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Abstract
Heavy metal pollution is a serious environmental problem. Most of the current techniques used to mitigate the toxic effects 
of heavy metals have limitations. This creates an urgent need to explore safer and more efficient methods to address these 
toxic effects. This study investigates the potential of nano-water hyacinth protein (nano-WHP) as an adsorbent and soil 
amendment to mitigate cadmium pollution. Nano-WHP is derived from water hyacinth protein and immobilized on nano-
chitosan. The Cd adsorption capacity and removal efficiency of nano-WHP were determined. Nano-WHP was applied as 
a soil amendment to examine its impact on soil enzyme activity and the growth of common bean plants under Cd stress. 
Nano-WHP could remove 96% of Cd with an adsorption capacity of 150 mg Cd g⁻1. When used as a soil amendment under 
Cd stress, nano-WHP positively influenced soil enzyme activity, enhancing soil health and promoting the growth of com-
mon bean plants. The growth of nano-WHP-treated plants increased by approximately 35% and 50% in the first and second 
stages, respectively, compared to the control group under cadmium stress. Furthermore, nano-WHP significantly reduced 
oxidative stress markers such as lipid peroxidation, DNA oxidation, protein oxidation, and H₂O₂ levels, with reductions of 
about 90.63%, 85.13%, 79.35%, and 81.85%, respectively, compared to untreated plants. This reduction in oxidative stress 
markers is attributed to the lower availability of Cd and the heightened activity of the antioxidant machinery in nano-WHP-
treated plants. These results establish a foundation for the formulation of sustainable and economically feasible methodolo-
gies to mitigate Cd contamination.
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1 Introduction

Abiotic stress significantly impacts plants in their environ-
ment, adversely affecting plant growth and global crop pro-
ductivity. Heavy metal stress, along with salt and drought, is 
particularly dangerous, inducing various negative effects at 
the cellular, physiological, and molecular levels. The toxicity 
of crops to heavy metals not only hampers crop production 
but also poses threats to human health and the ecosystem 
[32]. Among heavy metals, cadmium (Cd) is considered the 
most toxic, exhibiting toxicity in both high and low concen-
trations [39].

Cadmium's high solubility in water facilitates its entry 
into plant cells through the water stream. Additionally, it 
competes with essential elements like potassium (K), cal-
cium (Ca), and iron (Fe) on transmembrane transporters, 
significantly reducing the absorption rate of these essential 
elements in the presence of higher Cd concentrations [72]. 
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Oxidative stress represents one of the most toxic effects of 
cadmium on plant cells, as it generates reactive oxygen spe-
cies (ROS) that subsequently deteriorate macro-biological 
molecules such as lipids, proteins, and nucleic acids [73]. 
Activating the antioxidant machinery can shield plants from 
the toxic effects of ROS induced by heavy metals [26].

Various strategies have been explored to enhance plant 
tolerance against heavy metal stress, including the use of 
hyperaccumulating species, plant growth-promoting rhizo-
bacteria, plant hormones, and biochar [27, 39]. In recent 
years, the use of biochar and other soil amendments has 
gained popularity to address Cd pollution. The main goal is 
to chelate cadmium and convert it into an unavailable form, 
mitigating its toxic effects on soil microbial communities and 
plants [40, 42, 54, 91, 98]. The efficiency of biochar depends 
on its components, especially metal-chelating proteins such 
as phytochelatins and metallothioneins, which chelate heavy 
metals and sequester them into an unavailable form [5].

Water hyacinth (Eichhornia crassipes) is a pervasive 
invasive aquatic herb with abundant biomass. While its 
mechanical removal is performed to mitigate challenges in 
water bodies, the biomass poses ecological hazards if not 
repurposed effectively [35]. Water hyacinth biomass holds 
potential for applications such as animal feedstock, biofu-
els, biochar, and compost [43, 57]. Notably, water hyacinth 
biochar has gained attention for its efficacy in heavy metal 
adsorption from aqueous solutions [17, 20, 61, 70].

Water hyacinth biochar has been introduced as a soil 
amendment to enhance soil health and plant growth, par-
ticularly under stress conditions [21, 107]. Its ability to 
absorb heavy metals is attributed to its high content of 
metal-binding proteins, such as phytochelatins and met-
allothioneins [75]. However, a concern associated with 
biochar use is the potential introduction of contaminants 
into the soil. Therefore, it is preferable to employ puri-
fied soil amendments [102]. Concerns arise from factors 
such as variability in feedstock and raw materials, where 
contaminants from industrial waste or polluted areas may 
be retained in the biochar during pyrolysis [56, 95, 100].

The use of nano-materials loaded with adsorbent mate-
rials holds significant importance in pollutant remedia-
tion, offering advantages over traditional biochar [78]. In 
this study, we investigate the potential of purified protein 
from water hyacinth to adsorb cadmium and serve as a 
soil amendment by immobilizing it on nano-chitosan. The 
immobilization of proteins on nano-chitosan enhances their 
stability and activity [104]. Nano-materials, especially 
nano-chitosan particles, serve as excellent immobilization 
supports [67], demonstrating effectiveness in this role [3].

