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Abstract We describe a method for constructing

prediction models for daily pollen concentrations of

several pollen taxa in different measurement sites in

Switzerland. The method relies on daily pollen

concentration time series that were measured with

Hirst samplers. Each prediction is based on the

weather conditions observed near the pollen measure-

ment site. For each prediction model, we do model

assessment with a test data set spanning several years.

Keywords Aerobiology � Aeroallergen �
Poisson regression � Data preprocessing � Boosting �
Predictive modeling

1 Introduction

The ambient air contains a large number of biological

particles called bioaerosols. Those particles can be

entire organisms, parts of organisms or substances

produced by living organism. Some of them, such as

spores and pollen, serve for reproduction or dissemina-

tion purposes. They are subjected to gravity but due to

their size and density, air currents play a large role in

their passive dispersion. Their concentration in the air

can reach several thousands of particles per cubic meter.

The prediction of the concentration of bioaerosols

and of their effects on other living organisms or

ecosystems is an important task in aerobiology. Pollen

forecasting abilities in particular are needed in health

care for treating allergies and in other areas like

agriculture, where the dispersion of genetically mod-

ified plants is an important topic. Since the 1950s

biologists and physicians have therefore begun to

monitor the levels of pollen taxa in the ambient air

with volumetric systems. At the beginning of the

1990s, coordinated measurement networks developed

in Europe. That was also the case for Switzerland

where, on January 1, 1993, the pollen measurement

network initiated by the Swiss Working Group in

Aerobiology was integrated into MeteoSwiss, the

Federal Office for Meteorology and Climatology.

The first monitoring site in Switzerland came into

service in the late 1960s. The network has steadily

grown in the 1970s and 1980s to include 14 measure-

ment stations covering the different bioclimatological

regions of the Swiss territory. At each of these stations,

the daily average concentrations for several pollen

taxa are recorded and later transferred to a data-

warehouse that also contains the other parameters
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collected by the MeteoSwiss weather measurement

and observation networks. Because of the measure-

ment design plan (in many cases no measurement in

part of autumn/winter) and interruptions in the mea-

surement due to either technical failures or human

errors, the data collected contain its share of missing

values.

The initial goal of the present study had been to

make model predictions for the missing values in the

pollen concentration time series. Such completed time

series can then be used instead of the original ones

when a particular statistical technique fails because of

the missing values. This is, for example, the case if

summary statistics of the yearly time series are

computed. To get rid of all the missing values in a

pollen time series, also those that occur during a

seasonal peak, it is necessary to build regression

models for the daily pollen concentration based on

other parameters. Such a model is needed for every

combination of taxon and measurement station. As

weather strongly influences pollen emission and

dispersion (e.g., Isard and Gage 2001), weather

parameters are well suited for that purpose.

These same regression models have also the potential

to be used for prediction when used with weather

forecasts. Clearly, they will only be capable of providing

forecasts for the very site they had been trained for.

Several previous attempts to build statistical models

for individual pollen taxa have been documented, like

Bringfelt et al. (1982), Arizmendi et al. (1993), Norris-

Hill (1995), Stark et al. (1997), Galán et al. (2001),

Ranzi et al. (2003), Cotos-Yáñez et al. (2004), Makra

et al. (2004), Castellano-Méndez et al. (2005), Smith

and Emberlin (2006), Stach et al. (2008) and Voukantsis

et al. (2010). The estimation and assessment on test

samples of several dozens of pollen regression models

taken together has, however, not been addressed before.

This text describes how a large amount of such pollen

regression models, using weather parameters as input,

can be obtained and evaluated.

2 Data

2.1 Aerobiological data

In each of the 14 measurement stations, a volumetric

spore trap (Hirst 1952), and the method described by

Mandrioli et al. (1998), is used to collect the pollen

from the ambient air. Its pump aspirates 10 l of air per

minute through an opening measuring 14 9 2 mm.

Behind this entry slot, a rotating drum with a plastic

strip coated with silicone as adhesive is located. Once

every week, the drum makes an entire rotation.

Inside the device, the pollen and other organic and

inorganic particles that come through the orifice will

stick on the part of the strip that is exposed at that time.

The position on the band on which a given particle was

deposited reflects the time of the day and of the week

in which the particle went through the apparatus. In the

laboratory, the strip is cut into seven separate pieces,

one for each day of the week. The strips are then used

to determine the daily pollen counts for the days of the

week. For each day, pollen grains are identified and

counted under the microscope.

The pollen data collected consisted of several

pollen concentration time series. There is one series

per pollen taxon for every 14 pollen measurement

stations of Switzerland that are in service today. The

names and the labels of all 14 measurement stations

are given in Table 1; detailed description of the

stations is given in Peeters et al. (1998).

