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Abstract Benthicmacroinvertebratecommunities from

different lake zones are known to respond differently to

environmental parameters and human pressures. The

objectives of this study were to explore the spatial and

temporal variability of benthic communities, investi-

gate the effect of environmental factors on their

assemblages and assess their response to eutrophica-

tion in the profundal and sublittoral zones of three

Greek eutrophic lakes (Volvi, Kastoria and Mikri

Prespa). These lakes are subjected to different land

uses in their catchment areas. Samplings were con-

ducted bi-annually (spring and autumn). Sixteen taxa

were collected in the sublittoral and eleven in the

profundal zone of the studied lakes. Among them,

some species were recorded for the first time in the

studied lakes. The dominant species were Potamothrix

hammoniensis (Michaelsen, 1901) (Oligochaeta),

Chaoborus (Chaoborus) flavicans (Meigen, 1830)

and Chironomus (Chironomus) gr. plumosus Lin-

naeus, 1758 (Diptera), reflecting the eutrophic status

of these waterbodies. Benthic communities, their

functional traits (microhabitat preferences and feeding

types), diversity and rarity species differed among

lakes. Especially Lake Prespa, as a potentially ancient

lake, hosts an endemic oligochaete community. Alti-

tude and eutrophication (expressed as P–PO4 and

BOD5 concentrations) were the main environmental

factors explaining spatial and temporal variability in

the assemblages. Based on the Greek Lake Benthic

invertebrate Index, the ecological quality of the

studied lakes was estimated as good to moderate.

Benthic macroinvertebrates from both lake zones are

associated with eutrophication, which is related to

anthropogenic activities. Therefore, these lake zones

should be included in assessment methods linking

benthic invertebrate assemblages to eutrophication.
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Introduction

Freshwater ecosystems are one of the most diverse

habitats on the Earth and reflect the effects of activities

occurring in their basins (Magnuson et al. 2006).

Multiple and varied threats, such as changing climate,

invasions, harmful algal blooms, microplastic pollu-

tion, impact freshwater ecosystems (Reid et al. 2019).

Their biodiversity decreases even faster than in

terrestrial or marine systems, despite the efforts to

prevent this loss (Collen et al. 2014). Therefore, long-

term conservation and efficient management often

request a multidisciplinary concept to determine how

aquatic biodiversity, water and habitat quality dynam-

ics relate across different water bodies (Hill et al.

2016).

Benthic macroinvertebrate communities are usu-

ally used in biomonitoring due to their high sensitivity

and response to pressures (Bonada et al. 2006; Birk

et al. 2012). They are present on organically rich

substances in the upper layer of the sediment (Matisoff

and Wang 1998). Benthic assemblages act as ‘‘ecosys-

tem engineers’’ and make a crucial contribution to

aquatic ecosystem services as sediment oxygenation

via bioturbation, internal nutrient loading and other

biogeochemical processes (Covich et al. 1999). More-

over, they play a fundamental role as key species in

food chains and food webs (Covich et al. 1999).

Potential food sources are phytoplankton, bacteria and

organic debris (Biswas et al. 2009). In turn, they serve

as prey for higher-class organisms such as fish

(Zimmer et al. 2001) and they can act as biological

indicators to track water quality conditions (e.g.,

Rossaro et al. 2007; Miler et al. 2013; Lazaridou et al.

2018).

In lakes, macroinvertebrate assemblages differ

among the littoral, sublittoral and profundal lake

zones, which are considered as subsystems, respond-

ing differently to natural variability and human-

induced pressures (Pilotto et al. 2012, 2015). Within

the profundal zone, shifts in species composition are

related mostly to eutrophication (Bazzanti et al. 2012;

Jyväsjärvi et al. 2012; Pilotto et al. 2012), whereas in

sublittoral and littoral zones to morphological alter-

ations of lakeshores (Miler et al. 2013; McGoff et al.

2013), acidification (Schartau et al. 2008) and wave

action (Johnson et al. 2004; Stendera and Johnson

2008). Littoral zone microhabitats tend to exhibit high

macroinvertebrate species richness, due to their

heterogeneity and productivity, compared to other

lake strata (Pilotto et al. 2015). In small lakes,

sublittoral macroinvertebrate assemblages demon-

strate lower variation in density and species number

among years than those occupying the profundal lake

area because of alternating oxygen conditions (Hämä-

läinen et al. 2003). In contrast to littoral and sublittoral

benthic communities, profundal assemblages are often

low in species richness and are primarily dominated by

oligochaetes (Burlakova et al. 2018). However, com-

munity composition varies according to the studied

region and relevant stressors (e.g., Sterling et al. 2016;

Tolkkinen et al. 2016; Jonsson et al. 2017).

Until now, several international legislations, direc-

tives and guidelines have been established with the

aim of promoting the assessment and conservation of

biodiversity (i.e., the European Biodiversity Strategy

to 2020; EC 2011) and the good ecological quality of

water bodies (i.e., Water Framework Directive, WFD;

EC 2000). The latter necessitates all European Mem-

ber States to protect and improve the quality of their

aquatic ecosystems concerning pressure-specific stres-

sors. An essential step in the ecological quality

assessment of water bodies is the quantification of

single and combined effects of multiple stressors on

biota (Solimini et al. 2009), recognizing that biogeo-

graphic, morphometric and geological factors, as well

as water chemistry, may influence species composi-

tion (Heling et al. 2018). Additionally, the utility of

different biological elements should be reliably

proved before they can be applied in the assessments

of the ecosystems (Tolonen et al. 2020).

However, a plethora of studies have yet been

published on the use of benthic macroinvertebrates for

river ecological quality assessments (e.g., Hering et al.

2010; Birk et al. 2012). On the contrary, substantially

fewer surveys have addressed the efficiency of benthic

macroinvertebrate assemblages for monitoring water

quality in lakes (e.g., Johnson et al. 2004; Brauns et al.

2007) and even less have relied on distinct taxa

assemblages in the sublittoral/profundal zones (e.g.,

Jyväsjärvi et al. 2014; Lau et al. 2017; Ntislidou et al.

