
Medium- and long-term temporal trends in the fish
assemblage inhabiting a surf zone, analyzed by Bayesian
generalized additive models

Ana Carolina Braga Martins • Paul

Gerhard Kinas • Juliano Cesar Marangoni •

Leonardo Evangelista Moraes • João Paes Vieira

Received: 5 September 2014 / Accepted: 19 January 2015 / Published online: 25 January 2015

� Springer Science+Business Media Dordrecht 2015

Abstract The present study characterizes the fish

assemblage in the surf zone of Cassino Beach, Rio

Grande, Brazil, and analyzes temporal fluctuations in

richness and abundance of these species in medium

(months) and long terms (years), associating them also

with abiotic covariates. Data were collected monthly

between 1996 and 2012 at two locations. Bayesian

generalized additive models (GAMs) were used as

statistical tool, placing this study among few that have

used Bayesian GAMs in Ecology. Our results show a

decrease in both species richness and abundance of the

most representative species, over the last 16 years, but

no significant distinction between locations. Water

temperature and salinity along with seasonality were

the statistically most influential explanatory covariates

to describe fluctuations in richness and abundance.

Higher discharge rates of the three main rivers that

flow into Patos Lagoon (Jacuı́, Taquari, Camaquã)

were associated with increased richness and abun-

dance of some species in the assemblage. Hence, our

findings show that medium- and long-term fluctua-

tions in richness and species abundance are controlled

by abiotic factors related to seasonal cycles (temper-

ature) and productivity of the ecosystem. Long-term

changes seem to be also related to man-induced factors

and climate change; but further research is needed.

Keywords Species richness � Abundance �
Covariates � Bayesian GAM

Introduction

Species richness, defined as the total number of

species in a unit of area (Brown et al. 2007), is a

parameter of some concern in conservation biology,

biogeography and community ecology (Royle and

Dorazio 2008). It is the simplest way to describe

community and regional diversity (Magurran 2004). A

vast amount of ecological research has been under-

taken using species richness as a measure to under-

stand what affects, and is affected by, biodiversity. At

the small spatial scale, species richness is generally
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Km. 8, Rio Grande 96201-900, Brazil

e-mail: ana.carolbm@hotmail.com

P. G. Kinas � J. C. Marangoni
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used as a measure of diversity within a single

ecological community, habitat or microhabitat (Brown

et al. 2007). These authors cite as main factors of

small-scale variation in species richness: (1) geo-

graphic factors; (2) biotic factors such as competition

or predation; and (3) abiotic factors, such as temper-

ature and salinity. Since probability of detection

differs among species, all measures of species richness

have a positive correlation with sample size (Silvy

2012); therefore, it is important to also take the effects

of abundance into account (Magurran 2004).

Among the main ways to analyze species richness

are diversity indices (Hubálek 2000) and numerical

modeling (Royle and Dorazio 2008). The trouble with

diversity indices is that there are several to choose

from (Margalef 1958; Menhinick 1964; McIntosh

1967; etc.). Alternatively, in numerical modeling,

species richness can be characterized by a Poisson

distribution and the variation in the latent ecological

process described statistically by covariates (Royle

and Dorazio 2008; Kinas and Andrade 2010). This is

the approach used here.

Much of contemporary ecological theory, conser-

vation biology and natural resource management are

further concerned with variation in the abundance of

species (Royle and Dorazio 2008). While richness

shows which individual species are present in space

and time (Brown et al. 2007), the abundance of

individuals associated with other parameters governs

the dynamics of this process (Royle and Dorazio

2008). The typical distribution assumed for modeling

abundance is also Poisson. Other widely used discrete

distributions are Binomial and Negative Binomial.

Among continuous distributions, the Normal, log-

Normal and Gamma can be cited (Kéry 2010).

Statistical analysis of ecological data with general-

ized additive models (GAMs) has been recognized as a

powerful statistical tool for exploratory data analysis

(Schoeman and Richardson 2002; Venables and

Dichmont 2004; Guisan and Thuiller 2005; Dalla

Rosa et al. 2012). Despite the versatility of linear

models (LMs) and generalized linear models (GLMs)

for data analysis and prediction, the restriction to a

linear structure in the covariates is, however, a

limitation, circumvented by GAMs. This is so because

GAMs go a step further and use smoothed functions

(splines) to model nonlinear relationships for some or

all the explanatory variables (Hastie and Tibshirani

1990; Wood 2006a).