The values in the time series are estimated daily

pollen concentrations of 56 pollen taxa that are based

on the occurrence of each species counted on a given

number of lines on a microscope slide that comes from

a spore trap. Each time the pollen count is multiplied

by an appropriate factor to give the concentration

Table 1 The 14 pollen measurement stations and their labels

together with the corresponding reference weather stations

Pollen measurement stations Reference weather stations

Basel PBS Basel-Binningen

Bern PBE Bern-Zollikofen

Buchs PBU Vaduz

La Chaux-de-Fonds PCF La Chaux-de-Fonds

Davos PDS Davos

Geneva PGE Geneva

Lausanne PLS Pully

Locarno PLO Locarno-Monti

Lugano PLU Lugano

Luzern PLZ Luzern

Münsterlingen PMU Güttingen

Neuchâtel PNE Neuchâtel

Visp PVI Visp

Zürich PZH Zürich
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[pollen grains/m3]. This factor depends on the micro-

scope settings used, on the air volume that went

through the apparatus, on the number of lines read and

on the size of the collection surface. A single slide

represents the pollen count for a 24-h period starting at

08:00 in the morning.

The concentration data obtained with the procedure

described above stem from a counting process. Thus,

many statistical methods that are designed for continuous

dependent variables need to be adapted by using some

sort of data transformation. The sampling error for the

estimated pollen concentration on the slide varies with

the number of lines used for the counting. Since most of

the time, due to time and budget restrictions, only two

lines were read, the estimated count error can represent a

substantial amount of the observed value. Values of 30%

(of the real pollen total per slide) for the estimated count

error are therefore quite common in pollen count data

obtained with the used slide reading protocol. Comtois

et al. (1999) made a more detailed treatise on that issue.

In particular, these authors found that the relative error

decreases with increasing pollen concentration and also

decreases with the area of slide examined.

Among the available taxa, 10 tree taxa and 6 herb

taxa were further considered for this analysis. They

were chosen for their abundance on the Swiss territory

and for their allergenic properties. The 16 species are

listed in Table 2.

Due to the data collection procedure, the newest

data available are generally between 1 and 10 days old.

2.2 Missing values

Depending on the pollen station considered, the

available pollen concentration time series had dura-

tions that ranged from 13 to 41 years. For all except

one station, the measurements were only taken during

the time frames that were expected to cover the natural

pollen seasons. Thus, outside those time frames, the

series contain long chains of missing values that in

most cases can safely be assumed to be zero.

The Hirst apparatus used to collect the data and the

human process involved in gathering that data are not

100% reliable. As a consequence, missing values for

the pollen count can also appear during the pollen

season. In that case, the data should be missing for all

taxa at the station under consideration. The reason is

that for every taxa taken together, the microscope slide

is either available for counting or not.

A histogram of the durations of the gaps occurring

during the measurement time frames is given in Fig. 1.

The plot shows that for durations \50 days—the gaps

located between the seasons being not considered—

values between 1 and 10 days are the most frequent.

Thus, most intra-seasonal missing data points cannot be

imputed with a conventional parametric prediction model

using, for example, the pollen concentration of the

previous day or of the day afterward without having to

use the model several times on already altered data. The

reason is that with parametric models a prediction cannot

be made if there are missing values in the predictors.

Figure 2 reveals that some of the missing data also

appear during the measurement time frame of the

respective stations. The blank spaces between the solid

chunks indicate the time frames in which no data are

available. Most blank spaces visible at the zoom factor

used in Fig. 2 are either due to the fact that they are

outside the measurement time frame or that the

measurement station did not yet exist. The longer

inter-seasonal blank spaces in the data spanning the

complete study time frame can be seen in Fig. 3.

Among the 14 stations, Basel (PBS) has the longest

time series available and Lausanne (PLS) the shortest.

Table 2 The 10 tree pollen taxa and 6 herb pollen taxa used in

the study

Taxa

English Latin

Trees

Alder Alnus

Birch Betula

Hornbeam Carpinus

Chestnut Castanea

Hazel Corylus

Beech Fagus

Ash Fraxinus

Plane Platanus

Poplar Populus

Oak Quercus

Herbs

Mugwort Artemisia

Plantain Plantago

Grasses Poaceae

Sorrel, dock Rumex

Nettle family Urticaceae

Ragweed Ambrosia
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In the 1990s, it was decided that in Geneva

measures should be carried out throughout the year.

The data collected there were then used to assess

whether seasons may start earlier or later in a given

year.

2.3 Weather data

Besides seasonal aspects, the weather conditions play

an important role in modulating airborne pollen

concentrations and are therefore used when experts

make pollen outburst forecasts. Typically, pollen

particles are much less abundant in the air when the

air humidity is too high or in cases of rainfall.

Furthermore, other weather parameters, like temper-

ature and wind direction and speed, are known to be

important (Gregory 1961; Cox and Wathes 1995; Isard

and Gage 2001). Weather parameters are usually not

measured at the pollen monitoring sites. Therefore,

data of corresponding meteorological stations, located

near the pollen monitoring sites, were used.

The reference weather stations used are also listed

in Table 1. Each weather station provides data for

several weather parameters that are stored in the

MeteoSwiss data warehouse with a time resolution of

up to one value every 10 min. The data warehouse also

contains aggregated values from several weather

parameters on an hourly and a daily basis. For the

regression models, weather data with a resolution of

1 h were used.

