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Abstract In response to anthropogenic eutrophica-

tion and global warming, deep-water oxygen depletion

is expected to have large effects on freshwater lake

biogeochemistry and resident communities. In partic-

ular, it has been observed that deep-water hypoxia

may potentially lead to regime shifts of lake benthic

communities. We explored such community shifts by

reconstructing a high-resolution subfossil chironomid

record from a sediment core collected in the sub-alpine

lake Remoray in France. We identified an abrupt shift

in chironomid composition triggered by the collapse

of the dominant Sergentia coracina-type chironomids

around 1980. We found that the collapse of Sergentia

coracina type was coupled to a gradual increase in

organic matter content in lake sediments caused by

eutrophication. We concluded that the most probable

cause for the collapse of Sergentia coracina type was a

change in oxygen concentrations below the minimal

threshold for larval growth.We also analyzed trends in

variance and autocorrelation of chironomid dynamics

to test whether they can be used as early warnings of

the Sergentia collapse. We found that variance rose

prior to the collapse, but it was marginally significant

(Kendal rank correlation 0.71, p = 0.05), whereas

autocorrelation increased but insignificantly and less

strongly (Kendal rank correlation 0.23, p = 0.25). By

combining reconstructions of ecosystem dynamics

and environmental drivers, our approach demonstrates

how lake sediments may provide insights into the

long-term dynamics of oxygen in lakes and its impact

on aquatic fauna.
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V. Dakos

Institut des Sciences de l’Evolution de Montpellier

(ISEM), BioDICée team, CNRS, Université de
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Introduction

Hypoxia has become a major ecological concern for

lake ecosystems over the last 150 years. Lack of

oxygen induces various impacts on lakes including

increases in their contribution to greenhouse gas

emissions (Gonzalez-Valencia et al. 2014), fish mor-

talities (Rao et al. 2014), and disappearance of benthic

organisms (also called dead zones; Diaz and Rosen-

berg 2008). Oxygen depletion in the profundal zone is

considered natural for some freshwater ecosystems

and can be caused by morphological factors (e.g.,

Aeschbach-Hertig et al. 1999) or by thermal stratifi-

cation (Jankowski et al. 2007). However, it is now

widely accepted that anthropogenic disturbances are

one of the main factors for decreasing oxygen

concentrations in lakes leading to hypoxia (Rabalais

et al. 2010; Frossard et al. 2013). Rising input of

organic matter in lake sediments is the major driver of

oxygen depletion in deep layers of lakes (Charlton

1980). The main process behind such depletion is the

increase in bacterial degradation of detritus that

consumes oxygen (den Heyer and Kalff 1998). This

process is often fueled by anthropogenic nutrient

enrichment (also called eutrophication; Downing et al.

2008; Anderson et al. 2014) that is driven by

agricultural practices or urban point sources of pollu-

tion (Carpenter et al. 1998; Jenny et al. 2016). In the

current context of the Anthropocene (Crutzen 2006)

that is characterized by a growing impact of anthro-

pogenic eutrophication, hypoxia and its effects on

benthic life are expected to become widespread in

freshwater ecosystems.

Abrupt changes in benthic fauna due to hypoxia are

identified as one of the main regime shifts in marine

ecosystems (Rocha et al. 2015). Regime shifts are

usually characterized by abrupt and dramatic changes

in community composition triggered by collapsing or

changing abundances of single or multiple taxa

(Conversi et al. 2015). Regime shifts driven by hypoxia

can also be found in lakes. A gradual decrease in lake

oxygen concentrations below a tolerance threshold

may force macroinvertebrate larvae to migrate out of

the hypoxic zone (Wülker 1961) and to become absent

from these areas (Heinis andDavids 1993). Itmay even

lead to the complete collapse of the benthic fauna

(Brodersen et al. 2004) and to the establishment of a

stable hypoxic state. Such shifts to a hypoxic state are

often difficult to reverse (Millet et al. 2010). Frossard

et al. (2013) found that the deep layers of the water

column in a sub-alpine lake remained hypoxic despite a

large reduction in nutrient input. The disappearance of

benthic consumers (such as chironomid larvae;

Diptera, Chironomidae) due to lack of oxygen may

have considerable consequences for the functioning of

the whole lake. This may disrupt the benthic–pelagic

trophic coupling (Gratton and Vander Zanden 2009;

Wagner et al. 2012) affecting the whole aquatic food

web up to top-predators (Covich et al. 1999). Under-

standing and detecting the collapse of benthic com-

munities would be of great value for a lake manager.

