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Abstract Eutrophication and lake depth are of key 
importance in structuring lake ecosystems. To eluci-
date the effect of contrasting nutrient concentrations 
and water levels on the microbial community in fully 
mixed shallow lakes, we manipulated water depth 
and nutrients in a lake mesocosm experiment in north 
temperate Estonia and followed the microbial com-
munity dynamics over a 6-month period. The experi-
ment was carried out in Lake Võrtsjärv—a large, 
shallow eutrophic lake. We used two nutrient levels 
crossed with two water depths, each represented by 
four replicates. We found treatment effects on the 
microbial food web structure, with nutrients having a 

positive and water depth a negative effect on the bio-
masses of bacterial and heterotrophic nanoflagellates 
(HNF) (RM-ANOVA, p < 0.05). Nutrients affected 
positively and depth negatively the mean size of indi-
vidual HNF and ciliate cells (RM-ANOVA; p < 0.05). 
The interactions of depth and nutrients affected 
positively the biomass of bacterivorous and bacteri-
herbivorous ciliates and negatively the biomass of 
predaceous ciliates (RM-ANOVA; p < 0.05). Bacte-
rivorous ciliates had lowest biomass in shallow and 
nutrient-rich mesocosms, whilst predaceous ciliates 
had highest biomass here, influencing trophic interac-
tions in the microbial loop. Overall, increased nutri-
ent concentrations and decreased water level resulted 
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in an enhanced bacterial biomass and a decrease in 
their main grazers. These differences appeared to 
reflect distinctive regulation mechanisms inside the 
protozoan community and in the trophic interactions 
in the microbial loop community.

Keywords Eutrophication · Protozoa · Bacteria · 
Heterotrophic nanoflagellates · Top-down and 
bottom-up control

Introduction

Shallow lakes are thought to be more vulnerable to 
climate change than deep lakes (Kundzewicz et  al. 
2008; Jeppesen et al. 2009, 2011; Kernan et al. 2010; 
Li et al. 2023; Meerhoff et al. 2022). High tempera-
ture and precipitation resulting from climate change 
in northern temperate region may further enhance 
eutrophication in shallow lakes (Jeppesen et al. 2014, 
2015; Moss et  al. 2012; Free et  al. 2022). However, 
in southern Mediterranean lakes reduced precipita-
tion and stronger evaporation-induced hydrologi-
cal deficient (e.g. reduced water level) contribute to 
eutrophication via prolonged water residence time 
and increased internal loading (Jeppesen et al. 2009; 
Özen et  al. 2010; Coppens et  al. 2016, 2020). Cli-
mate change may thus enhance eutrophication with 
changes in community structure and dynamics in 
shallow lake ecosystems.

How water level changes affect the microbial com-
munity is relatively unexplored. There is only limited 
experimental evidence of direct and indirect effects of 
changes in water level, nutrient availability, macro-
phyte coverage and zooplankton grazing on the struc-
ture of the microbial community (Tzaras et al. 1999; 
Jezbera et al. 2003; Farjalla et al. 2006; Christoffersen 
et al. 2006; Özen et al. 2013, 2014; Zingel et al. 2018; 
Šimek et al. 2019). Global warming may affect micro-
bial communities indirectly through warming-induced 
eutrophication (Jeppesen et  al. 2009, 2010) as these 
communities are highly sensitive to the changes in 
nutrient status and the top-down effect by consumers 
(Carrick et al. 1991; Nixdorf and Arndt 1993; Gaedke 
and Straile 1994; Mathes and Arndt 1994; Özen et al. 
2018; Colby et al. 2020). Water level fluctuations may 
become just as significant as nutrients for changes in 
the functioning of microbial communities in the con-
text of global change (Özen et al. 2014; Porcel et al. 

2019). As the microbial loop represents an important 
compartment in the food webs of shallow lakes (Zin-
gel and Nõges 2010), it is crucial to understand how 
changes in water level and nutrients affect microbial 
communities.

To elucidate the effect of contrasting nutrient con-
centrations and water levels on the microbial com-
munity, we manipulated both in a shallow lake meso-
cosm experiment undertaken in Estonia and followed 
the microbial community dynamics over a 6-month 
period, from June to November 2011.