3 Materials and methods

Before building any model, it is important to gauge

whether the missing data mechanism distorts the
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Fig. 1 Relative frequency histogram for all measurement sites

of the duration of the gaps in the pollen time series in which no

measures were available. Only missing periods shorter than

50 days were considered for the plot. The time frame considered

goes from January 1, 1969, to December 31, 2009

Aerobiologia

123



observed data. Because of the underlying data gener-

ation process, we could reasonably assume that the

failure of a Hirst sampler did not depend on the amount

of pollen it was exposed to or on the weather

conditions around the device. The same is true for

the human errors that resulted in missing values.

To get rid of the missing values that are known to be

outside the natural season of a taxon, a first data

preprocessing step was done. This was necessary to

augment the data availability in the training data sets

used to build the models. The idea here was to first get

rid of the gaps that could be filled easily without

relying on a more complex model.

3.1 Data preprocessing

There are several ways to characterize aerobiological

time series like in Comtois and Sherknies (1991),

Belmonte et al. (1999) and Kasprzyk and Walanus

(2010). Belmonte and Canela (2002) proposed to use

the Friedman Super Smoother (1984) as a nonpara-

metric method to fit a smooth trend to pollen data time

series. The idea here is to show with a seasonal curve

how the pollen emissions behave during a given year

when the variation due to the day-to-day weather

conditions is taken out. The seasonal curve is an

estimation of the expectation of the pollen concentra-

tion conditioned on the day of the year. Such a

characterization is helpful for investigating the rela-

tionship between stations and taxa.

Besides using the Super Smoother with data from

a single year, we can also use it to additionally

generate a seasonal trend curve based on longer time

frames of several years. Annual trend curves for

some given taxa can vary substantially from year to

year and are therefore not suitable to gain informa-

tion that can be used for data imputation. A way of

circumventing this problem was to superimpose the

data points (day of the year/pollen concentration) of

each year, before applying the Friedman Super

Smoother on the obtained point cloud. The Fried-

man Super Smoother has several tuning parameters

that determine the nature of the trend line fitted to

the data. In our implementation, the default values

for the tuning parameters of the supsmu function in

the programming language R (R Development Core

Team 2010) were used. Figure 4 shows an example

of such a curve.
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Fig. 3 Data availability over the entire time period for the

pollen concentration time series taken from the 14 pollen

measurement stations located on the Swiss territory. Missing

values are given in white, while measured values are dark. The

function used to plot the series is again basedon code provided

by Peng (2008)
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Fig. 2 Data availability from 2005 to 2009 for the pollen

concentration time series. Missing values are given in white,

while measured valuesare dark. We see that for the time series in

Geneva (PGE), measures were taken continuously. The function

used to plot the series is based on aroutine provided by Peng

(2008)
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This kind of trend curves are based on several years

and can be used to fill in missing values that are not in

the inter-seasonal gap but still far away enough from

the season peak. A way to implement this was to

replace missing pollen concentration entries with

zeros if the corresponding value of an associated

trend curve, based on a given time frame of several

years, was available and smaller than a predefined

threshold. That threshold was set to 1 [count/m3] for

all time series. The seasonal curves used for that

purpose were based on data from the years 2000 to

2009.

Similarly, to generate a training data set, the inter-

seasonal measurement gaps were also filled up. This

was done in the following way. Whenever the values

of the seasonal curve based on several years were

\1 at the beginning and at the end of the available

curve, a linear interpolation was done for the period

where missing values occurred in the seasonal curve.

That extended curve was then used as a tool to fill in

some of the missing values in the raw data. An

example for such an extension of a seasonal curve can

be seen as a dashed line in Fig. 4.

Depending on the taxa, a substantial amount of

missing values can thus be filled up without having to

use more complex models that rely on weather

parameters. An R function was written that takes a

list of pollen tables from different stations and returns

a list of tables where the missing values far outside the

seasonal peak are replaced with zeros.

The pollen concentrations data were available in a

daily resolution, which means that we had one value

for each day (daily average concentration). The most

straightforward attempt to build a regression model

would have been to try to use that data in combination

with daily averages of weather parameters, from the

nearest weather station, to build a regression model.

This approach is, however, problematic if we consider

2 days with roughly the same daily averages on the

weather parameters but with different daily patterns in

the hour-by-hour evolution of those parameters.

For a pollen-emitting plant and for airborne dispersal,

it makes a difference if there is rainfall in the morning or

in the evening, even if the mean rainfall for the day may

be the same. Rainfall or high humidity will wash out

pollen grains from the air and stop a plant from emitting

pollen. If, for example, this happens in the morning for

plants usually emitting pollen at that time of the day, one

might expect to see a bigger impact on the pollen

concentration of that particular day than when it happens

in the evening, when pollen has already been dispersed.

To also deal with those situations, it was therefore

decided to use the weather parameters in an hourly

resolution in our models. To do this, a matrix of

predictors had to be set up in a adapted format.

