborne pollen (q = 0.91) followed by Poaceae

(q = 0.78) and Betula (q = 0.63). In regard to

predicting the magnitude of pollen concentrations, a

major discrepancy for all pollen types was observed in

2000, when the overall pollen concentrations were

rather low. Over the entire analysed period, the highest

average NRMSE was calculated for Betula pollen

(NRMSE = 3.96) followed by Ambrosia

(NRMSE = 1.38) and Poaceae (NRMSE = 1.26).

Using median instead of mean for producing standard

calendar model did not notably influence average

Spearman’s q, but it did lower NRMSE of Betula

pollen forecast (NRMSE = 2.77). Conversely, the

difference was not so pronounced for Poaceae

(NRMSE = 1.21) and Ambrosia (NRMSE = 1.48)

pollen forecasts.

Pre-processing the calibration dataset with moving

mean or moving median did not significantly influence

the Spearman’s q (Table 3). For the best advanced

calendar model, the highest increase (approximately

10%) was observed when predicting Betula pollen

(q = 0.69), while the values for Poaceae and Am-

brosia remained unchanged at 0.78 and 0.91, respec-

tively. The largest observed effect was in the reduction

in NRMSE (Table 3). The 20-day MDMD model

performed the best in predicting Betula pollen con-

centrations, while 18- and 11-day MDMN models

performed best in predicting Poaceae and Ambrosia

pollen concentrations, respectively (Fig. 1). In addi-

tion to the decrease in average NRMSE, advanced

calendar models tended to under-represent measured

concentrations in season’s peak (Supplementary mate-

rial Figures S1, S2, S3).

As the number of calibration years increases, the

performance of the models improves, with respect to

both Spearman’s q and NRMSE. The critical number

of years that produces the largest improvement (about

30% comparing to the single calibration year) is four.

Including additional years above this value produces

less pronounced improvements in model performance,

in terms of both correlation coefficient and prediction

of the magnitude (Fig. 2).

The results of independent-samples Kruskal–Wal-

lis test showed that there was not a statistically

significant difference in average Spearman’s q
(Fig. 3a–c) between calendar models developed for

forecasting daily concentrations of airborne Betula

(p = 0.614), Poaceae (p = 0.944) and Ambrosia

(p = 0.829) pollen. Also, the improvement in

NRMSE (Fig. 3d–f) when forecasting daily concen-

trations of airborne Betula (p = 0.353), Poaceae

(p = 0.669) and Ambrosia (p = 0.759) pollen was

not statistically significant.

Calendar models for Niš and Sombor yielded very

similar values of NRMSE and Spearman correlation

coefficient to those achieved in Novi Sad (Table 4).

Similarly to the Novi Sad data, pre-processing with

moving mean window proved to be optimal in terms of

208 Aerobiologia (2018) 34:203–217
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Fig. 1 Normalised root-mean-square error (NRMSE) of the

advanced calendar models calibrated on 15-year dataset in

relation to number of days used for calculating moving mean or

moving median: a Betula, b Poaceae and c Ambrosia airborne

pollen. Values for 1 day correspond to standard calendar model.

Values for 1 day correspond to standard mean and standard

median calendar model

Fig. 2 Performance of

calendar models depending

on number of years available

for training (measured by

NRMSE normalised root-

mean-square error and SCC

Spearman’s correlation

coefficient) in predicting

average daily concentrations

of Betula (a, b), Poaceae
(c, d) and
Ambrosia (e, f) airborne
pollen. Pre-filtering was

performed by using

previously determined

optimal window length.

Optimal window size for

MDMN in Betula pollen

prediction was 1. This

makes optimal MDMN

model equivalent to median,

so it was omitted in graph b
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Fig. 3 Performance of the standard and the best advanced

calendar model when compared to measured pollen concentra-

tions of Betula, Poaceae and Ambrosia airborne pollen in Novi

Sad. SC is the standard calendar (mean) model, SC-10 is the

mean model at 10-day temporal resolution (Spieksma and Wahl

1991), and AC is the advanced calendar model. Upper and lower

bounds of boxes are the upper and lower quartiles, the line in the

middle is the median, the cross stands for the mean value, and

the vertical line spans between minimum and maximum values.