The detection of upcoming regime shifts has

recently attracted a lot of attention, and indicators

have been developed that can signal impending

sudden ecosystem changes (Scheffer et al. 2009;

Dakos et al. 2015). Such early-warning signals (EWS)

quantify statistical changes in ecosystem dynamics

that are caused by critical slowing down (Wissel 1984)

or flickering (Scheffer et al. 2009). Critical slowing

down means that temporal dynamics in a system

become sluggish close to an impending transition,

whereas flickering corresponds to alternative flips

from one attraction basin to another in the vicinity of

an impending shift (Dakos et al. 2013). Both phenom-

ena lead to a rising variance (Carpenter and Brock

2006), whereas critical slowing down also causes an

increase in autocorrelation (Held and Kleinen 2004).

These two indicators were shown to signal trophic

cascades in lakes (Carpenter et al. 2011), shifts to lake

eutrophication (Wang et al. 2012) and plankton

collapses in experimental populations (Drake and

Griffen 2010; Veraart et al. 2011).

Despite recent modeling techniques (Carpenter

et al. 2014) and analysis of remotely sensored lake

variables (Batt et al. 2013), the practical use of EWS in

ecosystem management for detecting upcoming

regime shifts is still limited. Part of the reason is that

EWS require long-term and high-resolution monitor-

ing data (Dakos et al. 2015). Unfortunately, most

natural ecosystems, including freshwater lakes, have

been monitored for a too short time period and at low

temporal resolution. Thus, our ability to evaluate the
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power and use of EWS in detecting lake regime shifts

still lies in retrospective analysis of past records.

Paleolimnological approaches use lake sediments

as ecological archives to understand lake processes

and to compensate for the lack of monitoring data in

freshwater lakes (Smol 1992). Because of their high

chitin content, the anterior part of the chironomid

larval exoskeleton (the head capsule, HC) is well

preserved in lake sediments, and analysis of chirono-

mid remains serves as a powerful proxy to track long-

term changes in oxygen conditions in the deepest part

of lakes (Quinlan et al. 1998; Little et al. 2000;

Brodersen et al. 2008). Oxygen demand varies widely

among chironomid species (Brodersen et al. 2004;

Luoto and Salonen 2010), and oxygen concentrations

are one of the main factors that regulate chironomid

communities (Verbruggen et al. 2011). At the same

time, sedimentological analysis can be used to recon-

struct environmental conditions for chironomid

assemblages, such as organic carbon content in lake

sediments that partly reflects the potential of bacterial

oxygen consumption at the water/sediment interface

(Meyers and Ishiwatari 1993), and sedimentary pig-

ments that reflect lake nutrient concentrations (Guil-

izzoni et al. 2011). When combined, chironomid

remains and sedimentological analyses allow us to

reconstruct the dynamic of lake benthic functioning

and to understand its controlling factors (Belle et al.

2016a).

Here, we study the abrupt collapse in chironomid

assemblages driven by eutrophication using EWS on

paleolimnological data. We first reconstructed sub-

fossil chironomid assemblages, sediment organic

carbon content and sedimentary pigments over the

last 150 years in a sub-alpine lake. We then analyzed

the temporal dynamics of chironomid assemblages to

identify regime shifts in the chironomid assemblage

composition and to explore their controlling factors.

Lastly, we tested whether an abrupt shift in chirono-

mid assemblages could be detected in advance by

estimating changes in variance and autocorrelation in

the paleolimnological records.

