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Abstract Submerged macrophytes are regarded as

being hardly assimilated by zooplankton for their lack

of essential nutrients such as polyunsaturated fatty

acids (PUFAs) thus serve as poor quality food,

contrary to field stable isotopic investigations with

observed macrophyte carbon contributions to zoo-

plankton. However, periphyton growing on them

produces the PUFAs and is thus a nutrient supplement.

We hypothesize that with this supplement, zooplank-

ton can be supported by macrophyte carbon. To test

this hypothesis, we fed zooplankton with (1) 13C

enriched Vallisneria natans detritus, (2) periphyton

and (3) a mix of the two. We compared growth and

reproduction of zooplankton under these three food

treatments and calculated zooplankton assimilation of

macrophyte carbon when fed a mixed diet, using a

stable isotope-mixing model. The fatty acid profile of

the two carbon resources was also analyzed. Our

results demonstrate thatDaphnia magna can grow and

reproduce well, and use V. natans carbon when a

supplement of periphyton is available.

Keywords Submerge macrophytes � Zooplankton �
Periphyton � Stable isotope analysis

Introduction

Macrophytes play a crucial role in maintaining a clear

water state in aquatic ecosystems (Scheffer and

Jeppesen 1998). They can increase binding of phos-

phorus through oxidization of sediments, reduce re-

suspension of sediments, and suppress algal growth

through nutrient competition and allelopathy (Car-

penter and Lodge 1986; Moss 1990; Jeppesen et al.

1998). Beside these well-known physical, chemical

and physiological effects, they are also important

benthic primary producers. They contribute signifi-

cantly to total primary production of aquatic ecosys-

tems, up to 99% in small lakes (Downing et al. 2006;

Nõges et al. 2010; Brothers et al. 2013; Verpoorter

et al. 2014).
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However, their contributions to aquatic food webs

have been poorly studied (Bakker et al. 2016) and their

ability to serve as food sources has long been

discussed (Lodge 1991; Bakker et al. 2016). In recent

decades, increasing evidences stressed the contribu-

tion of benthic producers using stable isotopic tech-

niques (Jaschinski et al. 2008; Zanden et al. 2011; Batt

et al. 2012; De Kluijver et al. 2015; Wolters et al.

2018). Researches revealed that macrophyte-derived

detritus can contribute to suspended particulate

organic matter and ultimately subsidize invertebrates

in aquatic ecosystems (Miller and Page 2012; Dalu

et al. 2016; Palomar-Abesamis et al. 2018; Bearham

et al. 2020).

Macrophytes are not the only benthic producer.

Actually, together with rocky shores, they provide a

substratum for the complex community of substratum-

bound autotrophic and heterotrophic biota, known as

the periphyton (Cattaneo and Kalff 1980). They both

contribute to benthic primary production and often are

difficult to distinguish in terms of natural abundance of

carbon stable isotopic signatures (Connolly et al.

2005; Jaschinski et al. 2008; Cazzanelli et al. 2012;

Paice et al. 2017). Zooplankton have a vital ecological

role in aquatic ecosystem as consumers in aquatic

foodweb (Gulati 1975). De Kluijver et al. (2015)

reported 26–86% carbon contribution of macrophytes

and their associated periphyton to zooplankton in a

shallow lake with clear state. Some ecologists believe

that periphyton, rather than macrophytes, make up the

bulk of the benthic contribution to zooplankton

(Cazzanelli et al. 2012; Pettit et al. 2017).

The main reason for this conception lies in the

nutritional status of these two carbon sources. Zoo-

plankton need protein, lipids and importantly, PUFA,

for growth and reproduction (Müller-Navarra 1995).

