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Abstract The aim of this study was to analyse birch

pollen time series observed in Montreal (Canada) in

order to understand the link between inter-annual

variability of phenology and environmental factors

and to build predictive models for the upcoming pollen

season.Modeling phenology is challenging, especially

in Canada, where phenological observations are rare.

Nevertheless, understanding phenology is required for

scientific applications (e.g. inputs to numerical models

of pollen dispersion) but also to help allergy sufferers

to better prepare their medication and avoidance

strategies before the start of the pollen season. We

used multivariate statistical regression to analyse and

predict phenology. The predictors were drawn from a

large basin (over 60) of potential environmental

predictors including meteorological data and global

climatic indices such NAO (North Atlantic Oscillation

index) and ENSO/MEI (Multivariate Enso Index).

Results of this paper are summarized as follows: (1) an

accurate forecast for the upcoming season starting date

of the birch pollen season was obtained (showing low

bias and total forecast error of about 4 days in

Montreal), (2) NAO and ENSO/MEI indices were

found to be well correlated (i.e. 44% of the variance

explained) with birch phenology, (3) a long-term trend

of 2.6 days per decade (p\ 0.1) towards longer

season duration was found for the length of the birch

pollen season in Montreal. Finally, perturbations of

the quasi-biennial cycle of birch were observed in the

pollen data during the pollen season following the

Great Ice Storm of 1998 which affected south-eastern

Canada.

Keywords Phenology � Airborne pollen � Birch
(Betula) � NAO � ENSO/MEI � Statistical analysis and
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1 Introduction

A significant proportion of Canadians and citizens

throughout the world suffer from pollinosis (WHO

2003; CLA 2015). To improve the quality of life of

sufferers (by avoidance strategies, adjust medication

or desensitization programs), physicians need aeropa-

lynological information and knowledge of phenology

as accurate as possible before the start of the pollen

season.1 An increasing atmospheric variability is

likely to occur in the context of the ongoing climate

change (IPCC 2007a, b) therefore impacting phenol-

ogy (Walther et al. 2002) making the forecast of

phenology and spatio-temporal distribution ofA. Robichaud (&) � P. Comtois
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1 Asthmatic patients usually need to begin their anti-allergic

treatment one or two weeks before pollination (Laaidi 2001).
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airborne pollen more challenging in the future.

Globally, for many plant species, the pollen season

duration has already increase in about 10 days on

average during the period from 1970 to 2000 in Europe

(Tamburlini 2002). Since birch pollen is the most

allergenic airborne pollen in Canada during spring-

time (Guérin 1993; Dales et al. 2008), phenological

models of birch are therefore crucial to support pollen

forecast today as well as in a changing climate of the

future. However, phenology is challenging because:

(1) it shows large inter-annual variations for most

plant species (Andersen 1991; Laaidi 2001; Laaidi

et al. 2002) and (2) there is at the current time no

suitable phenological model available to represent the

large scale (Siljamo et al. 2008a, b) and no consensus

on which modeling approach is the best (Chuine et al.

1998; see also the review in Scheifinger et al. 2013).

Two broad classes of phenological models emerge

from the literature: (a) thermal forcing models based

on the amount of spring warming and (b) more

complex models including the effect of winter chilling

(see a review in Sofiev and Bergmann, 2013). Due to

its simplicity, thermal models have been mostly used

to represent phenological models (Andersen, 1991;

Laaidi 2001; Siljamo 2013). The first known model

predicting the date of bud bursting for plants was

introduced by de Réamur (1735) who deduces a

general linear relation between thermal energy and the

state of bud growth. More than two centuries later,

Faust (1989) similarly reports that the spring blooming

date for deciduous fruit trees is strongly dependent on

temperatures in the weeks before pollination while

Spieksma et al. (1995) noticed that air temperature

during the period of 2 months preceding the start of the

season is the dominant factor. Emberlin et al. (2002)

found out that the birch phenology in Europe depends

on the nonlinear balance between winter cooling

required during the dormancy period and spring

temperatures during quiescence period. For Rousi

and Heinonen (2007), the blooming date in Scandi-

navia is regulated by the sum of degree-days greater

than 5 �C (blooming occurs when the sum reaches

160�-days ± 10 accumulated since January 1st). On

the other hand, Oikonen et al. (2005) found little

correlation between the starting day of the birch pollen

season and growing degree-days for the same region.

In France (Burgundy region), Clot (2001) showed that

an accurate forecast of the onset of the birch pollen

season in Neuchâtel (Switzerland) can be made by

using the cumulative temperature sum above zero

from February 1st onward until 270 �C is reached. The

trees are then ready to bloom as soon as the daily

averaged temperature exceeds 10 �C. More complex

models using local meteorological variables to define

a state of forcing (warming) and state of chilling have

also been proposed (Chuine et al. 1998; Rea and Eccel

2006) as well as mechanistic models (Garciá-Mozo

et al. 2008). However, other authors found that

phenology might also depend on other meteorological

factors not only prior to the pollen season but also in

the preceding year. Jones (1995) pointed out that the

blooming is dependent on the amount of rainfall from

several months prior to the start of the birch pollen

season. Laaidi (2001) found that the length of the birch

pollen season is given in France by the following two

predictors: the minimum relative humidity of October

of the previous year and the maximum temperature of

February of the current year. Physically, this means

that the duration of the season will be short if last

October was humid and/or February of the current

year was cold. Similarly, Rasmussen (2002) also noted

a negative correlation between the total annual Betula

airborne pollen concentration and precipitation in the

previous growing season for Betula in Denmark.

Similarly, in California, Fairley and Batchelder (1986)

observed a strong correlation between the oak pollen

abundance measured during the current season with

the sum of precipitation of the previous year in

California (USA). Andersen (1991) showed that the

intensity of birch and alder pollen seasons in Denmark

is related to the precipitation in April of the previous

year whereas for oak and beech, the intensity would

depend on the average temperature of the previous

year. Other authors in Europe have confirmed the

importance of the meteorological conditions during

the previous years for tree pollen production to predict

the upcoming season severity (Stanley and Linkens

1974; Faegri and Iversen 1989). The influence of the

NAO (North Atlantic Oscillation index) on phenolog-

ical processes is another feature which has emerged

within the last decade or so in Europe (D’Odorico et al.

2002 and references therein; Avalo et al. 2008 and

references therein). Stach et al. (2008) recognized that

the severity of the birch pollen season in Poland and

the UK is linked in some way to the different phases of

the NAO. Winter NAO index is one of the most

important predictor of the start of grass pollen season

in Poznań (Poland) according to Stach et al. (2008). In
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general, in Europe, it seems that NAO governs the

temporal variability of the lower atmosphere and thus

phenology (Scheifinger et al. 2002). In any cases,

NAO is considered as one of the most important

teleconnection patterns in all seasons (Barnston and

Livezey 1987). Small changes of NAO could produce

large impact in terrestrial ecosystems (Ottersen et al.

2001). The NAO index is based on the difference of

normalized sea level pressure anomalies between

Azores and Iceland. The NAO could be described as

a north–south dipole anomaly which shows consider-

able intra-seasonal and inter-annual variability and

produce very significant changes in temperature and

precipitation patterns from eastern North America to

western and central Europe. In the northern hemi-

sphere, the NAO index shows a significant correlation

with temperature and precipitation (Hurrell and van

Loon 1997). In order to show the importance of the

different phases of NAO, Table 1 summarizes its

impact on the weather in the northern hemisphere.

ENSO (El Niño/La Niña-Southern Oscillation) is

another prominent teleconnection pattern. ENSO is the

most important coupled ocean–atmosphere phe-

nomenon to cause global climate variability on inter-

annual time scales. It is a quasi-periodic climate pattern

that occurs across the tropical Pacific Ocean roughly

every 5 years (Trenberth et al. 2007). The Southern

Oscillation refers to variations in the temperature of the

ocean surface (warming and cooling known as El Niño

and La Niña, respectively) as well as in air surface

pressure pattern. El Niño is characterized by high air

surface pressure in the western Pacific, while the cold

phase,La Niña is associatedwith lowair surfacepressure

in thewestern Pacific. Precisemechanisms that cause the

oscillation still remain unclear (Trenberth et al. 2007).

ENSO in its acute phase causes extremeweather inmany

regions of the world in any season and any location

particularly those bordering the Pacific Ocean which is

the most affected. One of the specific forms of ENSO is

the MEI (Multivariate ENSO Index) which is the

atmospheric expression of ENSO and is based on the

sixmain observed variables over the tropical Pacific (sea

level pressure, zonal and meridional components of the

surface wind, sea surface temperature, surface air

temperature and total cloudiness fraction of the sky)

(NOAA 2012a, b). ENSO was also found related to

phenology. For example, Rozas and Garcı́a-González

(2012) showed a relationship between the growth of oak

in the Northwest Iberian Peninsula and the ENSO of the

previous year. In our study, NAO and ENSO indices of

the previousmonths up to about 1 year are introduced as

predictors for the phenological parameters of the

upcoming season in addition to more traditional precur-

sors (e.g. mostly based on temperature and precipita-

tion). The aim of this research to study the time series of

birch airborne pollen for Montreal (Canada) in order to:

(1) build statistical forecast of phenology parameters for

the upcoming season (starting date, length and severity

of the pollen season), (2) analyse the link between

phenology and the environmental factors described

above, (3) evaluate current trends over the study period

of thephenological parameters and (4)performa spectral

analysis of the phenological observations during the

period 1996–2012.

