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mineralization process based on the length of the 
snails. The sediment texture was changed, more 
prominently in presence of the operculate snails than 
the non-operculate snails. Apparently, the operculate 
benthic snail F. bengalensis induced greater changes 
in the sediment in comparison to other snails. None-
theless, all the snails appear to be efficient engineers 
in the management and habitat manipulation of the 
freshwater ecosystems.

Keywords Bioturbation · Operculate snails · Non-
operculate snails · Wetlands · Nutrient cycling

Introduction

The freshwater benthic macroinvertebrates execute 
bioturbation in course of burrowing, feeding, secre-
tion, excretion and transporting activities. As a result, 
the structure and properties of sediment are altered, 
featured by the translocation of nutrients and other 
solutes between sediment and water interface (SWI) 
(Mermillod-Blondin et  al. 2003; Thibodeaux and 
Bierman 2003; Kristensen et  al. 2012; Adámek and 
Maršálek 2013), accelerating the biogeochemical 
cycle (Mermillod-Blondin and Rosenberg 2006). Bio-
turbation mediated by the benthic macroinvertebrates 
can stimulate organic matter mineralization process 
by manipulating microbial growth (Mermillod-Blon-
din et al. 2004; Biswas et al. 2009). Increased oxygen 
penetration due to the reshuffling and reorientation 
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of sediment strata by the active bioturbation can alter 
the redox potentials at SWI (Aller 1994; Gilbert et al. 
2016). Such alteration thereby influence coupled 
nitrification–denitrification process (Gilbert et  al. 
2016; Saaltink et  al. 2019; Mao et  al. 2020) as well 
as alters phosphorus (P) release from the sediment 
(Cheng et al. 2014; Yang et al. 2020).

The functional attributes of the freshwater mac-
roinvertebrates qualify them as ecosystem engineers 
(Gutiérrez et  al. 2003; Biswas et  al. 2009), bioindi-
cators (Goswami et  al. 2010) and sentinel species 
(Gnatyshyna et al. 2020). Many of these macroinver-
tebrates (oligochaete worms, dipteran and other insect 
larvae, isopods, and bivalve molluscs) adapted to 
benthic habitats are involved in bioturbation process 
play a significant role in consistent nutrient flux from 
the sediment to overlying water (Traunspurger et  al. 
1997; Zheng et al. 2009; Boeker et al. 2016; Gautreau 
et al. 2020). Besides, the active movement of benthic 
organisms on the superficial sediment interface also 
influences the biogeochemical processes through 
uncoupling compounds (Zheng et  al. 2009; Zhong 
et al. 2015) and release of nutrients. Among the fresh-
water macroinvertebrates, the snails (Mollusca: Gas-
tropoda) are abundant in several freshwater habitats 
(Basu et  al. 2018; Meena et  al. 2019), carrying out 
multiple functions that sustain the concerned eco-
system (Hall Jr et al. 2003; Zheng et al. 2009; Zhang 
et al. 2013; Meena et al. 2019). In course of grazing 
and filter-feeding on algal biomass (Fang et al. 2010; 
Mo et al. 2017), the freshwater snails regulate the pro-
ducer community and thus influence the food web and 
species diversity (Turner et al. 2000; Aditya and Raut 
2002 2005; Paul et al. 2020). Freshwater snails exhibit 
several feeding modes, from herbivory on submerged 
plants and periphyton (Cattaneo and Kalff 1986) to 
detritivory on fine sediments and filter-feeding on 
suspended particles (Brendelberger 1997). There-
fore, snails exploit multiple trophic niches (Declerck 
1995; Usseglio‐Polatera et  al. 2000) and in certain 
instances qualify as a keystone species in regulating 
community structure in freshwater systems (Loman 
2001; Zhu et al. 2013). The secretions of freshwater 
snails act as coagulating substances to improve trans-
parency of water (Pu et  al. 1998; Das and Khanga-
rot 2011). The shells of freshwater snails are often 
used as platform for the colonization and growth of 
algae and microbes (Abbott and Bergey 2007; Lukens 
et  al. 2017). Having unique structural and chemical 

properties (Parveen et  al. 2020; Chakraborty et  al. 
2020), the shells of the snail regulate the alkalinity 
of water (House and Denison 2002), facilitate phos-
phate removal (Ewald et al. 2009; Pal et al. 2022) and 
biosorption of heavy metal (Hossain et al. 2015) from 
the contaminated water. The ability of the freshwater 
snails to withstand the contaminants establishes them 
as a sentinel species for the biological monitoring of 
the freshwater ecosystems (Gnatyshyna et  al. 2020; 
Dhiman and Pant 2021). However, empirical assess-
ment of the roles of the freshwater snails in bioturba-
tion is yet to be deciphered at the species level, which 
prompted us to investigate the bioturbation ability of 
the freshwater snails observed in Kolkata, India.

A microcosm-based laboratory study was initi-
ated using both non-operculate and operculate snails 
to highlight the bioturbation efficacy on a compara-
tive scale. Among the model snails considered, 
two were non-operculate species, namely Racesina 
luteola (Lamarck, 1822) (Pulmonata: Lymnaeidae), 
Indoplanorbis exustus (Deshayes, 1834) (Pulmo-
nata: Planorbidae) which are involved in the spread 
of several helminth diseases (Sangwan et al. 2017) 
and are commonly consumed by insect (Aditya and 
Raut 2002) and leech (Aditya and Raut 2005). The 
five operculate snails, namely Melanoides tuber-
culata (Müller, 1774) (Prosobranchia: Thiaridae), 
Gabbia orcula (Frauenfeld, 1862) (Prosobranchia: 
Bithyniidae), Filopaludina bengalensis (Lamarck, 
1882) (Prosobranchia: Viviparidae), Brotia costula 
(Rafinesque, 1833) (Prosobranchia: Pachychilidae), 
and Pila globosa (Swainson, 1822) (Prosobranchia: 
Ampullariidae) were considered in the study as 
model snail species. All these seven snails are com-
mon in freshwater habitats of Kolkata and adjoin-
ing areas (Pal and Dey 2011), few prefer the benthic 
habitats and the others prefer the floating vegetation 
and the banks. As a consequence of the niche seg-
regation of the freshwater snails, the prospective 
effects on the bioturbation ability are expected to 
vary accordingly. The adaptation of the snails to the 
different habitats may also contribute to the differ-
ential ability of bioturbation. A comparison of the 
bioturbation efficacy of the freshwater snails will 
enable to identify the relative importance of the dif-
ferent snails in the freshwater systems that would 
aid in the selection and application of the freshwa-
ter snails in the management and the manipulation 
of the concerned water bodies. Thus, the focus of 
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the study was to evaluate the species specific vari-
ations in the role as bioturbators and modulation of 
the freshwater biogeochemistry.