We hypothesized that: (i) bacterioplankton abun-
dance at different nutrient concentrations and water 
levels is controlled by different protozoan groups 
due to different impacts of top-down grazing which 
leads to dissimilarities in the microbial loop function-
ing; (ii) we expected to have more bacteria biomass 
and abundance in shallow high-nutrient mesocosms 
as water level indirectly influences the biomass of 
bacteria by affecting nutrient concentrations and the 
growth of submerged macrophytes.

Material and methods

Mesocosm set-up and experimental design

We conducted an in  situ mesocosm experiments in 
Lake Võrtsjärv (58° N 26° E), Estonia. Our study was 
part of a comprehensive study of the impact of water 
level fluctuations under high- and low-nutrient condi-
tions along a north–south gradient across continental 
Europe (Landkildehus et  al. 2014). The experiment 
lasted from May to November 2011, and the meso-
cosms were sampled monthly. We let the mesocosms 
to settle during the first month, and for the current 
study, we used samples from June to November (6 
monthly sampling occasions). The mesocosms and 
the experimental set-up are described in detail by 
Landkildehus et  al. (2014). Briefly, 16 cylindrical 
(diameter 1.2 m) fibreglass mesocosms were installed 
and filled with water sieved through a mesh size of 
500  µm. Eight mesocosms were shallow (S) with 
a depth of 1  m and the other 8 were deep (D) with 
a depth of 2  m. To test the effect of nutrient load-
ing, the experimental treatment design comprised 
two nutrient levels, low (L) and high (H), resem-
bling mesotrophic and eutrophic conditions. Nutri-
ent concentrations were the same to those used in 
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previous experiments (Gonzáles-Sagrario et al. 2005; 
Jeppesen et al. 2007). Nutrients were adjusted to the 
two conditions by monthly nutrient addition aiming 
at initial concentrations after loading of 25 μg phos-
phate (P)  l−1  (Na2HPO4) and 0.5 mg nitrogen (N)  l−1 
(Ca(NO3)2) in the mesotrophic and 200 μg P  l−1 and 
2 mg N  l−1 in the eutrophic treatment. Nutrient con-
centrations were measured monthly using standard 
procedures. For details on the design and sampling, 
see Landkildehus et al. (2014). The final set of meso-
cosms consisted of two treatments, each with four 
replicates (shallow with low- (SL) and high-nutrient 
(SH) loading and deep with low- (DL) and high-
nutrient (DH) loading). All mesocosms were dosed 
monthly with nutrients with an N:P ratio by weight 
of 20:1. All mesocosms contained a layer of sediment 
(thickness 10 cm). The sediment contained 90% (by 
volume) washed sand (grain size < 1  mm) and 10% 
lake sediment. Large particles (e.g. plant fragments, 
mussels, stones, debris, etc.) were removed by siev-
ing through a 10 mm mesh. Before the sediment was 
added, it was equilibrated to the two experimental TP 
treatment levels (25 and 200 µg TP  l−1) (Landkildehus 
et  al. 2014). All mesocosms contained macrophytes 
(Myriophyllum spicatum) and a mixture of phyto- 
and zooplankton species assemblages collected from 
five different lakes (see Landkildehus et al. 2014). To 
mimic the natural environment also small planktivo-
rous fish were added to the mesocosms. Our former 
studies carried out in shallow eutrophic ponds (Karus 
et  al. 2014) have shown that the feeding of plank-
tivorous fish can have a remarkable indirect shaping 
impact on the microbial food web through the top-
down cascading effects. Therefore, six planktivorous 
fish (three-spined sticklebacks Gasterosteus aculea-
tus) were added to each enclosure. On each sampling 
date and for each mesocosm, a per cent plant volume 
inhabited (PVI%) was estimated based on visual cov-
erage percentage and measured mean macrophyte 
height (see Fig.  1 for mean TP, total nitrogen (TN) 
and PVI values). The mean water temperature in the 
mesocosms was ca 17 °C, and the mean air tempera-
ture was 15 °C (Landkildehus et al. 2014).

