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Abstract Temperature preference of juvenile (age

1?) Arctic charr (Salvelinus alpinus L.) originating

from four arctic and sub-arctic populations (Svalbard

and mainland northern Norway), representing a range

of habitats with different temperature conditions, was

studied by use of a shuttle-box system which allowed

individual fish to control their environmental temper-

ature. Based on the assumption that adaptations to

long-lasting differences in thermal environments

would affect temperature preference, we expected

that Arctic charr from the high arctic Svalbard would

prefer a lower temperature than the charr from two

well-studied sub-arctic mainland lakes (i.e. one anad-

romous charr population from Storvatn, Hammerfest

and two sympatric resident charr morphs from

Fjellfrøsvatn, Målselv). There were, however, no

significant differences in temperature preference

among the four populations after 24 h exposure to

the shuttle-box system, although the charr from the

omnivore upper-water sympatric morph of Fjellfrøs-

vatn used significantly longer time to reach a stable

thermal preferendum than the fish of the other

populations. The average temperature preference at

the end of the trials ranged between 10.9 and 11.6 �C

among the populations. The lack of population

differences suggests that temperature preference is

not a polymorphic trait under strong selection in Arctic

charr.
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Introduction

Polymorphism in several, e.g. physiological, ecolog-

ical, genetic and life history, traits is common among

some freshwater fish species that inhabit postglacial

lakes (Skulason and Smith 1995). This has resulted in

a wide variety of populations with specialised and

contrasting lifestyles and the origin of sympatric sister

morphs adapted to different trophic habitats (Skulason

and Smith 1995; Klemetsen et al. 2003a). During the

process of phenotypic diversification, physiological

adaptations to different environments should be

important and fixation of phenotypic traits could occur

(e.g. Skulason et al. 1999; Ohlberger et al. 2008b). In

fish species with high phenotypic plasticity such as

early invaders after the ice retreat in postglacial lakes,

adaptations to different environmental conditions (e.g.

temperature regimes) could be important for survival

in these harsh and unpredictable glacial water systems.
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Here, we explore whether the highly polymorphic

Arctic charr (Salvelinus alpinus), a species that has

adapted to contrasting thermal environments (high

arctic conditions, deep-water cold habitats, anadro-

mous populations and landlocked stocks), show dif-

ferent temperature preferences depending on the

thermal environment to which they have adapted.

Fish are poikilothermic animals, which, with few

exceptions, have a body temperature only slightly

different from that of their surrounding water. Fish are

not only temperature sensitive; with variability in

temperature conditions, the fish can control their body

temperature by actively seeking their preferred tem-

perature regime (Lagler et al. 1977). The selected

temperature (after 24 h) is considered to be species

specific and unaffected by previous acclimation

(Reynolds et al. 1976) and is called the final thermal

preferendum (Fry 1947). The final thermal preferen-

dum seems to be influenced by size or age, as juveniles

tend to select higher temperatures than adults (Coutant

1977; McCauley and Huggins 1979; Jobling 1994).

Usually, there is a correlation between the temperature

the fish experience in their natural habitat and its

thermal preferendum. Thus, fish species from Polar

regions have lower thermal preferenda compared with

fish from temperate regions (Schurmann and Chris-

tiansen 1994). Differences have also been found

among different populations of the same species

originating from habitats with different water temper-

atures (Konecki et al. 1995). In many fish species, the

preferred temperature correlates with the optimum

temperature for growth and physiological perfor-

mance (Brett 1971; Beitinger and Fitzpatrick 1979;

Jobling 1981; McCauley and Casselman 1981; Kel-

logg and Gift 1983). Measurement of final thermal

preferendum has therefore been suggested as a rapid

method for determining optimum temperature for

growth (Jobling 1981). Thus, the study of temperature

preference may contribute both to the understanding

of the ecology of the species and provides valuable

knowledge for the management of the species.