Normally, zooplankton cannot synthesize de novo

some PUFA, e.g., DHA, EPA and ARA and needs to

obtain them from food (Parrish 2009). These polyun-

saturated fatty acids are crucial for somatic growth and

reproduction of zooplankton, due to their role in

maintaining membrane structure and being precursors

of bioactive compounds in invertebrates (Heckman

et al. 2008; Martin-Creuzburg et al. 2010). Vascular

plant tissues possess relatively small amount of

protein and lipids, and lack PUFA (Koussoroplis

et al. 2010; Richoux et al. 2017). Thus, they can hardly

support the growth and reproduction of zooplankton

(Brett et al. 2009). In contrast, periphyton contains

high amount of PUFA (Hill et al. 2011). Lab

experiments have shown that zooplankton grows and

reproduces well on a periphyton diet (Siehoff et al.

2009; Hélène et al. 2012; Mahdy et al. 2014).

Ingestion of periphyton by zooplankton in field

conditions has been observed as well (Jones and

Waldron 2003; Rautio and Vincent 2006).

We note that zooplankton needs for essential fatty

acids are low, according to previous reports (Becker

and Boersma 2003, 2005; Tang et al. 2019). Small

amounts of these essential biochemicals significantly

improve growth and reproduction of zooplankton

(Becker and Boersma 2005; Ravet and Brett 2006).

Taipale et al. (2016) showed that terrestrial carbon

could not support the growth and reproduction of

Daphnia alone, whereas it can with a supplement of

algal food. Submerged macrophyte detritus, a com-

ponent of suspended particulate organic matter, nor-

mally consists of a mixture of macrophyte tissues and

periphyton and the latter one would probably serve as

a nutritional complement. Therefore, we hypothesize

that macrophytes with a supplement of periphyton

suffice to support the growth and reproduction of

zooplankton.

To test our hypothesis, we fed zooplankton (Daph-

nia magna) with differing diets, viz. macrophytes,

periphyton and a mixture of both, and compared

growth and reproduction of zooplankton with each

diet. We also labeled Vallisneria natans and applied a

stable isotopic probing analysis to confirm the assim-

ilation of macrophyte carbon. This research will help

us understand the entrance of macrophyte carbon to

aquatic food webs and its possible pathway.

Materials and methods

Preparation of 13C-labeled submerged

macrophytes

Fifteen individuals of V. natans (17.8 ± 0.77 cm)

were transplanted into 5 L beakers filled with distilled

water, sealed with a transparent plastic film and

incubated outdoors under natural sunlight for 96 h.

Total 0.25 g of NaH13CO3 (98 at.% 13C) (ISOTEC,

USA) was added twice a day evenly to the beaker. At

the end of this treatment, we gathered all biomass (V.

natans with periphyton scraped off). V. natans was

then freeze-dried, ground using a high-speed grinder
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and filtered with a 325-mesh sieve into small particles

(\ 45 lm). d13C value of V. natans had increased to an

average of d13C: 1058.09% compared to an average

natural level of d13C: - 20.35% as a result of

photosynthetic uptake of H13CO3
-.

Preparation of periphyton

Fifty individuals of V. natans (17.8 ± 0.77 cm) were

transplanted into 10 beakers (5 L) filled with distilled

water. A 6 cm 9 9 cm polyethylene rigid plastic

sheet was also placed into each beaker. We added

32.46 mg/L KNO3 and 0.84 mg/L NaH2PO3 to each

beaker every week to keep a nutrient load. After one

month, periphyton was scraped from both macrophyte

leaves and plastic sheet, washed, freeze-dried and also

ground and filtered with a 325-mesh sieve into small

particles (\ 45 lm). Collected plant-based periphyton

mainly consisted of Fragilaria, Oedogonium, Aphan-

othece and Chroococcus.

Fatty acids analysis of macrophyte and periphyton

Total lipids were extracted from approximately 20 mg

dry biomass of periphyton and macrophyte V. natans

respectively with dichloromethane/methanol (2:1,

v/v) and reduced in volume by evaporation. The

extracts were transesterified with 2 mL 3 mol/L

methanolic HCl (60 �C, 15 min) for the analysis of

fatty acids. Triplicate samples of transesterified or

saponified lipid samples were mixed respectively and

duplicate 1 lL samples were injected into the device

in splitless mode. Lipid types were analyzed using a

Finnigan TRACE Gas Chromatography Mass Spec-

trometer equipped with a flame ionization detector and

a DB-23 column (60 m 9 0.32 mm) for FAME and

identified by retention times and mass spectra. Fatty

acid concentrations were quantified with both external

standard Supelco 37 Component FAME mix and an

internal standard (C12:0 methyl esters).