2 Data and methodology

2.1 Study area

The region of study comprises the Montreal

metropolitan area which lies in the extreme south of

Table 1 Impact of NAO (adapted from NOAA, 2012 and references therein)

Weather pattern and link with NAO Positive

NAO

Negative

NAO

Atmospheric pressure patterns across the high latitudes of the North Atlantic Below Above

Pressure over Central North Atlantic, Eastern US and Canada and Western Europe (increase in the

zonal flow)

Above Below

Temperatures in Eastern North America and across Western Europe Above Below

Temperatures in Greenland, Iceland and Southern Europe Below Above

Precipitation over Northern Europe, Scandinavia in winter Above Below

Precipitation over Southern/Central Europe Below Above

Below: weaker than average, Above: stronger than average
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the province of Quebec (Canada) near the USA border

(see location of Montreal identified by the letter M in

Fig. 1). Montreal is an island which covers about

365 km2 with a population of the metro region of

about 3.8 million inhabitants.2 The latitude of Mon-

treal is 45o300 North and the longitude is 73o330 West

with an altitude of approximately 30–45 m above the

sea level. This region is interesting because airborne

birch (Betula) pollen concentration could be at times

quite high (Bapikee 2005) then affecting a large

human population basin while the abundance of local

birch tree population is low (density is less than 0.05,

i.e. 5%) over the island of Montreal and immediate

surroundings (see distribution of birch tree density in

Fig. 1). In fact, hardwoods, pine and hemlock are the

most characteristic tree species in Montreal (Braun

1950). Birch typically flower at the end of April or

beginning of May in Southern Quebec. Montreal is

characterized by a temperate climate with short and

warm summers but long and cold winters with yearly

precipitation around 1000 mm annually.

2.2 Airborne pollen data

In the province of Quebec, phenological records are

rare and in any cases not available for this study (no

existing network of phenological measurements). This

could be seen as a handicap but according to

Scheifinger et al. (2002) and Garcı́a-Mozo et al.

(2008), phenological models fitted with airborne

pollen and meteorological data measured locally

yields the best results. All pollen data used in this

study were collected at Université de Montréal

(thereafter UdeM) and concerns birch (Betula) tree.

Birch pollen is studied here since it is considered the

most allergenic tree species in eastern Canada (Guérin,

1993). Beside UdeM site, no other location in Quebec

has recorded a long series of pollen data necessary to

build and test statistical models such as presented in

this paper and so this is also why Montreal is

convenient for our study. The airborne pollen con-

centration in Montreal has been measured for more

than 25 years at this site. A Lanzoni VPPS sampler

(two stage vacuum pump) based on the Hirst method

(1952) was used. This is a seven days recording

volumetric pollen and spore trap installed on the

rooftop of the geography department at UdeM roughly

20 m above the street level which has been providing

routine pollen monitoring for the whole study period.

The sampler at the site is calibrated to handle a flow of

10 litres of air per minute which roughly corresponds

to human breathing. Pollen grains impact a cylindrical

drum covered by a melinex-coated film. A 7-day

clockwork allows an hourly resolution (Mandrioli

et al. 1998). The last step is the pollen counting which

is done under a light microscope. Limitations of this

type of measurements are numerous: electric power

outage may occur, malfunctioning of the clock,

obstruction of the inlet and the risk of uncertainty

may be potentially important regarding human manip-

ulation. For example, laboratory methodology, micro-

scope manipulation and other errors may introduce

biases (INSPQ 2013).

In the Montreal area, since there is no phenological

recording site, the correspondence between local

pollination and measured pollen is not available.

However, Fig. 1 suggests that the distribution of birch

in the Montreal area is rather weak (less than 5%

density, i.e. \0.05) which implies that most of the

birch pollen measured at the site comes from regional

transport of scale of up to several hundreds of

kilometres from different source regions: Eastern

Townships and the Appalachian mountains to the

east, New England in USA to the south-east or the

Laurentian region to the north and to the west.

1.00
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0.50

0.25

0.05

USA

CANADA
M

N

300 km

L

E

NE

Fig. 1 Distribution of birch (Betula) vegetation fraction

(density from 0 to 1) around the city of Montreal (M) and in

the southern part of Canada and New England states in USA.

The major birch pollen area sources are indicated on the figure:

Laurentians to the north (L), Eastern Townships (E) to the east

and New England (NE) to the south-east. The figure was

processed from raw data obtained from US/EPA (BELD3

database, https://www.epa.gov/air-emissions-modeling/bioge

nic-emissions-landuse-database-version-3-beld3)

2 http://ville.montreal.qc.ca/portal/page?_pageid=6897,67887

840&_dad=portal&_schema=PORTAL.
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Therefore, we assume here for Montreal that the vast

majority of birch pollen is of foreign origin, i.e. from

outside the Greater Montreal area (as suggested in

Bapikee 2005).

2.3 Meteorological data and global weather

indices

Temperature and precipitation were available from the

Meteorological Service of Canada at Dorval-Trudeau

airport (latitude 45.47oN, longitude -73.75oW)

located approximately 13.5 km to the south-west from

the pollen monitoring station (latitude 45.50oN, lon-

gitude-73.62oW). Since the pollen data (measured at

UdeM) is representative of an area of 250 km2

(Comtois and Gagnon 1988), we then consider that

the meteorological measurements were taken within

the same atmospheric environment as the pollen site

(i.e. urban conditions). Only under an east and south-

east winds, the effect of topography (from nearby

Mount Royal, about 250 m height) will be felt at the

pollen site and not at the airport. However, these wind

directions are less frequent so on a statistical basis,

meteorology conditions are not expected to be signif-

icantly different between the two sites.

NAO index is taken from the following NOAA

website as a form of bi-monthly average index (see

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/

NAO/ for further information). ENSO index used is the

MEI normalized bi-monthly values (multivariate

ENSO index), and average values were also taken from

NOAA website. Note that we limit ourselves to the

period after 1995 since ENSO index time series entered

a different regime compared to the period before.

Moreover, the methodology changed after the mid 90s

on how to compute MEI index which limits the use of

data before that period (see https://www.esrl.noaa.gov/

psd/enso/mei/index.html). Table 2 summarizes the data

used in our study.

2.4 Definition for the phenological parameters

In this paper, the start of the pollen season is defined

as when 2.5% of the total pollen annual catch is

reached and the end of the season as when 97.5% of

the total pollen of the season has been recorded

(following Goldberg et al. 1988). Bapikee (2005)

found that, for the airborne pollen measured at the

UdeM site, the latter definition was the most robust

for the purposes of phenological studies. In the rest

of this study, we will then refer as to the D2 method

following Bapikee (2005). The definition for the

duration of the season (in unit of days) is simply the

difference between the Julian day corresponding to

the end and the start of the season, respectively.

Similarly, the total airborne pollen concentration or

seasonal pollen index (SPI) is calculated as the

cumulated sum of daily pollen concentration during

the same period, i.e. when the total annual pollen is

greater or equal than 2.5% and less or equal than

97.5% of the total annual catch (see Andersen, 1991

or Goldberg et al. 1988). Finally, the peak value is

defined as the maximum daily concentration for a

given pollen season.

Table 2 Description of data used in this study and their source

Data Institution Method/instrument/variable measured Curve fittings

(Years used)

Cross-validation

(Years used)

Pollen

(Betula)

UdeM Lanzoni VPPS volumetric pollen trap (pollen count) 1996–2009 2010

1996–2010 2011

1996–2011 2012

NAO indexa NOAA Bi-monthly mean NAO indices idem idem

ENSO indexb NOAA Monthly mean ENSO/MEI indices idem idem

Meteorologyc Environment

Canada

Monthly temperature and precipitation at Trudeau-

Dorval Airport (YUL)

idem idem

a https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO
b https://www.esrl.noaa.gov/psd/enso/mei/index.html
c http://climate.weather.gc.ca
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2.5 Statistical method

In order to model phenology, we need to establish a

relation between a phenological stage (the predicted or

response variables P) and several weather or aeropa-

lynological parameters (explanatory independent pre-

dictors Y). Formally, the relation between a predictand

Pj (endogenous variables) and n predictors (exogenous

variables) could be written as (Weisberg 2013):

Pj ¼ aoj þ a1jY1j þ a2jY2j þ a3jY3j þ . . .anjYnj þ e

ð1Þ

where anj are the coefficient of regression, Ynj the

values of the predictors and e a term which accounts

for the random error. In this study, more than 60

different predictors were initially considered and

selected according to information found in the liter-

ature (see a review in Introduction section). These

predictors include both monthly and seasonal temper-

ature (minimum, average and maximum), monthly

and seasonal precipitation (autumn or winter rain

amount) of both the current and the previous year,

different combination of sum of degree-days, various

combination of past NAO and ENSO indices of the

current and previous year, various combinations of

past phenological parameters (e.g. previous year

starting date, length of the season and SPI). The

complete list of potential predictors initially consid-

ered in this study is given in Appendix 1. The four

phenological statistical predictands P are mstart

(model for the start of the birch pollen season

expressed in Julian day), mlength (model for the

length duration of the pollen season expressed in

number of days), mspi (model for the total pollen

seasonal index, which is unitless) and mpeak (model

for the highest peak of the season given in grains per

cubic metre).

Multivariate linear regression methods have been

used to solve Eq. 1. These methods include regression

models in which the final selection of predictive

variables is carried out by using a automatic robust

statistical procedure (stepwise regression, SAS�, 1989)

with the input and output carefully scrutinized by the

researcher (see description of the methodology in

Appendix 2). SAS-STAT� (Statistical analysis software

package) version 9.2 (forWindows) has been used for all

statistical treatment (using different stepwise proce-

dures) except for the spectral analysis of time series

where SAS-ETS� was used. First, simple correlations

between the potential predictors and the predictandwere

calculated according to the Pearson’s coefficient of

correlation to screen out undesirable variables and

obtained preselected predictors (i.e. those having a p

value \0.15). Then the methodology described in

Appendix 2 was used for each predictand in a sequential

way with this subset of the initially preselected variables

in order to identify the best non-colinear predictors.

Avoidance of over-fitting the model to the noise in the

data is addressed by the Cp statistics which is used as a

stopping rule in the process of stepwise regression. Cp is

given by the following (Mallows 1973):

Cp ¼ SSEp=S2 � n þ 2 m ð2Þ

where SSEp is the error sum of squares for the model

with m regressors, S2 is the residual mean square after

regression on the complete set of predictors and n is

the sample size. Whenever Cp is roughly equals to the

number of predictors m, the model is not considered to

be over-fitted. As Cp drops below m, adding up

predictors would cause model over-fitting (Mallows

1973; Daniel andWood 1980). Note that if the data set

is too small (i.e. n not larger than m in Eq. 2), inflated

regression coefficient in multiple regression could

appear (Scheifinger et al. 2013). Note also that

multicollinearity between predictors is avoided by

checking the correlation of the final predictors and

carefully removing those predictors being correlated

with others which do not bring new information. Note

that another multiple regression method has also been

used as an alternative to check the robustness and the

validity of the main predictors found with the stepwise

multiple regression procedure. This alternative

method is based on the minimization of the informa-

tion content called the Akaike’s information criteria

(thereafter AIC) for objectively selecting the predic-

tors (see Beal 2005 for more details). This latter

method was found to give slightly better coefficient of

determination (few per cent higher) and slightly better

curve fit but was giving poor performance with

independent tests and statistical global F-test and t-

test.