Sampling of bacteria, HNF and ciliates

The microbial food web community was sampled 
monthly between June and November 2011. From 
the bulk water sample, 50 ml subsamples for bacteria 

and HNF analyses and a 100 ml subsample for ciliate 
analysis were taken. Samples for enumeration of bac-
teria and HNF were fixed immediately after collec-
tion by adding glutaraldehyde to a final concentration 
of 2% (v/v) and stained for 10 min with 4′6-diamid-
ino-2-phenylindole (DAPI) at a final concentration 
of 10 µg DAPI  ml−1 (Porter and Feig 1980). Within 
2 h following sampling, we filtered the subsamples to 
count bacteria (2 ml) and HNF (15 ml) onto 0.2- and 
0.8-µm pore size black Nuclepore filters, respectively. 
A Whatman GF/C glass microfiber filter with a pore 
size of 1.2 µm was used as a pad to obtain a uniform 
distribution of cells under low pressure (< 0.2  bar). 

Fig. 1  Means and standard deviations (SD) of total phospho-
rus (TP) and total nitrogen (TN) in May–November and plant 
volume inhabited (PVI, %) in July–November in the mesocosm 
experiment conducted in 2011
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Filters were stored at − 20 °C until enumeration. The 
abundances of bacteria and HNF were determined by 
direct counting of cells using epifluorescence micros-
copy (Nikon Eclipse Ti) at 1000× magnification. At 
least 400 bacteria cells from different fields were 
counted for each sample with a UV filter (420 nm). 
All specimens of HNF found within 1.6  mm2 of each 
filter were counted. The microscope was equipped 
with a pale yellow UV (420 nm) and a blue (515 nm) 
filter to distinguish heterotrophs from mixo- and 
autotrophs at HNF counting. Conversion to carbon 
biomass was made using a factor of 0.22 pg C µm−3 
for bacteria and HNF (Bratback and Dundas 1984; 
Borsheim and Bratback 1987). For calculations, all 
results from different months were averaged and the 
six-month seasonal mean was used for analysis.

A crucial link in the microbial loop is HNF. There-
fore, it is important to understand the main mode of 
regulation of HNF abundance. For this purpose, we 
used Gasol’s (1994) theoretical model to plot corre-
sponding abundances of HNF and bacteria. Accord-
ing to Gasol’s theory, data points located below the 
mean realized abundance (MRA) line suggest top-
down control on HNF. Points above the MRA line 
imply low top-down control on HNF. Points that are 
close to the maximal attainable abundance (MAA) 
line point to strong bottom-up control on HNF.

Ciliates were fixed with acidic Lugol (4% Lugol’s 
iodine (v/v)) and counted in sedimentation cham-
bers under inverted microscopes at 600× magnifica-
tion (Nikon Eclipse Ti) following Utermöhl (1958). 
At least 200 ciliate cells or the entire chamber were 
counted and identified to genus or species level 
according to Foissner and Berger (1996) and Foissner 
et al. (1999). Ciliate biovolumes were calculated from 
measurements of length and width dimensions of 
animals with approximations to an appropriate geo-
metric shape. For conversion to carbon biomass, the 
factor 0.19  pg C µm−3 was used (Putt and Stoecker 
1989). Besides using the monthly samples, we also 
analysed the six-month seasonal means.

Ciliates were divided into five functional groups 
using data gathered during several former feeding 
experiments (e.g. Kisand and Zingel 2000; Agasild 
et  al. 2007; Zingel et  al. 2007; Zingel and Nõges 
2008). In these experiments, we used either fluo-
rescently labelled bacteria or fluorescently labelled 
microparticles of different sizes to estimate ciliate 
feeding types. Additionally, we used published data 

on ciliate ecology (Foissner et al. 1991, 1992, 1994, 
1995) and live observations during the experiments 
for estimating proper feeding types. As functional 
groups, we distinguished between bacterivores (pico-
vores), herbivores (nanovores), bacteri-herbivores 
(pico-nanovores), predators (consumers of ciliates 
and small metazooplankters) and omnivores. We are 
fully aware that this division is somewhat arbitrary, 
but the most common ciliate species found in our 
experiment could quite reasonably be divided into 
these feeding groups.

Sampling of metazooplankton and phytoplankton

Metazooplankton samples were collected monthly 
(from June to November). A 5 l subsample was fil-
tered through a 20-µm mesh and preserved in 4% 
Lugol’s solution. In the laboratory, 25% of the origi-
nal sample volume was carefully subsampled and all 
subsamples were pooled into a single sample repre-
senting the entire experimental season. Further meta-
zooplankton analysis and biomass calculation are 
described in detail by Tavşanoğlu et  al. (2017). For 
carbon biomass, a conversion factor of 0.48  mg C 
per mg dry weight was used (Andersen and Hessen 
1991).