The statistical analyses of LMs, GLMs and GAMs

can be made by conventional maximum likelihood

inference (Edwards 1972) or, alternatively, by Bayes-

ian methods (Gelman et al. 2013). For LMs and

GLMs, both approaches (classical and Bayesian) are

already widely used in ecology and environmental

science (Faraway 2006; Royle and Dorazio 2008).

Comparatively, Bayesian GAMs are still rare and are,

therefore, a methodological highlight in the present

work.

The growing interest in Bayesian statistics in many

fields of applied sciences, particularly ecology, is

partially explained by (the Bayesian) definition of

probability as a coherent metric for uncertainty,

combined with the conceptually rigorous structure of

statistical inference defined plainly as decision-mak-

ing in the presence of uncertainty—in contrast to the

largely ad hoc procedures of conventional frequentist

statistics (Lindley 2000). The popularization of spe-

cialized software to perform complex mathematical

operations required in some Bayesian numerical

calculations further helps explain this expansion in

ecology (McCarthy 2007; Kinas and Andrade 2010).

Sandy beaches constitute most of the coastal areas

of the word, with surf zones characterized as the area

between the outer limit of the breaking waves and the

beach shoreline (Brown and McLachlan 1990). Stud-

ies of the ichthyofauna in marine surf zones have

reported that these fish assemblages are highly vari-

able and dominated by a small number of species made

up largely of juveniles (Ayvazian and Hyndes 1995;

Gibson et al.1996; Vasconcellos et al. 2007). Similar

to estuarine beaches, marine surf zones are recognized

as important nursery areas for several species (Bell

et al. 2001; Strydom and d’Hotman 2005), and the

recruitment variability in these habitats is related to a

wide range of biotic and abiotic factors (e.g., food

supply, predation risk, temperature and salinity)

(Taylor et al. 2007; Haynes et al. 2010; Able et al.

2011).

Systematic long-term sampling programs contain

valuable information to characterize most assuredly

the community structure and simultaneously monitor

changes in medium term (months) and long term

(years). Rare or irregular events that affect fish

populations, but are spread over large time intervals,

can only be evaluated by long-term studies. This study

uses a 16-year long database of the ichthyofauna

inhabiting the surf zone of a sandy beach in southern
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Brazil. Our working hypothesis is that variations in the

surf-zone fish assemblage richness as well as changes

in abundance of selected groups of species show

associations, not necessarily linear, with environmen-

tal factors and that these features can be captured by

GAMs.

Materials and methods

Study area

This study focuses on Cassino Beach, located in

southern Brazil (32�100S, 52�200W) (Fig. 1). Cassino

is a subtropical sandy beach strongly influenced by

seasonal variation in physico-chemical parameters. In

general, observed temperatures and salinities are

significantly higher in summer than in winter (Lima

and Vieira 2009). Along this beach, the morphody-

namic stages vary between dissipative and reflective

and are seasonally influenced by the action of winds

and waves, which affect the dynamics of the surf zone

(Calliari et al. 2001); additionally, freshwater flow

from the Patos Lagoon into the adjacent coastal marine

area that may increase during periods of rain (Moresco

and Bemvenuti 2006) and El Niño (Garcia and Vieira

2001).

Data description

Samples were collected monthly in shallow waters

(depth\20 m) from January 1997 to August 2012 at two

fixed stations (1) CB1 (near Molhe Oeste) and (2) CB2

(near Estação Marinha de Aquacultura—EMA/FURG)

(Fig. 1). From August to December of 1996, samples

were collected only at station CB1. The sampling

procedure is part of a long-term ecological research

project (ICTIO/PELD CNPq-MCT, 1996–2012). The

beach morphologies at both stations are the same; but

CB1 is situated close to the outlet of the Patos Lagoon,

being more sheltered in comparison with CB2 situated

about 10 km south of this outlet.

Biological samplings (n = 5 hauls(site)-1

(month)-1) were performed at each site using a 9-m

beach seine (13-mm bar mesh in the wings and 5 mm in

the center). All applicable institutional and national

guidelines for the care and use of animals were

followed. Samplings had the ‘‘authorization for scien-

tific purpose activities’’ n� 17762-1 of IBAMA-SIS-

BIO. Specimens were fixed in formalin in the field, due

to long time gap between sampling and the identifica-

tion process to the lowest possible taxonomic level

conducted in the laboratory. Along with biological

sampling, measurements on water conditions (temper-

ature, salinity and transparency) were made in situ. Data

on flow of the three main rivers of the Patos–Mirim

system (Jacuı́, Taquari, Camaquã) for the study period

(1996-2012) were obtained with the National Water

Agency (ANA—hidroweb.ana.gov.br). The monthly

discharges of these three rivers combined correspond to

70 % of flow throughout the watershed (Vaz et al.