2018). This is mainly due to sampling and identifica-

tion difficulties as well as to the biogeographical and

spatial variation of environmental lakes’ characteris-

tics (Poikane et al. 2016). However, it is crucial to

assess the impact of pressures because profundal

benthic assemblages respond to eutrophication,

whereas the littoral ones, which have the highest
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richness and diversity, mainly to morphological

alterations of lakeshore (Miler et al. 2013). Among

Mediterranean countries, studies focusing on benthic

assemblages in Greek lakes are also scarce (Petridis

1993; Petridis and Sinis 1993, 1995, 1997; Kagalou

et al. 2006; Bobori et al. 2018).

The aim of the present study contribute to fulfill

these knowledge gaps and to: (a) investigate the

diversity and structure of benthic macroinvertebrate

communities in the profundal and sublittoral zones of

three Greek lakes (Volvi, Kastoria and Mikri Prespa),

(b) examine the environmental effects on benthic

macroinvertebrate assemblages, and (c) explore ben-

thic macroinvertebrate response to eutrophication. We

also provide a dataset that contains benthic macroin-

vertebrate records of these lakes concerning their

rarity and endemicity. Understanding the drivers that

structure benthic macroinvertebrate distribution in

lakes is of key interest to manage the effects of

environmental changes. The present study will con-

tribute to fill this gap, especially for the Mediterranean

lakes.

Material and methods

Study area

Three lakes, located in Northern Greece, were selected

as case studies due to different land uses in their

catchment areas (Fig. 1, Table 1). Lake Volvi (40� 370

N and 23� 210 E) is a relatively deep, warm

monomictic lake (Vardaka et al. 2005) and constitutes

part of the National Wetland Park of Lakes Koronia,

Volvi and Macedonian Temp (Table 1, Fig. 1).

Despite the minor industrial and domestic develop-

ment in the catchment, agricultural activities are

intensive, dominated by maize, alfalfa and cereal

crops (Vogiatzis et al. 2008). Lake Kastoria (40� 300

N, 21� 180 E) is an urban, shallow, polymictic lake

(Table 1, Fig. 1). Until 1995, it was the acceptor of

sewage effluents, affecting thus its water quality and

causing algal blooms (Moustaka et al. 2006). Lake

Mikri Prespa (40� 440 N, 21� 040 E) is a shallow,

polymictic lake (Vardaka et al. 2005) (Table 1, Fig. 1).

Its catchment area is affected by minor anthropogenic

pressures (cultivated plots and livestock; Tziritis

2014). The three lakes are under a strict protection

status since they have been designated as areas of

community interest (Birds and Habitats Directives;

EC 2009/147, EEC 1992/43), while the two of them

(Lakes Volvi and Mikri Prespa) are RAMSAR sites

(RAMSAR 1974). Some of their limnological char-

acteristics and land uses in their catchment areas,

according to Corine Land Cover 2012 (EU 2018), are

provided in Table 1.

Sampling and laboratory procedures

A total of 19 stations in the profundal and sublittoral

zones of the studied lakes were sampled in autumn

2011 and early spring 2012, using an Ekman-Birge

grab (three replicates, 225 cm2 sampling area)

(Fig. 1). Sediment samples were sieved with a

200-lm mesh (Rosenberg and Resh 1993) and fixed

in 4% neutralized formaldehyde. Macroinvertebrates

were sorted and identified to species or genus level.

Their abundance was converted to density as individ-

ual per m2 (ind. m-2). Chironomids and oligochaetes

were slide-mounted prior to identification using the

proper keys (Wiederholm 1983, 1986; Timm 2009).

Immature stages of oligochaetes were identified based

on the particular characters of the setae.

Water samples were collected at each station, 1 m

above the sediment, using a Niskin-type sampler.

Water temperature (�C), conductivity (mS cm-1), pH

and dissolved oxygen (DO, mg L-1) were measured

in situ using portable probes. Concentrations of nitrite

(NO2–N, mg L-1), nitrate (NO3–N, mg L-1) and

ammonium (NH4–N, mg L-1) nitrogen, phosphorus

orthophosphate (PO4–P, mg L-1), total suspended

solids (TSS, mg L-1) and biological oxygen demand

(BOD5, mg L-1) were determined according to APHA

(2005). Sampling depth (m) and Secchi disk depth

(cm) were also recorded in situ, with the latter been

used as a proxy of water transparency.

Diversity indices and functional traits

Benthic macroinvertebrate assemblages at each lake

were described using the following diversity indices:

Shannon–Wiener (H0, Shannon and Weaver 1949),

Weighted Diversity Index (Hw0, Rossaro et al. 2011),

Margalef (d0, Margalef 1958) and Pielou’s evenness

index (J0, Magurran 1988). The functional approach

associates subgroups constituted of individuals of the

same type as to microhabitat preferences and feeding

types. We selected these traits due to their ability to
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indicate physical and ecological changes and their use

in developing a trait-based bioassessment approach

(Menezes et al. 2010). The Asterics software was used

to estimate the functional traits for microhabitat

preferences and feeding types (Table 2) (version

4.0.4; Wageningen Software Labs 2005).

Ecological quality assessment

To evaluate the ecological quality of the studied lakes,

the Greek Lake Benthic invertebrate Index (GLBiI;

Ntislidou et al. 2018) was applied. The index is based

on three metrics, the number of taxa (Taxa_Tot) and

the Simpson’s diversity index (Simpson_Tot) in the

profundal and sublittoral zones and the relative

contribution of Chironomidae in the profundal zone

(%Chironomidae_Prof). The GLBiI is a multimetric

index with a clear response to eutrophication, while

the three metrics constituting the index are related to

factors corresponding to lake hydromorphology and

chemistry (Ntislidou et al. 2018).