Methods

Study site and core chronology

Lake Remoray (46�4601200N; 6�1504900E) is a sub-

alpine lake (95 ha) located in the Jura Mountains

(eastern France) with a maximal water depth of 27 m

(Fig. 1a). The bedrock of its catchment is composed of

a carbonate substratum. While the lake is dimictic, the

profundal zone exhibits anoxic conditions at the end of

summer and winter stratifications (Fig. 1b). Previous

studies have revealed the absence of benthic organ-

isms in the deepest part of the lake (Verneaux V.

unpublished data). Belle et al. (2016b) had only
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Fig. 1 a Location and bathymetric map of Lake Remoray. In

the bathymetric map, black circle marks the coring position at

the maximal water depth. b Oxygen profile measured on

September 26, 2014, at the vertical of maximum water depth.

c Age–depth relationship and standard uncertainty estimations

of the Rem07_P1 core using a constant rate of supply (CRS)

model. Gray bands indicate the two peaks of 137Cs

contamination

Aquat Ecol (2017) 51:307–319 309

123



suggested the disappearance of chironomid remains

from the profundal zone at ca. AD 1980 (Anno

Domini) due to agricultural activities, as there was no

reconstruction of chironomid paleodiet after 1980.

We collected a short sediment core (196 cm) in the

deepest part of the lake using a gravity corer in 2007

(UWITEC, 63 mm of diameter) at 27 m of water

depth (Fig. 1a). The sediment dating of the last

150 years was performed using radiometric methods

(based on combined measurements of 210Pb and 137Cs

activities). 210Pb measurements were quantified using

alpha spectrometry (MyCore Scientific Inc., Canada),

and 137Cs measurements using gamma spectrometry

(Radionuclide Unit, Chrono-Environment, France).

The age–depth model and standard uncertainty esti-

mations were then estimated with a constant rate of

supply model (CRS; Appleby and Oldfield 1978).

Reliability of the age–depth model was checked using

the 137Cs contamination record. Two peaks can be

easily identified in the Jura Mountains (Belle et al.

2014) corresponding to the Chernobyl nuclear acci-

dent (AD 1986) and the maximum fallout intensity of

atmospheric nuclear weapon tests (AD 1963). These

two characteristic peaks of 137Cs have been identified

in the sediment core between 6 and 6.5 cm and

between 9.5 and 10 cm depth in core corresponding to

the contaminations of AD 1986 and AD 1963,

respectively. The peak depths intercepted the uncer-

tainty shell of the age–depth model confirming the

reliability of the model (Fig. 1c). Hereafter, all ages

were expressed in calendar years (AD).

Chironomid remains and sediment characteristics

For the chironomid analysis, the uppermost 21.5 cm

was divided into 43 contiguous samples of 0.5 cm

thickness. Samples were successively rinsed with

NaOH (10%) and HCl (10%) solutions and sieved

through a 100-lm mesh. Chironomid remains were

hand-sorted from the sieving residue under a stere-

omicroscope and mounted in aqueous agent on

microscope slides. Head capsules were identified

under microscope using keys provided by Rieradevall

and Brooks (2001) and Brooks et al. (2007). The

composition of the chironomid assemblages was

expressed as a percentage of each taxon of the total

numbers of HC. Only taxa occurring in at least two

samples and with a maximum relative abundance

greater than 2.5% were included in the analysis

(Walker 2001). To avoid any potential misleading

interpretations due to changes in related morphotypes,

chironomid assemblages were also expressed in terms

of HC accumulation rates (in numbers of HC

100 cm-2 year-1).

Sediment core was also sliced on 11 contiguous

samples of 2 cm thickness for sedimentological anal-

ysis. Organic carbon content in lake sediments was

quantified using a vario TOC cube analyzer (Elemen-

tar; hereafter Corg and expressed in percentage %).

Sediment samples were dried at 60 �C for 3 days prior

to analysis and reduced to a fine powder using a

mortar. Samples were then treated to remove any

carbonate content by the gentle addition (100 lL) of
HCl solution (3.7%) until the effervescence stopped.