Materials and methods

Collection of molluscs and sediment preparation

The sediment and freshwater snails were collected 
from randomly selected ponds and wetlands in and 
around Kolkata metropolitan area (22° 32′ 27.96″ N
, 88° 20′ 16.08″ E), West Bengal, India and from an 
urban wetland, Santragachi Jheel (22° 34′ 51.72″ N, 
88° 16′ 58.92″ E), located near Santragachi Railway 
Station, Howrah, West Bengal, India. Using a grab 
sampler, the sediment was procured from the upper 
surface layer (upto the depth of 10 cm) and sun dried 
for 5 days, subsequently sieved through 500 μm mesh 
to eliminate undesired particles (Lacoste et al. 2018). 
The sediment sample was homogenized before intro-
ducing to the experiment and to get identical prop-
erties in initial condition. Individuals of the snails 
R. luteola, I. exustus, M. tuberculata, G. orcula, F. 
bengalensis, B. costula, and P. globosa (abbreviation 
used as RL, IE, MT, GO, FB, BC, and PG, respec-
tively, to denote treatments) were collected by drag-
ging nylon hand net (frame size 0.3 × 0.3  m; mesh 
size 500  µm) along bottom region of littoral zone 
or simply hand-picked from the bottom sediment 
(Dalu et  al. 2012). All the organisms were brought 
to laboratory and acclimated for 7  days under con-
trolled environment to the sedimentary habitats in 
aquarium (0.37 × 0.3 × 0.35  m) containing procured 
unpolluted sediment and overlying tap water with 
some free floating hydrophytes and detritus in the 
form of dead leaves and twigs. Intact individuals 
of R. luteola (17.99 ± 0.26  mm in length), I. exus-
tus (15.28 ± 0.1  mm in diameter), M. tuberculata 
(26.06 ± 0.37 mm in length), G. orcula (9.8 ± 0.17 mm 
in length), F. bengalensis (21.26 ± 0.34  mm in 
length), B. costula (40.77 ± 0.76  mm in length) and 
P. globosa (27.93 ± 0.18 mm in length) with normal 
activities were chosen for the study. Before introduc-
ing the snails to the microcosms they were washed 
properly to remove the attached biota and debris from 
their shell surfaces. No external food particles were 
added to the microcosms during the experiment.

Experimental organisms

All the seven experimental snail species have an affin-
ity for organic-rich sediments (Sarkar 1992; Zheng 
et al. 2009; Tripathy and Mukhopadhayay 2015), and 
are common throughout the year reaching their maxi-
mum densities (up to 3000–4300 ind/m2) during the 
monsoon season (Mukherjee and Nandi 2004). The 
chosen species (Fig. 1) are particularly common and 
may attain local dominance in India (SubbaRao 1989; 
Tripathy Mukhopadhayay 2015; Chandra et al. 2017; 
Ghosh and Panigrahi 2018; Meena et al. 2019). The 
snails R. luteola and I. exustus are intermediate hosts 
of disease causing helminth worms (Sangwan et  al. 
2016; 2017), known to thrive well in the water bod-
ies of India having a broad range of environmental 
variability (SubbaRao 1989; Aditya and Raut 2002). 
Though the herbivory is common in these snails 
(Raut et  al. 1992; Madsen 1992), they also prefer 
to aggregate over the organic content of sediment 
and other substratum materials. These snails tend to 
have the bacterial fraction of food (Calow 1975; Dil-
lon 2000) from aquatic ecosystem. M. tuberculata, 
is a globally invasive thiarid, native across Middle 
East to Southeast Asia and East Africa (Facon et al. 
2003). They occur in large number (ranging from 
170 to 2040  ind/m2) to the various freshwater habi-
tats (Subba Rao 1989) having fine sediment substra-
tum (Giovanelli et  al. 2005; Ramakrishna and Dey 
2007). M. tuberculata are known to feed by scraping 
on sedimentary organic matter, detritus and graze on 
periphyton (Raw et al. 2016). F. bengalensis is most 
widely dispersed freshwater snail in India (Goswami 
et al. 2010; Baag et al. 2020), known to serve as nutri-
tious food item for human (Datta et  al. 2016). They 
are facultative suspension-feeder, found to graze and 
move on sediment in course of foraging and to scrap 
on solid detritus by using radula (Zheng et al. 2009; 
Olden et al. 2013). B. costula and operculate snail G. 
orcula are also very common benthic epifauna (Roy 
et al. 2014; Ghosh and Panigrahi 2018), having same 
ecological traits like viviparids (Usseglio‐Polatera 
et al. 2000; Aditya and Raut 2005; Pyron and Brown 
2015). P. globosa is another widely distributed snail 
in India with its prominent ecological significance as 
an indicator species to study the effects of contami-
nations in freshwater ecosystem (Bhattacharya et  al. 
2016; Parveen et  al. 2020). This snail has clinical 
importance (Prasad et al. 2019) and is also considered 
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for its potential utilization in aquaculture industry as 
a food (Panda et al. 2021). However, the Ampullarids 
are mostly amphibious, they usually inhabit aquatic 
life during active period when the resource is avail-
able to their habitat (Aditya and Raut 2001; Panda 
et  al. 2021). Like the other members of Vivipar-
aceae they also feed on detritus and utilize bacteria 
and other suspended particles trapped over the mucus 
layer which they stretched over the substratum and 
then ingest it (Dudgeon 1999).