Growth experiment

Three diets including macrophyte detritus, periphyton

and a mixture of the two for rearing Daphnia magna

were prepared. All diets were delivered once a day at

2 mg C/L for 6 days and 3 mg C/L for following

15 days. Mixed diet consists of 1:1 (carbon content) of

V. natans and periphyton. These food concentrations

were above the incipient limiting level for ingestion

(Lampert 1987). Carbon contents of the macrophyte

and periphyton were analyzed using an elemental

analyzer (EA3000, EuroVector). The food concentra-

tions were determined using known values for carbon

concentration and OD (optical extinction) at 682 nm.

The D. magna used in the experiment were provided

by Jinan University, and raised at 25 �C under light

intensity of 50 lmol m-2 s-1 with a 12 L:12 D h

light regime. In order to recordDaphnia growth, in the

same culture conditions, neonates (\ 10 h old) were

collected from third brood females and distributed

randomly in 250-ml beakers (10 individuals per

beaker). Body length, survival and number of off-

spring produced in each beaker were recorded daily.

Experiments were performed at 25 �C with a 12:12 h

dark: light cycle on three food sources with four

replicates for each treatment. For the measurement of

daphnid body length, 3–4 individuals were pipetted

randomly from the vessels. Carapace length was

measured using a Nikon microscope equipped with

an ocular micrometer, and the sampled individuals

were returned immediately to the culture vessel.

SurvivingDaphniawere counted daily and transferred

to freshly prepared food suspensions. The offspring

produced in each vessel were also counted daily and

subsequently removed. The experiment lasted for

21 days. We also set a negative control of zooplankton

with no food supplied.

The intrinsic rates of increase r (d-1) in population

of D. magna were calculated using Euler’s formula:

1 ¼
Xn

x¼0

e�rx � lx � mx

where x is the age or time interval (day), lx is the

proportion of individuals surviving to age x, and mx

represents the number of offspring produced per

surviving female at age x.

Stable isotopic analysis and carbon contribution

calculation

Zooplankton samples were collected after growth

experiments and dried at 48 �C. Zooplankton, macro-

phyte and periphyton samples were subjected to

carbon isotopic analysis carried in the Institute of

Aquatic Biology in Jinan University, using a Hydra

20–20 mass spectrometer (SerCon, UK). Isotope
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abundance was expressed using the conventional delta

notation against the international standards (Pee Dee

Belemnite for d13C).

dX &ð Þ ¼ Rsample=Rstandard � 1
� �

� 1000

where X = 13C and R is ratio of 13C:12C.

Carbon contribution of macrophyte to zooplankton

was calculated using a stable isotope mixing model

employing the simmr package (Parnell and Inger

2016) in R.3.4.3. Enrichment of d13C by zooplankton

was calculated respectively by d13C values of each

carbon resource and zooplankton fed solely with that

carbon. The model was run using the simmr_mcmc

command with default parameters.

Statistics

Body length and reproduction of D. magna reared on

different diets were analyzed by repeated measures

analyses of variance (RM-ANOVA), followed by LSD

test. One-way ANOVA was performed to indicate

differences in the intrinsic rates of increase in

populations and stable isotopic values of different

samples. Before statistical analyses, compliance with

the ANOVA assumptions was checked with a normal

probability plot of the residuals and a Levene’s test of

homogeneity of variances. All statistics was per-

formed using SPSS 20.0.