Sedimentary pigments were extracted from about 1 g

of fresh sediments, overnight under nitrogen, with a

solution of acetone and water (90:10) and were then

centrifuged at 3000 rpm for 10 min. Total carotenoids

(TC) were quantified from the extract via spectropho-

tometry and were expressed in milligrams per gram of

organic matter (mg g-1 of OM; Guilizzoni et al.

2011).

Stable isotopic carbon composition of sedimentary

organic carbon (d13COM) was analyzed using an

isotope ratio mass spectrometer interfaced with an

elemental analyzer (EA-IRMS). Prior to analysis,

carbonate removal was necessary by acid fumigation

(with a concentrated solution of HCl) following Belle

et al. (2014). The results are expressed as the delta

notation with Vienna Pee Dee Belemnite as the

standard: d13C (%) = (Rsample/Rstandard - 1) 9 1000,

where R = 13C/12C. The replication of sample mea-

surements from standards produced analytical errors

(1r) of ±0.24 % (n = 10). Lastly, Corg, TC and

d13COM values were interpolated using a linear

regression to produce the same number of data per

descriptors (n = 43) in order to allow statistical

analyses.

Chironomid dynamics and driving factors

Two zones, defined by major patterns in chironomid

assemblage composition (see Results), were deter-

mined by constrained hierarchical cluster analysis

using a Bray–Curtis distance and a CONISS linkage

method (Rioja package for R) on the selected assem-

blages (based on theminimum frequency criteria). The

significance of the zones was assessed using the
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broken-stick model (Bennett 1996). Detrended corre-

spondence analysis (DCA) was performed on the

chironomid assemblages to assess the compositional

turnover and to select the appropriate ordination

method (Legendre and Birks 2012). As the length of

the first axis of the DCA was short (less than about 2.5

SD) and implied a low assemblage variation, we used

a linear approach (Euclidean distance) of principal

component analysis (PCA) on the chironomid assem-

blage data using the ade4 package (Dray and Dufour

2007) in R v. 3.1.2 (R Core Team 2014). The broken-

stick model (Bennett 1996) was used to check the

importance of the first PCA axis (PCA1). The PCA1

scores (expressing the percent variance explained)

were used as proxy of the chironomid temporal

variability. Eigenvalues of PCA1 as well as the

variable contributions to PCA1 were also calculated.

We only considered organic matter and temperature

as the main drivers of chironomid assemblages. We

did not consider precipitation or macrophyte presence

because their effect on benthic assemblages in this

kind of sub-alpine deep lakes can be considered

minimal (Verbruggen et al. 2011). We estimated the

relationships between Corg and climate data with

PCA1 using a generalized additive model (Simpson

and Anderson 2009), with forward selection

(a\ 0.05). Local climate over the last 150 years

was described using the annual air temperature

extracted from the gridded HISTALP dataset (Auer

et al. 2007).

Early-warning signals

The chironomid time series were divided into two

datasets according to the detected zones (see section

‘‘Chironomid dynamics and driving factors’’ above).

Only data prior to the shift in the composition of the

chironomid assemblages were considered for EWS

analysis (corresponding to 26 samples). As variation

in sedimentation rate can affect the constancy in

resolution of the paleorecord over time and introduce

bias in the estimation of EWS (Carstensen et al. 2013),

we checked the evolution of the number of years per

sample in our record. We found a temporal resolution

of 2 years per sample prior to the shift. Thus, samples

with a lower temporal resolution than 2 (±1 according

to the chronological uncertainty) years per sample

were removed from the time series. After this correc-

tion, six samples were removed and 20 contiguous

samples (data points) were conserved for statistical

analysis.