Experiment design

The microcosm was prepared by adding sediments. 
The sieved and homogenized sediment was added to 
cylindrical glass columns (0.4  m long with internal 
diameter of 0.075  m) to make a 0.05  m thick sedi-
ment layer (220 g of dry weight), overlain by 0.35 m 
(volume: 1.4  L) of deionized water (Represented in 
Fig. 1). The mixing of the sediment with the deion-
ized water added the ions to the experimental water. 

Before filling water, few plastic tapes (0.07 × 0.025 m) 
were fixed to the inner surface of columns which 
could act as substratum for colonization of algae 
(Wood and Richardson 2009). The estimation of chlo-
rophyll-a (Chl-a) content of periphyton developed 
on the surface of substrates could inform about the 
effects of nutrient availability and grazing pressure on 
algal biomass (Wood and Richardson 2009; Mo et al. 
2017). The prepared microcosms were stabilized for 
2 weeks (pre-incubation period) before the introduc-
tion of organisms to the systems (Lacoste et al. 2018). 
The day of introduction of snails to the microcosms 
was considered as day-0 of the experiment. The total 
experiment was set aside in outdoor environment in 
the availability of air and sunlight for another 28 days 
after the introduction of snails (i.e., on July 25, 2017). 
The study was conducted under normal daylight con-
dition (daily period of light at 13:23-h). The average 
temperature during the study was 28 ± 1.5  °C. To 
compare the effects of different organisms, the bio-
mass of organism was considered as fixed parameter 

Fig. 1  The microcosm 
and the snails [a Racesina 
luteola, b Indoplanorbis 
exustus, c Gabbia orcula, 
d Filopaludina bengalensis 
e Melanoides tuberculata, 
f Pila globosa, g Bro-
tia costula] used in the 
present study along with 
the test schedule followed 
during the experiment to 
measure the changes in 
physicochemical properties 
of sediment and water and 
to observe the change in 
Chlorophyll-a measures

(a) (b) (c) (d)

(e) (f) (g)
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(Michaud et al. 2006). Therefore, in this experiment 
the number of individuals of each snail species intro-
duced was considered to obtain the initial biomass 
(wet weight) comparable (F6, 32 = 1.87; p = 0.12) 
among snail treatments. The wet (living) biomass of 
the individual snails was determined by placing the 
living snails on absorbent paper for a few minutes 
(Gosselin 1993), after that the weights were measured 
in a Pan balance (ADAM®, ADA 71/L, Adam Equip-
ment, UK). The complete setup comprised 8 treat-
ments, one control treatment without fauna and seven 
snail treatments (see Table  1). Three replicates for 
P. globosa treatment and five replicates for the other 
treatments were considered for the study. The relative 
densities of the snails (represented in Table 1) were 
more or less closed to their natural densities reported 
in earlier observations (Mukherji and Nandi 2004; 
Pal and Nandi 2006; Sharma et al. 2013; Janagal and 
Khatri 2016) and substantiated during the field study 
carried out in nearby ponds and lakes around Kolk-
ata metropolitan area, West Bengal, India, during the 
period of May 2016 to July 2016. Every microcosm 
was examined daily during the experiment and dead 
snails if found, were removed and replaced with indi-
viduals of identical size.

Sampling and measurements

To study the impacts of the selected snail on the 
physicochemical properties of sediment and overly-
ing water as well as on the algal growth, scheduled 
sampling and measurements were performed during 
the experiment. The sediment properties (total-N, 
available-P, organic-C and porosity and water holding 

capacity), aquatic parameters  (NH4
+–N,  NO2

−–N, 
 NO3

−–N,  PO4
3−–P, DO, pH, TDS, COND) and peri-

phytic chl-a were estimated and recorded. To estimate 
the changes in nutrients, water samples were collected 
at a depth of 10 cm from each column by using glass 
syringe and inorganic nutrients  (NH4

+–N,  NO2
−–N, 

 NO3
−–N,  PO4

3−–P) concentrations were measured 5 
times: on Day-0, just before the introduction of fauna 
and on days- 7, 14, 21 and 28. The volume of water 
(50  ml) taken from each column in course of esti-
mations of nutrients was renewed immediately with 
same amount of deionized water. Since the weekly 
collected samples corresponded to less than 4% of 
the total water volume in each experimental column, 
such sampling did not affect concentrations appre-
ciably. The water sample was filtered and stored in 
4 °C before analysis. All nutrients were measured by 
spectrophotometric method using Labman LMSP-
UV1000B UV–VIS Spectrophotometer.  NH4

+–N in 
water was measured at 640  nm by phenate method 
(APHA 2005).  NO2

−–N concentration was measured 
at 543 nm by sensitive diazotization method (APHA 
2005).  NO3

−–N concentration was estimated by Bru-
cine method (following EPA test method, 1971). 
 PO4

3−–P of water was estimated by following ascor-
bic acid method (APHA 2005). Dissolved oxygen 
was measured manually by a dissolve oxygen meter 
(Lutron PDO-519). Other physico-chemical param-
eters like pH, TDS, COND were estimated following 
the same schedule, on days 0, 7, 14, 21 and 28, by 
using multi-parameter tester (Model PCSTestr35).

To assess the treatment effects on physical and 
chemical properties of sediment, the samples were 
collected 2 times (before fauna introduction and at the 

Table 1  Density 
(individuals/m2), number 
and biomass (wet weight) 
of seven freshwater snail 
species added to the glass 
columns

Values are presented as 
mean ± standard error(SE)

Treat-
ment 
Name

Treatment description

Added snail species Added snails 
 (column− 1)

Individual 
biomass (mg/
ind)

Total 
biomass (g/
column)

Density (ind/m2)