Results

Fatty acid profiles of periphyton and V. natans

Fatty acids profiles of V. natans and periphyton are

shown in Table 1 (average values). The constituent

polyunsaturated fatty acid of V. natans includes

mainly LIN (Linoleic acid, C18:2x6) and ALA (a-
Linolenic acid, C18:3x3), lack of long chain polyun-

saturated fatty acids. Periphyton in our experiment

possesses not only short chain polyunsaturated fatty

acids, but also long chain polyunsaturated fatty acids

including averagely 2.32 lg/mg C EPA (Eicosapen-

taenoic acid, 20:5x3), 0.53 lg/mg C DHA (Docosa-

hexaenoic acid, 22:6x3) and 0.51 lg/mg C ARA

(Arachidonic acid, 20:4x6).

Growth of D. magna

Daphnia with diets all survived the full experimental

period, while Daphnia with no food failed to survive

for six days. Daphnia with differing diet grew and

reproduced differently (Repeated measures ANOVA,

F6.724, 30.256 = 64.244, P\ 0.001 for growth;

F2.418, 10.883 = 13.370, P\ 0.001 for reproduction)

with data shown in Fig. 1. Though highest body length

and highest average accumulative reproduction rate

was observed in Daphnia fed periphyton, the intrinsic

rates of increase in populations showed no significant

differences in Daphnia with mixed diet and periphy-

ton diet (One-way ANOVA, F2, 9 = 32.427,

P[ 0.05). Daphnia with periphyton diet and mixed

diet grew and reproduced significantly better than

Daphnia with macrophyte detritus (Repeated

Table 1 Mean fatty acid values of macrophyte Vallisneria
natans and periphyton. – indicates a trace amounts\ 0.01 lg/
mg C or not detected

Vallisneria natans Periphyton

lg/mg C % lg/mg C %

Saturated fatty acids (SAFA)

C14:0 0.31 1.03 1.60 3.07

C15:0 0.13 0.43 0.43 0.83

C16:0 11.73 38.99 22.54 43.26

C17:0 0.10 0.33 0.15 0.29

C18:0 1.89 6.28 2.14 4.11

C19:0 0.02 0.08 – –

C20:0 0.15 0.50 0.11 0.21

C21:0 0.04 0.13 – –

C22:0 0.20 0.66 0.64 1.23

C23:0 0.05 0.17 – –

Monounsaturated fatty acids (MUFA)

C16:1 0.54 1.80 7.73 14.84

C17:1 – – 0.15 0.29

C18:1x9 0.11 0.37 8.43 16.18

Polyunsaturated fatty acids (PUFA)

C18:2x6 6.96 23.14 2.06 3.95

C18:3x3 7.69 25.56 1.71 3.28

C18:3x6 0.16 0.53 – –

C18:4x3 – – 1.05 2.02

C20:4x6 – – 0.51 0.98

C20:5x3 – – 2.32 4.45

C22:6x3 – – 0.53 1.02
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measures ANOVA followed by LSD pairwise test, all

P\ 0.001), and showed much higher intrinsic rates of

increase (one-way ANOVA, all P\ 0.001) (Fig. 2).

Carbon stable isotopic results and carbon

contribution to zooplankton

Carbon stable isotopic signatures of all samples were

shown in Fig. 3. The carbon stable isotopic signature

of zooplankton fed with macrophyte detritus was

similar to that of labelled V. natans. The carbon

stable isotopic signature of zooplankton fed periphy-

ton was also similar to that of periphyton. The carbon

stable isotopic value of zooplankton with mixed diet

showed an intermediate value between the former two

carbon resources.

Based on a mixing model, V. natans contributes

36.5% ± 2.3% to zooplankton carbon when zoo-

plankton were fed with a mixed diet. The comparison

of zooplankton dietary proportions of different carbon

sources is shown in Fig. 4.

Discussion

Using carbon stable isotope probing, we demonstrated

that D. magna could assimilate V. natans carbon and

grow and reproduce well on condition that V. natans

was simultaneously supplied with periphyton.