Variance (as standard deviation; SD) and temporal

autocorrelation (as the coefficient of a first-order auto-

regressive model; AR1) were measured within rolling

windows (Dakos et al. 2012) of a time span of 16, 20

and 24 years (corresponding to 8, 10 and 12 samples,

respectively). Indicators were calculated every 2 years

(with a forward step of 1 sample). Indicators were

measured from the relative abundances and accumu-

lation rates of Sergentia coracina type (the dominant

chironomid taxon) and from the PCA1 scores (as an

indicator of the community response). SD and AR1

were measured after linear detrending along the time

series (Dakos et al. 2012). The trend of the indicators

values was quantified by a Kendall rank correlation

test (McLeod 2011). We assessed the significance of

the observed trends in variance and autocorrelation by

fitting the best auto-regressive moving average model

(ARMA) to the original data based on Akaı̈ke

information criterion (AIC) to generate 100 surrogate

time series using the early warnings package for R

(Dakos et al. 2012). We calculated Kendall s corre-

lation coefficients for each surrogate time series, and

we determined significance by comparing the trend

estimated in the empirical time series to the distribu-

tion of the surrogate trends (Dakos et al. 2012).

All statistical analysis and figures were done using

R 3.1.2 statistical software (R Core Team 2014).

Results

Seven morphotypes met the minimum frequency

criteria for inclusion in the statistical analysis: Glyp-

totendipes pallens type, Tanytarsus lugens type,

Cladotanytarsus mancus type, Tanytarsus ssp., Pro-

cladius, Paratanytarsus and Sergentia coracina type

(Fig. 2a). Tanytarsus lugens type, Procladius,

Paratanytarsus and Sergentia coracina type are

considered to be profundal taxa, whereas Glypto-

tendipes pallens type, Cladotanytarsus mancus type,

Tanytarsus ssp. are assumed to be mainly littoral taxa

and are physically eroded from the shallower part of

Lake Remoray where large macrophyte areas were

observed (Magnin 1904). Cluster analysis on these

assemblages (Bray–Curtis distance and CONISS

linkage method) revealed two significant zones, and

the transition between these two zones occurred
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abruptly at ca. 1980 (Fig. 2a). Prior to the shift, the

relative abundances of chironomid assemblages were

quite constant over 100 years and were dominated by

the Sergentia coracina type (with an average percent-

age around 67 ± 13%). After the shift, the relative

abundance and accumulation rates of this dominant

taxon collapsed and remained null until the top of the

sediment core (Fig. 2a). The first axis of PCA (PCA1)

accounted for 31% of the variability of chironomid

assemblages. This was the sole important axis of the

PCA according to the broken-stick model. Sergentia

coracina type contributed the most to the PCA1 (37%

of the overall variability; Fig. 2b). High relative

abundance of Sergentia coracina type was associated

with positive PCA1 samples scores, while negative

PCA1 scores mainly corresponded to high relative

abundance of Procladius, Tanytarsus ssp. and

Cladotanytarsus mancus type (accounting for 19, 16

and 8% of the overall variability, respectively;

Fig. 2c). The other littoral or sub-littoral taxa exhib-

ited the lowest values of contribution to the PCA1

variability (\to 8%). PCA1 scores were positive from

1890 to ca. 1980, but drastically decreased and became

mostly negative after ca. 1980 marking clearly the

shift in the composition of the chironomid assem-

blages (Fig. 2a).

Local climate was characterized by a significant

warming (mean air temperature) starting in the late

1980 s (Fig. 3a). Organic content in lake sediments

(Corg) was stable at about 3% from 1890 to ca. 1950,

but showed a constant and gradual increase from 1920

onwards reaching a maximum in the early 2000s (up to
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Fig. 2 a Chironomid record of Lake Remoray (Rem07_P1

core) over the last 150 years, and dendrogram based on

chironomid assemblages, constructed by hierarchical clustering

analysis (Bray–Curtis distance, CONISS linkage method). The

dashed line indicates a significant change according to the

broken-stick model. Accumulation rates of Sergentia coracina

type (expressed in HC.100 cm2 years-1) b Principal component

analysis (PCA) performed on the relative abundances of the

chironomid assemblages. c Factorial map of the PCA (PCA2 vs.