Phytoplankton samples were collected monthly 
(from June to November). Phytoplankton cells were 
enumerated and measured with an inverted micro-
scope (Ceti Versus) at 100× or 400× magnification. 
Samples were counted until at least 400 counting 
units (filaments, cells, colonies) had been processed, 
which gives a counting error of ± 10% for the total 
biomass. Phytoplankton biomass in carbon units was 
calculated using a biovolume conversion factor of 
0.22 mg C  mm−3 (Reynolds 1984).

Statistical analyses

The results are expressed as the mean ± standard 
deviation of the quadruplicate parallel measurements. 
Significance of the impacts of environmental factors 
on microbial community was analysed with R version 
4.1.1 (2021-08-10) using two-way repeated-measures 
ANOVA with nutrient dosing and depth as fixed fac-
tors. Data were log-transformed before analysis to 
reduce skewness and to approximate to normal distri-
bution. One-way ANOVA and Tukey’s test were used 
for multiple mean comparisons.
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Results

The seasonal mean bacterial abundances were 
4.88 ± 1.08 ×  106 cells  ml−1, and the mean biomass 
was 173 ± 38 µg C  l−1. Bacterial abundance and bio-
mass were significantly affected by depth and nutri-
ents separately and by their interactions (Table  1; 
RM-ANOVA). Nutrients had a positive and water 
depth had a negative effect on bacterial abundance 
and biomass (Fig.  2). The highest seasonal mean 
bacterial abundances and biomasses were found 
in the SH treatment (6.59 ± 0.3 ×  106 cells  ml−1; 
233 ± 11 µg C  l−1).

The seasonal mean HNF abundances were 
3.0 ± 0.4 ×  103 cells  ml−1, and the mean biomass was 
20.8 ± 3.9 µg C  l−1. HNF abundance was significantly 

affected by neither depth nor nutrients separately 
nor by their interactions but only nutrients had sig-
nificant effect on HNF seasonal mean biomass 
(Table  1; RM-ANOVA, p < 0.05). The highest sea-
sonal mean HNF biomass was found in the SH treat-
ment (24.5 ± 2.3 µg C  l−1). The highest seasonal mean 
HNF abundances were found in the SL treatment 
(3.2 ± 0.6 ×  103 cells  ml−1) and lowest in SH treat-
ment (2.6 ± 0.3 ×  103 cells  ml−1).

We plotted abundances of HNF and bacteria 
according to Gasol (1994). We found that most data 
points were above the MRA line, indicating that 
HNF control by predation was relatively weak. Only 
exception were the SH mesocosms where a slightly 
higher predation pressure was visible (Fig.  3). The 
mean biomass of individual HNF and ciliate cells 

Table 1  Significance of the impacts of environmental factors on microbial community indices based on two-way repeated measures 
ANOVA including the whole study period and all mesocosms and with nutrient dosing and depth as fixed factors

Significant p values (p < 0.05) are given in bold. To significant p values a generalized Eta-Squared measure of effect size (ges) is 
given, followed by the direction of effect (( +) or (-))

Abundance Biomass

Bacteria HNF Total ciliates Bacteria HNF Total ciliates

Depth < 0.0001
ges = 0.90; (−)

0.521 0.009
ges = 0.44; (+)

< 0.0001
ges = 0.90; (−)

0.094 0.927

Nutrient < 0.0001
ges = 0.95; (+)

0.230 0.430 < 0.0001
ges = 0.95; (+)

0.035
ges = 0.32; (+)

0.431

Depth*Nutrient < 0.0001
ges = 0.83; (+)

0.677 0.0001
ges = 0.72; (+)

< 0.0001
ges = 0.83; (+)

0.177 0.197

Fig. 2  Biomass of bacteria, 
HNF, metazooplankton and 
phytoplankton and respec-
tive standard deviations 
(SD) in shallow and low-
nutrient (SL), shallow and 
high-nutrient (SH), deep-
low (DL) and deep-high 
(DH) mesocosms. Notice 
the different scales
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was significantly affected by depth and nutrients 
separately and by their interactions (Table  2; RM-
ANOVA). The seasonal mean biomass of individual 
HNF and ciliate cells was highest in the SH treat-
ment (biomass of  106 HNF cells 42.1 ± 1.6 µg WW; 
biomass of  106 ciliate cells 158.4 ± 92.4  mg WW; 
Fig. 4).