C Control without snail
RL R. luteola 5 493.6 ± 11.5 2.7 ± 0.5 1136
IE I. exustus 5 519.7 ± 11.5 2.8 ± 0.7 1136
MT M. tuberculata 5 691.7 ± 23.7 3.4 ± 0.1 1136
PG P. globosa 1 3806.6 ± 512.4 3.7 ± 0.4 227
FB F. bengalensis 3 1109.7 ± 59.5 3.4 ± 0.1 681
BC B. costula 3 1255.9 ± 105.3 3.3 ± 0.4 681
GO G. orcula 25 119.9 ± 3.9 2.8 ± 0.1 5680
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end of experiment) from three experimental columns 
of each treatment (viz. C, RL, IE, MT, FB, GO, BC 
and PG). The sediment sample was sliced from the 
upper 2 cm surface of sediment bed. Organic-C con-
tent of sediment samples were quantified by Walk-
ley–Black’s rapid titration method by using 0.5 (N) 
Mohr’s salt solution in presence of diphenyl amine 
indicator (Nelson and Sommer 1982). Total kjel-
dahl nitrogen (TN) was estimated with the standard 
method (Jackson 1958). The available-P (AP) of the 
sediment was determined following suitable method 
(Olsen et  al. 1954). The porosity and water hold-
ing capacity (WHC) of the sediment were estimated 
following the suitable methods (Ragab et  al. 1982 
and Cassel et al. 1986). The Chl-a content was esti-
mated on day 14 and 28 by removing single plastic 
tape from each experimental microcosm. Deposited 
algal film on the plastic tape was scraped off by using 
brush and razor (Zhang et al. 2013; Mo et al. 2017). 
The resultant sample was taken and Chl-a estimated 
by 90% acetone extraction procedure followed by 
Sadasivam and Manickam (1992).

Statistical analysis

Before the snails were introduced into the micro-
cosms, on day-0, the concentrations of inorganic 
nutrients in all treatment cores were compared 
using one-way ANOVA. After the introduction 
of each snail species to their respective treatment 
cores, their effects on physicochemical and Chl-a 
variables were compared by performing one-way 
RM-ANOVAs, considering fauna treatment (con-
trol without snail, R. luteola, I. exustus, M. tuber-
culata, G. orcula, F. bengalensis, B. costula and P. 
globosa treatments) as main factor and time (days 7, 
14, 21 and 28 for aquatic parameters and days 14, 
28 for Chl-a) as repeated factor. If any significant 
difference (i.e. p < 0.05) was observed among the 
treatments, a post hoc Tukey test was carried out to 
determine which treatments differed after 28  days 
of microcosm stabilization. To determine the dif-
ference among treatments affecting the sediment 
properties (total-N, available-P, organic-C, poros-
ity and water holding capacity) one-way ANOVA 
was performed using treatments as main factor. 
Within-column data were calculated to evaluate the 
change between times (start to end) for each treat-
ment. Data transformations (log or square-root 

transformed) were made to meet the assumptions 
of homoscedasticity. For all tests when p < 0.05, the 
differences were considered as statistically signifi-
cance. All statistical analyses were performed fol-
lowing Zar (1999), and using XLSTAT software 
(Addinsoft 2010).

Results

Visual observations

After the introduction of the seven snail species to 
their respective treatment cores, the individuals were 
found to glide actively over the sediment surface or to 
attach to the wall of glass columns. The activities of 
snails usually restricted to the top few centimeters of 
sediment substrate. The gliding, burrowing and graz-
ing activities of the snails altered the natural texture 
of the surface sediment. The seven freshwater snail 
species introduced in this experiment modified the 
sediment surface texture diversely corresponding to 
activities on the sediment bed (Fig. 2). Observations 
on the activities of F. bengalensis, B. costula and 
M. tuberculata demonstrated that in course of their 
crawling and grazing activities the concave trails were 
formed on the top few millimetres of the sediment 
surface. Periodic pattern of movement in and out of 
burrow, bulldozing and nudging the sediment surface 
caused extensive mixing and reshuffling of the upper 
sediment layer up to the depth of 1–2 cm by the snail 
F. bengalensis and few millimetres by the activities 
of B. costula and M. tuberculata. Initially G. orcula 
was also found very active to crawl over the sedi-
ment, leaving trails on the surface layer. At the later 
stage of the experiment a few individuals of F. ben-
galensis, G. orcula and M. tuberculata became less 
active and buried themselves for several days within 
the sediment. In addition to the gliding on sediment 
and scrapping over the surface materials R. luteola, 
I. exustus and P. globosa produced and aggregated 
granular pellets. The pelletization during the inges-
tion and egestion process modified fine surface tex-
ture of sediment with larger granules having greater 
inter-particle voids. Mucus coated pellets deposited 
on the sediment surfaces in the presence of R. luteola, 
I. exustus and P. globosa contained mainly the mucus 
and egested sediment.
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Water quality dynamics induced by snail bioturbation

On day-0, prior to the introduction of the snails in 
microcosms, except for  NH4

+-N, the concentrations 
of  NO2

−–N,  NO3
−–N,  PO4

3−–P, COND and TDS in 
the overlying water were comparable (represented 
in Table 2) among the eight treatment groups (Con-
trol, R. luteola, I. exustus, M. tuberculata, G. orcula, 
F. bengalensis, B. costula, P. globosa) and did not 
exhibit significant differences revealed through 
ANOVA.

After introducing the fauna to the microcosms, 
the  NH4

+–N concentrations in the overlying water 
of all the treatment columns showed distinct treat-
ment and time dependent variations (Fig. 3a; Table 3; 

RM-ANOVA, p < 0.0001). Except for the control 
columns, all the other treatments showed maximum 
rise in  NH4

+–N concentrations during the earlier 7 to 
14 days of the experiment and then began to decrease. 
The changes were significant (p < 0.05) for all the 
treatment groups with snails except treatment R. lute-
ola and P. globosa. Throughout the experiment the 
control columns showed steady decline in  NH4

+–N 
measures over time. The microcosms in presence of 
snail F. bengalensis and P. globosa showed maximum 
and minimum  NH4

+-N flux from sediment to water 
column, respectively. Except day-7 for treatment B. 
costula and R. luteola and Day-28 for M. tuberculata 
in each sampling events all of the six treatment groups 
(with the snails R. luteola, I. exustus, M. tuberculata, 
G. orcula, F. bengalensis, B. costula) showed sig-
nificantly (p < 0.05; Tukey’s HSD) higher  NH4

+–N 
effluxes compared to the control and P. globosa. 
After 28  days of experiment stabilization,  NH4

+–N 
concentrations were 9.1, 9.3, 4.1, 11.6, 14.2, 9.8 and 
1.9-fold higher in treatments R. luteola, I. exustus, 
M. tuberculata, G. orcula, F. bengalensis, B. costula 
and P. globosa, respectively, in comparison with the 
control group. Incidentally, the ability to increase the 
 NH4

+-N flux to the water column seemed to be spe-
cies-specific rather than related to the individual body 
size (average shell length) of snail (Fig. 4a).