AC*—median from 20-day moving median. AC**—median

from 18-day moving mean. AC***—median from 11-day

moving mean

Table 4 Performance of calendar models in Niš and Sombor

Model SCa 10-day SCb Advanced calendar

City Pollen q NRMSE q NRMSE Type Window size q NRMSE

Niš Betula 0.66 3.86 0.66 3.07 MNMN 24 0.68 3.42

Poaceae 0.68 1.69 0.70 1.63 MNMN 11 0.70 1.63

Ambrosia 0.83 2.13 0.82 1.94 MNMN 10 0.80 1.91

Sombor Betula 0.64 4.55 0.63 4.21 MNMN 27 0.65 3.95

Poaceae 0.87 1.57 0.87 1.52 MNMN 15 0.82 1.46

Ambrosia 0.93 1.04 0.93 1.03 MNMN 13 0.80 0.98

MNMN mean of moving mean signals
aStandard calendar—mean
bStandard calendar—mean at 10-day temporal resolution (Spieksma and Wahl 1991)
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NRMSE, but using the mean of previous years

performed better than taking the median, due to the

smaller number of years in the calibration dataset.

Although the optimal window sizes are not the same in

three different locations, it should be noted that their

order was preserved. The optimal window size for

Betula was the largest, followed by Poaceae and

Ambrosia, mainly because of the variations in the

beginning and the end of their pollen seasons. These

variations were most pronounced in Betula, followed

by Poaceae, and lastly Ambrosia, with the latter having

the most stable season boundaries of the three

analysed pollen types.

4 Discussion

4.1 Characteristics of Betula, Poaceae

and Ambrosia pollen

The levels ofBetula pollen measured in Novi Sad were

well below the corresponding measurements in North-

ern Europe, but still notably higher than in the

Mediterranean region (Skjøth et al. 2013). The bian-

nual alternation of high and low seasons reflects the

known biannual distribution of mast years in birch

(Dahl et al. 2013 and references therein). As in many

European regions, grass pollen season in Novi Sad

results from flowering of different grass species and is

therefore longer than Betula and Ambrosia seasons.

Due to notable contribution of wheat crops in the

region, the highest concentrations of Poaceae pollen

were recorded in May and June. Novi Sad is situated

on the Pannonian Plain, which is in the continental

climatic zone (Lalic et al. 2011). Cold winters limit

grass pollen occurrence to spring and summer, but at

the same time, hot summers limit the amounts of

pollen released, which is clearly observable in pollen

indices measured in Mediterranean Europe (e.g. Spain

and Greece) (Skjøth et al. 2013). The Pannonian Plain

is one of the centres of European distribution of

Ambrosia artemisiifolia L. (Smith et al. 2013).

Therefore, Ambrosia pollen is regularly recorded in

the air from July to October in the amount that exceeds

values recorded in other parts of Europe (Skjøth et al.

2013).

4.2 Interpolation

There is a trade-off between the benefits of interpo-

lating missing datasets and the issues that must be

accommodated. Interpolation of intermittent missing

values can be useful, as it improves the training

dataset, thus making the model more robust. However,

in regions where the infrequent transportation of

pollen from distant sources causes sudden peaks,

interpolation will not be able to adequately capture

such changes. The tests confirmed that the last-

observation-carried-forward method, which repeats

the latest observation without any attempt to follow

the signal’s shape, is not appropriate for the interpo-

lation of data gaps in the pollen concentration signal

characterised by magnitude changes (e.g. sudden

decreases during peak flowering due to rain). The

second interpolation method taken into consideration

was cubic spline method. While it is possible to

achieve a smooth and accurate approximation of a

given signal, the performance was poor when inter-

polating short gap intervals due to the exhibition of

over-oscillatory behaviour (Surhone et al. 2010). The

described tests indicated that linear interpolation was

the most suitable among the examined approaches for

completing short data gaps in the aerobiological

dataset. Linear interpolation has been previously used

for dealing with data gaps in aerobiology (Hilaire et al.

2012) and also to complete short gaps in meteorolog-

ical datasets (Prank et al. 2013).

4.3 Performance of pollen calendars

Pollen calendars are commonly used in aerobiology as

graphical representations of airborne pollen distribu-

tion in the study area and are used for comparing the

shape of the seasons. Their ability to enable season

comparison is limited by the methodology applied for

their development. Pre-processing of the dataset

affects the shape of the pollen signal, and thus,

comparison of season intensity by using advanced

calendar models is possible only if the same window

length is applied. For calendars presented as 10-day

means (Spieksma and Wahl 1991), comparison of

season intensities is possible if the division of classes

is the same. Common application of exponential

division (Melgar et al. 2012) simplifies the compar-

isons, but using the same value for 10-day periods

eliminates the variability, which is important for
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personal assessment of dose-response for pollen-

sensitive individuals. It is argued that both the

standard and advanced calendars tested in this study

can be used as models for forecasting daily concen-

trations of airborne pollen, if developed at daily

temporal resolution.