The seasonal mean total ciliate abundance was 
126 ± 41 cells  ml−1 and the seasonal mean total 
biomass 1379 ± 195  µg  C   l−1. Water depth and the 
combination of water depth and nutrients had sig-
nificant effect on total ciliate abundances (Table  1; 
RM-ANOVA, p < 0.05). The highest seasonal mean 

ciliate abundances were found in the DH treatment 
(170 ± 21 cells  ml−1) and biomass in the SH treatment 
(1466 ± 55 µg C  l−1) (Fig. 5).

The most abundant ciliate group was small-sized 
bacterivores (mean abundance 74 ± 36 cells  ml−1; 
mean biomass 157 ± 80 µg C  l−1), whilst in terms of 
ciliate biomass the larger predaceous species domi-
nated (mean abundance 4.4 ± 2 cells  ml−1; mean 
biomass 608 ± 290  µg  C   l−1). The highest seasonal 
mean bacterivorous ciliates abundance and biomass 
was found in the DH treatment (113 ± 14 cells  ml−1; 
239 ± 32 µg C  l−1) and lowest in SH treatment (40 ± 2 
cells  ml−1; 78 ± 5  µg  C   l−1) (Fig.  5). Bacterivorous 
ciliate biomasses differed significantly between treat-
ments (one-way ANOVA, p < 0.05). The highest 
seasonal mean predaceous ciliate abundances and 
biomasses were found in the SH treatment (6.3 ± 0.3 
cells  ml−1; 868 ± 67 µg C  l−1) and lowest in DH treat-
ment (2.5 ± 0.4 cells  ml−1; 340 ± 47 µg C  l−1) (Fig. 5). 

Fig. 3  Bacterial and HNF abundance in mesocosms plotted 
following the Gasol’s model (1994). MAA is the maximum 
attainable abundance line, and MRA is the mean realized 
abundance line

Table 2  Significance of the impacts of environmental fac-
tors (p values) on the individual biomass (wet weight) of pro-
tozooplankters (= size) based on two-way repeated measures 
ANOVA including the whole study period and all mesocosms 
and with nutrient dosing and depth as fixed factors

After p values a generalized Eta-Squared measure of effect size 
(ges) is given, followed by the direction of effect ((+) or (−))
Significant p values (p < 0.05) are given in bold

Size

HNF Total ciliates

Depth < 0.0001
ges = 0.90; (−)

0.002
ges = 0.57; (−)

Nutrient < 0.0001
ges = 0.95; (+)

0.023
ges = 0.36; (+)

Depth*Nutrient < 0.0001
ges = 0.84; (+)

< 0.0001
ges = 0.80; (−)

Fig. 4  Biomass (WW) of  106 individuals of HNF and ciliates 
in shallow and low-nutrient (SL), shallow and high-nutrient 
(SH), deep-low (DL) and deep-high (DH) mesocosms. For 
HNF the difference in means (Tukey test) between SL:SH, 
SL:DH, SH:DL, SH:DH and DL:DH are statistically signifi-
cant (p < 0.05). For ciliates the difference in means (Tukey 
test) between SL:SH and SH:DH are statistically significant 
(p < 0.05)
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Predaceous ciliate biomasses were significantly 
different between treatments (one-way ANOVA, 
p < 0.05). The effects of depth and nutrients sepa-
rately and by their interactions on the abundance and 
biomass of ciliate feeding groups based on the covari-
ance test of significance (RM-ANOVA) are shown in 
Table 3.

The seasonal mean metazooplankton biomass 
was 74  µg  C   l−1, highest biomass was found in the 
SH treatment (126 ± 82  µg  C   l−1) and lowest in DL 
treatment (30 ± 9 µg C  l−1) (Fig. 2). Metazooplankton 
biomasses differed significantly between treatments 
(one-way ANOVA, p < 0.05). Mean abundances 
and biomasses and respective standard deviations of 
metazooplankton groups (copepods, cladocerans and 
rotifers) are shown in Table 4. Seasonal mean phyto-
plankton biomass was 951 µg C  l−1; highest biomass 
was found in the DH treatment (1622 ± 377 µg C  l−1) 
and lowest in the DL treatment (821 ± 211 µg C  l−1) 
(Fig.  2). Phytoplankton biomasses differed sig-
nificantly between treatments (one-way ANOVA, 
p < 0.05).