Nano-chitosan particles have gained attention across 
scientific and industrial fields due to their unique proper-
ties, including a large surface area, biocompatibility, ease of 
modification, enhanced mechanical strength, improved mass 

transfer, cost-effectiveness, antimicrobial properties, and pH 
sensitivity. These properties make nano-chitosan versatile 
and valuable in various applications, including biocatalysis, 
biomedicine, and environmental remediation [1, 90, 96].

Furthermore, nano-chitosan demonstrates promising ben-
efits in agriculture, contributing to enhance plant growth, 
development, and tolerance to environmental stresses such 
as drought, salinity, and heavy metal toxicity [23]. As a soil 
amendment, nano-chitosan improves soil structure and fertility, 
enhances water retention, reduces soil erosion, and promotes 
nutrient availability for plants. The multifaceted advantages of 
nano-chitosan position it as a valuable material with diverse 
applications in agriculture and environmental remediation [2].

Most of the current techniques used to mitigate the toxic 
effects of heavy metals on water, soil, and plants have cer-
tain limitations [37]. Biochars themselves can be sources of 
contamination with heavy metals and pathogenic microbes 
[111]. Adding external rhizobacteria can disturb the environ-
mental equilibrium in the soil [87]. Other synthetic materials 
have negative effects on the environment and human health. 
This underscores the urgent need to explore safer and more 
efficient ways to mitigate the negative effects of heavy met-
als on water, soil, and plants [37].

From this perspective, we aimed to establish a foundation 
for formulating safe sustainable and economically feasible 
methodologies to mitigate cadmium (Cd) contamination. 
Our study is based on the hypothesis that water hyacinth pro-
teins possess a notable capability to efficiently capture and 
bind metals. When these proteins are immobilized on nano-
chitosan, they gain higher stability and a larger surface area, 
enhancing their effectiveness in adsorbing metals. Addition-
ally, the prepared nano water hyacinth protein (nano-WHP) 
is natural and safe for use, as it is composed of natural protein 
immobilized on nano-chitosan, which is biocompatible and 
non-toxic to the environment and living organisms.

To our knowledge, this is the first study to evaluate the 
adsorption of cadmium using nano water hyacinth protein. 
We assessed the cadmium adsorption capacity of the pre-
pared water hyacinth protein and the impact of treating soil 
with nano-WHP on improving soil health and enhancing Cd 
tolerance in common beans.

2  Material and methods

2.1  Preparation of nano‑water hyacinth protein

2.1.1  Water hyacinth protein extraction

The water hyacinth protein extraction process, following the 
methodology of Yifru et al. [105] is detailed as follows: Water 
hyacinth leaves were gathered from a canal in Sofia Village, 
Zagazig Governorate, Egypt. The collected leaves underwent 
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destalking and were thoroughly washed using running tap 
water. Subsequently, the cleaned leaves were immersed in dis-
tilled water at a ratio of 2:1 (weight to volume) for 30 min. The 
soaked leaves were macerated using an electric blender. To 
solubilize leaf proteins, the resulting slurry's pH was adjusted 
to pH 9.0 with 0.1 M NaOH. The slurry was then filtered 
through cheesecloth. For protein coagulation, 0.1 M HCl was 
added to the filtrate until its pH reached 2.0. The coagulated 
mixture underwent centrifugation at 3800g for 10 min. The 
resulting pellets were collected, dried at 60°C, and stored for 
use as water hyacinth protein (WHP).

2.1.2  Immobilization of water hyacinth protein 
on nano‑chitosan

The water hyacinth protein (WHP) was immobilized onto 
Nano-chitosan particles (NS6130-09–918) with a size range 
of 80–100 nm, obtained from Intelligent Materials Pvt. Ltd., 
USA. The immobilization procedure followed the method out-
lined by Badawy and Naguib [10] as follows: A 10% nano-
chitosan suspension (w/v) was prepared at room temperature, 
following the product instructions to ensure stability. The 
prepared nano-chitosan suspension (100 mL) was incubated 
with 50g of WHP at room temperature for varying incubation 
periods, aiming to determine the optimal duration for maxi-
mum immobilization efficiency. After incubation, the mixture 
underwent centrifugation at 3800 g for 10 min. The resulting 
pellets were air-dried at room temperature and stored as nano-
WHP.  The supernatant was used for protein estimation using 
the Lowry assay [63] to determine immobilization efficiency, 
following the equation outlined by Huang et al. [45].

2.2  Cadmium removal efficiency for prepared 
nano‑WHP in aqueous solution

2.2.1  Determination of removal efficiency and adsorption 
capacity

The cadmium removal efficiency and adsorption capacity of 
the prepared nano-WHP were evaluated in a batch system, 
following the method described by Wang et al. [99].

2.2.2  Evaluation the stability and reusability of prepared 
nano‑water hyacinth protein.

In order to show the stability and reusability of the prepared 
nano-WHP, the adsorption–desorption cycle was repeated 
fifty times using the same nano-WHP using a separation 
column (detailed methods in the supplementary data).