V. natans in our experiment showed high concen-

tration of LIN and ALA, but no EPA, DHA and ARA,

probably because that higher plant lacks the essential
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enzymes to elongate these molecules (Sayanova and

Napier 2004). In the growth experiment, D. magna

survived in a V. natans diet with slow population

increase, rather similar to when it was fed with

vascular plants of terrestrial origin. Zooplankton with

sole red alder or corn straw diet did not exceed the

initial population size (Brett et al. 2009; Tang et al.

2019). That difference might reflect nutrient differ-

ences between submerged and terrestrial macrophytes.

A higher N content (thus low C:N ratio) of freshwater

submerged macrophytes than terrestrial plants has

been recorded (Bakker et al. 2016) and a positive

relationship between the nitrogen content in the

plant’s tissue and its consumption by herbivores as

well (Cebrian and Lartigue 2004). Even so, D. magna

fed only V. natans detritus showed much smaller

individual size and less reproduction compared to the

other two diets. ARA and EPA are precursors of

eicosanoids, which plays a pivotal role in the repro-

duction of Daphnia (Heckmann et al. 2008). Daphnia

can convert LIN and ALA to growth-enhancing

PUFAs ARA and EPA at a slow rate (Weers et al.

1997), which might explain a postponed reproduction

in Daphnia fed only V. natans. All these results

underscore the fact that V. natans detritus is a poor-

quality food for D. magna.
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Gulati and Demott (1997) summarized that diatoms

are good quality food for zooplankton, and chloro-

phytes are moderate quality food for zooplankton due

to their different PUFA contents. The periphyton we

used consisted of diatoms, chlorophytes and

cyanobacteria, containing a relatively high EPA,

DHA and ARA concentration, but probably also

protists that could not be identified. Daphnia fed with

periphyton, accordingly, grew and reproduced well

with a much higher population intrinsic increase rate

compared to those fed macrophytes.

The mixed diet consisting of only half of the

periphyton carbon supported the population increase

ofDaphnia as well as total periphyton diet much better

than the sole macrophyte diet. Taipale et al. (2016)

found that Daphnia can grow and reproduce well with

a reed (terrestrial plant) and Cryptomona, and

regarded that the most essential EPA need was

satisfied by the algal food. Harfmann et al. (2019)

also reported that a mixed diet of terrestrial plant

tissues and algae can enhance the survival of copepod

E. affinis over a diet of algae alone, indicating that

terrestrial plant detritus can be a vital supplementary

food source to zooplankton. Our work shows similar

results, indicating that macrophyte carbon might be a

supplementary food source to zooplankton also.

In field investigations, it happens that submerged

macrophytes and periphyton share similar stable iso-

topic signatures, which makes it difficult to confirm

the utilization of submerged macrophyte by zooplank-

ton (Connolly et al. 2005; Jaschinski et al. 2008;

Cazzanelli et al. 2012; Paice et al. 2017). By using 13C

enriched V. natans, our result clearly demonstrated

that zooplankton assimilated submerged macrophyte

carbon. Even though our mixed food was served as a

1:1 ratio,Daphnia showed a selective assimilation and

assimilated more periphyton carbon. Taipale et al.

(2016) speculated that Daphnia was able to use

carbohydrate of vascular plant origin for energy and

save algal proteins and lipids for structural compo-

nents. That ‘‘sparing strategy’’ was fully reinforced by

the current study, with Daphnia’s selective assimila-

tion of algal food as strong evidence.

In conclusion, our results showed that when mixed

with periphyton, V. natans supported the somatic

growth and reproduction of zooplankton, and that

macrophyte carbon was incorporated to zooplankton.

These lab observations hint at the entrance of macro-

phyte carbon with that of associated periphyton to

aquatic food webs. Zooplankton plays a key role in

regulating the essential processes of aquatic ecosys-

tem (Runge and Roff 2000) and high zooplank-

ton/phytoplankton ratios are of high capacity of food

webs controlling phytoplankton (Søndergaard et al.

2008; Jeppesen et al. 2012). Subsidy form submerged

macrophyte carbon would possibly increase the zoo-

plankton / phytoplankton ratios and may provide an

enhanced ability of phytoplankton controlling, which

gives implications for lake management.
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