The ratio between biomasses of ciliates and bac-
teria was lowest in SH treatment (median 6.2) and 
highest in DL treatment (median 11.2) (Fig. 6; one-
way ANOVA, p < 0.05). The respective ratio between 
biomasses of ciliates and metazooplankton was low-
est in DH treatment (median 11.1) and highest in SL 
treatment (median 52.5) (Fig.  6; one-way ANOVA, 
p < 0.05). The ratio between biomasses of bacteria 
and metazooplankton was lowest in DH treatment 
(median 1.4) and highest in SL treatment (median 
5.4) (Fig. 6; one-way ANOVA, p = 0.10).

Discussion

Our study showed treatment effects on microbial food 
web structure. Nutrients had a positive and water 
depth a negative effect on bacterial and HNF bio-
mass. Dominant consumers of bacteria in all treat-
ments were the bacterivorous ciliates (based on the 
fact that their mean biomass was 29 times greater 
than HNF mean biomass), and predaceous ciliates 
likely controlled the abundances of bacterivorous 
ciliates, which corresponds to the situation in shal-
low eutrophic water bodies (Šimek et  al. 2019). We 
hypothesized that bacterioplankton abundance at dif-
ferent nutrient concentrations and water levels was 
controlled by different protozoan groups (ciliates or 
HNF) due to different impacts of top-down grazing 
which leads to dissimilarities in the microbial loop 
functioning, but this hypothesis was not supported. 
However, when we plotted abundances of HNF and 
bacteria according to Gasol (1994), the results indi-
cated that HNF were controlled by top-down rather 

Fig. 5  Biomass of total ciliates, bacterivorous ciliates and 
predaceous ciliates and respective standard deviations (SD) in 
shallow and low-nutrient (SL), shallow and high-nutrient (SH), 
deep-low (DL) and deep-high (DH) mesocosms. Notice the 
different scales
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than by bottom-up mechanisms in all our mesocosms. 
The predator control was, however, weak, except for 
the SH mesocosms where a slightly higher predation 
pressure was visible (Fig.  3). Almost all data points 
from the low-nutrient mesocosms remained above 
the MRA line, suggesting that HNF experienced 
weaker top-down control under less eutrophic con-
ditions. This is in accordance with Gasol and Vaque 
(1993), who showed that HNF control by predation 
was most important in eutrophic systems but not in 

nutrient poor ones. The same trend was demonstrated 
by Sanders et al. (1992) using a modelling approach. 
It is commonly agreed that in more eutrophic condi-
tions diversity and biomass of organisms capable of 
preying on HNF usually increases (e.g. Riemann and 
Christoffersen 1993) and thus also their predation 
pressure.

Cell size of both HNF and ciliates was largest in 
the SH treatment (Fig.  4). The cell volume of pro-
tists is plastic and can respond rapidly to changes in 

Table 3  Significance of the impacts of environmental factors 
on the abundance and biomass of ciliate feeding groups based 
on two-way repeated measures ANOVA including the whole 

study period and all mesocosms and with nutrient dosing and 
depth as fixed factors

Significant p values (p < 0.05) are given in bold. To significant p values a generalized Eta-Squared measure of effect size (ges) is 
given, followed by the direction of effect ((+) or (−))

Bacterivores Bacteri-herbivores Herbivores Omnivores Predators

Abundance of ciliate feeding groups
Depth 0.032

ges = 0.33; (+)
0.002
ges = 0.57; (+)

0.741 0.014
ges = 0.41; (+)

0.200

Nutrient 0.695 0.028
ges = 0.34; (+)

0.501 0.993 0.355

Depth*Nutrient 0.0002
ges = 0.69; (+)

 < 0.0001
ges = 0.81; (+)

0.238 0.493 0.001
ges = 0.60; (−)

Biomass of ciliate feeding groups
Depth 0.032

ges = 0.33; (+)
0.008
ges = 0.46; (+)

0.456 0.002
ges = 0.58; (+)

0.131

Nutrient 0.544 0.057 0.494 0.388 0.369
Depth*Nutrient 0.0002

ges = 0.70; (+)
 < 0.0001
ges = 0.76; (+)