The statistical predictors tested in our study (Ap-

pendix 1) could be classified into four groups: (1) local

meteorological predictors from the current year (e.g.

March temperature (tmarch), degree-days over 5 �C
accumulated since January 1st at a specific Julian day
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before the pollen season (e.g. sum05_115)), (2) local

predictors from the previous year (e.g. autumn rainfall

(lrainf), mean maximum temperature of the previous

summer (ltsummax)), (3) global index such as NAO,

ENSO of the current (prior to blooming) and from the

previous year, and, finally, (4) predictors based on

persistence in order to take advantage of the time

autocorrelation of the predictands, e.g. duration of the

season (llength), end date registered last year (lendD2)

and SPI for the previous year (lspi). Note that the letter

L means 1 year lag for the predictors. Many other

studies have noticed similar correlation with several of

these predictors mentioned above (see Introduction).

But it is the first time, as far as the authors are aware

that these correlations are made with Canadian or

North America data and with a very large basin of

potential predictors (about 60 here). Finally, it is

important to be aware that it is not proven that

explanatory variables (right-hand side of Eq. 1)

describe any cause and effect direct link with the

predictands. Since our primary goal is not to find cause

and effect but to construct a phenological forecast

model for the upcoming season, we will take advan-

tage of these correlations for mostly prediction

purpose of the phenological parameters. Nevertheless,

the physical meaning and the possibility of causal

behaviour of predictors will be discussed.

2.6 Periodogram

Periodograms are plots of spectral energy whose peaks

identify return periods or phenological cycles. We

have used the procedure SPECTRA of SAS/ETS

(SAS� 1989) to plot the periodograms of the four

phenological parameters under study. The SPECTRA

procedure computes the spectral densities of a time

series.

2.7 Cross-validation

A way to validate phenological models created by

multiple regression is to assess the curve fittings

against a set of data that was not used to create them

(Mayers and Forgy 1963; Mark and Goldberg 2001).

This is referred to cross-validation or ‘‘leave-one-

out’’ procedure. Three periods, 1996–2009,

1996–2010 and 1996–2011 were chosen to build

curve fittings and the corresponding verification

years 2010, 2011 and 2012, respectively, are used

as independent validation data (but were not utilized

in the data set used to build the main curve fittings).

Regression equations were calculated for the three

periods above mentioned and applied sequentially in

a predictive mode to the year following the end of the

corresponding retrofit period. These three periods are

called training periods thereafter. For example, to

produce a forecast for 2010, we use the period

1996–2009 curve fitting, for the forecast of 2011 we

use the period 1996–2010 and for the forecast of

2012, the fitting 1996–2011. We then have a sample

of 3 years to validate the statistical model in the

forecast mode in a total independent way. Compar-

isons with a model based on average aeropalynolog-

ical data (average values of the predictand over a

long period, i.e. calendar’s method) and persistence

(last year predictand value) are also presented for

comparison. We then are able to evaluate the true

forecast skill of the models for the upcoming pollen

season while testing them using the following year

after the end of the fitting period. Finally, we

compare the results with a forecast based on LTAA

(calendar’s method) or persistence. Accuracy is

measured by the standard deviation and mean of

the error residuals (Observed minus Predicted values,

thereafter OmP) in both cases: for independent

(external) data validation (2010–2012) and as well

as for internal validation (period 1996–2009). The

choice of this set-up for validation is justified by the

desire to forecast phenology for the upcoming season

as explained above. Note that a similar validation

procedure has been used by both Laaidi (2001) and

Adams-Groom et al. (2002) for predicting birch

phenology for the upcoming year.

3 Result

Basic descriptive statistics of the phenological param-

eters observed in Montreal (UdeM site) for the period

1996–2012 are given in Table 3. A lot of inter-annual

variability is noticeable for each of the phenological

parameter as can be seen from the standard deviation

and the range (max–min) which are very large. This is

especially true for the observed seasonal pollen index

(SPI) as well as for the peak value. As an example, SPI

ranges from 173 (year 2000) to 11,570 (year 1998).

For the rest of this chapter, the results presented in
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Table 3 will be used to represent the LTAA (long-term

aeropalynological average). Note that an LTAA-based

forecast is equivalent to the so-called calendar’s

method. We now examine predictive models for the

four phenological parameters.

3.1 Predictive model for the day of the start

of the birch pollen season (mstart)

One of the most important phenodate is the start of the

pollen season (Latalowa et al. 2002 and references

therein). Among the list of potential predictors (Ap-

pendix 1), the preselected predictors are those having

significant coefficient of correlation with the observa-

tion d2start (i.e. p value\0.15; see Table 4). Equa-

tions (3)-(5) give the linear relationships for the final

model selection for three training periods obtained

from the stepwise procedure for the phenodate (pre-

dictand mstart) among a very large possibility of

models.3 Appendix 3 (Table 11A) shows that the

strongest three predictors are lrainf (autumn total

rainfall of the previous year), ltsummax (average

maximum temperature during the summer of the

previous year) and tmarch (average temperature of

the month of March of the current year). Note that

these three main predictors remain the same in Eqs. 3

through 5 indicating some stability of the equations

against removing one particular year (as required by

the cross-validation procedure). According to

Table 11A (final stepwise summary), the secondary

independent predictors which succeeded the numerous

selection tests are linked with NAO and ENSO

phenomena of the previous year (e.g. lnao1, lenso6

and lenso1). For the period 1996–2011 (Eq. 5), the

final predictors retained from the STEPWISE proce-

dure are lrainf (partial R2 = 0.4041), ltsummax (par-

tial R2 = 0.2437), tmarch (partial R2 = 0.1846),

lnao1 (partial R2 = 0.0434), lenso6 (partial

R2 = 0.0405) and lenso1 (partial R2 = 0.0235). For

other retrofit periods (1996–2009 and 1996–2010)

Table 3 Basic statistics for the phenological parameters observed for birch pollen for the period 1996–2012 in Montreal

Variable N Mean Median SD Min Max Q1 (25%) Q3 (75%)

Start date (Julian

day)

17 124.2 (May

4th)

122.5 (May

2nd)

9.68 111 (April

21st)

157 (June

6th)

121 (May

1st)

125 (May

5th)

Length (nb days) 17 30.0 29.0 7.77 12 67 25 37

SPI (unitless) 17 3629.7 2520 3135.4 173 11,570 1566 5166

Peak (grains/m3) 17 742 561 859.3 24 3774 289 816

Length is the duration of the season, SPI stands for the seasonal pollen index and peak refers to the highest peak of the pollen season.

Q1 and Q3 are the 25 and 75% quantiles, respectively

Table 4 Preselected predictors with significant Pearson’s

coefficient of correlation (i.e. p B 0.15) for the d2start (day of

the start of the birch pollen season)

Predictor Coefficient of correlation p value

Lrainf -0.6357 0.0081

Ltsummax 0.6147 0.0233

Rainm -0.5990 0.0142

Ensowin -0.5661 0.0223

Tmarch -0.5097 0.0437

Lenso12 -0.5080 0.0445

Ltsum 0.5077 0.0450

Lensof -0.5000 0.0484

Nao1 0.4956 0.0510

Lenso10 -0.4936 0.0520

Lenso11 -0.4924 0.0530

Lenso6 -0.4757 0.0625

Lensosum -0.4735 0.0640

Lenso9 -0.4687 0.0671

Lenso8 -0.4549 0.0766

Lnao1 0.4532 0.0780

Tfev -0.4502 0.0802

Twinmin -0.4410 0.0872

Twinavg -0.4140 0.1113

Nao2 0.3885 0.1370

Lenso1 0.3882 0.1370

Lnao5 -0.3820 0.1440

The description of the variables used is given in Appendix 1.

Current year predictors are indicated by bold character and last

year predictor by a letter starting by L (for lag)

3 The number of possible model sis 2p-1. With p = 22 pre-

selected predictors (see Table 4), this gives over 4 million

possibility of models which requires the use of automatic

selection procedures.
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similar results were found (corresponding to Eqs. 3

and 4, respectively). Although the predictors have not

necessary a causative link with the predictand, this

nevertheless suggests that a dry (wet) autumn, com-

bined with a warm (chilly) summer during the

previous year would be associated with a late (early)

date of birch pollination for the current year upcoming

season in the Montreal region. Similarly, a cold

(warm) March temperatures of the current year is

associated with a late (early) start of the season. Note

that the main selected predictor of the statistical model

(lrainf) shows colinearity with the mean autumn

ENSO/MEI index (i.e. R = 0.54 between ensof and

lrainf, p value\0.05) and consequently according to

the procedure of Appendix 2, ensof does not appear in

the final list of predictors. Nevertheless, this colinear-

ity suggests a control of ENSO/MEI on lrainf.

The fact that NAO/ENSO seems to play a minor

role in the final selection of predictors (see Table 11A,

Appendix 3) even if their correlation coefficient were

high with the predictand (ensowin, lenso12, lensof,

nao1, etc. see Table 4) could be explained the

following way: since their variability was already

explained by local predictors (such as lrainf, tsummax

and tmarch) some NAO/ENSO predictors will tend to

be removed by the statistical procedure mostly

because they show less predictive power and lower

coefficient of correlation (see Table 4) than the three

main predictors but also to avoid multicollinearity

between predictors. Nevertheless, these predictors are

considered to have an indirect effect on phenology.