PCA1) where circles indicate the samples prior to the abrupt

shift, whereas square symbols represent the samples after the

shift. Bold labels represent the samples corresponding to the

transition between the two zones
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5.7%; Fig. 3a). There was a steep rise around 1950

(Fig. 3a) that may be interpreted as a step-wise

increase in organic content. However, the gradual

trends in both sedimentary pigments (TC) and organic

matter d13C data (d13COM) (Fig. 3a)—that were both

correlated with Corg—do not support the idea that the

organic content experienced some sort of a sudden

event. Sedimentary pigments TC and d13COM were

negatively correlated. The d13COM values ranged

between -33.4 and -30.4%, whereas TC values

were comprised between 1.1 and 4.9 mg g-1 of OM

(Fig. 3a). Finally, a generalized additive model

showed a strong nonlinear relationship (F = 14.1,

p\ 0.001, edf = 3.82 corresponding to a simple

sigmoid curve) between organic content in lake

sediments (Corg) and chironomid assemblages

(PCA1) explaining 64.2% of the overall variability

(Fig. 3b).

We estimated standard deviation (SD) and auto-

correlation at-lag-1 (AR1) of the relative abundances

and accumulation rates of Sergentia coracina type

and PCA1 scores in 13 rolling windows of 8 samples

(every rolling window spans a period of 16 years;

Fig. 4a, c). We found increasing trends in SD for both

detrended Sergentia relative abundances and PCA1

scores (Kendall rank correlation test; s = 0.516;

p\ 0.05 and s = 0.714; p\ 0.05, respectively,

Fig. 4b, d), whereas raw data (not detrended) revealed

weaker trends (Kendall rank correlation test;

s = 0.098; p[ 0.05 and s = 0.473; p\ 0.05 for

Sergentia and PCA1, respectively). These positive

trends were marginally significant for both Sergentia

relative abundances and PCA1 scores (p = 0.08 and

p = 0.05, respectively, ESM 1 and 3) when compared

to trends estimated from random realizations of a

best-fitted ARMA model to the empirical data (see

Methods). The trend was also confirmed by the SD

analysis of accumulation rates of Sergentia coracina

type (s = 0.67; p\ 0.05). We confirmed trends in

SD also when using a rolling window size of 10 and

12 samples (corresponding to a time span of 20 and

24 years, respectively; ESM 1 and ESM 3). Positive

trends were also found for AR1 applied to the

Sergentia relative abundances (ESM 2), but were

far from significant when AR1 was estimated on the

PCA1 scores (ESM 4). Estimates of AR1 turned from

negative to positive close to the collapse in chirono-

mid assemblages making their trends difficult to

interpret.

Discussion

Deep-water hypoxia can drive numerous changes in

lake functioning, including increases in greenhouse

gas emissions, fish mortality or benthic community

collapse. As oxygen depletion in lakes is forecasted to

increase under current trends of eutrophication and

global warming, here we studied the potential for

detecting the collapse of chironomid assemblages

caused by oxygen depletion using early-warning

signals in a paleolimnological record from a sub-

alpine lake.

Chironomid collapse and eutrophication

The reconstruction of the chironomid dynamics in

Lake Remoray revealed a sudden change in assem-

blages at ca. 1980 characterized by the disappearance

of Sergentia coracina type, the dominant chironomid

taxon (Fig. 2a). This abrupt change was not a conse-

quence of some sort of strong disturbance but rather

driven by a gradual increase in organic matter content

in lake sediments (Fig. 3a, b). The negative d13COM

trend before 1980 indicated that sediments became

increasingly enriched in lake-produced organic matter

(Fig. 3a, Meyers and Ishiwatari 1993), probably in

response to a rise in nutrient availability in the water

column as manifested by the positive trend in TC

values (Fig. 3a, Guilizzoni et al. 2011). This observa-

tion is in line with Belle et al. (2016a) who have

hypothesized that intensification of agricultural activ-

ities in the catchment of Lake Remoray during the

middle of the twentieth century has probably caused

an important nutrient runoff and an increase in

lacustrine productivity. Thus, eutrophication appears

to be the driver behind the shift in the chironomid

assemblages. In this context, small increase in relative

abundances of littoral taxa could be induced by an

artifact caused by the disappearance of Sergentia

coracina type and the rise in the littoral secondary

production as a direct consequence of lake

eutrophication.