Fig. 1 Sampling stations in lakes a Volvi, b Kastoria and c Mikri Prespa

Table 1 Limnological

characteristics and land uses

according to Corine Land

Cover 2012 in the

catchment areas of the

studied lakes

aVardaka et al. (2005)

Characteristics Lake Volvi Lake Kastoria Lake Mikri Prespa

Surface area (km2) 72.0 28.9 47.4

Maximum depth (m) 27.3 9.2 8.4

Mean depth (m) 13.8 4.4 4.1

Catchment area (km2) 1,290 283 261.2

Altitude (masl) 37 630 853

Trophic statusa Eutrophic Hypertrophic Eutrophic

Artificial areas (%) 1.1 1.6 0.3

Agricultural areas (%) 43.5 35.9 12.6

Forest and semi-natural areas (%) 49.8 51.6 63.1

Wetlands (%) 0.3 0.7 4.1

Water bodies (%) 5.3 10.2 19.9
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Data analyses

The nonparametric Kruskal–Wallis and Mann–Whit-

ney U tests were applied to extract significant spatial

and temporal differences in environmental parameters

and taxa distribution among stations and between

sampling periods (autumn and spring), respectively.

Pearson’s correlation analysis extracted relationships

between environmental variables and benthic

macroinvertebrate abundances. The above statistical

analyses were performed using the statistical package

SPSS (version 21.0).

The relative importance of environmental param-

eters in explaining the composition of benthic com-

munities in the profundal and sublittoral zones was

explored by redundancy analysis (RDA). Prior to this

analysis, a detrended correspondence analysis (DCA)

was applied, revealing that the total gradient length

was less than three times the standard deviation, thus

indicating a linear relationship between the environ-

mental parameters and the benthic macroinvertebrate

density data. To retain the significant environmental

parameters in RDA, the Monte Carlo permutation test

(499 permutations, p\ 0.05) and the inflation factor

(\ 20) were used. Densities and environmental

parameters were log(x ? 1) transformed, except

temperature and pH, which were standardized. All

ordinations were performed with the statistical pro-

gram CANOCO version 4.5.1 (ter Braak and Šmilauer

1998).

The similarity analysis routines ANalysis Of

SIMilarity (ANOSIM) was applied to identify differ-

ences between profundal and sublittoral zones for

benthic macroinvertebrate communities and func-

tional trait categories. Additionally, the SIMilarity

PERcentage Analysis (SIMPER) was performed to

determine the taxa and functional trait categories that

contributed the most to the observed similarities and

differences between groups (profundal and sublittoral

zones) with a cut-off of 90% (Clarke et al. 2014). Both

analyses were based on the Bray–Curtis similarity

index (Clarke et al. 2014) and were conducted using

Primer v6 software (Clarke and Gorley 2006).

Results

Environmental parameters

The environmental parameters measured in the stud-

ied lakes are given in Table 3. The highest concen-

trations of PO4–P (0.034 mg L-1), NO3–N (0.770 mg

Table 2 Description of the

studied functional traits

aSchmedtje and Colling

(1996)
bSchweder (1992)

Preference for a certain microhabitata

Pel ? Pelal: mud; grain size\ 0.063 mm

Arg ? Argyllal: silt, loam, clay; grain size\ 0.063 mm

Psa ? Psammal: sand; grain size 0.063–2 mm

Aka ? Akal: fine to medium-sized gravel; grain size 0.2–2 cm

Lit ? Lithal: coarse gravel, stones, boulders; grain size[ 2 cm

Phy ? Phytal: algae, mosses and macrophytes including living parts of terrestrial plants

Pom ? particulate organic matter, such as woody debris, CPOM, FPOM

Oth ? other habitats

Feeding typesb (Schweder 1992)

Fgr ? Grazers/scrapers

Fga ? Collectors/Gatherers

Fxy ? Xylophagous taxa

Fpr ? Predators

Fmi ? Miners

Fsh ? Shredders

Faf ? Active filter feeders

Fpf ? Passive filter feeders

Fpa ? Parasites

Fot ? Other Feeding Types

123

Aquat Ecol (2021) 55:1033–1050 1037



L-1) and NO2–N (0.150 mg L-1) were recorded in

Lake Volvi, whereas the highest NH4–N concentra-

tions (0.514 mg L-1) in Lake Mikri Prespa. Within

each lake, none of the environmental parameters

exhibited significant differences among stations

(Kruskal–Wallis test, p[ 0.05), whereas a significant

seasonal pattern was evident in all lakes (Mann–

Whitney test p\ 0.05). Higher eutrophication was

noticed in Lake Volvi than in the other two lakes.

Temporal significant (p\ 0.05) differences among

the majority of the environmental parameters were

observed in Lake Volvi, apart from nitrogen nutrients

(NO3–N, NO2–N, NH4–N). In lakes Kastoria and

Mikri Prespa, five (DO, pH, conductivity, BOD5,

transparency) and three (DO, pH, transparency) out of

the 11 environmental parameters studied differed

significantly (p\ 0.05) between the sampling periods,

respectively.

Benthic community composition and structure

A total of 53,466 specimens, belonging to 16 macroin-

vertebrate taxa, were identified with the most abundant

belonging to Potamothrix hammoniensis (Oligo-

chaeta) and Chaoborus (Chaoborus) flavicans (Dip-

tera) (Table 4). Empty shells of Valvata sp. Müller,

1773 (in lakes Volvi and Kastoria), Unio sp. Retzius,

1788 (in Lake Kastoria) and Dreissena presbensis

Kobelt, 1915 (in lakes Volvi and Mikri Prespa) were

detected. The profundal zone was characterized by the

highest densities and the lowest diversity (11 taxa,

Table 4), with P. hammoniensis (67.5%) and C.

(Chaoborus) flavicans (23.5%) dominated benthic

assemblages (Fig. 2). The same taxa were also the

most abundant in the sublittoral zone (69.3% and

18.6%, respectively) of the lakes, where 16 taxa were

identified (Table 4).

In lakes Volvi and Kastoria, most benthic macroin-

vertebrates belonged to oligochaetes ([ 50%) and

Diptera ([ 20%), followed by Nematoda and Hirudi-

nea. Oligochaeta comprised more than 45% of the

whole community ([ 65% and 46%, respectively),

with P. hammoniensis being the dominant species.