2006). Therefore, it was used as an indicator of the flow

of the Patos Lagoon Estuary into the surf zone of

Cassino Beach. Monthly values of zonal (east–west)

and meridional (north–south) wind components at the

sea surface (32�S; 52�W) were obtained from the

Division of Environmental Sciences Research Centre

for Fisheries of NOAA (‘‘National Oceanic and Atmo-

spheric Administration’’—http://las.pfeg.noaa.gov/

las6_5/servlets/dataset).

Data analysis

Fluctuations in total abundance and species richness of

fish in the surf zone of Cassino Beach over the past

16 years were associated with the covariates month,

year, location, surface water temperature in �C

Fig. 1 Location of the two sites (CB1, CB2) where samplings

from the surf zone of Cassino Beach, Rio Grande, RS, were

performed, during the study period (1996–2012)
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(temperature), water salinity (salinity), water trans-

parency in cm (transparency) (Secchi), zonal wind

component in m(s)-1 (zonal), meridional wind com-

ponent in m(s)-1 (meridional) and flow of the three

main rivers of the Patos-Mirim system in m3(s)-1:

Jacuı́ (jacui), Taquari (taquari), Camaquã (camaqua);

totaling 11 covariates. The model for species richness

had additionally added the covariate abundance

(monthly total number of collected specimens).

GAMs with a linear predictor composed of q linear

components and k smooth functions are defined as.

gðliÞ ¼ b0 þ b1z1i þ � � � bqzqi þ f1 x1ið Þ þ � � � fk xkið Þ

where li = E(Yi) and Yi has some distribution from

the exponential family with associated known link

function g. While Yi denotes some response variable

(in our context species richness and abundance),

z1i; . . .; zqi and x1i; . . .; xqi are qþ k covariates, the

former (z) being modeled with a strictly parametric

model and the latter (x) with smooth functions.

The Bayesian fits of the GAMs were conducted in

the free software BayesX, version 2.0.1 (Belitz et al.

2009), which uses penalized regression splines (P-

splines) as smooth functions (Eilers and Marx 1996). In

this approach, it is assumed that the unknown smooth

functions fj can be approximated by a spline of degree l

with equally spaced knots Xj;min ¼ fj0\ fj1\ ¼
\ fj;r�1 \ fjr ¼ Xj;max This spline can be written in

terms of a linear combination of m = r ? l B-spline

basis functions Bjp, which in turn are known and

calculable functions for each value in the domain xj,

that is,

fjðxjÞ ¼
Xm

p¼1

bjpBjpðxjÞ

Following the Bayesian approach, second-order

random walks were used as priors for the coefficients,

i.e., for p [ 2; bjp are given by: bjp ¼ 2bjp�1

�bjp�2 þ ujp with Gaussians errors ujp�Nð0; s2
j Þ

and diffuse priors p b1ð Þ / const, p b2ð Þ / const and

p sj

� �
� IG 0:001; 0:001ð Þ with IG ða; bÞ denoting an

inverse-gamma distribution. The degree of smooth-

ness is controlled by the variances s2
j , which corre-

spond to the inverse of the parameter k2 that is used in

the cross-validation technique of the classical

approach (Lang and Brezger 2004). The joint posterior

distribution for the set of parameters a�; b��; s�ð Þwas

obtained with Markov Chain Monte Carlo (MCMC)

stochastic simulation by the Metropolis–Hastings

algorithm. For a chain of 12,000 values, the first

2,000 were discarded to eliminate the dependence of

the initial value (burn-in period) after which each

tenth value was retained (thinning) to achieve inde-

pendence between sampled values (Kinas and And-

rade 2010). Standard diagnostic tools were applied in

preliminary analyses to check for MCMC conver-

gence (Gelman et al. 2013).

For model comparison, the Deviance information

criterion (DIC) was used (Spiegehalter et al. 2002). By

this criterion, regarding predictive power, models with

smaller value of DIC are better. A difference in DIC of

at least two units can be considered indication of

superior fit for the model with the lowest DIC

(Spiegehalter et al. 2002).