(a) (b) (c)

(e) (g)

(d)

(h)(f)

Fig. 2  Photographic view of the microcosms: a control treat-
ment without snail showing undisturbed sediment bed, b activ-
ity of F. bengalensis on sediment produced crawling traces 
and shallow grooves, c B. costula crawling traces to the sur-
face sediment to form shallow groove and distorting the nor-
mal structure of sediment bed, d M. tuberculata nudging their 
anterior part of body to the surface sediment to form shallow 

groove, e I. exustus modified fine surface texture of sediment 
with larger granules and greater inter-particle voids having 
mucus coated pellets deposited on the sediment surfaces, f 
small burrows and gliding trails formed due to the activities of 
G. orcula on sediment bed, g R. luteola and h P. globosa modi-
fied texture of sediment with larger granules having mucus 
coated pellets deposited on the sediment surfaces

Table 2  The results of one-way ANOVA on the initial values 
of water parameters

Parameters F (7, 64) p-values

NO3
−–N 0.454 0.863

NO2
−–N 0.377 0.912

NH4
+–N 3.514 0.003

PO4
3−–P 1.134 0.355

TDS 1.506 0.184
COND 1.078 0.389
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(a) (b)

(c) (d)

(e) (f)

Fig. 3  Changes in concentrations of a  NH4
+–N; b  NO3

−-N; c 
 NO2

−-N, d  PO4
3−-P e TDS and f COND in the water columns 

of microcosms during the incubation period of eight treatment 
groups [C = Control, RL = R. luteola treatment; IE = I. exus-

tus treatment MT = M. tuberculata treatment, GO = G. orcula 
treatment FB = F. bengalensis treatment, BC = B. costula treat-
ment; PG = P. globosa treatment]. Values are presented as 
mean ± SE
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Both the  NO3
−–N and  NO2

−–N concentrations 
measured in the overlying water varied significantly 
with the time (Fig. 3b and c; Table 3; RM-ANOVA, 
time effect, p < 0.001) and also among treatments 
(Fig.  3b and c; Table  3; RM-ANOVA, treatment 
effect, p < 0.001). The  NO3

−–N effluxes in the water 
columns of all treatment groups were noticed in 
between 7th day and 21st day of the experiment. The 

increased concentrations were significant (p < 0.05; 
Tukey’s HSD) in B. costula and M. tuberculata. The 
 NO3

−–N concentration measures to the water col-
umns steadily decreased in treatments R. luteola, 
B. costula, P. globosa from day 14 to the rest of the 
experiment keeping the lowest  NO3

−–N flux in treat-
ment cores with snail PG. Treatment cores in the 
presence of F. bengalensis maintained steady rate of 

Table 3  The results of 
one-way RM-ANOVAs, 
considering fauna treatment 
(control without snail, 
R. luteola, I. exustus, M. 
tuberculata, G. orcula, F. 
bengalensis, B. costula and 
P. globosa treatments) as 
main factor and time (days 
7, 14, 21 and 28 for aquatic 
parameters and days 14, 28 
for Chl-a) as the repeated 
factor

[*indicates significant 
results (p < 0.05)]

Parameter Source df F p Parameter Source df F p

NH4
+–N Treatment 7 110.6 < 0.001* TDS Treatment 7 12.22 0.002*

Time 3 97.32 < 0.001* Time 3 5.94 0.001*
Interaction 21 9.74 < 0.001* Interaction 21 1.27 0.19
Error 174 Error 174

NO2
−–N Treatment 7 34.56 < 0.001* COND Treatment 7 8.13 0.046*

Time 3 19.51 < 0.001* Time 3 3.46 0.004*
Interaction 21 5.53 < 0.001* Interaction 21 0.46 0.97
Error 174 Error 174

NO3
−–N Treatment 7 32.81 < 0.001* Chl-a Treatment 7 5.01 < 0.001*

Time 3 10.3 < 0.001* Time 1 8.04 0.007*
Interaction 21 3.04 0.001* Interaction 7 1.22 0.31
Error 174 Error 51

PO4
3−–P Treatment 7 37.71 < 0.001*

Time 3 4.76 0.003*
Interaction 21 2.64 0.043*
Error 174

(a) (b)

Fig. 4  Relationship between average shell length (SL, in mm) of snails and increasing concentrations of a  NH4
+–N, b  PO4

3−–P to 
the overlying water. Values are presented as mean ± SE
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 NO3
−–N flux during the experiment. Between day-7 

and day-14,  NO3
−–N efflux was significantly higher 

(p < 0.05; Tukey’s HSD) in control and M. tuber-
culata compared to the other six treatment groups. 
At the end of the experiment only the treatment M. 
tuberculata and F. bengalensis showed 1.8 fold and 
1.1 fold higher  NO3

−–N compared to the control. P. 
globosa showed 9.3 times lower  NO3

−–N concentra-
tions compared to the control at the end of 28 days of 
experiment.

From day-7, a significant (p < 0.05) rise in 
 NO2

−–N concentration was observed in control col-
umns and in presence of the snail M. tuberculata 
and G. orcula. With an initial increase in  NO2

−–N 
efflux between day 7 and day 14, in control columns, 
a constant decrease was observed in the subsequent 
sampling event. During the experiment no such con-
siderable changes in  NO2

−–N measures observed in 
presence of R. luteola, I. exustus, B. costula and P. 
globosa. At the end of 28 days of experiment stabili-
zation, compared to the control, the treatment I. exus-
tus, M. tuberculata, G. orcula and P. globosa showed 
2.2 fold, 3.7 fold, 1.2 fold and 1.9 fold much higher 
 NO2

−–N concentrations, respectively. The increased 
concentrations were significant (p < 0.05; Tukey’s 
HSD) only for the treatments with M. tuberculata and 
G. orcula.