Immobilization efficiency (%) =
Initail protein - Final protein

Initial protein
∗ 100

2.3  Application of nano‑WHP in soil for combating 
cadmium stress in common bean seedlings

2.3.1  Greenhouse study

The experimental setup involved plastic pots with dimensions 
of 25 cm in diameter and 15 cm in height, each filled with 3 
kg of sandy loam soil. The pots were divided into two groups, 
each containing 24 pots, based on the inoculation of the soil 
with nano-WHP. In the first group, the soil in the pots remained 
untreated, serving as the control. In the second group, a blend 
of 15 g of nano-WHP was incorporated into each pot contain-
ing 3 kg of soil, establishing a ratio of 5 g per kg of soil (5g/kg 
soil). This ratio was determined from the adsorption experi-
ment, where 5 g of nano-WHP exhibited the highest cadmium 
removal percentage, and further increases did not show addi-
tional benefits.

Five common bean (Phaseolus vulgaris) seeds (Agrimax 
Green Bean, Ag00310) were sown in each pot. After emer-
gence, seedlings were thinned to two in each group. Cadmium 
(as  CdCl2) was introduced at a single dose of 100 mg/kg of 
soil two weeks after sowing, a concentration known to induce 
high toxicity in bean plants [11]. The experiment included 
four treatments:

Group I: Control plants (plants grown in non-treated soil 
without Cd treatment).
Group II: Nano-WHP Plants (plants grown in nano-WHP-
treated soil without Cd treatment).
Group III: Cd-Plants (plants grown in non-treated soil 
with Cd treatment).
Group IV: Cd-Nano-WHP plants (plants grown in nano-
WHP-treated soil without Cd treatment).

Plants were housed in a greenhouse with day/night tempera-
tures of 26/16 ± 2 °C and a relative humidity of 50 ± 4%. They 
were irrigated as needed to maintain constant soil moisture. 
The experiment continued for 3 weeks after the Cd treatment. 
This period marked the second stage, occurring before the 
death of untreated plants cultivated under cadmium stress. If 
the experiment had continued beyond this point, no untreated 
plants would have survived under cadmium stress conditions. 
Soil and shoot samples were collected after one week, which 
represented the initial manifestation of chlorosis and wilting 
symptoms due to cadmium toxicity in Cd-exposed plants.

2.3.2  Changes in soil enzymes activity

The assessment of soil enzyme activities is crucial for evaluating 
soil health [109]. In this study, β-glucosidase, urease, acid phos-
phatase, and dehydrogenase activities were determined accord-
ing to the methods of Sanchez-Hernandez et al., [80] and Kaur 
and Kaur [53] (detailed methods in the supplementary data file).
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2.3.3  Changes in growth parameters

We determined the shoot fresh and dry weights to calculate 
the live fine fuel moisture (LFFM) of shoots according to 
the following equation:

The change in growth percent was calculated according to 
the change in dry weight compared to the control according 
to the following equation:

We also determined some leaf growth parameters for the 
lower leaf, including leaf variables including leaf relative 
water content (RWC), leaf moisture (LM), and leaf dry 
matter content (LDMC) according to the following equa-
tions, respectively:

LFFM =
Freshweight − Dryweight

Dryweight
X100

Change in growth% =
treatment dry weight − control dry weight

control dry weight
× 100

RWC(%) =
Leaf fresh weight − Leaf dry weight

Leaf turgid weight − Leaf dry weight
× 100

LM(%) =
Leaf fresh weight − Leaf dry weight

Leaf dry weight
× 100

2.3.4  Changes in antioxidant machinery and oxidative 
stress markers

Oxidative stress markers In this study, oxidative stress and 
damage in plant cells were assessed using various indica-
tors. Hydrogen peroxide  (H2O2), a representative reactive 
oxygen species in plant cells, was determined through 
its reaction with potassium iodide, following the method 
outlined by Alexieva et al. [4]. Lipid peroxidation, a key 
marker of oxidative damage, was quantified by measur-
ing malondialdehyde (MDA) using the thiobarbituric acid 
(TBA) method, as reported by Li [58]. Protein oxidation 
was assessed through the measurement of tyrosine using 
an ELISA kit (Nikken SEIL Co., Ltd., Japan), following 
the procedures described by Kato et al. [51]. To evaluate 
DNA oxidation, the levels of 8-hydroxydeoxyguanosine 
(8-OHdG) were measured in prepared leaf extracts using 
an ELISA Kit (E-EL-0028) from Elabscience Biotechnol-
ogy Inc., United States, according to the product manual. 
The decrease in the oxidative stress markers was calculated 
from the following equation:

LDMC =
Dry leaf weight

Turgid leaf weight

Oxidative Stress Marker Descreas percent =
Content in group III − Content in group IV

Content in group III
× 100

where, Group III: Plants grown in non-treated soil with Cd 
treatment. Group IV: Plants grown in nano-WHP-treated soil 
without Cd treatment.

Antioxidant activity–Non‑enzymatic antioxidant activ‑
ity The assessment of free radical scavenging capacity in 
shoots was conducted using the DPPH radical scavenging 
assay, following the method proposed by Blois [14]. The 
determination of non-enzymatic antioxidant compounds, 
namely total phenols and flavonoids, involved extracting 
these compounds from common bean shoots based on the 
procedure outlined by Campbell and Ellis [16]. The quan-
tification of phenolic content was achieved through the 

Folin-Ciocalteu assay. Additionally, the determination of 
flavonoid content employed an aluminum chloride (AlCl3) 
assay, following the procedure described by Pallab et al. 
[74].