The mechanics between the chironomid collapse

and eutrophication are probably related to the oxygen

dynamics in the lake. Alternative hypotheses, like

susceptibility to a fish predator, seem improbable, as

there was no information on benthic predator intro-

duction at the time in the lake. Nonetheless, we cannot

unequivocally exclude other mechanism, as
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unfortunately, we cannot reconstruct the oxygen

dynamics based on the paleorecord. Nonetheless,

organic matter can serve as proxy to hypothesize the

chain of events leading to the chironomids collapse.

The rise of organic matter content in the sediment may

lead to an increase in bacterial respiration rates

inducing oxygen depletion in the profundal zone

(Charlton 1980; Matzinger et al. 2010; Müller et al.

2012). Sergentia coracina type (the dominant chi-

ronomid taxon) is known to be quite tolerant to
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Fig. 3 a Trends in chironomid assemblages (PCA1), organic

carbon content in lake sediments (Corg, %) and mean air

temperature (�C). Temporal dynamics of total carotenoid

concentrations (TC, expressed in mg g-1 of OM) and carbon

isotopic composition of organic matter (d13COM; %). Solid line

is a local polynomial regression (loess parameters: size of the

neighborhood window = 60% of the data; polynomials

degree = 2). Horizontal dashed line indicates the significant

abrupt change in the composition of the chironomid assem-

blages. In panels of Corg, TC and d13COM, black squares

correspond to the measured data, whereas white squares

represent the interpolated data. b Fitted smooth function

between organic carbon content (Corg) and chironomid assem-

blages (PCA1 scores) from a general additive model (GAM).

Gray surface marks the 95% uncertainty interval of the fitted

function. On the x-axis, ticks show the distribution of observed

values for the two variables. Number in parenthesis on the y-axis

(3.82) is the effective degrees of freedom (edf) of the smooth

function
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hypoxic conditions (oxy-tolerant taxon; Brodersen

and Quinlan 2006). Several studies define the toler-

ance threshold of oxygen concentrations for the genus

Sergentia between 2.7 mg L-1 (Quinlan and Smol

2001) and\4 mg L-1 (Luoto and Salonen 2010). Our

results indicate that oxygen concentrations in the

profundal zone—driven by increased accumulation of

organic matter—reached this critical threshold around

1980 causing the disappearance of Sergentia coracina

type (Fig. 2a). Once this threshold was crossed,

organic matter concentrations kept increasing (up to

5.7%; Fig. 3a) probably inducing further depletion in

oxygen concentrations that led to the establishment of

the current anoxic state in the deep part of lake

(Fig. 1b). The rest of the chironomid taxa after the

shift did not seem to be affected strongly by the

oxygen limitation. This can be explained, first by the

fact that the increase in the three littoral taxa is mostly

due to transport from the littoral zone where a rise in

secondary production as a consequence of eutrophi-

cation might have increased their abundance. The rest

three profundal taxa most probably did suffer from the

lack of oxygen, but their contribution to community

composition did not change much (Fig. 2a), as the

disappearance of Sergentia coracina type numerically

strengthens their percentage contribution.

Rising variance as an early indicator of chironomid

collapse

We estimated early-warning signals (i.e., variance and

autocorrelation) on the relative abundances and accu-

mulation rates of Sergentia coracina type as well as on

the PCA1 scores to test whether we can detect the

impeding collapse in chironomid assemblages. In

principle, changes in the dynamics of the PCA1 score

would provide the necessary information for detecting

the approaching assemblage shift. As Sergentia

coracina type, however, was the taxon that suffered

the strongest change, we also explored the indicators

in its dynamics to compare whether signals at the

assemblage level were reflected predominantly in the

Sergentia coracina taxon. We found rising trends in

variance but weaker increasing trends in autocorrela-

tion prior to the collapse. Despite the noisy patterns,

variance consistently increases and the trends are close

to significant (ESM 1 and ESM 3). Trends in

autocorrelations are less consistent as they mark a

shift from negative to positive values (ESM 2 and

ESM 4), which might be consequence of a sparsely

resolved record, or flickering like it has been also

found elsewhere (Wang et al. 2012). Nonetheless,

taken these results together, they are in line at least
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Fig. 4 a Time series of the relative abundance of Sergentia