Species richness

Species richness was analyzed by a Poisson model for

the count data of number of species per area ðYiÞ, with

the natural logarithm as link function.

Yi� Poi ðliÞ

gðliÞ ¼ logðliÞ ¼ gi

¼ b0 þ f1 x1ið Þ þ f2 x2ið Þ þ f3 x3ið Þ þ � � � fk xkið Þ

Models with different combinations of covariates

were fitted. The adequacy of each variable to a spline

function or a linear structure was evaluated visually at

first. When for some covariate xj a linear structure was

suspected, another fit after replacing fj(xji) by ajxji was

performed and both alternatives compared by DIC.

Species abundance

For the analysis of abundance with all species combined,

there is a chance that abundance remains nearly constant,

while species composition keeps changing. Therefore, to

analyze abundance fluctuations more carefully, we

adopted the following strategy: (1) work only with

species that had at least 10 % frequency of occurrence in

the total database; (2) calculate some matrix of dissim-

ilarity among the species; (3) identify subsets of species

characterized by a low dissimilarity; and (4) perform

abundance modeling for each identified subset of species.

The aim was to create groups of species that have a

tendency to have occurred together over time during
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the period of data collection. We then hypothesized

that, because of their persistent co-occurrence, they

should display similar responses to factors that may

influence their abundance.

Cluster analysis of species

Cluster analysis was performed using the multivariate

ordination method of metric multidimensional scaling

(MDS) and the Jaccard similarity index based on a

presence (1) and absence (0) matrix (i.e., the similarity

between two species increases with growing numbers

of co-occurrences) (Hardle and Simar 2007). The

Jaccard similarity index has been widely used in

studies of presence–absence (Romesburg 1984). The

metric MDS finds the spatial configuration of points by

algebraic reconstruction, taking into account the

dissimilarities between these points, where the dissim-

ilarities are Euclidean distances (Chatfield and Collins

1980). Calculations were performed with the free

software Past (Hammer et al. 2001), version 2.17b.

Models for abundance

For each group of species identified by MDS, abun-

dance was modeled by GAMs. A Gaussian distribution

with identity link function was used to model the total

number of individuals (Yi). Because the number of

individuals is sometimes very large, the Gaussian

distribution combined with the identity link serves

here as an approximation to the Poisson and showed a

numerically more stable performance at fitting.

Yi�Nðli; riÞ

gðliÞ ¼ gi

¼ b0 þ f1 x1ið Þ þ f2 x2ið Þ þ f3 x3ið Þ þ � � � fk xkið Þ

Models with different combinations of variables

were tested. The adequacy of each covariate to either a

spline function or a linear structure was evaluated as

previously described.

Results

List of species

During the study period, 171,737 individuals were

collected at 343 sampling occasions. Sixty-four taxa

were found, nine identified only to the family level,

and 55 identified to the species level. The eight most

abundant species, Mugil liza, Trachinotus marginatus,

Mugil curema, Brevoortia pectinata, Mugil sp, Odon-

testhes argentinensis, Menticirrhus littoralis and Ath-

erinella brasiliensis, comprise 97.1 % of all

individuals captured. Regarding the frequency of

occurrence, 13 species were present in at least 10 %

of the samples (Table 1).

Species richness

The best GAM for species richness models richness as

a function of month, year, transparency, temperature,

salinity, jacui, taquari, camaqua and abundance

(Model 1—Table 2). The results show that, on a

monthly scale, the number of species displays seasonal

variation, being higher especially in the austral

summer months, with a decrease starting in April

and increasing again from October onwards. In the

long term (annual scale), species richness shows a

decreasing trend (Fig. 2).

Among the abiotic covariates, only temperature

affects variations in species richness, with peak of

species richness occurring between 20 and 25 �C

(Fig. 2). Flows jacui and camaqua display a positive

linear association with the number of species. Vari-

ables salinity, transparency and taquari also have a

linear relationship but with slope close to zero,

indicating that individually their influence is nonsig-

nificant. Nevertheless, they were maintained in the

model because, in combination with other covariates,

they improved the predictive power of the model

decreasing the DIC (Table 2). Species richness was

positively associated with abundance until about

1,000 individuals after which in flattens out (Fig. 2).