0.226 0.873 0.001
ges = 0.59; (−)

Table 4  Mean abundances and biomasses and respective 
standard deviations (SD) of metazooplankton groups of copep-
ods, cladocerans and rotifers in shallow and low-nutrient (SL), 

shallow and high-nutrient (SH), deep-low (DL) and deep-
high (DH) mesocosms. In each treatment the taxa dominating 
among biomasses of metazooplankton groups are indicated

Treatment Copepods Cladocerans Rotifers

Abundance Biomass Abundance Biomass Abundance Biomass

ind  l−1 ±SD μg C  l−1 ±SD ind  l−1 ± SD μg C  l−1 ±SD ind  l−1 ±SD μg C  l−1 ±SD

DH 123.0 29.7 35.5 9.5 236.3 126.2 60.6 32.9 1231.3 550.5 9.5 8.7
Biomass dominants Cyclopoid copepodites, Mesocy-

clops leuckarti
Bosmina longirostris, Chydorus 

sphaericus
Keratella spp., Euchlanis dilatata

DL 76.5 32.9 14.9 7.4 99.8 40.4 13.4 6.6 320.8 141.3 2.1 1.5
Biomass dominants Nauplii, Cyclopoid copepodites Bosmina longirostris Polyarthra spp., Keratella spp.
SH 88.2 26.7 20.3 5.8 388.8 323.4 90.0 76.1 4009.7 2473.1 15.8 8.3
Biomass dominants Nauplii, Cyclopoid copepodites Bosmina longirostris Euchlanis dilatata, Anuraeopsis 

fissa, Keratella spp.
SL 67.0 41.7 14.5 9.1 62.7 46.5 12.7 11.4 1364.6 1354.7 7.0 8.3
Biomass dominants Nauplii, Cyclopoid copepodites Bosmina longirostris Keratella spp., Polyarthra spp.



377Aquat Ecol (2023) 57:369–381 

1 3
Vol.: (0123456789)

environmental conditions and population abundances 
(Forster et al. 2013). The larger size in SH reflects the 
dominance of large predaceous ciliates and metazoo-
plankton potentially leading to suppression of small-
sized bacterivorous species.

Bacterivorous ciliates had lowest biomass and pre-
daceous ciliates had the highest biomass in the SH 
treatment. Ratios between ciliate and bacterial bio-
masses were lowest in the SH and DH treatments, 
indicating that in these mesocosms bacteria were 
under the lowest grazing pressure. Ratios between 
ciliate and metazooplankton biomasses were in the 
same time also lowest in the SH and DH treatments, 
indicating that in these mesocosms ciliates were 
under the highest grazing pressure. The same trend 
was observed in the HNF:metazooplankton biomass 
ratios. Therefore, we assume that metazooplankton 
had indirect positive effect on bacterial biomasses. 
This is also reflected in the corresponding bacterial 
and metazooplankton biomass ratios (Fig. 6).

Several experiments have shown that crustaceans 
can control ciliates (Adrian and Schneider-Olt 1999; 
Ventelä et al. 2002; Zöllner et al. 2003; Li et al. 2017; 
Lu and Weisse 2022). This is substantiated by the 
experiment of Agasild et  al. (2013) where removal 
of crustaceans led to a higher number of large preda-
cious ciliates (known to feed actively on small-sized 
ciliates), demonstrating that selective grazing by crus-
taceans on large-sized ciliates can significantly alter 
ciliate community structure. In our study, this trend 

was not generally visible as both metazooplankters 
and predaceous ciliates showed highest biomasses 
in the SH treatment. In this treatment, the metazoo-
plankton community consisted of species that do 
not select large-sized predaceous ciliates as prey but 
rather consume small-sized bacterivorous ciliates 
(Ventelä et  al. 2002; Agasild et  al. 2012; Li et  al. 
2017) (Table 4). In the DH treatment, however, where 
metazooplankters showed second highest biomasses, 
the biomass of predaceous ciliates was lowest and 
biomass of bacterivorous ciliates highest.