Antioxidant enzymes activity Superoxide dismutase 
(SOD) activity was evaluated using the method of Beyer 
and Fridovich [13], which involves assessing the reduc-
tion of nitro blue tetrazolium (NBT). Polyphenol oxidase 
(PPO) activity was determined through the oxidation of 
pyrogallol, following the procedure outlined by Kar and 
Mishra [49]. The activities of both soluble and cell wall-
bound peroxidases were measured according to the meth-
odology described by Saroop et al. [82].
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2.4  Statistical analysis

The experiment was systematically conducted five times, 
employing a completely randomized design to ensure the 
robustness and reliability of the results. The data collected 
were entered into an Excel sheet to generate figures and 
compute the mean values along with standard deviations 
(SD) from the five replicates. To assess statistical differ-
ences between distinct groups, a two-way analysis of vari-
ance (ANOVA) was performed using the Statistical Package 
for the Social Sciences (SPSS version 17.0 for Windows).

3  Results

3.1  Preparation of nano‑water hyacinth protein 
and its adsorption capacity removal efficiency 
of cadmium in liquid solution

Figure 1A depicts that the immobilization efficiency 
increased with time pass till optimum incubation period. 
Optimal duration for achieving maximum immobiliza-
tion efficiency was around 48 h. No further enhancement 
in immobilization efficiency was observed beyond this 
period.

Cadmium removal efficieny increased with increasing 
the amount of ano-water hyacinth protein (nano-WHP) 
till the concentration 5 g/L, Significantly, at a concentra-
tion of 5 g/L, nano-water hyacinth protein showcased a 
Cd removal efficiency of approximately 96%, with neg-
ligible alterations in efficiency beyond this concentration 
(Fig. 1B).

Nano-WHP exhibited an impressive adsorption capacity 
of about 150 mg  Cd+2  g−1, as illustrated in Fig. 1B. Fur-
thermore, it demonstrated notable stability and reusability, 
retaining over 75% of its removal efficiency even after 50 
treatment cycles, as shown in Fig. 1C

3.2  Effect of nano‑WHP on soil enzymes under Cd 
stress

Figure 2 presents compelling evidence of a substantial 
decrease in key soil enzymes (β-glucosidase, phos-
phatase, urease, and dehydrogenase) under cadmium 
stress in the no-treatment with nano-WHP. Interstingly, 
treatment with nano-WHP led to a significant increase 
in soil enzyme activity, both in normal conditions and 
under Cd pollution (Fig. 2). The soil enzyme activity 
in the nano-WHP treated group was significantly higher 
than that of the control under either normal or Cd con-
tamination conditions.

Fig. 1  Effect of immobilization time on the efficiency of water hya-
cinth protein immobilization on nano-chitosan. B. Cadmium removal 
efficiency and the adsorption capacity of the nano-water hyacinth 
protein. C. Cadmium removal efficiency through different treatment 
cycle
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3.3  Effect of nano‑WHP on plant growth under Cd 
stress

This study provides evidence for the efficacy of nano-Water 
Hyacinth Protein (nano-WHP) in alleviating the adverse effects 
of cadmium on common bean growth, as illustrated in Fig. 3D. 
Cadmium significantly impeded the growth of common bean 
seedlings, resulting in a 35% reduction compared to the control 
in the first stage and a more pronounced 75% decrease in the 
second stage. In contrast, plants treated with nano-WHP exhib-
ited enhanced growth under normal conditions, surpassing the 
control by 45% and 55% in the first and second stages, respec-
tively. Remarkably, under cadmium stress, nano-WHP-treated 
plants demonstrated growth increments of approximately 35% 
and 50% in the first and second stages, respectively, compared 
to the control.

In addition to assessing growth changes, we investigated 
shoot live fine fuel moisture (LFFM), a reliable indicator of 
plant health and combustibility that reflects shoot water con-
tent relative to its dry mass. Figure 3E demonstrates a signifi-
cant enhancement in shoot LFFM with nano-WHP treatment. 
In the first stage, it increased from approximately 120% in the 

control to 150% under both normal and cadmium stress condi-
tions, and in the second stage, it rose from 150 to 180%. This 
indicates that nano-WHP treatment contributes to increased 
shoot moisture, thereby aiding in biomass formation. Moreo-
ver, nano-WHP treatment significantly improved leaf growth 
parameters, including leaf relative water content (RWC), 
leaf moisture (LM), and leaf dry matter content (LDMC), 
under both normal conditions and cadmium contamination 
(Fig. 3A-C).