The sampling site (location), as well as the zonal

and meridional wind components, was not included in

the model, because they increased the DICs. This

indicates that sampling stations as well as values of

wind components do not help explain variations in

species richness.

Species abundance

Cluster analysis

Two distinct groups were formed by MDS (Fig. 3),

with the first two axes synthesizing about 40 % of the
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data variation. Group A is composed of species

Lycengraulis grossidens, Menticirrhus americanus,

Micropogonias furnieri, Oncopterus darwinii and

Platanichthys platana, and Group B of A. brasiliensis,

B. pectinata, M. littoralis, M. curema, M. liza, M. sp,

O. argentinensis and T. marginatus.

Group A On a monthly scale, the abundance of

species that composes Group A is higher in warmer

months and lower during colder autumn–winter

months, with the decrease starting in April,

remaining stable with low abundance until August,

when abundance increases again (Fig. 4). The

covariate year enters the best model as a linear

component, but with slope close to zero (Model 2—

Table 2), indicating that the abundance of this group

of species has remained stable over the years

(1996–2012).

Regarding temperature, a slight oscillation around

an optimum of 20 �C was found, with abundances

decreasing toward the extremes. Abundance decreases

with increasing salinity (Fig. 4), which is associated

negatively with transparency and positively with the

jacui river discharge (Model 2—Table 2).

Group B For species of group B, the covariate month

has a negative linear relationship with negative slope,

indicating that in the first months of the year

abundance is higher (Model 3—Table 2). In the long

term (year), Group B shows a decreasing trend in

abundance (Fig. 5).

This group further displays an increase in mean

abundance at salinities from 25 upwards (Fig. 5).

However, we point out that the variances in both tails

are large; this is due to the fact that there were few

sampled points with extreme salinities (B5; 35C).

Group B also has a positive association with temper-

ature. The variables transparency, taquari and cam-

aqua were included in the best fitted model because

they impacted reduction of DIC, although individually

Table 1 Abundances and relative frequencies of the species that occurred in at least 10 % of the samples collected in the surf zone of

Cassino Beach (1996–2012)

       Years       

Family Species 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 

Mugilidae Mugil liza 3444 5702 4484 3048 5747 2516 5170 4696 4793 6734 1193 741 2458 2350 2576 2574 1186 

Mugil curema  1308 140 152 3290 224 172 658 6060 3855 580 1646 1828 5483 364 1131 322 

Mugil sp  1010 277 413 3576 4 242 61 120 73 150 1005 808 823 10 8 35 

Carangidae Trachinotus marginatus 17 2830 28 2189 4023 10067 1966 4943 2375 2293 993 2128 3840 3901 711 2016 730 

Clupeidae Brevoortia pectinata 23 770 91 450 1526 589 1862 2953 1329 569 1978 280 1107 245 791 519 327 

Platanichthys platana 82 104 18 8 3 15 7 62 11   43 21     

Atherinopsidae Odontesthes argentinensis 157 207 34 156 509 113 71 77 103 1270 105 127 479 824 201 102 14 

Atherinella brasiliensis 16 1117 193 72 106 68 783 6 8 111 33 71 75 118 5 13 17 

Sciaenidae Menticirrhus littoralis 227 293 497 511 238 615 841 89 211 44 97 27 103 66 83 21 19 

Menticirrhus americanus  15  2 2 9 431 60 50 19 60 13 29  17 25 2 

Micropogonias furnieri  11 62 118 9 6 4  59 20  55 4 7  2 2 

Engraulidae Lycengraulis grossidens 20 15 4 2 2 5 5 20 2 1 24 7 15 12 587 3 16 

Pleuronectidae Oncopterus darwinii 111 47 11 25 48 88 178 8 63 8 29 2  18 28 2 7 

 
Legend: 

1 not abundant and infrequent 3 abundant and infrequent 

2 not abundant and frequent  4 abundant and frequent 

 

If the species had a frequency of occurrence above the total average occurrence in that year, it was considered frequent; if had its

abundance above the total average abundance in that year, it was considered abundant. The numbers inside the table are the total

number of caught individuals of that species in the corresponding year
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Table 2 Composition of covariates for the best models for species richness (Model 1) and abundance (Model 2—Group A, Model

3—Group B)

Models

Covariates 1 2 3

Months (Jan–Dec) S S L (-)

Years (1996–2012) S L S

Site (1–2) – – –

Water temperature S L(?) L (?)