Figure 2 shows the retrofit curve fitting for the

statistical model compared with observations for the

period 1996–2011. For other training periods

(1996–2009 and 1996–2010), similar results are

obtained and therefore not shown. Note that the

observed value for year 2000 (d2start occurred on

Julian day 157 for that year) is considered here as an

outlier (since the observed d2start is outside a range of

2.5 standard deviation, according to the statistics of

Table 3 and also identified as having an abnormal

Cook’s distance: Cook 1977) as computed by the SAS

procedure and therefore not used in building the

retrofit models, nor used in the verification. The fitting

of the model value for the start of the birch pollen

season (mstart) against observation (d2start) are

remarkable with R2 = 0.9079 (period 1996–2009),

0.911 (period 1996–2010) and 0.9397 (period

1996–2011), respectively. The complete equation of

the fitting obtained for the three periods for the

phenodate are given below:

Period 1996–2009 (R2 = 0.9079)

mstart ¼ 38:81395�1:18656 � tmarchþ 4:60
� lenso9� 6:74 � lensosumþ 3:3462
� ltsummax�0:11281 � lrainf ð3Þ

Period 1996–2010 (R2 = 0.911)

mstart ¼ 47:6025�0:9415 � tmarch�1:84058
� lenso6þ 2:9961 � ltsummax�0:09949
� lrainf

ð4Þ

Period 1996–2011 (R2 = 0.9397)

mstart ¼ 66:2478�0:9545 � tmarch þ 1:8356 � lnao1
þ 0:8856 � lenso1�1:86 � lenso6 þ 2:2258
� ltsummax�0:05878 � lrainf

ð5Þ

The fact that the coefficient of determination R2 does not

change much from one equation to the other indicate

robustness of the statistical procedure. Moreover, the

main predictors (lrainf, ltsummax, tmarch and various

forms of ENSO/NAO indices) remain present in all

equations indicating consistency between the different

training periods. Some variation of the coefficients and

intercepts fromone equation to another is due to the small

number of data used (N * 15 years). Equations 3–5

provide three training periods which allow for 3

independent validations for 2010, 2011 and 2012,

respectively (see details in Sect. 3.7.2).

Fig. 2 Statistical model (mstart: dotted lines) versus observed

start of the season (d2start: solid lines). The curve fittings hold

for the period 1996–2011 and the forecast is for 2012. Note the

horizontal line is the long-term average (LTAA). Year 2000 is

considered as an outlier here
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3.2 Predictive model for the length of the season

(mlength)

Using the same statistical methodology as above for

the date of start of the season, we now examine the

case of another phenological parameter: the duration

of the pollen season (predictand mlength). The

preselected predictors in this case are given in Table 5.

With 18 preselected predictors, there are up to about

260,000 possible combinations of statistical models.

The best model for the fitting period 1996–2011 and

the final selected predictors appear in Table 11B

(Appendix 3). For this case, the variance of the

predictand length is best explained by the following

predictors: the ENSO/MEI index of the month of May

of the previous year (lenso5, partial R2 = 0.5059), the

NAO index of March of the previous year (lnao3,

partial R2 = 0.1545), the Julian date corresponding to

the end of the season of the previous year (lendD2:

partial R2 = 0.0775), the pollen season duration of the

previous year (llength: partial R2 = 0.1040), the

average annual ENSO/MEI index of the previous year

(lensoa, partial R2 = 0.0377), the February average

temperature of the previous year (ltfev: partial

R2 = 0.0316), the NAO index of August of the

previous year (lnao8, partial R2 = 0.0345), the March

temperature of the current year (tmarch, partial

R2 = 0.0189) and, finally, the ENSO/MEI index of

April of the previous year (lenso4, partial

R2 = 0.014). The link established here between

mlength (pollen season duration) and its predictors

suggests that a strong positive value of ENSO/MEI

(multivariate ENSO index) of May of the previous

year (i.e. lenso5) tend to be associated with a short

duration of the birch pollen season in the current year

(due to the negative correlation, see Table 5). Note

that a long duration of the previous year pollen season

(llength) is negatively correlated with the current year

duration suggesting somememory of the previous year

phenology. In fact, most of the best predictors are

related with variables during the previous year.

Finally, according to our results, an above normal

March temperature (tmarch) will tend to be associated

with a longer than normal duration of the current year

pollen season which reproduces known results found

elsewhere (see a review in Scheifinger et al. 2002 and

also the Discussion section below). Figure 3 provides

model and observed curves for the period 1996–2011

(other training periods 1996–2009 and 1996–2010

show similar results and therefore not shown).

The overall fitting between model and observation

is remarkable (R2 = 0.9892 or 99% of the variance

explained for the period 1996–2009, see Eqs. 6). The

complete equation of the fittings obtained for all

training periods are presented below:

Fig. 3 Statistical model (mlength: dotted lines) versus

observed season duration (solid lines) for the period

1996–2011. Year 1999 is considered as an outlier here

Table 5 Preselected predictors with significant Pearson’s

coefficient of correlation (i.e. p B 0.15) for the duration of the

season

Predictor Coefficient of correlation p value

Lenso5 -0.66,630 0.0035

Lnao6 0.59670 0.0115

Lensospr -0.58221 0.0142

Lnao3 -0.56360 0.0287

Llength -0.50651 0.038

Lenso4 0.49988 0.0410

Lensoa 0.44287 0.0750

Lenso1 -0.41007 0.1021

Lenso2 -0.40496 0.1069

Lensow -0.40265 0.1091

Lenso6 -0.39478 0.1168

Ltfev 0.38065 0.1198

Lnso3 -0.37924 0.1333

tmarch 0.37561 0.1390

Lnao7 0.37330 0.1403

Lnao8 0.36587 0.1467

Lnao5 0.36498 0.1503

LendD2 -0.36151 0.1509

The description of the variables used is given in Appendix 1.

Current year predictors are indicated by bold character and last

year predictor by a letter starting by L (for lag)
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Period 1996–2009 (R2 = 0.9892)

mlength ¼ 65:95095� 13:02086 � lenso5þ 1:9640
� tmarch � 0:40245 � llengthþ 1:5490
� ltfevþ 3:61 � lnao5þ 2:75312 � lnao7

ð6Þ

Period 1996–2010 (R2 = 0.9732)

mlength ¼ 61:11932� 13:41878 � lenso5þ 1:8412
� tmarch � 0:299984 � llengthþ 1:417
� ltfevþ 2:1738 � lnao5þ 2:99488
� lnao7þ 1:33674 � lnao8

ð7Þ

Period 1996–2011 (R2 = 0.9787)

mlength ¼ 109:37� 24:87 � lenso5þ 0:63087
� tmarch � 0:72614 � llength þ 1:765
� ltfev � 1:864 � lnao3� 0:498 � lendD2
þ 4:661 � lensoa þ 2:1704 � lnao8
þ 4:163 � lenso4

ð8Þ

3.3 Predictive model for the birch seasonal pollen

index (mspi)

The preselected predictors for input to the stepwise

procedure for this predictand are given in Table 6 and

the final predictors selected among a large numbers of

possible models by the same procedure as used above

are provided in Table 11C (period 1996–2011). For

the seasonal pollen index curve fitting, results from the

stepwise procedure provide the following results for

the best independent predictors: average maximum

temperature of the previous summer (ltsummax,

partial R2 = 0.3881), duration of the season of the

previous year (llength: partial R2 = 0.1919), temper-

ature sum above 5 �C cumulated up to Julian day 115

of the current year (sum05_115, partial R2 = 0.1851),

NAO index of May of the previous year (lnao5, partial

R2 = 0.0790) and NAO index of August of the

previous year (lnao8, partial R2 = 0.0740). As previ-

ously seen for mstart and mlength, Fig. 4 shows that

the fitting between model and observation is quite

remarkable (for example, R2 = 0.9181 for the period

1996–2011). Note that the results for other training

periods (1996–2009 and 1996–2010) show similar

results and are not shown. The link between the model

seasonal pollen index (mspi) and its predictors

suggests again an influence of NAO index but no

dependency with ENSO/MEI in this case. However,

the dependency is stronger with local variables

(ltsummax, llength and sum05_115) for this pheno-

logical parameter. Note that in Table 6, various form

of the sum of temperature prior to the start of the

season are well correlated with mspi but only one of

these predictors (sum05_115) is selected to avoid

Fig. 4 Statistical model for seasonal pollen index (dotted lines)

versus observed pollen seasonal index (solid lines) during the

period 1996–2011. The year 1998 is considered as an outlier

here

Table 6 Preselected predictors with significant Pearson’s

coefficient of correlation (i.e. p B 0.15) for SPI (seasonal

pollen index)

Predictor Coefficient of correlation p value

Precipw 0.66286 0.0098

Sum03_110 0.57579 0.0312

Sum05_110 0.54703 0.0429

Sum03_115 0.51000 0.0624

Nao2 -0.48312 0.0801

Lnao5 -0.48297 0.0802

Nao1 0.48281 0.0803

Sum05_115 0.45790 0.0997

Ltsummax 0.45578 0.1014

Llength 0.45356 0.1015

Nao3 -0.45248 0.1043

Ltsum 0.40822 0.1473

Nnao8 0.37981 0.1455

Rainj 0.28298 0.1445

The description of the variables used is given in Appendix 1.