For all the snail species, the release of  PO4
3−–P 

from the sediment to the overlying water varied sig-
nificantly during the period study (Fig.  3d; Table 3; 
RM-ANOVA, time effect, p < 0.01). The extent of the 
 PO4

3−–P release varied with the concerned snail spe-
cies (Fig. 3d; Table 3; RM-ANOVA, treatment effect, 
p < 0.01).  PO4

3−–P concentration in the snail treat-
ments began to increase significantly from day 7 that 
either sustained or further increased for rest of the 
experiment. At the end of the experiment maximum 
efflux of  PO4

3−–P was observed in presence of F. ben-
galensis. From day 7 all the snail treatments always 
maintained higher  PO4

3−–P concentrations compared 
to the control. At the end of the experiment (on day 
28)  PO4

3−–P concentrations were 2.9 fold, 3.9 fold, 
3.2 fold, 5.2 fold, 7.5 fold, 3.9 fold and 2.3-fold much 
higher in treatments R. luteola, I. exustus, M. tuber-
culata, G. orcula, F. bengalensis, B. costula and P. 
globosa respectively in comparison with the control 
group. It was also observed that the ability to increase 
the  PO4

3−–P flux to the water column in presence of 
snail seemed to be species-specific rather than related 

to the individual body size (average shell length) of 
snail (Fig. 4b).

However, before introduction of the snails (Day-0) 
to the microcosms, there was no significant difference 
(p > 0.05; Tukey’s HSD) in dissolved inorganic nitro-
gen  (NH4

+–N +  NO3
−–N +  NO2

−–N) to  PO4
3−–P ratio 

(N:P) among the treatments. Following addition of 
snail species to the respective treatment cores, a sharp 
decrease in N:P were noticed in all sampling occa-
sions for all snail treatment columns compared to the 
control columns (Fig. 5).

Except on day 21 for I. exustus and on day 28 for 
P. globosa, in each sampling event, all the snail treat-
ments showed higher TDS measures compared to the 
control (Fig. 3e), and differed significantly (p < 0.05; 
Tukey’s HSD) in treatment F. bengalensis. Water 
columns in presence of F. bengalensis also showed 
significant (p < 0.05; Tukey’s HSD) increase in TDS 
measures compared to the other six snail treatments 
from the sampling day 21.

In each sampling event all the snail treatments 
showed higher COND measures compared to the 
control (Fig.  3f). Increase in COND measures were 
significant (p < 0.05; Tukey’s HSD) from the day 21 
to the end of the experiment for the treatment F. ben-
galensis and M. tuberculata. Water columns in pres-
ence of F. bengalensis showed significant (p < 0.05; 
Tukey’s HSD) increase in COND measures compared 
to the treatments R. luteola and B. costula at the end 
of the experiment. It is importance to note that the 
effects of time on TDS and COND in the water col-
umn were not dependent on snail treatments (Table 3; 
RM-ANOVA, treatment* time interaction effect, 
p > 0.05).

Effects on developing periphyton

The Chl-a levels measured from the substrate surface 
showed distinct variability with reference to the snail 
species concerned (Fig.  6; Table  3; RM-ANOVA, 
treatment effect, p < 0.01). While no significant dif-
ferences in the Chl-a content was observed for the 
mesocosms with different snails, but, at the end of 
the experiment (on day 28), compared to control, 
the Chl-a measures were lower in most of the treat-
ments except R. luteola and B. costula (Fig.  6). In 
addition, compared to the control columns the sig-
nificant reductions (p < 0.05; ANOVA, Tukey’s test) 
in Chl-a contents were noticed in treatment groups 
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with I. exustus, F. bengalensis and P. globosa. The 
treatment M. tuberculata and G. orcula also showed 
lower Chl-a content compared to the control, how-
ever their influences were not significant (p > 0.05; 

Tukey’s HSD). The Chl-a measures also changed 
over time in all treatment columns with or without 
snails (Fig.  6; Table  3; RM-ANOVA, time effect, 
p < 0.01). Except I. exustus, in all seven treatments, 

Fig. 5  Variations in dissolved inorganic nitrogen (N) to 
orthophosphate (P) ratios in the water columns among eight 
treatment groups. Values are presented as mean ± SE. For 

every panel, different letters represent significant difference 
between treatments (p < 0.05)

Fig. 6  Comparison of 
Chlorophyll-a measured 
on surface of substrates 
from the microcosms of 
eight treatment groups. 
For every panel, differ-
ent superscripted letters 
represent significant differ-
ence between treatments 
(p < 0.05). *represents sig-
nificant difference (p < 0.05) 
of a treatment between 
time interval. Values are 
presented as mean ± SE
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the Chl-a concentration measures at the end of the 
experiment (on day 28) were higher than their initial 
values (on day 14). Moreover, increase in concen-
trations between two sampling events were signifi-
cant (p < 0.05; ANOVA, Tukey’s test) for the control 
columns and in presence of snail R. luteola and B. 
costula. Thus, the differences in the outcome of the 
Chl-a content can be attributed to the differences in 
the species specific snail sizes, trophic status and the 
feeding activities.

Changes in sediment properties

A trend in the change of each of the sediment param-
eters to change over time, and the changes estimated 
in between the start to end of the experiment were 
significant (Student’s t-test, p < 0.05) in some of the 
snail treatments (Table 4). However, at the end of the 
experiment there were no significant snail depend-
ent treatment variations observed on the percentage 
OC contents of the sediment (F7, 23 = 1.35; P = 0.29), 
the significant treatments variability were prominent 
for AP contents (F7, 23 = 7.49; P < 0.05), TN con-
tents (F7, 23 = 6.82; P < 0.05), porosity (F7, 23 = 43.6; 
P < 0.05) and WHC (F7, 23 = 12.11; P < 0.05) of 
the sediment samples that received various treat-
ments. Variations in physicochemical properties of 
sediment among different treatment microcosms 

are represented in Table  4. However, considering 
the %OC content of the sediment no such signifi-
cant differences observed, the AP, TN, porosity and 
WHC measures were found to differ significantly 
among few treatment groups (Table 4) at the end of 
the 28 days of experiment. At the end of the study, in 
presence of R. luteola, I. exustus, M. tuberculata and 
F. bengalensis the AP contents increased significantly 
(p < 0.05; Tukey’s HSD) compared to the control sed-
iment samples. The TN contents in the sediment sam-
ples in presence of R. luteola and F. bengalensis also 
increased significantly (p < 0.05; Tukey’s HSD) com-
pared to the control columns. Nevertheless, the pres-
ence of any snail species could increase the porosity 
and WHC of the sediment. Indeed significant changes 
(p < 0.05; Tukey’s HSD) were noticed in M. tubercu-
lata, G. orcula and F. bengalensis for porosity and I. 
exustus, M. tuberculata, F. bengalensis and B. costula 
for WHC (Table 4).