Water salinity L S S

Water transparency L L (-) L

Zonal component of wind – – –

Meridional component of wind – – –

Jacuı́ river flow L (?) L (?) L

Taquari river flow L L L

Camaquã river flow L (?) L L

Abundance S – –

DIC 191.5 277.2 279.3

The table indicates whether the covariate was entered as a spline function (S) or linear function (L). It is indicated in parenthesis when

the variable with linear function had a statistically significant positive (?) or negative (-) influence on the response (Note: We

consider ‘‘statistically significant’’ whenever the posterior 95 % credibility interval does not cover zero)

Fig. 2 Posterior means (central line) and credibility intervals of

80 % (dotted) and 95 % (outer lines) of P-splines related to the

variables a month, b year, c surface water temperature and

d logarithm of the total abundance, of the model that describes

species richness

Aquat Ecol (2015) 49:57–69 63

123



Fig. 3 Results of MDS cluster analysis for the 13 mostly occurring species in the database (those which occurred in at least 10 % of

samples). The species to the right of coordinate 1 (y axis) were denoted as ‘‘Group A’’ and species to the left as ‘‘Group B’’

Fig. 4 Posterior means

(central line) and credibility

intervals of 80 (dotted) and

95 % (outer lines) of

P-splines related to the

variables a month and

b water salinity, for the

model which describes the

abundance of species of

Group A

Fig. 5 Posterior means

(central line) and credibility

intervals of 80 (dotted) and

95 % (outer lines) of

P-splines related to the

variables a year and b water

salinity, for the model which

describes the abundance of

species of Group B
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their influence on changes in mean abundance is

unclear (Model 3—Table 2).

Discussion

To understand which factors drive the spatial and

temporal patterns in communities is a central goal of

ecology. This study emerges as one of few to

investigate this phenomenon with the use of Bayesian

generalized additive models. To our knowledge, this is

the first such approach to be published with data from

Brazil. While there are several papers describing the

formal development of these models (Denison et al.

1998; Lin and Zhang 1999; Fahrmeir and Lang 2001;

Spiegehalter et al. 2002; Lang and Brezger 2004;

Wood 2006b), there are still only a few with applica-

tions. Examples are Guisan and Zimmermann (2000)

and Phillips et al. (2006), who applied these models to

describe geographic distribution of species.

The models, fitted here with P-splines (Eilers and

Marx 1996; Lang and Brezger 2004), proved very

amenable to the study of species richness and abun-

dance because direct visual inspection of nonlinear

relationships and predictive power of covariates can

be evaluated simultaneously. The nontrivial influence

of sample size up to about 1,000 specimens on the

observed species richness was handled easily by

simply including abundance as a covariate into the

model. The rarefaction technique is the most conse-

crated method in the comparison of the number of taxa

in samples of different size (Krebs 1989). However,

only the sampling effort (usually expressed as the total

abundance of species) is considered as a covariate by

this technique. Until recently, the comparison of the

richness-to-sampling effort ratio considering environ-

mental variables was only performed for linear

models. However, since this relationship is clearly

nonlinear, GAMs are an excellent replacement for the

rarefaction technique when comparing species rich-

ness between different sampling units.

One fundamental pattern concerning life on Earth is

the decrease of biological diversity from the equator

toward the poles (Willig et al. 2003). This helps to

explain why tropical oceans are in general biologically

diverse, while coastal regions of temperate and polar

zones are highly productive but less diverse (Caddy

and Sharp 1986). In Brazil, there are higher numbers

of species recorded in the surf zones on tropical

beaches (Itamaracá (PE)—95 species (Santana and

Severi 2009); Cabuçu (BA)—63 species (Silva et al.

2008); São Francisco do Itabapoana (RJ)—68 species

(Gomes et al. 2003)) than on the subtropical beach of

the present study (55 species). However, all share the

same striking feature of only a few dominant species.

This peculiarity had already been recognized by

Modde and Ross (1981), when they say that ‘‘surf-

zones are dominated by a small group of species, and

this organization remains constant over wide geo-

graphic areas.’’

Surf zones, especially for sandy beaches, are

uniform habitats characterized by low primary pro-

ductivity (Knox 2001; McLachlan and Brown 2006).

Thus, the abiotic factors seem to be the main

components that drive the structure and composition

of the communities in these habitats. This similarity in

abiotic conditions explains the absence of sampling

station effect in our study, corroborating Rodrigues

and Vieira (2012), who also reported insignificant

differences in the abundance and diversity of fish

between these two locations, using another analytic

approach.