Current year predictors are indicated by bold character and last

year predictor by a letter starting by L (for lag)
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redundancy (i.e. multicollinearity). Note also that the

peak of year 1998 is considered here as an outlier

(according to Table 3, i.e. greater than 2.5 standard

deviations and also because it shows an abnormal

Cook’s distance). Therefore, this particular year was

not included in the computation of the statistical

model for this predictand. However, the peak of 2006

was not considered as an outlier (since it lies within 2.5

standard deviations) and, in fact, is very well repro-

duced by the statistical model (Fig. 4). Equations 9–

11 (see below) present the results of the stepwise

procedure summary associated with mspi for the three

training periods:

Period 1996–2009 (R2 = 0.9316)

mspi ¼ � 51844þ 1857:3 � ltsummax þ 60:073
� sum05115 þ 134:6 � llength� 1127:92
� lnao5þ 1009:05 � lnao8

ð9Þ

Period 1996–2010 (R2 = 0.9195)

mspi ¼ � 59402þ 2153:36 � ltsummax

þ 51:56498 � sum05115 þ 147:85 � llength
� 1207:82 � lnao5þ 896:33 � lnao8

ð10Þ

Period 1996–2011 (R2 = 0.9181)

mspi ¼ � 60129þ 2180:25 � ltsummax þ 51:0377
� sum05115 þ 150:61 � llength� 1229:07
� lnao5þ 851:93 � lnao8

ð11Þ

3.4 Predictive model for the highest seasonal peak

value (mpeak)

The link between severity of the pollen season and

environmental variables as observed for model SPI or

the peak value here is well known in the literature

(Stanley and Linkens 1974; Faegri and Iversen 1989;

Andersen, 1991). During the pollen season, different

daily airborne pollen peak values may occur at

different dates. Here, we build a predictive model for

the strongest daily peak value of the season in

Montreal using the same procedure as before. Note

that the peak does not necessarily corresponds to the

first chronological peak in the season but rather to the

absolute maximum peak of the season. For mpeak, the

preselected predictors are given in Table 7. The final

selection of predictors obtained from the multiple

regression procedure (period 1996–2011) among a

large possible number of model combination are,

respectively, according to Table 11D (Appendix 3),

ENSO/MEI index of March of the current year (enso3,

partial R2 = 0.3162), ENSO/MEI index of January of

the previous year (lenso1, partial R2 = 0.1615), the

pollen seasonal index of the previous year (lspi, partial

R2 = 0.1727), NAO index ofMay of the previous year

(lnao5, partial R2 = 0.2225) and, finally, the NAO

index of April of the previous year (lnao4, partial

R2 = 0.0545). The results suggest that: (1) the

strongest predictors are linked with ENSO/NAO

global indices, (2) the previous year environmental

variables play again a strong role. The link of ENSO/

NAO indices seems unequivocal in the case of the

peak value. Current and previous year ENSO/NAO

combine with the variable lspi (seasonal pollen index

of the previous year) to bring the variance explained of

the model to R2 beyond 0.90 for all periods (see

Eqs. 12–14; Table 11D and Fig. 5). The curve fittings

Table 7 Preselected predictors with significant Pearson’s

coefficient of correlation (i.e. p B 0.15) for peak1 (first peak of

the season)

Predictor Coefficient of correlation p value

Lenso1 0.71232 0.0043

Lenso8 0.69417 0.0059

Lisp -0.65690 0.0073

Lnao5 -0.64364 0.0087

Lenso9 0.62347 0.0172

Precipw 0.57085 0.0209

Lnao4 0.57003 0.0335

Lenso6 0.56929 0.0336

Enso3 0.54229 0.0451

Enso1 0.53806 0.0472

Lensoa 0.53346 0.0333

Lenso10 0.52845 0.0521

Lnao12 -0.49884 0.0697

Lenso12 0.48289 0.0803

Lenso11 0.47012 0.0898

Rainj 0.45526 0.0764

Lnao9 -0.42180 0.1330

Ltsummax 0.41222 0.1126

The description of the variables used is given in Appendix 1.

Current year predictors are indicated by bold character and last

year predictor by a letter starting by L (for lag)
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for different periods are presented below for this

parameter:

Period 1996–2009 (R2 = 0.982)

mpeak ¼ 972:723þ 235:49 � lenso1þ 348:40
� enso3� 0:09707 � lisp� 229:8 � lnao5
þ 179:97 � lnao4� 174:78 � lnao7

ð12Þ

Period 1996–2010 (R2 = 0.9312)

mpeak ¼ 999:53þ 230:18 � lenso1þ 257:86 � enso3
� 0:11364 � lisp� 277:7 � lnao5þ 121:86
� lnao4

ð13Þ

Period 1996–2011 (R2 = 0.9274)

mpeak ¼ 970:34þ 220:18 � lenso1þ 263:0 � enso3
� 0:10713 � lisp� 261:3 � lnao5þ 118:38
� lnao4

ð14Þ

Note that the year 2006 is now considered as an outlier

for the computation of mpeak model (observed values

of peak greater than 2.5 standard deviations, see

Table 3 for the value of standard deviation and

abnormal Cook’s distance). That year is therefore

not considered in the calculation whereas the year

1998 (not an outlier in this case) is very well

reproduced by the curve fittings (Fig. 5). Note that

for all statistical models (i.e. Eqs. 3–14), the normality

of residus and homoscedasticity have both been

checked and found reasonable.

The model final selections contain 4 to 9 predictors

depending on the given phenological parameter and

the given training period. As a summary of the results,

Table 8 shows the explained variance of different

types of predictors obtained for each predictand. As an

average, local predictors (LOCAL (CY) and LOCAL

(PY)) overall together explain about 50% of the

variance while NAO/ENSO global indices about 44%

of the variance of phenology predictands (see last line

of the table). Of that amount, local predictors of the

current year (CY) accounts as an average for about

10% of the variance while local predictors of the

previous year (PY) about 40%. ENSO of the current

year contributes as an average to nearly 8% of the total

variance explained and finally, NAO/ENSO of the

previous year for about 36% (i.e. 19.6% for

ENSO(PY) and 16.6% for NAO(PY)). According to

Fig. 5 Statistical model for mpeak (dotted lines) versus

observed yearly first highest peak values (solid lines) for the

period 1996–2011. The year 2006 is considered as an outlier

here

Table 8 Summary of results for the explained variance

obtained by the statistical models for the four predictands

(mstart : day of the start of the season, mlength : duration of

the season, SPI : seasonal pollen index and peak: daily

maximum of the season) in terms of the predictor type

Predictand Local (CY) Local (PY) NAO (PY) ENSO (CY) ENSO (PY) Total variance (0–1)

Mstart 0.1846 0.6478 0.0434 0 0.064 0.9397

Mlength 0.0189 0.2131 0.1890 0 0.5576 0.9787

SPI 0.1851 0.580 0.1530 0 0.0 0.9181

Peak 0.0 0.1727 0.277 0.3162 0.1615 0.9274

Average 0.097 0.40365 0.1656 0.0791 0.1958 0.9412

CY indicates current year and PY previous year. The total variance is compiled from Appendix 3 for each predicand. The last line

(average) is a composite mean of the four predictands
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the results found, it is then suggested that statistical

modeling of phenology should consider ENSO/MEI

indices of the previous year and not only heat sum or

conditions of temperature/precipitation of the current

year as done in many studies in the literature (see

Introduction). More specifically, predictors based on

NAO/ENSO of the current and previous year increase

the information content about spatio-temporal vari-

ability. These results improve understanding of spring

phenology and suggest more complex interactions

among environmental factors. There is no doubt that

local variables contain a great deal of information as

well (lrainf, ltsummax, tmarch, etc.) but it is possible

that this information be redundant with that provided

by NOA/ENSO indices (i.e. NAO and ENSO together

would then control the phenology to a degree more

important than shown in this study).

3.5 Long-term trend of observed phenological

parameters

Temporal trends of the four phenological parameters

studied above have also been evaluated from all

available observed time series (1996–2012). For the

length of the birch pollen season, a significant trend

towards longer season duration has been found (Fig. 6).

The average trend for the length of the season (dashed

middle curve) has a slope of 0.26 (i.e. increase of

0.26 day per year for the season duration). The

coefficient of correlation found was 0.31 (p value

\0.10). This value for the trend (0.26 day per decade)

of the season’s length is fairly consistent with other

values found in the literature (seeDiscussionSection for

Fig. 7 Periodograms for

observed a start date of the

pollen season, b length of

the season, c seasonal pollen
index and d yearly peak

value

Fig. 6 Temporal trend for the length of birch (Betula) pollen

season against year for two cases: long duration seasons only,

R = 0.81 (top curve) and short duration seasons only, R = 0.59

(bottom curve). The middle curve represents the linear

regression curve for all data lumped together (with no

stratification between short and long season). Note that outliers

were removed based on the Cook’s distance method (see Cook

1977; Weisberg 2013)
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more details). Note that it is interesting to divide the

data into two groups: long duration seasons (upper

curve in Fig. 6; R = 0.81, p\ 0.001) or short duration

seasons (bottom curve; R = 0.59, p\ 0.05). Partition-

ing into these two regimes showed more robust and

more significant correlations. In any cases, increasing

trends for the duration of the season is expected since it

is in line with climate change which translates into an

increasing health risk of atopic patients in the future.

Note that a higher temperature (as part of climate

change scenarios, IPCC 2007a,b) is consistent with an

increase in pollen season duration as shown inEqs. (6)–

(8) above since predictors based on temperature (i.e.

ltfev, tmarch) have positive correlation with the dura-

tion of the season (i.e. mlength). No significant trends

were observed for other phenological parameters (i.e.

the seasonal pollen index or peak pollen concentration

nor for the date of start of the pollination).

3.6 Periodogram of phenological parameters

and link with an extreme weather event

For the phenological parameters, cycles between 2 and

4 years (first peaks to the left on Fig. 7A through D)

are noticeable. However, this is not exactly consistent

with values found in the literature for birch natural

cycle which is known to be quasi-biennial (e.g.

Emberlin et al. 1993; Laaidi et al. 1997; Latalowa

et al. 2002). We believe that the discrepancy with the

two-year cycle could be explained by perturbation due

to abnormal or extreme weather events. For example,

it is likely that the strong El Niño event of 1997–1998

and the following Great Ice Storm of January 1998

affecting Montreal, the Eastern Townships and the

New England states in USA (see Abley 1998) have

caused strong perturbations of the tree cycle and

therefore abnormal behaviour for several years after

the event possibly disrupting the quasi-biennial cycle

(high pollen year alternating with a low pollen year).

Strong anomalies of the phenological parameters were

indeed observed from the aeropalynological data

recorded in Montreal in the following few years after

the storm and are obvious on Figs. 2, 3, 4 and 5. For

example, the year 1999 (year following the ice storm

in Southern Quebec) has the shortest length of the

pollen season (duration of about 10 days only, see

Fig. 3) whereas the following year (2000) has the

longest duration (about 67 days). The transition years

(1999–2000) were accompanied with a noticeable

amplification of the cycle in the years following the ice

storm (which happened in January 1998). Note also

that the 1998 spring (few months after the ice storm)

had a very strong anomaly for the seasonal pollen

index (Fig. 4). In fact, a large variability of all

phenological parameters appeared during the period

1998–2000. Therefore, we suggest that the ice storm

which affected Southern Quebec and New England in

January 1998 (and associated with the strong El Niño

event 1997–1998) had a deep impact on the phenology

producing possible perturbations in the birch cycles

for many subsequent years. A study of tree survival

after the ice storm revealed high mortality in the

following 3 years (Shortle and Smith 2003) in some

major source regions affecting Montreal (New Eng-

land in USA and Eastern Townships as well as the

southern part of the Laurentides in Southern Quebec,

see geographical location in Fig. 1). According to

Andersen (1991) damage to plants due to abnormal

weather events affects both the amount of pollen

dispersal and the pollen germination and likely, as

seen here, the quasi-biennial cycle. Hormonal regula-

tion mechanisms can explain biennial tendency (high

and low pollination in succession) but abnormal

weather can impact these cycles as well (Andersen

1991). In the Northeast US, a decline of birch tree has

been noted and the ice storm which also affected New

England (USA)may have served as a catalyst (Halman

et al. 2009) for perturbing these natural cycles.