In our data set, the pollen value from a single day

represents the average concentration of the pollen that

was collected from 08:00 to 08:00 am the next day. As

we expected that the weather conditions observed a

few hours before the daily measurement time frames
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Fig. 4 A seasonal Betula pollen concentration trend curve in

Basel based on the years 2000–2009 using the Friedman Super

Smoother.The dates are distinguished by the day of the year. A

dashed line shows the values for the interpolation that was used

to fill in the inter-seasonalmeasurement gap in the curve
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could also have an important impact on the daily

pollen count, we created predictor matrices with

potential predictors. Each daily entry (each row)

contained the 33 hourly weather values from 00:00 to

00:00 hours ? 32 h for each of the eight weather

parameters used (see the first part of Table 3).

Additionally, we created three other variables that

were included in the matrix of predictors. The first one

was the cumulated sum of daily pollen values for the

previous year, known as Seasonal Pollen Index (SPI)

(Mandrioli et al. 1998), labeled as p.y.cum.pollen. The

fact is that for certain tree taxa a particularly high

amount of pollen emitted in the previous year can

result in a lower amount of pollen in the present year

because some plants need an entire year to recover

from such an effort. Examples in which such a cyclic

behavior for the annual quantities of pollen has been

observed which were already documented by

Spieksma et al. (1995, 2003).

The second variable, t.y.cum.pollen, was the sum of

daily pollen values already cumulated this year. Here,

it was expected that for certain taxa we could find a

yearly limit above which the available pollen reservoir

would be empty—all the flowers having already

emitted the pollen contained in their anthers and/or

being faded.

The third variable added to the predictor matrix was

the cumulated sum of daily mean temperatures,

t.y.cum.temp. This method simulates the growth of

the plants before flowering and the production of

pollen grains; such heat sums are commonly used in

phenology (Schwartz 2003) and for predicting pollen

seasons (e.g., Boyer 1973; Frenguelli and Bricchi

1998; Clot 2001; Rodriguez-Rajo et al. 2003).

Finally, three other variables were added at the

model building phase. They were the differences in

daily mean temperatures lagged by 1 day, diff.temp,

the mean relative humidity during the time frame

going from 00:00 to 00:00 hours ? 32 h,

mean.humidity, and the day of the year, day. The

intention here was to have a matrix of potential

predictors that was as big as possible in order to have a

maximum of flexibility during the model building

phase. By applying these steps for 16 taxa and 14

measurement sites, we ended up with 224 predictor

matrices where each had 267 columns for the predic-

tors and a varying number of rows for the number of

observations.

3.2 Choosing a model building procedure

There were several requirements for the model

building procedure when we wanted to use weather

data to estimate the daily pollen count for each of the

224 pollen time series. Given that the initial goal was

to have complete series whenever this is possible, a

Table 3 Variables used for

creating the matrix of

predictors together with the

variables that were added

later during the model

building phase

Unit Variable name

Variables with hourly resolution

Hourly mean temperature 2 m above soil �C temperature

Hourly mean relative humidity 2 m above soil % humidity

Hourly sum of evaporation mm evaporation

Hourly sum of precipitation mm precipitation

Hourly mean of global radiation W/m2 radiation

Soil temperature 5 cm below soil �C soil.temp

Hourly mean of wind velocity m/s wind.velocity

Hourly mean of wind direction � wind.direction

Additional variables in matrix of predictors

Sum of daily pollen values for the previous year – p.y.cum.pollen

Sum of daily pollen values already cumulated this year – t.y.cum.pollen

Daily mean temperature sum already cumulated this year �C t.y.cum.temp

Variables added during model building phase

Lagged differences of t.y.cum.temp �C diff.temp

Mean relative humidity from 00:00 to 00:00 hours ? 32 h % mean.humidity

Day of the year d day
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regression model building procedure that can still

make predictions even if a part of the predictor vector

is missing was preferable. The reason is that missing

values can also appear in the weather predictors.

Depending on the taxa and the measurement site

considered, the predictors may contain several highly

correlated and possibly irrelevant predictors. This can

be a problem for many regression techniques. Addi-

tionally, the response variable, pollen concentration,

results from a counting process (data values are

discrete), and therefore, the model building algorithm

used should preferably be able to do Poisson regres-

sion as well. Poisson regression is generally appropri-

ate for count or rate data, where the rate is a count of

events occurring to a particular unit of observation,

divided by some measure of that unit’s exposure.

The regression model obtained should also not rely

too heavily on the pollen count of the previous day.

There are two reasons for this. First, most of the holes

we intend to fill occur in a row of missing values. If the

information about the previous day is missing and if

that variable is influential for the model created, most

holes filled with such a model will be severely

affected, if a prediction can be done at all. The second

reason is that when doing predictions for the coming

day by using hourly weather forecasts as predictors, in

many cases the information about the pollen concen-

tration of the previous day is available only several

days later. The hindering fact is that the data collected

in the Hirst sampler are only delivered to the

laboratory once a week and not on a daily basis. This

is obviously too late to be used as an input.

The construction of a model to predict the daily

pollen concentration for a particular taxon, without

using the pollen concentration of previous days, has

been documented in the paper by Stark et al. (1997). In

their approach, they used a generalized linear model,

via the glm function in the statistical programming

language S-PLUS, to build a linear Poisson regression

model. That model used a set of transformed and

untransformed weather variables as predictors. For

their model, the predictors were obtained by creating a

binary variable based on the hourly data of observed

rainfall and by transforming other daily weather

variables like temperature, wind and number of days

after the start of the season. Their attempt to fit their

model at the end of a season and then use the

coefficients from that model to predict the pollen

levels for the following years were, however,

unsuccessful. Their model was meant to be used for

prediction only from day-to-day within each ragweed

season. Furthermore, the model they proposed could

not be used during the first 7 days of the season.