Groups A and B of species were characterized on

their co-occurrence. The pattern that emerged seems

to be associated mainly with salinity and seasonality.

While species in group A were shown to be more

abundant in less salty waters, those in Group B had

their abundance increased with increasing salinity.

Species of Group A can be further described as

occasional, only appearing in specific seasons of the

year (M. furnieri and L. grossidens in Summer and

Autumn, and M. americanus and O. darwinii, in

Spring and Summer (Lima and Vieira 2009)); in

contrast, species in Group B (A. brasiliensis, B.

pectinata, M. littoralis, M. curema, M. liza, M. sp,

O. argentinensis, T. marginatus) are usually present in

the surf zone all year long (Lima and Vieira 2009).

Monteiro-Neto et al. (2003) for samples conducted

from March 1980 to February 1982 found seven

groups (A to G) in this surf zone using inverse cluster

analysis and taking into account 24 species. Group C

of their study has resemblance to our Group A, and

their groups F and G together resemble our Group B.

The time lag between both studies suggests that these

associations tend to occur with some consistency in

the surf zone of Cassino Beach, even in the long term.

The results obtained here show the strong influence

of seasonality on the ichthyofauna structure in the surf
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zone of Cassino Beach. The increase of marine

productivity driven by the seasonality of temperatures

and sunlight in subtropical habitats favors the survival

of larvae and juveniles during warmer months,

especially due to increase of food supply (Castillo-

Rivera et al. 2010; Martino and Houde 2010; Kris-

tiansen et al. 2011). Thus, the seasonal dynamics of the

spawning activity and recruitment in subtropical areas

is closely associated with the temperature regime.

According to Moraes et al. (2012), the time required

for the fish larvae produced in the spring reproductive

period to grow and reach the shallow areas of the surf

zone explains the lag of 1 month observed in the

response of the species abundance to water tempera-

ture in Cassino beach. Similar to what happens in other

subtropical environments, biological cycles of repro-

duction and recruitment of fishes associated with the

increased productivity of the system during spring and

summer also occur in this study site (Monteiro-Neto

et al. 2003; Lima and Vieira 2009; Moraes et al. 2012;

Rodrigues and Vieira 2012). Monteiro-Neto et al.

(2003) emphasized that the occurrence and seasonal

abundance of fish species in the surf zone reflect

patterns of recruitment of juveniles determined by

both the seasonality of reproduction and the seasonal

variations in circulation patterns. These ecological

mechanisms explain the strong positive relationships

of temperature and seasonality with abundance and

species richness that were detected by our models.

Salinity and surface water temperature appeared as

important factors in the variation of abundance and in

defining distinct groups A and B for the ichthyofauna.

The river discharges were important components in all

proposed models contributing with increased predic-

tive power for both richness and abundance of the

species that compose Group A. A hypothesis to help

explain this result is the fertilization of the continental

shelf promoted by the estuarine plume (Miranda et al.

2002). With more nutrients on the coast, there is an

increase in marine productivity, which could attract

more species into the assemblage and increase the

abundance of at least some of them.

The unique possibility of the present study to

glimpse at the fish assemblage over the long period of

16 years allows the identification of a decreasing trend

in both species richness and in the overall abundance

in Group B. Other studies in the region, covering

shorter periods, had been unable to identify these

concerning trends.

Over the past decades, natural and anthropogenic

factors, and their conjunction, have been modifying

the dynamics of the Patos Lagoon Estuary and

adjacent coastal waters, which includes the Cassino

Beach (Odebrecht et al. 2010a). For instance, positive

anomalies of estuarine freshwater outflow associated

with choked morphology of the Patos Lagoon Estuary

can generate seaward currents that block the entrance

of fish and crustaceans recruits of marine origin into

the estuary. Additionally, the input of the strong

freshwater outflow into the adjacent coastal zone,

especially those observed during El Niño events,

forces the drop in salinity and changes the structure

and composition of the communities at Cassino Beach

(e.g., Garcia et al. 2004, Odebrecht et al. 2010b). The

estuarine plume of the Patos Lagoon also plays an

important role with the input of fine sediments (silt and

clay) into the coastal zone. These sediments form

natural mud deposits that can reach the Cassino Beach

during climatic events, changing the surf-zone hydro-

dynamics, especially in the attenuation of waves

(Calliari et al. 2007), altering the concentrations of the

dissolved inorganic nutrient (Odebrecht et al. 2010b)

and causing significant changes in biotic components

(e.g., phytoplankton species—Odebrecht et al. 2003;

benthic invertebrates—Silva et al. 2008; and ichthy-

ofauna—Mont’Alverne et al. 2012). Although it is a

natural phenomenon, dredging operations on poorly

sited dumpsites seems to amplify the production of

fluid mud (Calliari et al. 2001) and this activity has

become more frequent during the last century (Calliari

et al. 2009).