3.4  Effect of nano‑WHP on antioxidant machinery 
and oxidative stress markers

The present study reveals a significant increase in oxida-
tive stress markers  H2O2, malondialdehyde (a product of 
lipid peroxidation), dityrosine (a product of protein oxida-
tion), and 8-hydroxydeoxyguanosine (an indicator of DNA 
oxidation) under cadmium stress, observed in both nano-
Water Hyacinth Protein (nano-WHP)-treated and non-treated 
plants during the first stage. However, in the second stage, 
these oxidative stress markers substantially decreased in 
nano-WHP-treated plants while significantly increasing in 

Fig. 2  Effect of nano-water 
hyacinth protein treatment on 
soil enzymes activity (glucosi-
dase (A), dehydrogenase (B), 
phosphatase (C), and urease 
(D)) after a week (first stage) 
and 3 weeks (second stage) 
after Cd treatment. Group I: 
Control plants (plants grown 
in non-treated soil without Cd 
treatment); Group II: Nano-
WHP plants (plants grown 
in nano-WHP-treated soil 
without Cd treatment); Group 
III: Cd-Plants (plants grown 
in non-treated soil with Cd 
treatment); and Group IV: 
Cd-Nano-WHP plants (plants 
grown in nano-WHP-treated soil 
without Cd treatment). Columns 
followed by different letters are 
significantly different accord-
ing to a two-way ANOVA test 
(P = 0.05). The bars represent 
the standard deviation
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non-treated plants. The application of nano-WHP led to a 
remarkable reduction in lipid peroxidation (by 90.63%), 
DNA oxidation (by 85.13%), protein oxidation (by 79.35%), 
and  H2O2 levels (by 81.85%) compared to plants without 
nano-WHP treatment (Table 1, Fig. 4).

The treatment with Nano-WHP significantly boosted the 
levels of antioxidant enzymes (as shown in Fig. 5) and non-
enzymatic antioxidant compounds, including radical scav-
enging capacity, phenols, and flavonoids (as illustrated in 
Fig. 6) during both the initial and subsequent stages. Con-
versely, the untreated group exhibited a minor increase in 

antioxidant enzyme levels during the first stage compared to 
the control, but during the second stage, the activity of anti-
oxidant enzymes dramatically decreased, dropping signifi-
cantly lower than that of the control (as depicted in Fig. 5).

4  Discussion

Protein immobilization is a well-known technique for 
improve the protein use and stability [71]. Nano-parti-
cles are promising immobilization material due to its 

Fig. 3  Effect of nano-water 
hyacinth protein treatment on 
growth parameters (leaf relative 
water content (RWC) (A), leaf 
moisture (LM) (B), leaf dry 
matter content (LDMC) (C), 
growth change percent (D), and 
shoot live fine fuel moisture 
(LFFM) (E)) after a week (first 
stage) and 3 weeks (second 
stage) after Cd treatment. 
Group I: Control plants (plants 
grown in non-treated soil 
without Cd treatment); Group 
II: Nano-WHP plants (plants 
grown in nano-WHP-treated 
soil without Cd treatment); 
Group III: Cd-Plants (plants 
grown in non-treated soil with 
Cd treatment); and Group IV: 
Cd-Nano-WHP plants (plants 
grown in nano-WHP-treated soil 
without Cd treatment). Columns 
followed by different letters are 
significantly different accord-
ing to a two-way ANOVA test 
(P = 0.05). The bars represent 
the standard deviation
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high surface area. Optimization the different conditions 
of the immobilization is an important point determines 
the immobilization efficiency [110]. The immobilization 
efficiency of water hyacinth protein on the nano-chitosan 
increased with the increase in incubation time until 48 

h. Beyond this timeframe, no further increase in immo-
bilization efficiency occurred. This indicates saturation 
of the nanoparticles with immobilized materials. This 
observation aligns with existing literature, as reported by 
Dwevedi [30].

Fig. 4  Effect of nano-water hyacinth protein treatment on oxida-
tive stress markers (hydrogen peroxide (H2O2) (A), protein oxida-
tion marker, dityrosine (B), lipid peroxidation marker (MDA) (C), 
nucleic acid oxidation marker (8-OHdG) (D)) in common bean 
shoots after a week (first stage) and 3 weeks (second stage) after Cd 
treatment. Group I: Control plants (plants grown in non-treated soil 
without Cd treatment); Group II: Nano-WHP plants (plants grown in 

nano-WHP-treated soil without Cd treatment); Group III: Cd-Plants 
(plants grown in non-treated soil with Cd treatment); and Group IV: 
Cd-Nano-WHP plants (plants grown in nano-WHP-treated soil with-
out Cd treatment). Columns followed by different letters are signifi-
cantly different according to a two-way ANOVA test (P = 0.05). The 
bars represent the standard deviation
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One of the applications of the immobilized protein is its 
use as adsorbent to various environmental pollutants such 
as heavy metals. The amount of adsorbent used is a crucial 
factor influencing the effectiveness of the metal adsorption 
process [62]. Notably, nano-water hyacinth protein (nano-
WHP) demonstrated a Cd removal efficiency of about 96% 
at 5 g/L, with no significant change in efficiency beyond 
this concentration. Higher adsorbent masses resulted in 
the saturation of active sites due to interference between 
these sites, as reported by Poonam et al. [76]. However, the 
adsorption capacity decreased with an increase in nano-
WHP concentration, attributed to insufficient solutes to 
occupy all active adsorption sites. This reduction is con-
sistent with findings by Masoumi et al. [66] and Poonam 
et al. [76], emphasizing the impact of the unsaturation of 
active sites.