It is difficult to compare the developed model to

other regional models, since observation-oriented

models are developed and evaluated for a limited

territory. Unless these models adequately describe the

emission, dispersion and deposition processes, it is not

reasonable to apply them in other regions. It is

common practice within the field to use categories

(e.g. Stark et al. 1997; Sanchez-Mesa et al. 2002;

Makra and Matyasovszky 2011; Castellano-Méndez

et al. 2005) or statistical scores (e.g. Zink et al.

2012, 2017) rather than daily concentrations to test the

performance of their prediction models. Nevertheless,

there is no consensus on how to evaluate model

performance in the prediction of exact daily pollen

concentrations. Pearson’s or Spearman’s correlation

coefficients are typically used in applications where

the relationship between the two signals is of chief

concern. However, the performance of magnitude

prediction is evaluated using a range of indicators such

as the coefficient of linear regression, mean-squared

error, root-mean-square error, mean absolute error and

the simple statistical comparison of the averages of

two signals.

On average (over the range of validation years)

calendar models yielded correlation coefficients sim-

ilar to those seen in other studies that used advanced

statistical and machine learning methods (Inatsu et al.

2014; Ritenberga et al. 2016). Due to regional-

oriented assessment of its performance (Siljamo

et al. 2012) calendar and numerical dispersion models

cannot be directly compared when predicting daily

Betula pollen concentrations. Multi-model ensemble

simulations performed slightly better with respect to

correlation coefficient and magnitude prediction

(Sofiev et al. 2015). For Poaceae pollen, the correla-

tions obtained by standard and advanced calendar

models were within the range obtained by observa-

tion-oriented models that used meteorology data as an

input (Stach et al. 2008; Voukantsis et al. 2010; Rojo

et al. 2016; Rodrı́guez-Rajo et al. 2010; Hilaire et al.

2012). Regarding magnitude, the calendar models

have worse performance in comparison with machine

learning models that include meteorological

parameters as predictors (Rodrı́guez-Rajo et al.

2010; Voukantsis et al. 2010). For Ambrosia pollen,

the calendar models yielded a high correlation coef-

ficient which was notably higher than the value

obtained by multiple linear regression (Howard and

Levetin 2014). Artificial neural network observation-

oriented models that included meteorology (Csépe

et al. 2014) were better, in respect of both correlation

coefficient and predicting the magnitude of daily

pollen concentrations. However, calendar models give

predictions for more than 1 day ahead which makes

them advantageous. Evaluation of SILAM operational

numerical prediction model for Ambrosia focused on

predicting total season amounts rather than daily

concentration time series (Prank et al. 2013). Tests of

COSMO-ART demonstrate good performance at

individual observation sites, as well as regionally,

which is evaluated based on statistical scores which do

not include correlation and RMSE (Zink et al. 2017).

The observed year-to-year variability in recorded

amounts of all analysed pollen types (as a result of

either masting in birch or different management

regimes in grass and ragweed) justifies the production

of separate calendar models for below- and above-

average seasons, which would improve forecasting of

the magnitude of pollen concentrations. This requires

an algorithm which determines in advance what kind

of season is expected (below or above average).

Without such algorithm, the application of multiple

models is limited.

It is difficult to evaluate the performance of

calendar models with respect to their application for

management of allergic symptoms. For the prediction

of the start and the end of airborne pollen occurrence

season all models performed reasonably well. The

biggest errors in prediction were observed for Betula

for both performance measures, with the years 2013

and 2015 being the worst in terms of Spearman’s

correlation coefficient and NRMSE, respectively

(Table 3). Flowering commences in spring which

results in sensitivity to the extension of the preceding

winter that may cause the extension of dormancy due

to later achievement of forcing temperatures (Myking

1999). In order to address shifts in flowering times

expected from the ongoing climate change, calendars

have to be evaluated and updated on a regular basis.

The biggest errors in predicting the magnitude of daily

values for all models were observed at high concen-

trations during the most intensive part of the season.
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Thresholds for the onset of allergic symptoms are

expected to be at much lower concentrations for the

majority of sensitive individuals (de Weger et al. 2013

and references therein), and thus, wrong predictions

above the thresholds are not expected to significantly

affect application of calendar models in management

of the allergy.