3.7 Validation of statistical models

We distinguish and present here the results of two

types of validation for the statistical models: internal

and external. Internal validation (same observations

used for verification as that used for the curve fittings)

is necessary to ensure consistency and to verify

absence of gross errors. External validation or cross-

validation (see description on Sect. 2.7) is also

required to estimate the true predictive power of the

different statistical models (Eqs. 3–14).

3.7.1 Internal validation

Mean residuals (that is the mean bias: i.e. OmP) and

standard deviation of the residuals (i.e. SD of OmP

thereafter) turn out to be small as can be seen from

inspection of Figs. 2, 3, 4 and 5 for the phenological

parameters (start of the season, length of the season,
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seasonal pollen index and the peak value, respec-

tively). For example, for the curve fitting error of the

day of the start of the season, the arithmetic mean of

the residuals (mean OmP) and the standard deviation

of residuals are very small (about 1% or less, see first

line of Table 9A) and in any cases muchmore accurate

than the calendar’s method (i.e. LTAA: about 3% or

less, see first line of Table 9B) or persistence-based

prediction (about 5% ore less, see first line of

Table 9C). For the other phenological parameters

(length of the season, seasonal pollen index and peak

value), mean and standard deviation of residuals are

also relatively small and inferior to the values when

compared to LTAA (Table 9B) or persistence

(Table 9C).

3.7.2 External validation (cross-validation)

The predictive model for the start of the season is

excellent with a mean arithmetic bias of 0.5 day, and a

total error of about 4 days (Table 10A). This is much

lower than LTAA or persistence-based model. Note

that the total error is computed by taking the square

root of the sum of squares of mean and standard

deviation of residuals (OmP). The result of Table 10A

is considered remarkable when compared with results

obtained elsewhere (see Discussion Section for more

details). Note that in Figs. 2, 3, 4 and 5, the last year

plotted (2010, 2011 and 2012, respectively) is the one

which was obtained in the true forecast mode and used

for the external validation. Tables 10B–D show the

results of the cross-validation for other phenological

parameters. Results show that only for the predictand

‘‘start of the pollen season’’, the statistical model has a

superior true predictive power compared to LTAA or

persistence. For other phenological parameters, it

seems that rather a combined average value of LTAA

and persistence (persis. & LTAA)-based forecasts

give the best results (Tables 10B–D). We suggest that

the latter predictands have great inter-annual variabil-

ity (as can be seen in Table 3) and therefore are very

challenging to forecast even for the upcoming season

as far as birch pollen is concerned in our study

area.

Table 9 Results of internal validation for (A) statistical model, (B) aeropalynological average (i.e. LTAA or calendar’s method)

(C) persistence (1996–2009, N = 14) (NA: non-applicable, NS: non statistically significant, i.e. p[ 0.15)

Predictand (1996–2009) R2 (model vs obs) Mean OmP (bias) SD of OmP

A

Start of season (days) 0.9079 (p\ 0.15) -0.00325 (\0.003%) 1.26 (*1%)

Length of the season 0.9413 (p\ 0.05) 1.954 (*7%) 7.26 (*25%)

SPI (total nb. grains) 0.9361 (p\ 0.1) 526.66 (*13%) 2083.5 (50%)

Peak value (nb. grains) 0.9820 (p\ 0.05) 0.013546 (\0.003%) 52.74 (\10%)

Predictand (1996–2009) R2 (clim vs obs) Mean OmP (bias) SD of OmP

B

Start of season (days) N/A -2.392 (\0.02%) 4.151 (*3%)

Length of the season N/A 2.714 (*9%) 12.542 (*40%)

SPI (total nb. grains) N/A 0.857 (*0.02%) 3405.8 (*88%)

Peak value (nb. grains) N/A 0.615 (*0.1%) 400.9 (*75%)

Predictand (1996–2009) R2 (persis vs obs) Mean OmP (bias) SD of OmP

C

Start of season (days) N/S (p[ 0.15) -0.6364 (*0.5%) 5.853 (*5%)

Length of the season 0.303 (p\ 0.05) 0.7857 (*3%) 22.14 (*75%)

SPI (total nb. grains) 0.135 (p * 0.20) 251.385 (*6.5%) 5803.8 (*150%)

Peak value (nb. grains) N/S (p[ 0.15) 14.636 (*3%) 648.77 (*120%)

Note that the % values are obtained with respect to the long-term mean values (the latter are computed using Table 3). OmP means

Observed minus Predicted and SD stands for standard deviation
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4 Discussion

4.1 Importance of ENSO/NAO in phenology

Predictors based on NAO/ENSO often appear in the

multiple regression models (i.e. Equations 3–14), so it

deserves more attention here. Table 8 suggests that

NAO/ENSO together could explain 44% of the total

variance (composite average for all predictands). On

the other hand, traditional predictors for the start of the

season relies on thermal parameters of the environ-

ment such as growing degree-days few weeks to few

months before bud development (see review in the

Introduction section). The fact that ENSO and NAO

indices of the current and previous year come out as

significant non-collinear predictors in Eqs. 3 through

14 suggests that: (1) phenology is also significantly

linked to the variability of global weather patterns not

only local predictors, (2) trees keep memory of the

previous year global weather pattern dynamics since

both NAO and ENSO of the current year or the

previous year have significant correlation with phe-

nology (Tables 4, 5, 6, 7 and 8). Moreover, global

indices improve substantially the curve fittings as

compared to a situation where those were not used (in

such case the coefficient of determination drops

substantially and the total error becomes much larger:

results not shown).

Table 10 Results of cross-validation (period 2010–2012, N = 3) for prediction based on the statistical model, LTAA, persistence

and a combination of LTAA and persistence for the following predictand: (A) start of the season (mstart), (B) pollen season duration

(mlength), (C) seasonal pollen index (spi) and (D) seasonal peak value (mpeak)

Period (2010–2012) start of the season Mean OmP (bias) SD of OmP Total error

A

Statistical model 0.5008 3.9680 3.9995

LTAA -6.0667 5.6862 8.3149

Persistence -0.6667 10.693 10.713

Persis & LTAA -3.3667 8.0052 8.6795

Period (2010–2012) length of the season Mean OmP (bias) SD of OmP Total error

B

Statistical model -2.600 12.70 12.960

LTAA 4.787 8.503 9.7579

Persistence -3.667 9.815 10.478

Persis & LTAA 0.560 9.152 9.1690

Period (2010–2012) seasonal pollen index Mean OmP (bias) SD of OmP Total error

C

Statistical model 53.33 1702.1 1702.9

LTAA -1176.9 850.03 1451.7

Persistence 9.20 1469.9 1469.9

Persis & LTAA -583.9 1121.5 1264.0

Period (2010–2012) daily max peak value Mean OmP (bias) SD of OmP Total error

D

Statistical model -172.94 490.12 519.74

LTAA -270.3 240.82 362.0

Persistence 98.667 333.37 347.7

Persis & LTAA -85.83 257.71 271.6

OmP means Observed minus Predicted and SD stands for standard deviation

Aerobiologia (2017) 33:529–554 545

123



We believe that several variables selected here as

predictors have a causal relationship with the phenol-

ogy rather than just a statistical coincidence. For

example, it has been observed that in eastern Canada,

an El Niño event produces above normal temperatures

during the following winter months (Shabbar and

Khandekar 1996) and this is known to influence

phenology of the following spring. ENSO control is

revealed in our study but also NAO.

4.2 Importance of previous year conditions

The importance of past year environmental conditions

has been clearly demonstrated in this study and

recognized as well in the literature. Fairley and

Batchelder (1986) observed a strong correlation

between the oak pollen season duration and the

rainfall during the previous year in Northern Califor-

nia (USA). More recently, these links between tree

pollen season duration and environmental variables

during the previous year has been noted by some

researchers across European countries for birch (Lat-

alowa et al. 2002 for Poland; Méndez et al. 2005 for

Spain; Ranta et al. 2011 in Scandinavia). Laaidi et al.

(1997) noted that despite the fact that trees keep

memory of current and previous year environmental

changes, traditional models of phenology found in the

literature do not sufficiently account for it. This is still

true nowadays and this is another major point that our

study has addressed. Table 8 clearly reveals that most

of the explained variability by the statistical models

presented is linked with predictors of the previous year

(indicated by PY). Such predictors explain up to 77%

of the total variance (as a composite average for all

predictands).

For the start of the birch pollen season, the fact that the

predictors lrainf (rainfall accumulated during the fall

season of the previous year) and ltsummax (summer

averagemaximum temperature of the previous year) are

the best twopredictorsmay, at first glance, seemcounter-

intuitive. However, several independent observations

point towards the validity and the great importance of

these predictors and their link with phenology. Jones

(1995) found that the blooming date is dependent on the

amount of rainfall from several months prior to the start

of the birch pollen season in UK. Adams-Groom et al.

(2002) also noticed that rainfall prior to the birch pollen

season turns out to be a good predictor inUK.Moreover,

recently, Xie et al. (2015) have established that wet

conditions in the fall (among other environmental stress)

is a factor inducing earlier dormancy in deciduous forest

of New England (one of the source region of Montreal’s

airborne birch pollen, see Fig. 1). Other studies (men-

tioned in Xie et al.’s paper) reported a positive correla-

tion between spring and fall phenology. Rozas and

Garcı́a-González (2012) suggested that El Niño-South-

ern Oscillation (ENSO) is controlling the regional

hydrological regime in Northwest Spain implying a link

between ENSO, water availability of the previous year

and tree growth of the current year.Moreover, according

to Antépara et al. (1995), water availability plays a role

and theamountof rainfall prior to thepollen seasoncould

be an important predictor since tree roots can penetrate

the phreatic mantle. The latter would be consistent with

a strong negative correlation between lrainf (autumn

rainfall of the previous year) and the start date of the

pollen season as found in our study. Similarly, Xie et al.