The Arctic charr has the northernmost distribution

among freshwater fishes, and it is considered to be the

most cold-adapted salmonid (Johnson 1980; Klemet-

sen et al. 2003a; Siikavuopio et al. 2009, 2010). But at

the same time, it is probably also the salmonid with the

lowest tolerance to increased water temperatures

(Elliott and Elliott 2010). It is therefore a concern

that Arctic charr populations may be increasingly

affected by global warming and become extinct in

some areas at the edge of its southern distribution

(Elliott and Elliott 2010; Winfield et al. 2010; Finstad

et al. 2011). This view is supported by a recent review

of field data from a number of European lakes, which

suggests that Arctic charr was the species most

affected by climate warming (Jeppesen et al. 2012).

Larsson (2005) reported preferred temperatures

between 10.8 and 11.8 �C in Swedish charr. Peterson

et al. (1979) found that the acute thermal preferendum

of Arctic charr fry, acclimated to about 12 �C, was

9.2 �C. In the high Arctic, charr populations may have

other thermal adaptations as water temperature rarely

exceed 6–8 �C during the entire season (Svenning

et al. 2007). Furthermore, reproductively isolated

deep-water morphs of Arctic charr live in stable, low

thermal habitats as found in Lake Fjellfrøsvatn, sub-

arctic Norway (Klemetsen et al. 1997; Knudsen et al.

2006). This deep-water morph has heritable adapta-

tions in several traits such as trophic behaviour and

morphology (Klemetsen et al. 2002, 2006). Hence,

thermal preference of cold-water adapted populations

or morphs of Arctic charr originating from different

temperature environments remains to be investigated.

The present study was, therefore, undertaken in order

to investigate temperature preference of Arctic charr

from different populations living under longstanding

stable, but contrasting temperature environments, such

as high arctic lakes on Svalbard to deep-water adapted

landlocked morphs and anadromous populations. We

hypothesize that the Svalbard stock and the deep-

water morph from Fjellfrøsvatn show lower temper-

ature preference as compared to the upper-water

omnivore morph from Fjellfrøsvatn and the anadro-

mous population from Storvatn, Hammerfest.

Materials and methods

Fish and rearing

The Arctic charr used in this experiment originated

from Lake Fjellfrøsvatn (69�N, 19�E) in the Målselv

River System and Lake Storvatn in Hammerfest (HF)

(70�N, 23�E), Northern Norway, and Lake Vårfl-

uesjøen from Svalbard (SV) (80�N, 16�E). From

Fjellfrøsvatn, we used two genetically different and

reproductively isolated lake resident morphs; the

profundal spawning benthivore morph (PB) and the
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littoral spawning omnivore morph (LO) (Klemetsen

et al. 1997; Westgaard et al. 2004; Knudsen et al.

2006).

The experiment lasted from May to June 2013 at the

Kårvika Research Station near Tromsø. Fish were held

under a simulated natural light regime (Tromsø,

69�N), with light (fluorescent lamp) intensity mea-

sured to 150 lux at the water surface during the light

part of the day, and at natural ambient temperatures

4.4 �C (±2.6 SD). During the experimental period, the

fish were fed to excess using a commercially formu-

lated feed (Skretting salmon feed), containing 50 %

protein and 23 % crude oil. Individual fish (n = 6)

from each population were exposed to the shuttle-box

system (see further down) for 24 h. Individual length

(cm) of all the experimental fish was recorded at the

beginning of the shuttle-box experiment. The age of

the juvenile charr in the experiment was 1?. The

average length of the PB-morph and the LO-morph

from Fjellfrøsvatn was 10.3 cm (±0.6 SEM) and

10.1 cm (±0.9 SEM), respectively. The average

length of Hammerfest and Svalbard strains was

10.5 cm (±0.5 SEM) and 10.8 cm (±0.2 SEM),

respectively.