In our experiment, the number of fish added to 
each mesocosm was the same, leading to a relatively 
higher abundance of fish per volume in shallow mes-
ocosms, as commonly found in lakes (Jeppesen et al. 
2007; Clemente et al. 2019). A former study carried 
out in shallow eutrophic ponds in Estonia (Karus 
et al. 2014) showed that the feeding of planktivorous 
fish had a remarkable indirect shaping effect on the 
microbial food web. Depending on the pressure of 
planktivorous fish, the main bacterial grazers can 
be either HNF or small bacterivorous ciliates. The 
results of the same study also revealed that in the 
absence of planktivorous fish, the number of bacte-
ria decreased due to the cascading grazing effects of 
zooplankton (Karus et  al. 2014). We may, therefore, 
assume that also in the current mesocosm experiment 
the effect of fish predation cascaded down the food 
web and affected different trophic levels, as evidenced 
in other mesocosm studies by Özen et al. (2013). The 

Fig. 6  The ratio between 
ciliate and bacterioplankton 
biomass, ciliate and meta-
zooplankton (MZP) bio-
mass, bacterioplankton 
and metazooplankton 
biomass and HNF and 
metazooplankton biomass 
and respective standard 
deviations (SD) in shallow 
and low-nutrient (SL), shal-
low and high-nutrient (SH), 
deep-low (DL) and deep-
high (DH) mesocosms. 
Notice the different scales
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higher fish density in the shallow mesocosms may, 
therefore, have contributed to the more significant 
effects on the microbial community in these meso-
cosms. However, as we lack data on fish feeding pat-
terns in the mesocosms, we cannot elucidate the fish 
effects in more detail.

Shallow lakes are known to be strongly affected 
by the change in water depth (e.g.  Scheffer and van 
Nes 2007; Bhele et al. 2020). In the case of shallow 
lakes, water level fluctuations can lead to consider-
able changes in the total volume of water in the lakes. 
For example Lake Võrtsjärv, the location of the cur-
rent experiment, is characterized despite its large area 
(270  km2) by a low average depth (2.8 m). The lake is 
unregulated and the annual mean amplitude of water 
level (1.4 m) is equal to ½ of lakes mean depth, and 
the absolute range of water level fluctuations (3.2 m) 
even exceeds the mean depth of the lake (Nõges et al. 
2003). Studies show that in Lake Võrtsjärv water 
level fluctuations can be considered to be among the 
most important environmental factors shaping both 
the bacterial community and phytoplankton (Kisand 
and Nõges 1998; Nõges et  al. 2010). In the current 
mesocosm experiment, the water level likely had an 
indirect effect on the biomass of bacteria and phy-
toplankton by affecting the relative amount of sub-
merged macrophytes in the mesocosms. Higher 
PVI% of macrophytes may lead to a higher release of 
organic matter from the macrophyte-periphyton com-
munity (Stanley et al. 2003), improving the conditions 
for bacterial growth. On the other hand, macrophytes 
can suppress the development of algae through shad-
ing, competition for nutrients and allelopathy (Mul-
derij et al. 2007; Barrow et al. 2019; Pełechata et al. 
2023). In another mesocosm experiment undertaken 
in Turkey, Özen et  al. (2014) showed that declining 
water level led to an increase in PVI% of submerged 
macrophytes and a concurrent decrease in the bio-
mass of phytoplankton and an increase in bacterio-
plankton biomass. Bucak et  al. (2012) also reported 
that the lesser amount of macrophytes had a positive 
effect on phytoplankton biomass in a similar type of 
experiment. These results concur with our findings 
of a higher phytoplankton biomass in the deep meso-
cosms and higher bacterioplankton biomass in the 
shallow mesocosms.

Conclusions

Our results revealed that the interactions between 
water depth and nutrients significantly affected the 
microbial communities and that the trophic cascade 
between metazooplankters, predaceous ciliates, bac-
terivores and bacteria was most notable in the shal-
low mesocosms with high-nutrient concentrations. 
Increased nutrient concentrations and decreased 
water level resulted in an enhanced bacterial biomass 
and a decrease in their main grazers (bacterivorous 
ciliates). HNF biomass was affected positively by 
nutrients and negatively by water depth. The lowest 
biomasses of bacterivorous ciliates coincided with 
the highest biomasses of predaceous ciliates, indi-
cating that the former can influence trophic interac-
tions in the microbial loop. Water level likely had an 
indirect effect on the biomass of bacteria by affecting 
the relative amount of submerged macrophytes in the 
mesocosms.
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