Discussion

The freshwater operculate snails F. bengalensis, G. 
orcula, M. tuberculata and B. costula were observed 
to be more active on the sediment surface, altering 
the natural texture in the upper few millimetres of 
the sediment layer, as in V. viviparus (Estragnat et al. 

Table 4  Sediment properties (%OC = percent of organic 
carbon, AP = available phosphorous, TN = total nitrogen, 
WHC = water holding capacity) at the beginning (day-0) and at 
the end (day-28) of experiment for eight treatments (C = Con-

trol, RL = R. luteola, IE = I. exustus, MT = M. tuberculata, 
GO = G. orcula, FB = F. bengalensis, BC = B. costula, PG = P. 
globosa treatment)

Values are presented as mean ± SE; n = 3. Different superscripted capital letters represent significant difference (P < 0.05) of within-
column data between times (Day-0–Day-28) for each treatment. Different superscripted small letters represent significant difference 
(P < 0.05) between treatments compared for each variable at the end of the experiment

% OC AP (ppm) TN (gm/kg) Porosity WHC

Day-0
Fresh Sediment 1.01 ± 0.05B 0.83 ± 0.02B 1.11 ± 0.01B 0.310 ± 0.000 B 0.279 ± 0.001B

Day-28
C 1.06 ± 0.16Ba 0.94 ± 0.09Bd 1.13 ± 0.07Bc 0.318 ± 0.001Bc 0.285 ± 0.001Bbd

RL 1.22 ± 0.1Ba 1.69 ± 0.06 Aa 1.77 ± 0.04 Aa 0.319 ± 0.001Bc 0.301 ± 0.003Acd

IE 0.86 ± 0.39Ba 1.41 ± 0.02Aabc 1.41 ± 0.02Aabc 0.329 ± 0.005Bc 0.314 ± .01Aac

MT 1.33 ± .07Aa 1.42 ± 0.02Aabc 1.48 ± 0.02Aabc 0.354 ± 0.003Ab 0.337 ± 0.007Aa

GO 1.19 ± 0.08Ba 1.16 ± 0.23Abcd 1.19 ± 0.23Bbc 0.348 ± 0.001Ab 0.307 ± 0.002Acd

FB 1.48 ± 0.06Aa 1.54 ± 0.01Aab 1.59 ± 0.03Aab 0.372 ± 0.002Aa 0.335 ± 0.005Aa

BC 1.08 ± 0.03Ba 1.09 ± 0.02Acd 1.14 ± 0.02Bc 0.331 ± 0.005Ac 0.295 ± 0.007Bc

PG 1.17 ± 0.04Ba 1.38 ± 0.01Aabcd 1.42 ± 0.04Aabc 0.321 ± 0.003Bc 0.289 ± 0.003Bbc
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2020). On the other hand, R. luteola, I. exustus and 
P. globosa did not exhibit burrowing, bulldozing or 
nudging activities and enormous mucus coated pellets 
were deposited on the sediment surfaces in presence 
of these snails, consistent with the activities of some 
pelletizer gastropods like Hydrobia ulvae (Orvain 
et  al. 2004). In comparison with the control, all the 
snail species (treatments) showed higher  NH4

+–N 
and  PO4

3−–P flux to the overlying water (Fig. 3a and 
d). Among the snail treatments, the maximum efflux 
was estimated in F. bengalensis, whereas, minimum 
in presence of P. globosa and R. luteola for  NH4

+–N 
and  PO4

3−–P, respectively. An initial rise in  NH4
+–N 

concentrations after the introduction of snails to 
the microcosms was possibly due to acceleration of 
decomposition of sediment organic matter (Bowen 
et al. 2014) and dispersion of solutes (Li et al. 2019; 
Bartl et al. 2019) stimulated by the biotic activities on 
sediment (Zheng et  al. 2009; Nicholaus and Zheng 
2014). As the heterotrophic mineralization on the 
snail mucus and faeces is a ‘time-lagged’ process (Li 
et al. 2019), initially it contributed to the changes in 
 NH4

+–N and  PO4
3−–P concentrations measured in 

the overlying water as compared to the bioturbation 
driven release of nutrients (Pieczyńska and Jachimo-
wicz-Janaszek 1998; Wilhelm et  al. 1999; Pinowska 
2002). Surface level bioturbation activities by the 
freshwater snails enhance sediment oxygen consump-
tion, which reduce the oxygen saturation (Zhang et al. 
2013; Chen et  al. 2016; Yang et  al. 2020). Decreas-
ing oxygen penetration enhances anoxic condition, 
thereby promoting reduction of Fe (III) and Al (III) 
forms of elements in the sediment into soluble and 
labile forms to increase the release of  PO4

3−–P into 
water (Zheng et al. 2009; Yang et al. 2020). Evidently 
activities of all the snail species resulted in increased 
 NH4

+–N and  PO4
3−–P concentrations in the water 

column as observed in the present study. The quan-
titative differences in  NH4

+–N and  PO4
3−–P flux 

among the snail treatments declined with the shell 
length of the snails (Fig. 4). These results are consist-
ent with the findings of some previous work on the 
influences of various freshwater gastropods on nutri-
ent release (Underwood 1991; Pinowska 2002; Zhang 
et al. 2013; Yang et al. 2020).