The reason to use transformations is to handle

nonlinearities in the model. One can, for example,

reasonably assume that in a certain range an increased

temperature may have a positive effect on the pollen

production, but it is, however, clear that above a certain

threshold a further increase in temperature does not

yield more pollen. Finding appropriate transforma-

tions is, however, extremely time-consuming and

problematic when one has to create hundreds of

prediction models. In our case, we decided to use a

prediction model building procedure that would con-

struct a model for each taxon and each measurement

station by using the same set of predictors. To deal with

such a problem, we could not rely on generalized linear

models. Thus, another solution had to be sought.

Among today’s available model building proce-

dures that have a certain ability to handle irrelevant

inputs and that can deal with missing values in the

inputs, there are Friedman’s multivariate adaptive

regression splines (1991), Breiman’s classification and

regression Trees (1984) and algorithms that are based

on trees. All these methods can model nonlinear

relationships. Two recent regression methods that rely

on trees are Gradient Boosting and Stochastic Gradi-

ent Boosting (Friedman 2001, 2002). Both algorithms

are insensitive to strictly monotonic transformations in

the individual predictors. This means that the basic

structure of those sets of rules does not change if the

input variables are transformed in a not too fancy way.

In practical terms, this means that usually the model

prediction performance and basic model structure will

stay the same if, for example, the measurement units of

the inputs are changed.

Gradient Boosting is a machine-learning technique for

regression problems. Going through several iterations, it

produces a prediction model in the form of a linear

combination of simple base learners that are typically

regression or classification trees. The models are built in a

stagewise forward manner and are generalized by min-

imizing an arbitrary differentiable loss function.

In other words, the resulting models can be seen as a

constructed sum of sets of ‘‘If–then’’-rules that apply to

the input values and result in a number (in the case of

regression) or in a class (in case of classification). In this

context, the term ‘stagewise forward’ roughly means
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that when constructing that sum, a simple model

containing a handful of rules is grown to a more

complex one containing a much higher number of rules.

Stochastic Gradient Boosting is a special variant of

Gradient Boosting. With that technique, randomiza-

tion is introduced into the algorithm by using only a

random subsample, taken without replacement, of the

training data set at each iteration. The goal is to avoid

overfitting to the particular data set and thus obtain a

better prediction capability. Typically, only half of the

training data set is used to build the base learners in

each iteration. A substantial improvement in predic-

tion accuracy can usually be obtained with this

modification. This was also true on our data.

In our case, we used an R implementation of

Stochastic Gradient Boosting made available through

the gbm package developed by Ridgeway (2007). The

package allows for a wide variety of loss functions

including Poisson deviation. It gives the control on a

lot of metaparameters used to tune the model (see Sect.

3.4) and also offers several helpful forms of graphical

outputs.

Another useful feature in gbm is that restrictions

can be imposed on the kind of dependencies the target

variable has with the predictors. It is, for example,

possible to ensure that a particular predictor has a

monotone increasing or monotone decreasing rela-

tionship with the outcome.

3.3 Model assessment

To compare Poisson models on the same aerobiological

time series or to assess the quality of retained models

between stations and taxa, it is necessary to have a

criterion that can be used for model assessment. Because

we had 224 models to build, we did not want to rely on a

score function based on cross-validation since that

would have needed even longer computations.

A simpler strategy that was applied for each

individual time series is to use the first 75% of the

available data as a training data set. The remaining

25% of the data set was set aside to be taken as a test

data set. By doing so, it was possible to ensure that the

test data set contained data for at least 3 pollen

seasons. The default methodology when using gbm for

Poisson regression is to track the sum of Poisson

deviances on the training sample and on the test

sample. Since it is difficult to interpret such a statistic

directly, we had to additionally implement another

goodness-of-fit measure. R2 or pseudo-R2-based good-

ness-of-fit measures can also be computed on test data

and are also easier to interpret than the sum of Poisson

deviances. One such pseudo-R2 measure, especially

suited for dealing with count data in Poisson regres-

sion models, was proposed by Cameron and Wind-

meijer (1996). It is a pseudo-R2 based on deviance

residuals for the fitted Poisson model. For the obser-

vations yi, the arithmetic mean of the observations �y;
the predictions l̂i and the number of observations

N, that statistic is given by

R2
DEV;P ¼ 1�

PN
i¼1½yi logðyi=l̂iÞ � ðyi � l̂iÞ�

PN
i¼1 yi logðyi=�yÞ

and can equivalently be implemented as

R2
DEV;P ¼

PN
i¼1½yi logðl̂i=�yÞ � ðl̂i � �yÞ�
PN

i¼1 yi logðyi=�yÞ

where y log(y) is set to zero for y equal zero.