However, in Lake Kastoria (stations S3, S5 in autumn

and S1 in spring), the most abundant species was C.

(Chaoborus) flavicans ([ 39%). Diptera dominated

([ 53%) the benthic macroinvertebrate assemblages

of Lake Mikri Prespa, with C. (Chaoborus) flavicans

being the dominant species, except stations S1

(autumn) and S2 (autumn and spring), where P.

hammoniensis was more abundant ([ 52%).

No spatial differentiation in benthic densities was

observed among stations (Kruskal–Wallis test,

p[ 0.05) and between sampling periods (Mann–

Whitney test p[ 0.05) within each lake. The structure

of benthic assemblages was also similar in both lake

zones studied (ANOSIM: Lake Volvi R = 0.312,

p = 0.07; Lake Kastoria R = 0.362, p = 0.178; Lake

Mikri Prespa R = 0.131, p = 0.210). This similarity

was owned mainly to the presence of P. hammoniensis

and C. (Chaoborus) flavicans in both lake strata

(Table 5).

Table 3 Means and ranges

[in brackets] of

environmental parameters

in the three studied lakes

S_Depth sampling depth,

Trans transparency, TSS
total suspended solids, WT
water temperature, Cond
conductivity, DO dissolved

oxygen, BOD5 biological

oxygen demand

Parameters Lake Volvi Lake Kastoria Lake Mikri Prespa

S_Depth (m) 17.2 [9.0–23.0] 5.9 [4.0–9.2] 5.7 [3.0–8.5]

Trans (m) 1.6 [0.9–2.5] 2.0 [1.1–3.3] 2.6 [1.2–4.0]

TSS (mg L-1) 8.0 [1.4–25.4] 3.8 [1.2–8.6] 3.5 [1.2–10.8]

WT (�C) 12.8 [7.9–18.1] 11.2 [9.7–12.4] 9.4 [7.6–10.2]

Cond (mS cm-1) 0.90 [0.82–0.95] 0.32 [0.28–0.38] 0.27 [0.24–0.31]

pH 8.32 [7.17–8.64] 8.06 [7.41–8.43] 8.29 [8.01–8.40]

DO (mg L-1) 9.44 [7.50–11.99] 7.39 [4.58–9.98] 10.24 [8.13–12.20]

BOD5 (mg L-1) 2.34 [0.21–5.56] 1.39 [0.18–2.91] 2.60 [0.24–4.08]

NO3–N (mg L-1) 0.203 [0.041–0.771] 0.105 [0.022–0.179] 0.159 [0.024–0.316]

NO2–N (mg L-1) 0.029 [0.001–0.145] 0.005 [0.001–0.011] 0.004 [0.001–0.007]

NH4–N (mg L-1) 0.066 [0.004–0.369] 0.086 [0.001–0.353] 0.119 [0.001–0.514]

PO4–P (mg L-1) 0.015 [0.001–0.034] 0.003 [0.001–0.004] 0.003 [0.001–0.010]
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Diversity indices and functional traits

All diversity indices exhibited their highest values in

Lake Mikri Prespa (Fig. 3). Shannon–Wiener (H0),
Weighted Diversity (Hw0) and Pielou’s evenness (J’)

indices were highly correlated with depth (r = 0.647,

r = 0.629 and r = 0.477, p\ 0.05, respectively) and

conductivity (r = 0.531, r = 0.639 and r = 0.559,

p\ 0.05, respectively) and Margalef index (d0) with

depth and NO2–N (r = 0.354 and r = 0.354, p\ 0.05,

respectively) (Table 6).

Benthic macroinvertebrate communities showed a

preference for particulate organic matter (Pom;

28–78%) and mud (Pel; 16–37%) in all lakes in both

zones (Fig. 4a). Considering the different feeding

types, collectors/gatherers (fga) were dominant in both

zones of lakes Volvi (80–83%) and Kastoria

(49–65%), followed by predators (fpr) (32–46%)

(Fig. 4b). In Lake Mikri Prespa, predators mostly

contributed to the benthic macroinvertebrate compo-

sition of the profundal and sublittoral zone (Fig. 4b).

However, no clear spatial pattern was evident between

the two lake zones when feeding and habitat traits

were compared (ANOSIM, Microhabitat preferences:

R = 0.006, p = 0.341; Feeding type: R = - 0.026,

p = 0.630). The SIMPER analysis, though, extracted

the preference for particulate organic matter as the

main trait differentiating the two lake zones (Table 7).

The same analysis revealed that collectors/gatherers

(fga; Profundal zone: 59.0% and sublittoral zone:

60.4%) contributed more than the other feeding groups

to benthic assemblage structure in both profundal and

sublittoral zones (Table 7). Generally, the low dis-

similarity of benthic assemblages between the two

zones, ranging from 19.6 to 21.2% (Table 7), indicates

homogenous lake systems.

Table 4 Presence of

benthic macroinvertebrate

taxa in lakes Volvi (V),

Kastoria (K) and Mikri

Prespa (MP) in autumn

2011 and spring 2012

P profundal, S sublittoral

zone

Taxonomic group V K MP

Insecta-Diptera

Chironomidae

Chironominae

Chironomus (Chironomus) gr. plumosus Linnaeus, 1758 P/S P/S P/S

Cryptochironomus (Cryptochironomus) gr. defectus (Kieffer, 1913) P/S

Cladopelma viridulum (Linnaeus, 1767) S

Endochironomus tendens (Fabricius, 1775) S

Microchironomus tener (Kieffer, 1918) P/S

Psectrocladius (Psectrocladius) psilopterus (Kieffer, 1906) S

Tanytarsus sp. van der Wulp, 1874 S

Tanypodinae

Procladius (Holotanypus) choreus (Meigen, 1804) P/S P/S

Chaoboridae

Chaoborus (Chaoborus) flavicans (Meigen, 1830) P/S P/S P/S

Ceratopogonidae P/S P/S P/S

Annelida-Oligochaeta

Tubificidae

Tubificinae

Potamothrix hammoniensis (Michaelsen, 1901) P/S P/S P/S

Peipsidrilus pusillus Timm, 1977 P/S

Tubifex tubifex (Muller, 1774) P/S

Psammoryctides sp. Hrabe, 1964 P/S

Anellida-Hirudinea

Erpobdellidae S

Nematoda P/S P/S
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Ecological quality