Nano-WHP exhibited a remarkable adsorption capacity 
of approximately 150 mg  Cd+2  g−1 (Fig. 1B). This is sur-
passing various adsorbent materials (Table 2). Also, nano-
WHP showed high stability and reusability as it save more 
than 75% of its removal efficiency after 50 treatment cycle 
(Fig. 1C). This heightened adsorption capacity can be attrib-
uted to the synergistic effects of WHP and nano-chitosan, 
as reported by Sobral et al. [88]. The intrinsic heavy metal 
removal capabilities of water hyacinth, documented by 
Mahmood et al. [64], Zheng et al. [112], Cao et al. [17], Liu 
et al. [61], and Hemalatha et al. [44], further contribute to 
the impressive adsorption capacity of nano-WHP. The exten-
sive surface area of nanoparticles enhances their adsorption 
effectiveness compared to bulk materials, as highlighted by 
Roberto et al. [79].

The heavy metal pollution is not only a danger in the 
aquatic environments but also, it represents a high danger 
in soil pollution, as heavy metals negatively affect the soil 
health and so plant growth [28]. Heavy metals render the soil 
enzymes activity [89]. Various soil enzymes have microbial 
origins and are intricately linked to essential cycles such 
as carbon, nitrogen, and phosphorus. Enzyme activity is 
widely measured in microbiology, biochemistry, and agri-
cultural sciences, often serving as a crucial indicator of soil 
health [34, 48, 50, 92]. These enzymes are highly sensitive 

Fig. 5  Effect of nano-water hyacinth protein treatment on antioxi-
dant enzymes (superoxide dismutase (SOD) (A), polyphenol oxi-
dase (PPO) (B), and peroxidase (POX) (C) in common bean shoots 
after a week (first stage) and 3 weeks (second stage) after Cd treat-
ment. Group I: Control plants (plants grown in non-treated soil with-
out Cd treatment); Group II: Nano-WHP plants (plants grown in 
nano-WHP-treated soil without Cd treatment); Group III: Cd-Plants 
(plants grown in non-treated soil with Cd treatment); and Group IV: 
Cd-Nano-WHP plants (plants grown in nano-WHP-treated soil with-
out Cd treatment). Columns followed by different letters are signifi-
cantly different according to a two-way ANOVA test (P = 0.05). The 
bars represent the standard deviation

▸
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to changes in soil conditions, whether natural or anthropo-
genic. Notably, soil pollution with heavy metals, including 
Cu, Pb, Zn, Cd, V, and Ni, represents a significant alteration 
to soil ecosystems, with Cd posing the highest ecological 
risk among these metals [93].

The present study results ensured the negative effect of 
cadmium on soil enzymes activity (Fig. 2). This aligns with 
the findings by Lin et al. [60], who reported enzyme reduc-
tion under heavy metal pollution. Sharma et al. [86] simi-
larly documented negative impacts on soil enzyme activity 
due to heavy metal pollution in the soil near the Yamuna 
River in Delhi. Tang et al. [94] demonstrated a significant 
decrease in soil enzymes with elevated Cd and Zn levels 
in heavy metal-polluted soil. Subsequently, Tang and col-
leagues associated the decline in soil enzyme activity with 
increased heavy metal concentrations in lead–zinc tailing 
pond soils [93].

The observed decline in soil enzyme activity can be 
attributed to the adverse effects of heavy metals on the 
growth and metabolism of soil microorganisms, which serve 
as the primary source of soil enzymes [12]. Tang et al. [94] 
proposed that the decrease in soil enzyme activity is linked 
to heavy metals interacting with enzyme proteins, leading to 
denaturation, chelation with enzyme substrates, or interfer-
ing with the formation of enzyme reaction products. Addi-
tionally, the accumulation of heavy metals in the soil can 
reduce available nutrients, further contributing to a decline 
in soil enzyme activity [24, 25].

On the other hand, with soil treatment with nano-Water 
Hyacinth Protein (nano-WHP), the soil enzymes activity sig-
nificantly increased under either the normal conditions or Cd 
contamination condition (Fig. 2). This heightened enzyme 
activity is attributed to the activation of soil microbiota 
stimulated by the presence of nano-WHP. Similar findings 
were reported by Chaudhary et al. [19], who observed the 
activation of microbial diversity and improved soil health 
with the application of water hyacinth biochar. Additionally, 
Hammam et al. [41] demonstrated the positive impact of 
water hyacinth biochar on soil enzymes through the activa-
tion of the soil microbiota, further supporting the beneficial 
effects on soil health.

Fig. 6  Effect of nano-water hyacinth protein treatment on non-enzy-
matic antioxidants (DPPH radical scavenging% (A), total phenols (B), 
and total flavonoids (C)) in common bean shoots after a week (first 
stage) and 3 weeks (second stage) after Cd treatment. Group I: Con-
trol plants (plants grown in non-treated soil without Cd treatment); 
Group II: Nano-WHP plants (plants grown in nano-WHP-treated soil 
without Cd treatment); Group III: Cd-Plants (plants grown in non-
treated soil with Cd treatment); and Group IV: Cd-Nano-WHP plants 
(plants grown in nano-WHP-treated soil without Cd treatment). Col-
umns followed by different letters are significantly different according 
to a two-way ANOVA test (P = 0.05). The bars represent the standard 
deviation

▸
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The enhancement in soil enzyme activity with nano-WHP 
application can also be linked to another component, namely 
nano-chitosan. Khati et al. [55] documented the positive 
influence of nano-chitosan application on soil health. Fur-
thermore, the increase in soil enzyme activity with nano-
WHP treatment under Cd pollution can be attributed to the 
adsorption of Cd on nano-WHP, as illustrated in Fig. 1, 
where 5g of nano-WHP removed 96% of Cd in a 100 mL 
solution. This adsorption renders Cd less available in the 
soil, minimizing or eliminating its negative effects. Tang 
et al. [94] highlighted that the adverse impact of heavy met-
als on soil enzymes depends primarily on their availability 
in the soil. The more available the heavy metal, the greater 
its negative effect [36].