On the data used to train a model, that measure will

generally lie between 0 and 1 but can still yield

negative values on some test samples where the

prediction model performs catastrophically. Higher

values of that statistic will be associated with better

fits, and for a perfect fit, the value of that measure

becomes 1.

Contrary to the case in linear regression where the

usual R2 statistic based on the training data will

increase with each additional predictor added to the

model, an R2 or pseudo-R2 statistic computed from a

test sample will not necessarily behave in that way.

When assessing prediction models, we also need

to know how important the different predictors are.

For tree-based regression or classification methods,

Breiman (1984) introduced a measure called rela-

tive influence that can be used for exactly that

purpose. That statistic is determined for each

predictor and is measured in percent. It is a

weighted sum of the number of times a particular

variable is used in a split in the regression trees

used in the model.

Given two models with similar prediction perfor-

mances, the model having relative influences that are

more evenly dispersed among the predictors was

preferred. The reason is that the latter model is less

likely to perform poorly in cases where only one of the

most important predictors is missing.
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Not every conceivable problem can be detected

with an R2-based measure alone, which is why the

script that built the models also created residual plots

based on the entire data set and a plot of the predicted

and observed time series based on the test and training

data for visual evaluation.

3.4 Building the models

Whenever we build models with Stochastic Gradient

Boosting, several tuning parameters (metaparameters)

have to be set. They define how the model building

algorithm learns from the data. The metaparameters

are the bag fraction, the shrinkage factor, the mini-

mum number of observations in a node, the number of

trees built and the interaction depth. The bag fraction

is the fraction between the number of observations in

the subsample used to train the base learner in each

iteration and the total number of observations con-

tained in the entire training data set. If that fraction is

set to 1, Gradient Boosting is performed instead of

Stochastic Gradient Boosting.

The shrinkage factor is a way of telling the

algorithm how fast it should learn at each iteration.

In general, increasing the shrinkage factor comes at

the expense of prediction performance on unseen data

points. The minimum number of observations in a

node is used to control the minimal size of node for the

regression trees built at each iteration. The number of

trees built gives the number of regression trees used

for the linear combination representing the model.

Said in easier terms, it determines the complexity of

the final model. Finally, the interaction depth gives the

number of nodes the base learners constructed at each

iteration must have. That metaparameter defines the

complexity of the set of rules that are used to grow

the final model. Except for the bag fraction where the

usage of a value near 1/2 is considered proper, there is

no general strategy to choose the other metaparame-

ters and thus one has to use experience and trial and

error to find a set of values that can be considered for

building the model. An exact definition of the

metaparameters and suggestions on how to set some

of them is given by Friedman (2002).

The associated loss function to minimize in the

algorithm was set to the Poisson deviance. Generally,

there is no systematic way to choose the tuning

parameters. Usually, this step has to be done by hand

guided only by experience and some rules of thumb. In

our case, we set the maximum number of trees in the

model to 1,200, the shrinkage factor to 0.008 and

the interaction depth to 24. For the bag fractions, the

values 1/5, 1/3 and 1/2 were considered. The bag

fraction determines the size of the subsamples of the

training data set that are actually used at each iteration

during the model building. The possible values for the

minimum number of observations in a node were set to

5, 10, 15 and 20. For each time series, all 12 possible

combinations of these metaparameters were tried out

to build models with 1,200 trees.

Because prediction models consisting of 1,200 trees

may end up being too complex and possibly overfit the

data, they were pruned using an out-of-bag (OOB)

performance measure to determine the best number of

trees. This means that the best number of trees was

determined by evaluating in each iteration the reduc-

tion in Poisson deviance on those observations not

used in selecting the next regression tree. Those

observations left out at each iteration constitute a

sequence of OOB samples. The ideal number of trees

to use is then set to a value such that the reduction in

Poisson deviance on the out-of-bag samples does not

improve further for iterations that go above that

number.

The gbm package also offers the possibility to

determine the optimal number of trees based on the

test sample score. It was decided to rely on the

OOB estimator for the optimal number of trees used in

the model to prevent overoptimistic values for the

RDEV,P
2 computed on the test samples.

The pruned models for all twelve possible combi-

nations of metaparameters were then compared to

each other with respect to their computed RDEV,P
2 value

on the test data set. In the end, the best combination of

metaparameters among the twelve possible ones was

retained.

Initial prediction models for individual time series

were constructed with gbm by using all the variables

in the matrix of predictors. Later on, the three

additional predictors day, diff.temp and mean.humidity

(Table 3) were also included as predictors and other

variables manually removed. For all hourly tempera-

ture variables, a monotone increasing relationship

with the target variable was assumed, and for all

hourly humidity variables, a monotone decreasing

relationship was imposed on the model building

algorithm.
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4 Results

4.1 Models

Although the Stochastic Gradient Boosting algorithm

is, to a certain extent, able to handle irrelevant or

highly correlated inputs, the method is not completely

immune to a bad choice in parameters. In general,

irrelevant predictors or predictors that are a good

proxy for other variables favored by the model

building algorithm will end up having a small relative

influence on the final model. Removing some predic-

tors by hand, however, did slightly improve the

models. There is no standard automated way for

doing this. We started by removing some variables or

groups of variables and verified whether it generally

resulted in higher RDEV,P
2 values on the test samples.