The ecological quality of the studied lakes was

assessed using the GLBiI. The lakes Volvi and Mikri

Prespa were classified as water bodies of good quality

(0.68 and 0.63, respectively), whereas the ecological

quality of Lake Kastoria was classified as moderate

(0.53). Apparently, not all the metrics included in the

GLBiI assessed the quality of each lake with the same

class. Only in the case of Lake Kastoria, the three

metrics had the same quality class (‘‘Taxa_Tol’’ =

0.53, ‘‘Simpson_Tot’’ = 0.50, ‘‘%Chironomi-

dae_Prof’’ = 0.55). In the case of Lake Volvi, the

metric ‘‘%Chironomidae_Prof’’ equaled 1.02, assess-

ing thus the lake with high quality, whereas the rest

metrics with moderate (‘‘Taxa_Tot’’ = 0.44, ‘‘Simp-

son_Tot’’ = 0.60). Lake Mikri Prespa was classified as

having good quality by two metrics (‘‘Simp-

son_Tot’’ = 0.68, ‘‘%Chironomidae_Prof’’ = 0.62)

and moderate by ‘‘Taxa_Tot’’ (0.59).

Relationships between environmental parameters

and benthic macroinvertebrate communities

The RDA analysis applied on the profundal samples

showed that two (altitude and depth) out of the 13

environmental parameters were the best predictors

(Monte Carlo test, p\ 0.05) in explaining benthic

macroinvertebrate community composition. The first

two ordination axes explained 49.6% of the total

species variance and 85.4% of the species—environ-

mental parameter relation. Axis I (eigenvalue 0.411)

was related to altitude (intra-set correlation 0.618) and

Axis II (eigenvalue 0.085) to P–PO4 and transparency

(intra-set correlations 0.739 and - 0.663, respec-

tively). Both axes separated stations of Lake Mikri

Prespa from stations of the other lakes. Specifically,

stations of Mikri Prespa were positively correlated

with altitude (r = 0.618) and negatively with P–PO4

(r = - 0.246) (Fig. 5a). P. hammoniensis and C.

(Chaoborus) flavicans were correlated with P–PO4

(Fig. 5b). Moreover, Peipsidrilus pusillus found in

Mikri Prespa were negatively correlated with sam-

pling depth (Fig. 5b).

Regarding the sublittoral zone, RDA revealed

altitude and BOD5 as the most statistically significant

(Monte Carlo test, p\ 0.05) parameters affecting

benthic macroinvertebrate assemblages. Axis I (eigen-

value 0.580) explained 72% of benthic taxa and

environmental parameters variability and was posi-

tively correlated to altitude (intra-set correlation

0.833, Fig. 6a). Axis II (eigenvalue 0.098) was

positively correlated with BOD5 (intra-set correlation

0.548, Fig. 6a). The cumulative percentage variance

between benthic macroinvertebrates and environmen-

tal parameters explained by Axis II was 84.2%.

Stations of Lake Mikri Prespa were related to altitude

and characterized by M. tener and E. tendens

(Fig. 6b). Stations from Lake Kastoria were associated

with BOD5 and were defined by Psectrocladius

(Psectrocladius) psilopterus and Ceratopogonidae.

Discussion

Understanding the structure of benthic macroinverte-

brate communities in the different lake zones is

essential in biomonitoring programs, as they are

constrained by multiple drivers of changes and

respond unevenly to distinct human disturbances

(Pilotto et al. 2012). This study enhances our knowl-

edge about the composition of benthic macroinverte-

brates of the studied lakes. In sublittoral and profundal

zones we found similar benthic assemblages com-

posed of species known to be sensitive to eutrophica-

tion (Wiederholm 1980; Jónasson 2004). Our

Fig. 2 Mean density of the most abundant benthic species from

the profundal (Prof) and sublittoral (Sub) zones of lakes Volvi,

Kastoria and Mikri Prespa in autumn 2011 and spring 2012
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observations supported that benthic macroinverte-

brates of these lake zones were also functionally

homogenous. Moreover, our data revealed that the

driving factor affecting benthic macroinvertebrate

assemblages is eutrophication in the profundal and

sublittoral zones of the studied lakes. Thus, our results

suggest that communities belonging to these lake

strata could be treated together regarding benthic

macroinvertebrate responses to disturbance.

Our knowledge on benthic macroinvertebrate com-

munities for the studied three lakes is dated before

25 years (Economidis 1991; Koussouris et al.

1987, 1989, 1991; Petridis and Sinis 1995, 1997) with

a more recent exception (Ntislidou 2019). The total

number of taxa referred in the previous studies was

higher than in the present study [i.e., Volvi: 12

(Economidis 1991) and Mikri Prespa: 15 (Petridis and

Sinis 1995)]. Among the macroinvertebrate taxa

documented by Economidis (1991) and Petridis and

Sinis (1995) are the littoral species Dicrotendipes

nervosus (Staeger 1839) and Einfeldia sp., that were

not found in the current study, due probably to the

restriction of our sampling campaigns only in the

profundal and sublittoral zones of the lakes, excluding

the littoral zone, which is generally more diverse in

Mediterranean lakes (Pilotto et al. 2015).

However, our surveys revealed the occurrence of

some species, which have not been previously

reported in the studied lakes. The chironomid species

E. tendens, Cladopelma viridulum and P. (Psectro-

cladius) psilopterus are recorded for the first time in

the Greek freshwaters (Ntislidou et al. 2019). Cryp-

tochironomus (Cryptochironomus) gr. defectus was

known in Greece, but it was recorded for the first time

in Lake Volvi (Ntislidou et al. 2019). Among

Oligochaeta, the rare species P. pusillus was until

now only known from Northern Europe [i.e., Germany

(Haybach and Timm 2013), Slovakia, Serbia and

Austria (Šporka et al. 2008; Atanacković et al. 2011)].