Shuttle-box system

To determine the preferred temperature, individual fish

was allowed to thermoregulate in an electronic shuttle-

box device (Loligo; minimum 4 �C, maximum 16 �C).

The shuttle box consisted of a warm and a cold-water

chamber connected by a passage (system from Loligo,

see Stol et al. 2013). The fish was able to move freely

between these chambers. The temperature difference

between the chambers was kept constant at 1 �C by the

use of two buffer tanks (warm and cold), a hot-water

reservoir, a cold-water reservoir, two temperature

probes, a DAQ-M instrument (Loligo Inc.) connected

to a computer and six pumps (Eheim 1046). The

position of the fish was determined by a CCD camera

(uEye USB camera) connected to the computer

software (ShuttleSoft, Loligo Inc.). Background sub-

traction is used to separate the object from static

components in the image. After this subtraction, the

centre of mass of the object is calculated and the

respective coordinates are determined. The software

determined the position of the fish (x- and y-coordinate)

by means of subtracting its darker-than-the-background

appearance from a static image of the tanks (without a

fish inside). When the ShuttleSoft software detected the

fish inside the cold chamber, the temperature of both

chambers was lowered at a rate of 1 �C h-1, and if the

fish were in the hot chamber, the temperature of both

chambers was increased at a rate of 1 �C h-1. Hence,

the fish could use their natural behaviour to seek

optimal temperatures, by moving between chambers,

and thereby controlling their body temperature towards

their preferred temperature.

Statistical analyses

Statistical analyses were performed using SYSTAT

(Systat Software, Inc., USA). Possible differences in

the development of temperature preferences between

populations were analysed using a general linear

model with a log-transformed time variable and

populations grouped as dummy variables. The GLM

was performed using a stepwise backward iterative

method, removing grouping variables not contributing

significantly (P \ 0.05). Possible differences in final

preferred temperature (with the endpoint set to 23 h

due to missing data on 24 h) were analysed using

ANOVA, with distribution of studentised residuals

found not to differ from normal distribution (Kol-

mogorov–Smirnov Lilliefors; n = 26, P = 0.841)

(Zar 1996). The temperature preference data are

presented as mean ± standard deviation (SD)

(Fig. 1).

Results

The general linear model described 95 % (R2) of the

variation and revealed that the temporal pattern of the

temperature preference curve differed significantly

(F2,93 = 803.8; P \ 0.001) between populations, with

one population (LO-morph from Fjellfrøsvatn) using

significantly longer time to stabilise (lower slope) as

compared to the other populations. However, by 23 h,

there were no significant differences in preferred

temperature between the populations (F3,22 = 0.423;

P = 0.738). The average final temperature preference

ranged between 10.9 and 11.6 �C among the four

tested populations (Fig. 1).
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Discussion

Temperature is one of the most important environ-

mental factors for fish fitness and affects mortality,

feeding, growth and maturation (Jobling 1994). The

thermal niche and the ability to tolerate thermal stress

vary between fish species (e.g. Jobling 1994; Elliott

and Elliott 2010; Siikavuopio et al. 2010), and fish

adapted to low temperature may be expected to

develop lower thermal preferenda than fish adapted

to higher temperatures (Schurmann and Christiansen

1994), even within the same species (Konecki et al.

1995). Genetic differences between populations can

be responsible for differences in the thermal prefer-

ences (Schurmann and Steffensen 1992: Bjørnsson

et al. 2001). According to Petersen and Steffensen

(2003), different final thermal preferenda across

Atlantic cod populations seem to be associated with

differences in haemoglobin genotypes. However, the

present study on Arctic charr populations originating

from completely different thermal environments did

not reveal such differences in temperature preference.