(2015) also reported that a heat-stress (directly related to

the predictor ltsummax in our study) has also an impact

on the next fall dormancy. All these independent

observations seem to support our results that is the

ENSO dynamics and local predictors of the previous

months and even through the previous year which act

together and have a control over the start date of the

upcoming pollen season. In fact, Table 4 shows that

various form of ENSO/MEI (ensowin, lenso12, lensof)

have coefficient of correlation significant (R greater than

0.5, p value\0.05) with d2start (Julian date for the start

of the season). The third best non-collinear predictor for

the starting date is tmarch (mean temperature of March

of the current year; see Appendix 3, Table 11A). This

finding for our studyarea is in agreementwithStach et al.

(2008) for the case of birch (Betula) inEurope. Similarly,

according to D’Odorico et al. (2002), late-winter tem-

perature has a strong influenceonspringphenologyat the

mid and high latitudes so that higher spring temperatures

are associated with earlier occurrences of the pheno-

dates. Finally, Spieksma et al. (1995) found that air

temperature 2 months before the beginning of the birch

season was strongly related with the start date of

pollination. This result has been successfully reproduced

in our study. In the case of the duration of the pollen

season for birch, all the non-collinear predictors (except

tmarch) are linked with the previous year (Appendix 3,

Table 11B). Similarly, for the seasonal pollen index

(SPI), and peak (Appendix 3, Table 11C and D,

respectively), most of the predictors belong to the

previous year. The strong relation found between the
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environmental variables of the previous year and SPI has

been noted elsewhere in several studies (mostly in

Europe, see Ranta and Satri 2007; Stach et al. 2008) and

then give support again to our study.Note that predictors

used for the previous year correspond to the idea that the

memory of birch trees is roughly 2 years (quasi-biennial

cycle, as discussed above). In ecology, a lagged corre-

lation between NAO/ENSO and the biological response

has been frequently observed (Ottersen et al. 2001) but

rarely included in phenologymodels. Finally,we believe

that it is important to consider a large amount of

predictors in order to identify confounders4 and non-

traditional predictors and not simply use classical simple

predictors (temperature, heat sum and precipitation few

weeks or months before the upcoming season). We

believe that previous studies of phenology might have

missed useful predictors such asNOA/ENSOand the lag

effect of the previous year.

4.3 Numerical comparison of results with other

studies in the literature

The current approach in the literature of using

phenology predictors only based on thermal units of

chilling and warming of the current year or to consider

finer spatio-temporal scale to study phenology (down

to growing degree-hour resolution for example, see

Rea and Eccel 2006) was not adopted in our study. The

choice of a statistical multivariate model such as

presented here to forecast phenology was made

because: (1) simple models such as the sum of heat

(popular in Europe) did not correlate well with the start

of the pollen season in Montreal for many predictands

including the start date of the season, (2) the level of

noise in the observational data used to construct

phenological models is usually high (Siljamo et al.

2008a, b). On the other hand, introducing too much

complexity in phenological models (i.e. process-based

and computational intelligence models.) has not

shown to bring any gain in Europe (see review in

Sofiev and Bergmann 2013). We believe that multi-

variate statistical model such as presented here is an

acceptable alternative to other kinds of approach for

Betula phenology and we have found that the perfor-

mance of the forecast for the start of the pollen season

seems superior to other statistical method shown in the

literature for similar problems.

In fact, the methodology shown in this paper was

proven efficient with R2 superior to 0.90 for all

models of phenological parameters. Such high

coefficient of determination has rarely been obtained

in phenological studies. For example, in a study

published by Adams-Groom et al. (2002) (AG02

thereafter), the prediction of the start of the birch

pollen season in the UK was attempted and R2

(coefficient of determination) obtained was about

84% (average of 3 sites in UK) for the explained

variance whereas in our study, R2 is superior to 90%

for all cases (see Eqs. 3 to 5), i.e. our actual and

predicted time series are closer to observations than

that in AG02. Moreover, in AG02, the mean number

of day difference between predicted and actual start

dates for their study period was 5 days for London,

3 days for Cardiff and 1.5 day for Derby, respec-

tively. For the test years, the mean difference was 1,

4.5 and 7.5 days for the 3 sites in UK in AG02

(average of 4.33 days when all sites combined)

whereas our study shows only 0.5 day difference as

an average (i.e. mean OmP) using independent data

with a total error of about 4 days. Our model is also

superior to the multiple regression model developed

by Laaidi (2001) to predict the start of the birch

pollination. Galán et al. (2005) (cited in Sofiev and

Bergmann 2013, Chap. 4) obtained a mean absolute

bias of 4.8 days (with an RMSE in the range

6.2–7.8 days) for the start date for olive in Spain

whereas White et al. (1997) obtained mean absolute

errors in the range 5.3–7.1 days for deciduous

forests and grasslands in the temperate zone. Our

predictive model for the starting date of birch shows

a random error of about 4 days, a mean bias of

0.5 day and a mean absolute bias of about 3 days.

These figures are largely inferior to errors found in

the studies described above. Note that an accuracy

of 4 days for the random error is an excellent result

since it was established that irreducible uncertainties

in the timing of the season are of the order of the

meteorological turnover time which is about 3 days

(Siljamo et al. 2008a,b). However, for the remaining

phenological parameters (length of the season, SPI

and peak values) the statistical models developed

here show more error (when compared to indepen-

dent data) than that obtained with long-term average

aeropalynological data (calendar’s method) or

4 A confounding variable has the property of correlating

(positively or negatively) with both the dependent and inde-

pendent variable (see Montgomery 2005 for further details).
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persistence-based forecast. This is likely due to a

very high variability of phenology and the lack of

normal (Gaussian) behaviour (as it can be seen in

Table 3) for these phenological parameters. In any

cases, more independent data are needed in the

future to confirm these results.

As far as trend is concerning, in our study, we

noted a significant increase in the pollen season

duration of about 0.26 day per year (2.6 days per

decade; see Fig. 6) for birch as seen above. In

Europe, Frey and Gassner (2008) found an increas-

ing trend of 0.4 day per year for the length of the

season also for birch. According to WHO (2003),

during the last 30 years, the length of the growing

season has increased about 10–11 days for most

species (i.e. about 0.3 day per year). We speculate

that different trends in different areas of the world

could be explained by spatially non-homogeneous

upward temperature trends related to global warm-

ing and plant distribution. Note that these results

contrast with Bapikee (2005) who found no signif-

icant trend in any phenological parameters for birch

(Betula spp.) for the period 1985–1998 using data

collected in Montreal. This could be explained by

the fact that the more recent period of data used

here (1996–2012) shows more evidence of climate

variability than the period prior to the study period.

5 Summary and conclusions

This study is the first analysis of pollen time series and

phenology forecasting for birch in Canada. The intent

of this paper was:

1. to study the time series of birch pollen in Montreal

(Canada) and to build statistical models for

predicting phenology for the upcoming season

(few weeks in advance) for the following predic-

tands: starting date of the pollen season, length of

the season, seasonal pollen index and peak value

for birch tree pollen in the Montreal region and

surrounding areas,

2. to evaluate the role of global weather indices

(NAO, and ENSO/MEI) and the previous year

environmental factors as statistical predictors of

phenology in our area,

3. to perform a trend and a spectral analysis of the

pollen time series.

Since numerical pollen forecast requires phenological

data, a precise prediction of the phenological param-

eters few weeks in advance is of paramount interest.

As a matter of fact, the latter information can be used

as a guide to start medicating for asthma, allergic

rhinitis and other allergenic disorders. More impor-

tantly for aerobiologists, the prediction of phenolog-

ical parameters of the upcoming season is of relevance

as input to numerical models of pollen dispersal (e.g.

Helbig et al. 2004; Sofiev et al. 2006a, b). Many

uncertainties affect the phenology and a great deal of

inter-annual variability could explain the lack of

predictive power of some phenological parameters.

Moreover, the fact that some predictands show non-

Gaussian behaviour (such as SPI and peak, figures not

shown) could be a drawback for the use of linear

statistical model to predict for the upcoming season.

Nevertheless, the role of global weather indices and of

the previous year has been shown to be important for

all predictands. It is of interest from a scientific point

of view to notice the fact that NAO and ENSO have

both significant correlations with phenological param-

eters for birch in eastern North America. These

weather teleconnections indices present the advan-

tages that they provide robust correlation with phe-

nology and they could be easily and freely obtained

from NOAA websites. We suggest that NAO/ENSO

global indices both of the current and previous year

should be included into phenology models in the

future since these global indices have a much higher

spatial representativeness than local variables and

seem to explain a significant amount of the variability.

Moreover, global indices will have a growing impor-

tance in the future in relation with climate change and

its impact on ecology (Ottersen et al., 2001). Finally,

damage to trees due to extreme weather should also be

considered since they obviously perturb phenology as

suggested in this paper. We believe that this study is

innovative since it is the first time as far as we know

that phenology is investigated with a statistical

analysis encompassing a large basin of potential

predictors (over 60) including global indices such as

NAO and ENSO (for the current and the previous

year) in Canada or elsewhere. It is likely that the

implications and the methodology adopted in this

paper are quite general and could be applicable to

other geographical areas sensitive to NAO/ENSO

variations and to other plant species. The conclusions

of the study can be summarized here:
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1. among the best statistical predictors for phenology

in our study area (Montreal, Canada) are NAO and

ENSO together explaining, as an overall average,

44% of the variance, whereas local environmental

predictors could explain up to 50% in average (see

last line of Table 8).

2. the previous year predictors were found to

explain an overwhelming amount of variability

(77%) as compared to predictors of the current

year (18%).

3. independent validation shows that the forecasting

for the upcoming season was found successful for

the start of the day (mean bias of 0.5 day and total

error less than 4 days) while for other predictand,

the inter-annual variability was found too large for

accurate prediction enough to beat the forecast

based on persistence or calendar’s method.

4. pollen time series observed in Montreal show a

trend towards longer birch pollen season (increase

of 2.6 days per decade) in agreement with similar

European studies.