Here, this species is recorded for the first from Lake

Mikri Prespa. This potentially ancient lake hosts an

endemic oligochaete community, isolated within nar-

row zoogeographical boundaries defined by the lakes

Megali Prespa, Ohrid, Skadar and Dojran (Albrecht

et al. 2012).

Table 5 SIMPER analysis

(both similarity and

dissimilarity) for benthic

macroinvertebrate densities

in the profundal and

sublittoral zones in lakes

Volvi, Kastoria and Mikri

Prespa

Profundal Lakes

Volvi Kastoria Mikri Prespa

Average similarity: 87.9% 86.4% 81.7%

Taxa Contribution (%) Contribution (%) Contribution (%)

P. hammoniensis 36.6 33.8 27.3

C. (Chaoborus) flavicans 29.9 29.3 31.5

C. (Chironomus) gr. plumosus 26.5 26.8 10.7

Sublittoral

Average similarity: 84.1% 82.5% 80.4%

Taxa Contribution (%) Contribution (%) Contribution (%)

C. (Chaoborus) flavicans 30.3 23.9 25.8

P. hammoniensis 24.9 23.0 24.4

C. (Chironomus) gr. plumosus 22.4 19.5 13.5

Profundal/Sublittoral

Average dissimilarity: 17.5% 19.5% 20.6%

Taxa Contribution (%) Contribution (%) Contribution (%)

P. (Holotanypus) choreus 31.7 13.6 –

Nematoda 18.7 16.91 –

M. tener 14.6 – –

Ceratopogonidae – 24.75 23.11

Psammoryctides sp. – – 17.73

T. tubifex – – 17.48
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In the mud substrate of lakes, oligochaete is

generally one of the prevailing components of the

benthos, as is chironomid larvae (Wiederholm 1980).

Accordingly, Tubificidae and Chironomidae were the

dominant taxa in the three lakes studied. P. ham-

moniensis was dominant among the tubificids and C.

Fig. 3 Box-and-Whisker plots of benthic macroinvertebrate

diversity indices a Shannon–Wiener (H0), b Weighted (Hw0),
c Margalef (d0) and d Pielou’s evenness (J0) estimated in lakes

Volvi, Kastoria and Mikri Prespa. Solid lines at the center of

boxes indicate median values, boxes represent inter-quartile

ranges (25–75%), outer lines the highest and lowest values, and

symbol * the outlier values

Table 6 Pearson correlation coefficient (r) between the environmental parameters and diversity indices Shannon–Wiener (H0),
Weighted (Hw0), Margalef (d0) and Pielou’s evenness (J0) of benthic communities in lakes Volvi, Kastoria and Mikri Prespa

Parameters H0 Hw0 d0 J0

S_Depth r = 0.647* r = 0.629* r = 0.354* r = 0.477*

TSS r = 0.236 r = 0.277 r = 0.258 r = 0.146

WT r = 0.344* r = 0.412* r = 0.321* r = 0.255

Cond r = 0.531* r = 0.639* r = 0.311 r = 0.559*

pH r = 0.122 r = 0.092 r = 0.205 r = 0.024

DO r = 0.202 r = 0.320 r = 0.296 r = 0.127

BOD5 r = 0.058 r = 0.039 r = 0.066 r = 0.200

MO3–M r = 0.160 r = 0.081 r = 0.016 r = 0.186

MO2–M r = 0.411* r = 0.301 r = 0.354* r = 0.290

NH4–N r = 0.054 r = 0.100 r = 0.168 r = 0.033

PO4–P r = 0.499* r = 0.399* r = 0.348* r = 0.390*

S_Depth sampling depth, TSS total suspended solids, WT water temperature, Cond conductivity, DO dissolved oxygen, BOD5

biological oxygen demand

*p\ 0.05: significant values
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(Chironomus) gr. plumosus mainly prevailed from

chironomid species. P. hammoniensis is distributed

worldwide, generally inhabiting silt and clay bottoms

(Risnoveanu and Vadineanu 2002) and it is tolerant to

pollution (van Haaren and Soors 2013). Chironomus

(Chironomus) gr. plumosus can tolerate the hypoxic

conditions that often prevail in organic-rich fine

sediments (Heling et al. 2018). C. (Chaoborus)

flavicans was also a dominant species in Lake Mikri

Prespa, as in previous studies (Petridis and Sinis

1995, 1997), indicating the eutrophic state of the lake.

In the studied lakes, a typical benthic fauna of the

Mediterranean profundal and sublittoral lake zones

was recorded belonging to oligochaetes and chirono-

mids (Bazzanti et al. 2012), which are well known to

be sensitive to eutrophication (Wiederholm 1980;

Lang 1990). The profundal zone was colonized by few

taxa, very resistant to low water oxygenation. The

structure of benthic assemblages in this zone is less

complex than in other lake zones, as it is mostly

affected by changes in lake productivity due to oxygen

depletion and organic food material concentration

(Bazzanti et al. 2017). In addition, our data indicated

that sublittoral and profundal zones were dominated

by the same species [P. hammoniensis and C.

(Chaoborus) flavicans]. Generally, eutrophication

reduces benthic macroinvertebrate diversity and abun-

dance, as well as increases faunal similarity among

depth zones (Bazzanti and Seminara 1987; Bazzanti

et al. 2012).

Knowledge of community functional trait compo-

sition is crucial in studying community–environment

relationships and human-induced ecosystems degra-

dation (Heino 2008). The benthic macroinvertebrate

functional traits have been extensively studied for

river ecosystems (e.g., Bady et al. 2005; Bonada et al.