We first removed the variables p.y.cum.pollen and

t.y.cum.pollen.

Respectively, all 33 evaporation, soil temperature,

wind direction, precipitation, wind speed and global

radiation variables were also discarded. With respect to

precipitation that is usually considered to be a first order

predictor (Norris-Hill 1995), it is noted that apparently

the humidity, which also partly reflects precipitation,

alone is sufficient. Furthermore, we reduced the reso-

lution of the temperature and humidity parameters by

removing the variables for the even hours 00:00, 2:00,

4:00, 6:00, . . .; 32:00. Finally, the last remaining hours

30:00 and 31:00 were also removed for the temper-

ature and the humidity. From the 270 variables

considered initially, only 34 were finally retained.

Those predictors are shown in Table 4.

The 40 highest RDEV,P
2 scores for the models that

were estimated with the final configuration of predic-

tors are shown in Table 5. Among the 223 models

estimated—the gbm model building algorithm broke

down when trying to build a model for Ambrosia in

Davos—39 had RDEV,P
2 test sample scores that were

above 0.75. The impossibility to estimate a model for

Ambrosia in Davos comes from the fact that there is

almost no pollen of that taxon that is measured there.

An example of the model behavior on the test sample

for Poaceae in Geneva is given in Fig. 5.

4.2 Completed time series

To create completed aerobiological time series, it was

decided to only retain the imputed missing values in

those time series for which the prediction models had

an RDEV,P
2 score of at least 0.75 on the test data set. A

script was written that replaced each missing value

with the corresponding prediction, based on the

measured weather parameters in each station. Since

the prediction model did not directly yield integer

values for the predictions, it was therefore chosen to

truncate them toward zero in order to get a reference

data set that contained only nonnegative integer

values. This way a reference data set with data ranging

from the first measurement periods to the end of 2009

was created.

5 Discussion

5.1 Models

A station that is particularly badly represented in the

top 40 is the station Davos (PDS) located at an altitude

of 1,560 m. Pollen concentrations in that station are

usually low and an important part of pollen found there

is produced at lower altitude and brought there by wind

transport. Visual inspection of plots, showing the

predicted versus the observed values, indicated that a

lot of the time series with low RDEV,P
2 scores for their

models usually had low observed pollen levels. Pollen

taxa that do not flower every year are especially

difficult to model. The models for the Fagus taxon are

Table 4 A list of the 34 variables retained in the final models

used for each aerobiological time series

temperature.H2 temperature.H4 temperature.H6

temperature.H8 temperature.H10 temperature.H12

temperature.H14 temperature.H16 temperature.H18

temperature.H20 temperature.H22 temperature.H24

temperature.H26 temperature.H28 temperature.H30

humidity.H2 humidity.H4 humidity.H6

humidity.H8 humidity.H10 humidity.H12

humidity.H14 humidity.H16 humidity.H18

humidity.H20 humidity.H22 humidity.H24

humidity.H26 humidity.H28 humidity.H30

t.y.cum.temp day diff.temp

mean.humidity

The variable temperature.H2 corresponds to the temperature at

1:00 hours and the variable temperature.H4 to the temperature

at 3:00 hours and so on for the rest of the variables
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an example therefor. If accurate hourly forecasts for

the weather predictors used in the models can be made

available, prediction models for the daily pollen counts

become conceivable for those combinations of taxa

and stations with high RDEV,P
2 scores in Table 5.

The fact that RDEV,P
2 score of, for example, Urticaceae

PBU is\0.75 is not a reason to leave it out from further

investigation. The score provides only one of several

possible assessment criteria for a first evaluation of the

models and should therefore be used as a guiding hand

for further evaluation, not as an absolute criteria. In the

end, the usefulness and weaknesses of a model can only

be gauged in detail by taking a look at plots of

observations vs. predicted values computed on the test

data. Thus, further investigation might show that the

model Urticaceae PBU can be useful for some applica-

tions. Because of space constraints, we restricted

ourselves to show only the results for the first 40 models.

Some prediction models from Table 5, like the

one depicted in Fig. 5, are ideal candidates to deliver

daily pollen predictions for several years before

needing to be retrained. In such a setting, the models

can make predictions of the daily pollen counts for

the coming 2–3 days using point information of

weather parameters from numerical weather predic-

tion as input. That latter time frame only depends on

the time horizon that can be reasonably covered with

the weather forecasts.

The RDEV,P
2 scores in Table 5 were computed for

predictions made with weather measurements. How-

ever, an adequate model assessment in that context

would require a further study and also the access to

weather forecast data preferably spanning several

years. The input parameters used in the models in

Table 4 can all be made available up to 10 days in

advance by numerical weather prediction programs

commonly used by weather forecast offices. This

would allow to use such models to make pollen

forecasts based on numerical weather forecast.

The kind of models proposed here cannot be used

to describe the transport of the pollen particles. This

would require to implement the behavior of a

pollen-emitting plant in a numerical weather pre-

diction program. Such an approach is, however,

difficult and requires a substantial amount of

information about the location of the pollen sources

(Pauling et al. 2011).