Complex nitrification–denitrification process along 
with altered redox condition at the interface and 
microbial processes regulate the oxidized forms of 
nitrogen in aquatic ecosystem (Pelegri and Blackburn 

1996). During the course of the experiment certain 
decline in  NH4

+–N concentration with subsequent 
increase in oxidized forms of nitrogen compounds 
in presence of M. tuberculata, G. orcula and F. ben-
galensis represented higher rate of nitrification (Pig-
neret et al. 2016; Gautreau et al. 2020). Increase rate 
of nitrification may be associated with higher mixing 
activities of organisms to superficial oxic zone of the 
sediment and subsequent raise in oxygen absorption 
by the sediment from oxygenated water attributed in 
course of organismic respiration (Zhang et  al. 2013; 
Nicholaus and Zheng 2014). These results and inter-
pretations are somehow consistent with the findings 
of earlier work on the freshwater snail B. aeruginosa 
(Zhu et al. 2013).

Some previous work already demonstrated the 
ability of suspension feeder to increase the con-
ductivity of the overlying water (Zhu et al. 2013; Li 
et al. 2019). The ingestion and excretion by the snail 
increase the amount of biodeposits on the sediment. 
The mixing of sediment by the organisms increases 
the porosity of the substratum which alters the per-
meability of the substratum (Gingras et  al. 2012) 
that may influence the diffusive removal of soluble 
substances to its habitat to increase the TDS of the 
medium. As the TDS shows positive correlation with 
the conductivity (Chidya et al. 2016), confirming that 
the existence of snails can increase the ionic content 
in the water. It was difficult to determine the main 
factors contributing to changes in ionic content of the 
water which required further investigations.

The littoral dwelling snails show specific affin-
ity for organic rich sediment (Sarkar 1992; Zheng 
et al. 2009; Tripathy and Mukhopadhayay 2015) and 
their preferences on organic deposits may reduce the 
organic content of the sediment (Zheng et al. 2009). 
Conversely, the active ingestion and subsequent 
excretion of these snails can enhance the amount of 
biodeposits (Giles and Pilditch 2006; Zheng et  al. 
2009; Zhu et al. 2013). In the present study there was 
no such significant difference in sediment OC content 
observed in any microcosms with snail compared to 
the microcosms without snail (Table  4). This may 
be because of low bioturbation effect of snail, i.e. 
restricted only to the superficial sediment layer and 
short duration of the experiment (28  days). Except 
for R. luteola and F. bengalensis, none of the snail 
treatments showed significant changes in sediment 
TN content compared to the control. Higher rate of 
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total inorganic nitrogen release and  PO4
3−–P flux to 

the overlying water accompanied with minimal rise in 
TN and AP contents in the sediment samples of all 
snail treatments were observed. Such modifications 
may have been due to enhanced organic mineralisa-
tion (Kuntz and Tyler 2018) and nutrient transforma-
tion (Zheng et al. 2009). The impact of the impound-
ing of organic matter and/or bacterial assimilation 
of dissolved nutrients present in the overlying water 
(Mermillod-Blondin et  al. 2004) may also contrib-
ute to such modifications. Benthic macro-fauna 
may modify the physical characteristics of the sedi-
ments, as observed in F. bengalensis, G. orcula and 
M. tuberculata, where, the high sediment mixing rate 
may have contributed to the enhanced porosity of the 
superficial sediment layer. A corresponding increase 
in mineralization, diffusive flux of nutrients and solu-
bilisation may increase the concentration of dissolved 
solid and ionic release to the water (Nicholaus and 
Zheng, 2014; Hannides and Aller 2016). Species spe-
cific ability in alteration in the physical characteristics 
of the sediment may vary in accordance with the bio-
mass or the shell length of the snails.

Different empirical studies reveal that the pres-
ence of snails can stimulate algal growth (Hillebrand 
and Kahlert 2002; Zhang et  al. 2013). Complying 
with this observation, in R. luteola and B. costula 
treatments, the amount of chl-a was increased com-
pared to the control columns. However, in the pres-
ence of I. exustus, M. tuberculata, G. orcula and F. 
bengalensis and P. globosa, the amount of periphytic 
chl-a decreased compared to control (Fig.  6). Dur-
ing the experiment in all snail treatment cores, the 
snails were either found to crawl over sediment or 
graze over the algal deposition on the inner wall of 
glass column. Earlier studies suggest that snail bio-
turbation can enhance both planktonic or periphytic 
algal growth by increasing release of nutrients from 
the sediment (Rybak 2002; Zheng et al. 2009; Nich-
olaus and Zheng 2014; Mo et  al., 2017; Kuntz and 
Tyler 2018). Simultaneous grazing activity of snail 
also reduces algal biomass (Li et al. 2019). Therefore, 
the variation in algal deposition among the treatment 
cores in presence or absence of snail was the conse-
quences of these two opposite forces.

Considering the freshwater snails as common ele-
ments of the lake, pond, and allied wetlands in var-
ied landscapes, the functional roles, particularly bio-
turbation property bears considerable significance. 

In situations where the snails are the dominant mem-
bers of the freshwater community, the bioturbation 
function may usnleash the nutrients in the water col-
umn facilitating the uptake by the producer commu-
nity. As a consequence, the growth and productivity 
of the system may increase providing further source 
for the sustenance of diverse taxa. While reports are 
available for the displacement of the sediments and 
thus nutrients by other macroinvertebrates, in Indian 
context as well as in similar regions with rich mala-
cofauna, the role of the snails will prove important in 
restoration and sustenance of the freshwater bodies as 
observed in this study.

Conclusion

The results of the present study confirm that the 
common freshwater snails of India can influence 
the physicochemical features of the water and sedi-
ment through bioturbation. The sediment texture was 
changed, more prominently in presence of the oper-
culate snails, namely, F. bengalensis, M. tuberculata, 
and B. costula than the non-operculate snails, namely, 
R. luteola and I. exustus. The maximum deposition 
of mucus coated pellets on the sediment surface was 
recorded in presence of non-operculate snails. While 
presence of the recorded snails increased the poros-
ity and water holding capacity in sediment, but no 
significant variations in the OC, TN and AP were 
observed with reference to the control. Except in case 
of R. luteola and B. costula, the periphytic Chl-a con-
tent was reduced in all other snail treatments. A spe-
cies-specific and significant increase in the  NH4

+–N 
and  PO4

3−–P flux to the water column was observed. 
Thus, inclusion of the snails as biological compo-
nents in the management of the freshwater ecosystem 
can be recommended to facilitate habitat manipula-
tion in ecological processes.
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