A link is suggested between damage caused by an

extreme weather event (such as the Great Ice Storm of

1998 in Eastern Canada) and the impact on the

airborne pollen inter-annual variability during the

following years. Future work will combine satellite

data with regional scale statistical models as devel-

oped in this study to eventually represent better

phenology on a larger scale.
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Appendix 1: List of potential predictors

for phenological models

Predictors of the current year apply for the period

January 1st to March 31st just prior to the upcoming

pollen season. Predictors for the previous year start

with the letter l (for lag) and apply for the previous

calendar year.

Current year predictors:

tjan average January temperature

tfev average February temperature

tmarch average March temperature

twinmin mean winter minimum temperature (Jan-

March)

twinavg mean winter temperature (Jan-March)

sum05_115 sum of temperature above 5 �C since

January 1st cumulated at Julian day 115

sum03_115 sum of temperature above 3 �C since

January 1st cumulated at Julian day 115

sum05_110 sum of temperature above 5 �C since

January 1st cumulated at Julian day 110

sum03_110 sum of temperature above 3 �C since

January 1st cumulated at Julian day 110

rainj total January rain amount

rainf total February rain amount

rainm total March rain amount

precipw total rain precipitation for the period

January–March

nao1 NAO index for January

nao2 NAO index for February

nao3 NAO index for March

enso1 bi-monthly MEI index for January

enso2 bi-monthly MEI index for February

enso3 bi-monthly MEI index for March

ensowin mean bi-monthly MEI index for the period

January–March

Previous year predictors:

ltjan last year average January temperature

ltfev: last year average February temperature

ltmar last year average March temperature

ltsum last year average summer temperature (June–

July–August)

ltsummax last year average summer maximum

temperature (June–July–August)

lrainf last year total amount of rain during fall

(October–December)

lnao1 last year NAO index for January

lnao2 last year NAO index for February

lnao3 last year NAO index for March

lnao4 last year NAO index for April

lnao5 last year NAO index for May

lnao6 last year NAO index for June

lnao7 last year NAO index for July

lnao8 last year NAO index for August

lnao9 last year NAO index for September

lnao10 last year NAO index for October

lnao11 last year NAO index for November

lnao12 last year NAO index for December

Aerobiologia (2017) 33:529–554 549

123



lnaospr mean values of lnao4, lnao5 and lnao6

(spring months of the previous year)

lnaosum mean values of lnao7, lnao8 and lnao9

(summer months of the previous year)

lnaofal mean values of lnao10, lnao11 and lnao12

(fall months of the previous year)

lnaowin mean values of lnao1, lnao2, lnao3 (winter

months of the previous year)

lensow same as ensowin but for the previous year

lenso1 last year bi-monthly ENSO/MEI index for

January

lenso2 last year bi-monthly ENSO/MEI index for

February

lenso3 last year bi-monthly ENSO/MEI index for

March

lenso4 last year bi-monthly ENSO/MEI index for

April

lenso5 last year bi-monthly ENSO/MEI index for

May

lenso6 last year bi-monthly ENSO/MEI index for

June

lenso7 last year bi-monthly ENSO/MEI index for

July

lenso8 last year bi-monthly ENSO/MEI index for

August

lenso9 last year bi-monthly ENSO/MEI index for

September

lenso10 last year bi-monthly ENSO/MEI index for

October

lenso11 last year bi-monthly ENSO/MEI index for

November

lenso12 last year bi-monthly ENSO/MEI index for

December

lensoa last year annual average of bi-monthly

ENSO/MEI

lensospr last year spring average of bi-monthly

ENSO/MEI

lensosum last year summer average of bi-monthly

ENSO/MEI

lensof last year fall average of bi-monthly ENSO/

MEI

ensowin winter average of bi-monthly ENSO/MEI

of the current year

llength last year length of the season according to

the D2 method

lendD2 last year Julian date for the end of birch

pollen season based on the D2 method

lspi last year birch seasonal pollen index

Appendix 2: Steps followed for multiple regression

1. List of predictors established according to a

literature survey (see a list in Appendix 1 above).

2. Scatter plots to evaluate linearity, correlation,

outliers, etc.

3. Use of the procedure REG sequentially (options

selection Cp, Rsq in SAS�) to examine and select

the most appropriate model among 2p - 1 model

(chunks of 7 predictors are sequentially input

giving 27–1 = 128 combinations of models for

each chunk).

4. Step 3 is applied to the whole list of preselected

predictors and model building is performed using

forward, backward and stepwise procedure. The

results are checked against another similar proce-

dure (proc REG with STEPWISE option). Check

with t-Test, F-Test, Cp (Mallows, 1973), R2

adjusted, etc. for regression coefficients of the

model (see similar procedure, Hoang Diem Ngo

2012).

5. Model adequacy test (global F-test, optimum

adjusted R2, RMSE).

6. Check for model assumptions (model error are

random and all pairs of random errors are

independent), residual plots, normal probability

plot and checking for outliers (Cook’s distance,

Cook 1977), Durbin-Watson test for autocorrela-

tion of residuals.

7. Check for multicollinearity of predictors and

over-fitting.

8. Repeat steps 3–7 for three periods (1996–2009,

1996–2010 and 1996–2011) and for all

predictands.

9. Model validation with independent data (the

independent data is the year following a given

training period).

Note that the entry value for a given potential predictor

is set to p B 0.15 and the elimination criteria to

p[ 0.15 (standard values in the community of

multiple regression modeling and are often the default

values in SAS multiple regression procedures, see

Beal 2005; Hoang Diem Ngo 2012). As an alternative

method, multiple regression using AIC criteria for

minimization was also used but found having less

accuracy against independent data (see text for

details).
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Appendix 3: Results of STEPWISE procedure

See Table 11.
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Beal, D. J. (2005). SAS Code to Select the Best Multiple Linear

RegressionModel for Multivariate Data Using Information

Criteria. http://analytics.ncsu.edu/sesug/2005/SA01_05.

PDF. Last Accessed January 20 2017.

Table 11 Final results

from computer outputs for

stepwise selection summary

for the period 1996–2011,

(A) start of the birch pollen

season (mstart),

(B) duration of the season

(mlength), (C) seasonal

pollen index (mspi) and

(D) mpeak

Note that for other periods

(1996–2010 or 1996–2012),

the results are similar and

not shown (see Appendix 1

for the meaning of the

variables). The stopping

criteria to avoid over-fitting

is when C(p) becomes

roughly equal to the number

of selected predictors. For

each selected predictor,

Pr[F (global Fischer test)

must be\0.15

Step Variable entered R2 partial R2 of model C(p) Pr[F

A. Stepwise procedure summary for mstart

1 lrainf 0.4041 0.4041 77.0 0.0081

2 ltsummax 0.2437 0.6478 42.6 0.0103

3 tmarch 0.1846 0.8324 17.0 0.0034

4 lnao1 0.0434 0.8758 12.6 0.0759

5 lenso6 0.0405 0.9163 8.5 0.0525

6 lenso1 0.0235 0.9397 7.0 0.0937

B. Stepwise procedure summary for mlength

1 lenso5 0.5059 0.5059 104.8 0.0029

2 lnao3 0.1545 0.6604 70.6 0.0377

3 lendD2 0.0775 0.7379 54.4 0.0987

4 llength 0.1040 0.8419 32.0 0.0281

5 lensoa 0.0377 0.8796 25.2 0.1275

6 ltfev 0.0316 0.9113 19.8 0.1298

7 lnao8 0.0345 0.9458 13.7 0.0726

8 tmarch 0.0189 0.9647 11.3 0.1233

9 lenso4 0.0140 0.9787 10.0 0.1302

C. Stepwise procedure summary for mspi

1 ltsummax 0.3881 0.3881 56.227 0.0131

2 llength 0.1919 0.5800 37.146 0.0373

3 sum05_115 0.1851 0.7651 18.808 0.0133

4 lnao5 0.0790 0.8441 12.125 0.0480

5 lnao8 0.0740 0.9181 6.00 0.0191

D. Stepwise procedure summary for mpeak

1 enso3 0.3162 0.3162 82.18 0.0234

2 lenso1 0.1615 0.4776 61.94 0.0663

3 lspi 0.1727 0.6504 40.15 0.0315

4 lnao5 0.2225 0.8729 11.51 0.0011

5 lnao4 0.0545 0.9274 6.00 0.0208

Aerobiologia (2017) 33:529–554 551

123

http://analytics.ncsu.edu/sesug/2005/SA01_05.PDF
http://analytics.ncsu.edu/sesug/2005/SA01_05.PDF


Braun, E. L. (1950).Deciduous forest of Eastern North America.

New York: The Free Press.

Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models

predicting dates of flowering of temperate-zone trees using

simulated annealing. Plant, Cell and Environment, 21,

455–466.

CLA (Canadian Lung Association) (2015). http://www.lung.ca/

home-accueil_e.php. Accessed January 20 2017.

Clot, B. (2001). Airborne birch pollen in Neuchatel (Switzer-

land): onset, peak and daily patterns. Aerobiologia, 17,

25–29.

Comtois, P., & Gagnon, L. (1988). Concentration pollinique et
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en-Argonne, 279 pages.

Halman, J. M., Schaberg, P. G., Hawley, G. J., Hansen, G. J., &

Hansen, C.F. (2009). Potential role of Ca in the response of

paper birch (Betula papyrifera) to ice storm induced

decline in Vermont, USA. In 94th ESA annual meeting,

Albuquerque, New Mexico, August 2–7.

Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004).

Numerical modelling of pollen dispersion on the regional

scale. Aerobiologia, 20, 3–19.

Hirst, J. M. (1952). An automatic volumetric spore trap. The

Annals of Applied Biology, 39(2), 257–265.

Hoang Diem Ngo, T. (2012). The steps to follow in a multiple

regression analysis. Paper 333-2012. SAS Global Forum

2012. April 22-25 Orlando, Florida. Available at: sup-

port.sas.com/resources/papers/proceedings12/333-

2012.pdf.

Hurrell, J. W., & van Loon, H. (1997). Decadal variations in

climate associated with the North Atlantic oscillation.

Climate Change, 36, 301–332.

Institut national de santé publique du Québec (INSPQ) (2013).
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