Table 5 Prediction performance on the 25% test samples

measured with RDEV,P
2 for each station and taxon

Rank Taxa Station RDEV,P
2

on test

sample

1 Betula PLO 0.873

2 Castanea PLO 0.862

3 Quercus PLU 0.858

4 Poaceae PNE 0.853

5 Castanea PLU 0.851

6 Poaceae PGE 0.851

7 Quercus PLS 0.838

8 Betula PLU 0.835

9 Populus PGE 0.831

10 Poaceae PZH 0.829

11 Quercus PLO 0.827

12 Urticaceae PBE 0.823

13 Poaceae PCF 0.812

14 Poaceae PBE 0.812

15 Quercus PGE 0.81

16 Urticaceae PCF 0.806

17 Betula PGE 0.805

18 Betula PLS 0.804

19 Urticaceae PLS 0.803

20 Urticaceae PGE 0.803

21 Urticaceae PNE 0.798

22 Betula PMU 0.797

23 Poaceae PLS 0.796

24 Betula PCF 0.785

25 Betula PBS 0.785

26 Urticaceae PZH 0.782

27 Poaceae PMU 0.78

28 Populus PLS 0.78

29 Fraxinus PLO 0.777

30 Alnus PGE 0.775

31 Corylus PGE 0.767

32 Poaceae PDS 0.766

33 Betula PLZ 0.764

34 Quercus PBS 0.764

35 Poaceae PBU 0.761

36 Poaceae PBS 0.76

37 Fraxinus PLU 0.759

38 Populus PLO 0.757

39 Betula PBU 0.753

40 Urticaceae PBU 0.748

Only the 40 best models are shown
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5.2 Imputing missing values

Missing values in the original pollen time series can be

replaced with model predictions, if a good enough

model can be found for the time series in question.

Choosing a minimal value for the RDEV,P
2 value

computed on a test sample is the most simple, but

somewhat arbitrary approach to solve that problem.

Another possible way of determining what consti-

tutes a good enough model is to make that decision on

a case-by-case basis, depending on the particular

statistic one wants to compute on the completed time

series. The sensitivity of a particular yearly statistic

can, for example, be assessed by evaluating that

statistic on predictions and original values from the

test data set on days were actual measures are

available. If the discrepancy between the value

computed on the model values and the value computed

on the actual observed values is deemed sufficiently

small for several years in a row contained in the test

data set, the model can be used to complete the time

series for that particular statistic. For each particular

statistic to be computed on a yearly basis, one could

then decide whether a particular model should be used

to complete the raw time series or not.

5.3 Model building

The computations required for building the 224

models were simply split up among 23 cores on a

May Jun Jul Aug Sep May Jun Jul Aug Sep

May Jun Jul Aug SepMay Jun Jul Aug Sep

May Jun Jul Aug Sep MayApr Jun Jul Aug Sep

0
50

15
0

25
0

0
10

0
20

0
30

0
0

50
10

0
20

0

0
50

15
0

25
0

0
50

15
0

25
0

0
50

15
0

25
0

2003 2004

2005 2006

2007 2008

Poaceae PGE

predicted
observed

Poaceae PGE

predicted
observed

Poaceae PGE

predicted
observed

Poaceae PGE

predicted
observed

Poaceae PGE

predicted
observed

Poaceae PGE

predicted
observed

co
nc

en
tr

at
io

n 
[p

ol
le

n 
gr

ai
ns

/m
3 ]

co
nc

en
tr

at
io

n 
[p

ol
le

n 
gr

ai
ns

/m
3 ]

co
nc

en
tr

at
io

n 
[p

ol
le

n 
gr

ai
ns

/m
3 ]

co
nc

en
tr

at
io

n 
[p

ol
le

n 
gr

ai
ns

/m
3 ]

co
nc

en
tr

at
io

n 
[p

ol
le

n 
gr

ai
ns

/m
3 ]

co
nc

en
tr

at
io

n 
[p

ol
le

n 
gr

ai
ns

/m
3 ]

Fig. 5 Predicted and observed Poaceae pollen concentrations in Geneva (PGE) from the years 2003 to 2008. All seasons shown here

are takenfrom the test data. The training data used go from January 1979 to November 2002
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computer cluster. All prediction models could thus be

computed in under a day. Since we used bag fractions

smaller than one in our models, it is conceivable to run

Monte Carlo simulations on the model building

procedure to get an ensemble of models for each time

series in order to try to gauge the uncertainty

associated with each prediction. The drawback is,

however, that one requires much more computing time

to estimate the models and memory space to store

them.

The 223 models that were obtained are not neces-

sarily the best that could be achieved in terms of

predictive performance on the test samples if a lot

more time and energy would be invested in manually

choosing the predictors individually for each model or

if we would do a larger search in the set of

metaparameters used in the prediction models. It is,

however, doubtful that the gains that could be made

would be worth the effort.

Another problem appears when a too extensive

automated search is done on the metaparameters. First,

it is costly to try out an extensive list of combinations

of metaparameters. Secondly even if such a search can

be done in a reasonable amount of time, one runs the

risk of overtuning the prediction models. This would

result in model assessments that are slightly too

optimistic.
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