2007; Feld et al. 2014), dam-removal (e.g., Renöfält

et al. 2013; Tullos et al. 2014; Sullivan and Manning

2017) and reservoirs (e.g., Fanny et al. 2013; Beghelli

et al. 2020). Moreover, during the last years, Chirono-

midae, as one of the most diverse and widely

distributed dominant group within aquatic macroin-

vertebrates, is claimed to be suitable for functional

diversity across various environmental gradients (e.g.,

Serra et al. 2016; 2017; Milošević et al. 2018; Jiang

et al. 2019; Antczak-Orlewska et al. 2020). However,

few studies have been conducted for lake benthic

communities (e.g., Bazzanti et al. 2017; Tolonen et al.

2018). The functional structure of macroinvertebrate

assemblages in both zones of the studied lakes did not

differ. The profundal and sublittoral habitats were

characterized by the high presence of collectors/gath-

erers, alongside with predators. Especially in Lake

Mikri Prespa, predators dominated, although the lake

is populated by invertivorous fish (Petriki 2015).

Collectors/gatherers are considered common benthic

feeding traits in the profundal lake zone, favored by

the sinking of organic matter, which constitutes the

Fig. 4 Percentage composition of benthic macroinvertebrate

communities’ structure in relation to a microhabitat preferences

and b feeding types for the sublittoral and profundal zones of

lakes Volvi, Kastoria and Mikri Prespa
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main source of nutrients in this lake stratum (Hamerlı́k

and Brodersen 2010; Oliveira and Nessimian 2010;

Frainer et al. 2016). Undoubtedly, shredders, grazers

and miners lack from profundal and sublittoral zones

due to the absence of light (Bazzanti et al. 2017).

Regarding the functional trait microhabitat preference,

macroinvertebrates showed a preference for particu-

late organic matter and mud. Both lake zones are

characterized by homogenous habitats, fine sediments

and no vegetation (Jónasson 2004). Still, much work

has to be conducted to figure out the efficacy of using

functional traits of lake macroinvertebrate communi-

ties (Heino 2008; Frainer et al. 2016; Tolonen et al.

2018).

The ecological quality of lakes assessed by the

application of the GLBiI was characterized as ‘‘good’’

for lakes Volvi and Mikri Prespa and ‘‘moderate’’ for

Lake Kastoria. Regarding each metric from GLBiI, the

lowest values were estimated for the species richness

(‘‘Taxa_Tol’’). Eutrophication decreases diversity and

enhances homogeneity in the sublittoral and profundal

zones (Bazzanti et al. 2017). The latest estimation of

their ecological quality based on benthic macroinver-

tebrates was moderate (Ntislidou et al. 2018), due to

human activities leading to their degradation (Latino-

poulos et al. 2016; Petriki et al. 2017). Recovering

these lakes necessitates more severe mitigation mea-

sures, which are included in the national River Basin

Management Plans (RBMP, http://wfdver.ypeka.gr/

en/home-en/) to fulfill the goals set by WFD.

The geographical factor (altitude) and eutrophica-

tion (P–PO4, BOD5) were the main environmental

factors structuring benthic macroinvertebrate commu-

nities in the studied lakes. The inclusion of altitude in

the RDA is likely a surrogate for climate effect and

accounts for differences among lakes (Donohue et al.

2009). Shifts in climatic and geographic factors are

reflected by other environmental properties, such as

water and air temperature, precipitation, catchment

area and vegetation cover characteristics (Hamerlı́k

et al. 2010). Studies covering a wide range of altitude

found a decrease of species richness with increasing

altitude (e.g., Rahbek 1995). Our findings showed that

benthic communities from Lake Prespa and especially

P. pusillus, Tanytarsus sp. and Ceratopogonidae are

related to altitude. Moreover, the positive relation-

ships found between nutrients and sublittoral and

profundal macroinvertebrate densities pose evidence

that these benthic assemblages could provide useful

information for the classification of lakes’ eutrophi-

cation status. Several studies have previously identi-

fied the importance of phosphorus as an essential

factor in shaping macroinvertebrate communities

(e.g., Fried-Petersen et al. 2020; Heino and Tolonen

2017; Bazzanti et al. 2012). According to Heino and

Tolonen (2017), total phosphorus sets limits to the

distribution of certain species preferring high-pri-

mary-productivity lake habitats. In our study, P.

hammoniensis, C. (Chaoborus) flavicans and M. tener

are affected mainly by phosphorus concentration.

Lakes are unique systems, and they are especially

vulnerable to nutrient enrichment caused by human

activities. Thus, it is crucial to identify these impacts

for lake ecosystems. Regarding lakes Volvi, Kastoria

Table 7 SIMPER analysis (both similarity and dissimilarity) of benthic macroinvertebrate functional trait categories of the pro-

fundal and sublittoral zones in the lakes (Volvi, Kastoria and Mikri Prespa)

Profundal Sublittoral

Average similarity: 78.3% 79.5% Average dissimilarity: 21.2%

Types Contribution (%) Contribution (%) Types Contribution (%)

Microhabitat preference

Pom 49.8 48.5 Pom 31.2

Pel 28.2 26.7 Oth 19.0

Oth 19.0 17.1 Pel 17.0

Feeding types

Fga 59.0 60.4 Fga 42.0

Fpr 32.0 30.0 Fpr 39.5

Faf 12.2
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and Mikri Prespa, we showed that environmental

parameters related to eutrophication influence the

structure of sublittoral and profundal benthic commu-

nities of these lakes. The effects of these shifts are a

reduction in the diversity of benthic macroinverte-

brates and an increase in the number of taxa with a

high tolerance for pollution. Since these lake ecosys-

tems are located in protected areas, the present results

could contribute to decision makers develop and

implement management plans for maintaining ecosys-

tems’ biodiversity and improving ecosystem services.

Such programs of measures could include actions for

reducing diffuse pollution, improving the coverage of

the sanitation network, increasing the efficiency of the

existing Waste Water Treatment Plants and restoring

the riparian zones to improve their ecological status.