The result was surprising as one might expect that the

temperature preference should reflect their latitudinal

distribution, with arctic populations showing prefer-

ence for lower temperatures as compared to conspe-

cifics exposed to higher temperatures in lakes further

south (Fangue et al. 2009). Also, the charr used in this

study displayed temperature preferences within the

range found for charr populations from more southern

latitudes (Larsson 2005; Larsson et al. 2005; Amund-

sen and Knudsen 2009, 2007). This contradicts the

idea of a latitudinal gradient with respect to temper-

ature preference in Arctic charr and suggests that cold-

water adaptation is not a trait under strong selection in

this species. Still it remains to be verified if the small

differences in temperature preference reflect the

growth response of the different populations, as

temperature-driven effects on growth may be present

in Arctic charr populations (Power et al. 2000;

Kristensen et al. 2006). In addition to other factors

such as ontogenetic stages, feeding regimes and

seasonality may affect the temperature selection of

fish (Larsson 2005; Amundsen and Knudsen 2009,

2007; Elliott and Allonby 2013), and these combined

factors should be considered in future studies of
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Fig. 1 Temperature preference (�C) of juvenile Arctic charr

from four different populations; i.e. Svalbard (SV), Hammerfest

(HF) and profundal spawning benthivore (PB) and littoral

spawning omnivore (LO) morphs from Fjellfrøsvatn. Values are

presented as mean ± SD
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thermal preferenda of northern/arctic populations of

Arctic charr.

The absence of a longitudinal gradient in temper-

ature preference in the present study suggests that

temperature preference is not a polymorphic trait

under strong selection in Arctic charr. Our data partly

contradict earlier empirical and theoretical work of

postglacial coregonid salmonid species (Ohlberger

et al. 2008a, b, 2013), suggesting that temperature-

related trait is polymorphic and potentially under

selection. This can be related to the broad temperature

range that these coregonid species exhibit by their

wide geographical distribution. This in turn could lead

to an advantage in divergence along environmental

gradients like the thermal niche axes. If a species

exploits a broad niche, a subdivision of the resource

spectrum into two diverged and narrower niches is

likely to happen. However, if the species have a

narrow thermal niche (e.g. cold stenotherm), the

environmental gradient will probably not be wide or

large enough for such a divergence. In addition to the

niche space, the time for natural selection to operate

could be another constraining factor related to the

colonisation history of the Arctic charr to explain the

lack of thermal diversification. Arctic charr was the

earliest freshwater fish invading these novel areas

several thousand years ago, and they are still the only

freshwater fish species at Svalbard (Klemetsen et al.

2003a; Sandlund and Hesthagen 2011). The coastal

areas in sub-arctic Norway and Svalbard were prob-

ably invaded during the same time period shortly after

the ice retreat. Thus, the number of generations for

selection to operate should probably be higher in lakes

from the mainland Norway than in the arctic Svalbard

lakes. There should therefore be enough time to

express differences between high Arctic population

and more southern populations (Larsson et al. 2005), if

this was a favourable trait (i.e. thermal preference)

under selection, especially when comparing with other

salmonids, such as coregonids that seem to be able to

diverge in their thermal niche, but invaded the sub-

arctic areas much later (Sandlund and Hesthagen

2011).

High arctic lakes should form highly stable envi-

ronments for trait (i.e. thermal preference) selection

over a time period of several thousand years. By

comparison, the two sympatric morphs from mainland

Norway should also have stable environments for trait

selection (e.g. deep-water adaptations) as the two

morphs have temporal stable diverged trophic niches

in, e.g. habitat choice across years (Knudsen et al.

2006, 2010) and throughout all seasons also during the

winter period (Klemetsen et al. 2003b; Amundsen

et al. 2008; Amundsen and Knudsen 2009). Further-

more, the two morphs are found to have heritable

differences in specific deep-water adaptations, e.g.

morphological traits and trophic behaviour (Klemet-

sen et al. 2002, 2006). One explanation for lack of

different thermal preference for the LO- and PB-

morphs is a theoretical possibility of double invasion

of Arctic charr to the lake. If the deep-water PB-morph

entered the lake relatively recently, the time for natural

selection to operate could be too short. Double

invasion seems less likely as this is a landlocked lake

and the potential period for invasion of Arctic charr

was short (Klemetsen et al. 1997). The ecological and

genetic studies of the charr morphs in the lake suggest

a local split of the morph-pair (Westgaard et al. 2004;