It is believed that correlation coefficients overesti-

mate the ability of pollen calendars to predict timing

and intensity of sudden peaks. The large portion of

achieved correlations tends to result from the overall

shape of the pollen curve, as it emulates the pre-peak

increase and the post-peak decrease, rather than day-

to-day variability. It is argued that the time series of

pollen concentration represents strongly non-station-

ary and non-ergodic processes due to the existence of

the start and the end of the seasons (Sofiev et al. 2015;

Ritenberga et al. 2016), which implies that NRMSE

and correlation can be computed only within the main

season. Despite limiting analysis to coincide with

atmospheric pollen measurements, the effect of using

concentration measurements from different fractions

of each month may influence the correlation.

The results shown in this work can be interpreted in

different manners. If correlation coefficients are the

accuracy measure of choice, advanced calendar mod-

els did not manage to improve the prediction. How-

ever, if NRMSE is observed, it can be concluded that

the advanced models brought a significant improve-

ment to observation-based prediction, as they lower

the error for as much as 40%, witnessed in birch pollen

prediction. The opposing conclusions which can be

drawn from this research raise a question of the

applicability of various statistical measures in the

domain of aerobiology. They can be used for com-

parison between the models, but none of them can

impartially quantify the applicability of a model in

aerobiological forecasting. Furthermore, its practical

value for the end-users of forecasting systems is

debatable. A possible solution for the problem would

be to start from the end-users’ point of view and

observe the effects that different pollen concentrations

have on them. In this way it would be possible to

determine the exact amount of error that can be

tolerated. Also, positive and negative errors could be

treated differently, so that the effects of under- and

overestimation could be separately analysed.

Observed variability in the magnitude and timing of

concentration peaks is common in aerobiology.

Previous studies have shown that atmospheric move-

ment (i.e. speed and direction) and precipitation are

responsible for day-to-day variability in airborne

pollen concentrations (Barnes et al. 2001; Rodri-

guez-Rajo et al. 2003), and therefore, taking these

environmental factors into consideration is required

for further improvement of model performance.

Observation-oriented models are developed and

evaluated for a limited territory and based on point

receptors (i.e. pollen and meteorology). Therefore, the

use of these models outside the region they were

calibrated for is unpredictable (Sofiev et al. 2013) and

depends on the model’s ability to mechanistically

describe natural processes behind records of airborne

pollen. This is particularly emphasised for pollen

calendars that do not take into consideration atmo-

spheric conditions, which are known drivers of pollen

emission and dispersion. For areas with strong and

widespread local sources and where local transport

dominates over regional and long-distance transport,

pollen calendars based on diverse calibration dataset

are expected to give representative forecasts even for

larger geographical areas. It should be noted here that

many authors highlighted the importance of previ-

ously recorded concentrations for short-term forecast-

ing of Betula (Inatsu et al. 2014), Poaceae (Stach et al.

2008; Rodrı́guez-Rajo et al. 2010) and Ambrosia

(Matyasovszky and Makra 2011; Csépe et al. 2014).

Using auto-regression methods to push the model

towards observations, standard calendar models are a

good tool for setting the benchmark that will show to

what extent adding meteorology among predictors

increases model capability to predict processes and

thus be more applicable in different regions.

5 Conclusions

In order to maximise the performance of short-term

forecasts of airborne pollen concentrations, the models

need to account for processes behind emission and

dispersion. Although calendars do not consider these,

the simple calendar model, produced as the mean of

concentrations measured in the calibration dataset,

describes well the shape of the pollen curve yielding

correlation coefficients comparable to those obtained

from more advanced observation-oriented models.

The performance of forecasting the magnitude of

pollen concentrations improves if median is used
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instead of mean. Statistical analysis confirmed that

with respect to difference in Spearman’s q and

NRMSE all calendars are equally suitable for fore-

casting daily concentrations of Betula, Poaceae and

Ambrosia pollen over the course of the season.

However, it is argued that either the standard calendar

or advanced calendar is used instead of calendars

produced following Spieksma’s model (Spieksma and

Wahl 1991), as these present day-to-day variations in

pollen concentrations. Another conclusion is that pre-

processing the calibration dataset or decreasing the

temporal resolution causes the models to under-

represent peaks and day-to-day variability, thus lim-

iting their use in analysis of dose-responses in allergy

management. In any case, calendar models are the

method of choice when meteorological data are not

available and could also serve as the benchmark to

assess whether introduction of meteorology in predic-

tions improves performance and thus contributes to

the description of processes behind emission and

dispersion.
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