coracina type in the benthic community (%). Light marked dots

are the samples not used for estimating early warnings because

of their low temporal aggregation. b Temporal trend in variance

(measured as standard deviation) of Sergentia coracina type

after linear detrending within a rolling window of 16 years (8

samples). c Time series of PCA1 scores. Light marked dots are

the samples not used for estimating early warnings because of

their low temporal aggregation. d Temporal trend in variance

(measured as standard deviation) of PCA1 scores after linear

detrending within a rolling window of 16 years (8 samples).

Solid line is a local polynomial regression (loess parameters:

size of the neighborhood window = 80% of the data; polyno-

mials degree = 2). Vertical dashed line indicates the significant

abrupt change in the composition of the chironomid assem-

blages. Kendall s reports the rank correlation trend of standard

deviation and its significance p
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with the hypothesis of greater variability close to a

regime shift (Hare and Mantua 2000; Carpenter and

Brock 2006; Carpenter et al. 2011; Pace et al. 2013).

Indeed, we do find a rise in variance already few

decades before the observed chironomid collapse

(Fig. 4b), as it has been shown in paleorecords prior

to lake eutrophication (Wang et al. 2012) and in

observational data before community shifts in marine

environments (Wouters et al. 2015).

EWS as a tool for ecosystem managers

Although EWS are a promising tool for ecosystem

managers to detect impending abrupt shifts, their

robust interpretation most likely will suffer from

incomplete and low-resolution time series. A recent

study has shown that even in some of the best

monitored lakes with well-documented regime shifts,

indicator patterns like the ones we analyzed here do

not consistently signal in advance the registered shifts

(Gsell et al. 2016). More importantly, rising variance

and autocorrelation may be found also prior to abrupt

but continuous transitions in ecosystems without

alternative stable states (Kefi et al. 2013). This means

that in our study, it is difficult to discriminate whether

the abrupt shift represents a transition with bistability

(Fig. 5a), or not (Fig. 5b). Such difference has

important implications when it comes to recovery to

a well-oxygenated profundal zone state allowing the

re-colonization by chironomid larvae. In the case of a

transition without bistability (Fig. 5a), restoration

back to the pre-collapse state will occur at the same

environmental conditions that the chironomid collapse

took place (Fig. 5a). However, in the case of a

transition with bistability, the recovery trajectory

becomes complicated due to hysteresis (Scheffer

et al. 2001): Environmental conditions must be

restored at even lower conditions than the ones at

which the regime shift occurred (Fig. 5b). For Lake

Remoray, we found a nonlinear but continuous
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relationship between PCA1 scores and organic matter

(Fig. 3b) indicating a threshold response rather than

bistability. Nonetheless, a reduction in organic matter

content in lake sediments does not necessarily lead to

immediate higher oxygen levels at the water/sediment

interface. Oxygen control in lakes is multifactorial

resulting in maintaining a hypoxic (or anoxic) state

(Frossard et al. 2013). For example, warming (as we

observed in the data from 1990; Fig. 3a) could

increase thermal stratification and, thus, delay changes

in hypolimnetic oxygen conditions (Jankowski et al.

2006; Wilhem and Adrain 2007). Such conditions

would contribute to a high re-colonization time of

deep lake sediments by benthic organisms and a

potential hysteretic effect on recovering to a pre-

collapse state.

It is difficult to unequivocally detect an approach-

ing abrupt shift to an alternative state. Still, being able

to identify such precursors in observational records

can be of use for ecosystem management especially

when it comes to understanding nonlinear ecosystem

responses to stress. Combining reconstructed environ-

mental conditions with changes in the pattern of

ecological dynamics, as we show in this work, could

provide insights into lake oxygen dynamics, their

controlling factors and impact on lake communities.
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