Furthermore, improving soil enzyme activity in the pres-
ence of nano-WHP can be related to the ability of nano-
WHP to provide a suitable environment for the stability and 
activity of soil enzymes. Similarly, Yasin and his colleagues 
recently reported that the application of biochar-modified 
nanoparticles improved soil enzyme activity by providing 
suitable conditions for stability and activity [103].

The decrease in soil enzymes activity results in the 
decrease in the available nutrients in the soil, which nega-
tively affect the plant growth [33]. The deleterious impact 
of cadmium on plant growth is extensively documented, 
prompting a comprehensive exploration of strategies to 
enhance plant tolerance to cadmium stress [117]. This 
study provides evidence for the efficacy of nano-Water 
Hyacinth Protein (nano-WHP) in alleviating the adverse 
effects of cadmium on common bean growth. Cadmium 
significantly decreased the growth of common bean seed-
lings (Fig. 3D). On the other, plants treated with nano-WHP 
showed enhanced growth under normal conditions, or under 
cadmium stress. These findings underscore the potential of 
nano-WHP in promoting common bean growth and mitigat-
ing the inhibitory effects of cadmium stress, highlighting 
its application as a promising strategy for enhancing plant 
tolerance to heavy metal-induced stress.

In addition to assessing growth changes, we investigated 
shoot live fine fuel moisture (LFFM), a reliable indicator 

of plant health and combustibility that reflects shoot water 
content relative to its dry mass [29]. The results showed a 
significant enhancement in shoot LFFM with nano-WHP 
treatment under both normal and cadmium stress condi-
tions. This indicates that nano-WHP treatment contributes to 
increased shoot moisture, thereby aiding in biomass forma-
tion. Moreover, nano-WHP treatment significantly improved 
leaf growth parameters, including leaf relative water con-
tent (RWC), leaf moisture (LM), and leaf dry matter content 
(LDMC), under both normal conditions and cadmium con-
tamination (Fig. 3A-C). This growth increase is attributed 
to the positive impact of nano-WHP on soil enzyme activ-
ity, consistent with findings by Hammam et al. [41], who 
observed enhanced corn growth with water hyacinth bio-
char application due to its positive effects on soil enzymes. 
Increased soil enzyme activity enhances nutrient availabil-
ity, benefiting plant growth parameters [113]. Similarly, 
Attaran Dowom et al. [8] reported that chitosan enhanced 
plant growth by improving soil health, leading to increased 
nutrients and improved physiological and biochemical status 
under stress. The significant growth increase observed with 
nano-WHP treatment suggests a synergistic effect between 
nano-chitosan and water hyacinth protein.

One of the most perilous consequences of heavy metal 
stress is the initiation of oxidative stress, characterized by 
the production of reactive oxygen species (ROS) that oxi-
dize crucial cellular components such as lipids, proteins, and 
nucleic acids, causing oxidative stress. The products of the 
lipids, proteins, and nucleic acids oxidation are considered 
as oxidative stress markers which content directly propor-
tion with ROS content in the cells [38, 52, 115]. The study 
finds that exposure to cadmium stress increases oxidative 
stress markers in plants. Initially, both nano-Water Hyacinth 
Protein (nano-WHP)-treated and untreated plants show ele-
vated levels of these markers. However, in the second stage, 
plants treated with nano-WHP demonstrate a significant 
decrease in oxidative stress markers, while levels continue 
to rise in untreated plants. The initial surge in oxidative stress 
markers plays a crucial role as signaling molecules, induc-
ing plant defense mechanisms against various stresses [85, 

Table 1  Decrease percent in 
the oxidative stress markers in 
Nano-WHP-treated common 
bean shoots after a week (first 
stage) and thee weeks (second 
stage) after Cd treatment

Oxidative stress markers Stage Decrease percent

Lipid peroxidation 1st Stage 69.04
2nd Stage 90.63

DNA oxidation 1st Stage 71.10
2nd Stage 85.13

Protein oxidation 1st Stage 52.99
2nd Stage 79.35

H2O2 1st Stage 50.84
2nd Stage 81.85
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97]. Cadmium, being a non-redox metal, rapidly induces 
the production of ROS, leading to oxidative stress in plants 
exposed to cadmium pollution. This rapid ROS production 
occurs indirectly by disrupting the electron transport chain 
and cellular metabolism. Additionally, cadmium can displace 
redox-active metals, such as ferrous and copper, triggering 
the Fenton and Haber–Weiss reactions—common mecha-
nisms for ROS production in living cells, thus contributing 
to oxidative stress [26]. The oxidative stress markers were 
significantly higher in the non-treated plants than in those 
treated with nano-WHP. This difference can be attributed 

to the adsorption capacity of nano-WHP, which reduces the 
availability of Cd in the soil. Consequently, the toxic effects 
on the treated plants' proteins are diminished. This aligns 
with findings from Haider et al. [39, 40], who observed that 
increased Cd availability in the soil led to heightened oxida-
tive stress, causing peroxidation of proteins and lipids as well 
as DNA damage. Additionally, Shaari et al. [84] reported that 
the extent of oxidative stress damage resulting from Cd toxic-
ity is contingent upon its availability in the soil.