Commercially important species, such as O. ar-

gentinensis, T. marginatus and, especially, M. liza

(Fischer et al. 2011), are present in Group B. This fact

allows us to restate the hypothesis that the increase in

fishing effort has led to a decrease in the reproductive

stock and consequent decrease in the recruitment of

those species that are directly related to the surf zone.

The long-term changes that have been observed in

Cassino Beach, as well as in the Patos Lagoon Estuary,

still need further investigation. Causes appear to be

complex and are the fruit of an intricate network of

natural and anthropogenic factors.

Species richness as response variable showed a

positive association with the covariate abundance.

Such relation between number of species and number

of collected individuals had already been reported in

other studies (Gotelli and Colwell 2001; Silvy 2012).

66 Aquat Ecol (2015) 49:57–69

123



But, because our fitted GAM curve showed an

asymptote, the number of collected specimens seems

to have been sufficient to characterize the assemblies’

richness. While abundance has been decreasing over

the last years, its effect over species richness has

become part of the explanation for the observed

reduction in richness. However, year remains an

important covariate in the model, showing that species

richness is declining in time, irrespective of the effect

induced by changes in abundance.

Finally, we emphasize the importance of continued

monitoring of this fish assemblage in order to deepen

the investigation of the long-term causes for changes

in the abundance of individuals and species richness,

perhaps associating these changes also with data from

fisheries landing and proxies that serve as evidence of

climate change. This is especially attractive due to the

location of our study site near the boundary between

tropical and temperate regimes.

Conclusions

The Bayesian generalized additive models (GAMs)

proved to be an appropriate exploratory tool in

ecological studies of species richness and abundance.

No significant difference was found between the

sampled sites (1) near Molhe Oeste and (2) near

Marine Aquaculture Station—EMA/FURG. Season-

ality, influenced by changes in water temperature and

salinity, is the most influential in the oscillations of

richness and abundance of the ichthyofauna in the

surf zone of Cassino Beach, RS. Higher discharges of

the three main rivers that flow into the Lagoa dos

Patos (Jacuı́, Taquari, Camaquã) were associated

with an increase in species richness and in abundance

of some occasional species of the assemblage (Group

A). There has been a decrease in the total species

richness and abundance of the most representative

species in the surf zone of Cassino Beach over the

past 16 years.
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amaracá (PE), Brazil. Bioikos 23:3–17

Schoeman DS, Richardson AJ (2002) Investigating biotic and

abiotic factors affecting the recruitment of an intertidal

clam on an exposed sandy beach using a generalized

additive model. J Exp Mar Biol Ecol 276:67–81

Silva JTO, Aguiar MCP, Lopes PRD (2008) Ictiofauna das
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lântica 28:13–23

Venables WN, Dichmont CM (2004) GLMs, GAMs and

GLMMs: an overview of theory for applications in fisheries

research. Fish Res 70:319–337

Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal

Gradients of Biodiversity: pattern, Processes, Scale and

Synthesis. Annu Rev Ecol Evol Syst 34:273–309

Wood SN (2006a) On confidence intervals for Generalized

additive models based on Penalized regression splines.

Aust N. Z. J Stat 48:445–464

Wood SN (2006b) Generalized additive models: an introduction

with r. CRC Press, Boca Raton

Aquat Ecol (2015) 49:57–69 69

123


	Medium- and long-term temporal trends in the fish assemblage inhabiting a surf zone, analyzed by Bayesian generalized additive models
	Abstract
	Introduction
	Materials and methods
	Study area
	Data description
	Data analysis
	Species richness
	Species abundance
	Cluster analysis of species
	Models for abundance

	Results
	List of species
	Species richness
	Species abundance
	Cluster analysis
	Group A
	Group B



	Discussion
	Conclusions
	Acknowledgments
	References