Although the studied lakes are under the surveillance

Fig. 5 Ordination of a sampling stations and b benthic

macroinvertebrate densities in relation to environmental param-

eters with respect to the first and second axes of the redundancy

analysis. Data referred to the profundal zone of lakes Volvi (V),

Kastoria (K) and Mikri Prespa (P) in autumn (A) 2011 and

spring (S) 2012. Alt: Altitude, DO: Dissolved Oxygen, S_Depth:

Sampling Depth, Trans: transparency, TSS: total suspended

solids, WT: water temperature. C_def: C. (Cryptochironomus)
gr. defectus, C_flav: C. (Chaoborus) flavicans, C_plum: C.
(Chironomus) gr. plumosus, Cerat: Ceratopogonidae, M_tener:
M. tener, Nem: Nematoda, P_choreus: P. choreus, P_hamm: P.
hammoniensis, P_pus: P. pusillus, Psam_sp.: Psammoryctides
sp., T_tub: T. tubifex

Fig. 6 Ordination of a sampling stations and b benthic

macroinvertebrate densities in relation to environmental param-

eters with respect to the first and second axes of the redundancy

analysis. Data referred to the sublittoral zone of lakes Volvi (V),

Kastoria (K) and Mikri Prespa (P) in autumn (A) 2011 and

spring (S) 2012. Alt: altitude, DO: dissolved oxygen, WT: water

temperature. C_def: C. (Cryptochironomus) gr. defectus,
C_flav: C. (Chaoborus) flavicans, C_plum: C. (Chironomus)
gr. plumosus, C_virid: C. viridulum, Cerat: Ceratopogonidae,

E_tend: E. tendens, Erb: Erpobdellidae, M_tener: M. tener,
Nem: Nematoda, P_choreus: P. choreus, P_hamm: P. ham-
moniensis, P_pus: P. pusillus, Psam_sp.: Psammoryctides sp.,

P_psil: P. (Psectrocladius) psilopterus, Tany_sp.: Tanytarsus
sp., T_tub: T. tubifex
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of the institutional protection management (e.g.,

Management Bodies), the existing protection should

be enhanced more to ensure their integrity. Restoration

programs that integrate hydromorphological, physic-

ochemical and biological elements of the studied lake

catchment areas are of high priority for future

management strategies. Consequently, the under-

standing of the biological and ecological requirements

of benthic assemblages, according to our outcomes,

will contribute to this field.
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kowska A, Krąpiec M, Słowiński M, Kittel P (2020) Chi-

ronomidae morphological types and functional feeding

groups as a habitat complexity vestige. Front Ecol Evol

8:480. https://doi.org/10.3389/fevo.2020.583831

APHA (2005) Standard methods for the examination of water

and wastewater. American Public Health Association,

Washington
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M (2014) Global patterns of freshwater species diversity,

threat and endemism. Glob Ecol Biogeogr 23:40–51.

https://doi.org/10.1111/geb.12096

Covich AP, Palmer MA, Crowl TA (1999) The role of benthic

invertebrate species in freshwater ecosystems: zoobenthic

species influence energy flows and nutrient cycling. Bio-

science 49:119–127. https://doi.org/10.2307/1313537

123

1046 Aquat Ecol (2021) 55:1033–1050

https://doi.org/10.1007/s10750-011-0830-1
https://doi.org/10.3389/fevo.2020.583831
https://doi.org/10.1111/j.1365-2427.2004.01287.x
https://doi.org/10.1111/j.1365-2427.2004.01287.x
https://doi.org/10.1127/1863-9135/2012/0200
https://doi.org/10.1127/1863-9135/2012/0200
https://doi.org/10.1016/j.scitotenv.2016.11.073
https://doi.org/10.1016/j.scitotenv.2016.11.073
https://doi.org/10.1590/0001-3765202020180962
https://doi.org/10.1590/0001-3765202020180962
https://doi.org/10.1016/j.ecoleng.2009.06.004
https://doi.org/10.1016/j.ecoleng.2009.06.004
https://doi.org/10.1016/j.ecolind.2011.10.009
https://doi.org/10.1016/j.ecolind.2011.10.009
https://doi.org/10.1007/s10661-018-6484-y
https://doi.org/10.1007/s10661-018-6484-y
https://doi.org/10.1146/annurev.ento.51.110104.151124
https://doi.org/10.1146/annurev.ento.51.110104.151124
https://doi.org/10.1007/s10750-007-0723-5
https://doi.org/10.1007/s10750-007-0723-5
https://doi.org/10.1111/j.1365-2664.2007.01376.x
https://doi.org/10.1111/j.1365-2664.2007.01376.x
https://doi.org/10.1016/j.jglr.2017.11.004
https://doi.org/10.1111/geb.12096
https://doi.org/10.2307/1313537


Donohue I, Donohue LA, Ainı́n BN, Irvine K (2009) Assess-

ment of eutrophication pressure on lakes using littoral

invertebrates. Hydrobiologia 633:105–122. https://doi.org/

10.1007/s10750-009-9868-8

Economidis G (1991) Bionomic study of the benthic fauna of

Lake Volvi. Dissertation, Aristotle University of

Thessaloniki

EC (2000) Directive 2000/60/EC of the European Parliament

and of the Council of 23rd October 2000 establishing a

framework for community action in the field of water

policy. Official Journal of the European Communities,

L327. Brussels, Belgium, European Commission

EC (2009) Directive 2009/147/EC of the European Parliament

and of the Council of 30 November 2009 on the conser-

vation of wild birds. Official Journal of the European

Communities, L20. Brussels, Belgium, European

Commission

EC (2011) Our life insurance, our natural capital: an EU bio-

diversity strategy to 2020. Belgium, European Commis-

sion, Brussels

EEC (1992) Council Directive 92/43/EEC of 21 May 1992 on

the conservation of natural habitats and of wild fauna and

flora. Official Journal of the European Communities, L206.

Brussels, Belgium, European Commission

EU (2018) Copernicus Land Monitoring Service 2018, Euro-

pean Environment Agency (EEA). https://land.copernicus.

eu/. Accessed 28 Nov 2020

Fanny C, Virginie A, Jean-François F, Jonathan B, Marie-

Claude R, Simon D (2013) Benthic indicators of sediment

quality associated with run-of-river reservoirs. Hydrobi-

ologia 703:149–164. https://doi.org/10.1007/s10750-012-

1355-y
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