Plants exhibit tolerance to increased reactive oxygen spe-
cies (ROS) and the consequent oxidative stress by employing 
highly effective antioxidant machinery, which is induced to 
detoxify excess ROS and maintain cellular oxidative home-
ostasis. This antioxidant machinery includes various mol-
ecules, such as enzymes (peroxidases, polyphenol oxidases, 
catalase, and superoxide dismutase), and non-enzymatic 
compounds like phenols and flavonoids [15]. Nano-WHP 
treatment significantly increased both antioxidant enzymes 
(Fig. 5) and non-enzymatic antioxidant compounds (radi-
cal scavenging capacity, phenols, and flavonoids) (Fig. 6) 
in both the first and second stages. Consequently, nano-
WHP-treated plants demonstrated enhanced tolerance to 
oxidative stress under cadmium exposure, leading to a sig-
nificant decrease in oxidative stress markers comparable to 
control plants. In contrast, non-treated plants failed to sus-
tain antioxidant machinery activity, resulting in a significant 
decrease in the second stage and a subsequent increase in 
oxidative stress markers. This observation aligns with the 
findings of Cuypers et al. [26], emphasizing the importance 
of balanced redox biology for plant adaptation to oxidative 
stress induced by cadmium pollution. Additionally, reports 
by Paithankar et al. [73] highlight the role of signaling mol-
ecules in activating the antioxidant machinery to suppress 
oxidative stress induced by heavy metal stress. Many studies 
have underscored the activation of the antioxidant machin-
ery as a crucial biochemical change necessary for inducing 
heavy metal tolerance. For instance, melatonin has been 
shown to induce cadmium tolerance in soybean and straw-
berry plants through the activation of antioxidant signaling 
cascades [46, 81]. Nano-selenium has also been reported to 
counteract Cd, Pb, and Hg toxicity in Brassica chinensis by 
improving its antioxidant system [114].

4.1  Conclusion and future prospective

In conclusion, our study represents a pioneering effort to 
evaluate the efficacy of nano-water hyacinth protein as a 
soil amendment for cadmium (Cd) phytoremediation and 
its impact on plant growth under Cd stress. We highlight the 
economic feasibility and effectiveness of nano-Water Hya-
cinth Protein (nano-WHP) when applied as soil amendment 
at a minimal rate of 5 g per 1 kg of soil. The application of 
nano-WHP activates soil enzymes, thereby improving soil 

Table 2  Maximum adsorption capacity of some different materials to 
Cd ions

Material Adsorption 
capacity (mg 
 cd+2 /g)

Reference

Water Hyacinth Protein Immo-
bilized on Nano-Chitosan

150 Present study

composite sponge combining 
of metal–organic framework 
and chitosan

0.193 [69]

α-amino nitrile modified 
magnetic

65 [108]

Biomass-derived carbon/
iron composite (FexOy-BC 
(RM))

13 [77]

Magnetic biochar from Leb 
Mu Nang banana peel

21.82 [59]

Earth-abundant serpentine 0.112 [98]
Fe–Mn binary oxide biochar 87.58 [106]
Polycarboxylated sugarcane 

bagasse
65 [31]

Cassia fistula seed carbon 68.02 [83]
Magnetic nanoparticles coated 

zirconia
24.19 [47]

Cerium oxide nanoparticles 34.2 [65]
Magnetic nanomaterials 

(Mg1 − xCaxFe2O4
100 [116]

Sodium tripolyphosphate and 
vanillin modified chitosan-
based magnetic nano-
sorbents

91.75 [18]

Mesoporous silica and 
chitosan-coated magnetite 
nanoparticles

126.26 [6]

Cerium oxide nanoparticles 89.33 [9]
Green synthesized iron oxide 

nanoparticles
78 [68]

Surface-loaded phosphorus-
modified lignite

55 [22]

Coated magnetic nanoparticles 
in activated carbon derived 
from corncob waste

100 [7]

Red mud modified bean-worm 
skin biochars

73.52 [101]
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health and enhancing common bean plant growth under both 
normal and Cd stress conditions. Nano-WHP not only pro-
motes growth but also induces Cd tolerance in plants by acti-
vating the antioxidant machinery, mitigating oxidative stress.

This research opens avenues for further exploration into 
the potential of nano-water hyacinth protein as soil amend-
ment to mitigate Cd stress. Future studies could delve into 
understanding various factors influencing the Cd adsorption 
and desorption capacity, providing valuable insights for opti-
mizing its application. Additionally, assessing the Cd content 
in soil and plants, as well as investigating different factors 
influencing the protein's efficiency would contribute substan-
tially to the existing knowledge on its role in Cd removal and 
improving plant tolerance. Our findings pave the way for the 
development of sustainable and economically viable strate-
gies for addressing Cd contamination in agricultural settings.
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