Knudsen et al. 2006). Thus, no final conclusive study

regarding their origin has been completed, as no

advanced genetic analyses are performed of this

morph-pair (Westgaard et al. 2004). Altogether, the

time necessary for a thermal divergence both between

the two morphs in Fjellfrøsvatn (local scale) and

between the Svalbard population and the more south-

ern populations (regional scale) should have been long

enough.

One explanation for the apparent similarity in

temperature preference across populations could be

related to the fact that Arctic charr is a typical early

invader in these novel northern areas and therefore, it

is beneficial to keep a generalist strategy related to

environmental factors. Most Arctic charr populations

experience large fluctuations in temperature regimes

seasonally with winter temperatures down to almost

0 �C (Klemetsen et al. 2003b; Svenning et al. 2007).

Additionally, landlocked population of Arctic charr

seems to avoid summer temperatures above 12 �C

(Larsson 2005) and anadromous fish seems to actively

select low temperatures after entering the freshwater

habitats (Rikardsen et al. 2007; Spares et al. 2013;

Jensen et al. 2014). Accordingly, as high arctic

populations and deep-water morphs experience tem-

peratures of 8–10�C during the summer season, their

upper limit temperature is not very different from most

Arctic charr populations. Consequently, strong adap-

tations to a narrow temperature regime seem not to be

a selective advantage for long-term survival of the
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population. Hence, when the adaptable ancestral

invader (anadromous populations) diversify into more

specialised descendant, reproductively isolated popu-

lations (the profundal spawning population) or invades

high arctic lakes, they will have relatively uniform

temperature preferences. Thus, as temperature prefer-

ence is closely linked to several fitness components via

growth performance, the Arctic charr populations that

live in cold environments may have an advantage by

utilising the food resources more cost-effective (e.g.

higher conversion efficiency) and thereby may be

adapted to grow better at lower temperatures (Klemet-

sen et al. 2002). Such traits could be valuable for

survival in colder areas. This, however, remains to be

tested across Arctic charr populations.

The lack of population-specific cold-water adapta-

tions indicates that Arctic charr populations inhabiting

high arctic lakes or deep mainland lakes could be less

affected by a moderate global warming, as they

achieve some protection in their habitats by actively

avoiding the warm upper-water layers. By contrast,

Arctic charr populations confined to shallow lakes,

rivers or living at the southern edge of their distribu-

tions (e.g. Malmquist et al. 2009; Winfield et al. 2010;

Murdoc and Power 2012; Jeppesen et al. 2012) may be

more affected by global warming as the buffer of cold

water becomes limited. Additionally, by being

exposed to a potentially warmer climate in the future,

Arctic charr in sub-arctic areas will most likely

experience higher resource competition from southern

invaders or coexisting species such as brown trout and

European whitefish (e.g. Finstad et al. 2011; Eloranta

et al. 2011, 2013; Hayden et al. 2013) as these species

seem more warm water adapted (e.g. Amundsen and

Knudsen 2009, 2010; Elliott and Elliott 2010). Altered

resource competition due to climate change could also

have indirect effects on polymorphic Arctic charr

populations. There are recent examples that interspe-

cific resource competition has caused breakdown of

reproductive isolation between sympatric morph-pairs

of fishes due to invasion or introduction of southern

non-native species in postglacial lakes (Taylor et al.

2006; Sandlund et al. 2013; Bhat et al. 2014). Both

European whitefish and brown trout co-occur with

Arctic charr in many lakes and show higher optimum

temperature for growth and preferences (Siikavuopio

et al. 2012; Elliott and Allonby 2013). The Arctic charr

may therefore be affected both directly and indirectly

by global warming.
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