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Abstract
Adsorption azeotropy is a phenomenon that has been known for nearly a century, yet few properties have been formally 
proven. Here four general properties of adsorption azeotropy in porous materials are discussed and shown to apply irrespec-
tive of the isotherm, including the fact that there is always a lower bound on the pressure at which an azeotrope may be 
present. As molecules of different size will favour the occurrence of an azeotrope, this study considers in detail the ther-
modynamically consistent dual site Langmuir model, where azeotropy is solely the result of the adsorbent heterogeneity. 
Six categories of adsorption azeotropes, which can be grouped into three pairs of mirror cases, are formally identified for 
this model. Dimensionless ratios allow to determine formally each category and the analysis also includes a discussion of 
the crossing of the pure component isotherms. The heterogeneity of the adsorbent is shown to lead to azeotropes that can 
include an upper bound on pressure; that can occur even if the pure component isotherms do not cross; and can be present 
below the pressure at which the pure component isotherms cross. Finally, the analysis allows to identify also the ranges of 
parameters for which the pure component isotherms cross but an azeotrope is not present.

Keywords Adsorption azeotropy · Dual site Langmuir isotherm · Thermodynamic consistency

List of symbols
bAi  Affinity of component i in site A,  Pa–1

bBi  Affinity of component i in site B,  Pa–1

B  Coefficient of quadratic equation defined in 
Eq. 26, –

C  Coefficient of quadratic equation defined in 
Eq. 26, –

KPi  Henry law constant of component i,  Pa–1

f   Fugacity, Pa
F  Function defined in Eq. 12, –
G  Gibbs energy of the system, J
ni  Moles of component i in the fluid phase, mol
nAds
i

  Moles of component i in the adsorbed phase, mol
P  Pressure, Pa
PAz  Pressure at the azeotrope, Pa
PCross  Pressure at which the pure component isotherms 

cross, Pa
qi  Adsorbed amount of component i, mol  m–3

q0
i
  Pure component adsorbed amount of component i, 

mol  m–3

qSi  Saturation capacity of component i, mol  m–3

qAS  Saturation capacity of site A, mol  m–3

qBS  Saturation capacity of site B, mol  m–3

VS  Volume of the solid,  m3

x  Mole fraction of component 1 in the adsorbed 
phase, –

xi  Mole fraction of component i in the adsorbed 
phase, –

y  Mole fraction of component 1 in the fluid phase, –
yi  Mole fraction of component i in the fluid phase, –
yAz  Mole fraction at the azeotrope of component 1 in 

the fluid phase, –

Greek letters
�  Dimensionless group defined in Eq. 12, –
Γi  Ratio of affinities of the different sites for compo-

nent i, –
ΓA  Ratio of affinities of the components on site A, –
ΓB  Ratio of affinities of the components on site B, –
�  Fraction of total sites of type A, –
�S  Chemical potential of the solid (volume basis), J 

 m–3
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�i  Chemical potential of component i in the fluid 
phase, J  mol–1

�Ads
i

  Chemical potential of component i in the adsorbed 
phase, J  mol–1

�  Ratio of differences of site Henry law constants, 
defined in Eq. 19, –

ψ0

i
  Pure component reduced grand potential, mol  m–3

1 Introduction

Adsorption azeotropy has been found in many systems, with 
the earliest examples nearly a century ago [1, 2]. Damkohler 
[3] discussed these earlier results and measured data for 
argon and nitrogen on silica gel at 89 K, which exhibits an 
azeotrope. These data have been tested for thermodynamic 
consistency [4], confirming unambiguously the existence 
of a binary azeotrope. Brunauer in his book [5] links the 
occurrence of the azeotrope in [3] with multilayer adsorp-
tion, but this is not a requirement as shown by Cook and 
Basmadjian [6].

The existence of an azeotrope was originally associated 
with the crossing of the pure component adsorption iso-
therms [6, 7], but systems have been identified that exhibit 
azeotropy without this feature [8–11], including data from 
Talu on hydrogen sulphide and propane on mordenite for 
which thermodynamic consistency was demonstrated [9]. It 
is interesting to note that Hyun and Danner [8] also showed 
a case where the isotherms crossed but an azeotrope was not 
present (Ethylene-Isobutane on 13X at 373 K).

The effect of an azeotrope on adsorption column dynam-
ics was investigated by Basmadjan [12] and examples of 
breakthrough curves for such systems can also be found [13, 
14].

There are many occurrences of adsorption azeotropy in the 
literature and good recent accounts can be found in [15, 16]. 
Luberti et al. [15] show a range of azeotropic systems and 
correlate the data with the multisite Langmuir isotherm, dem-
onstrating that the heterogenous ideal adsorbed solution the-
ory [17] provides a reasonable approach to predicting binary 
systems, but improved correlations are possible introducing 
mixture activity coefficient models, see also [18]. Jiang et al. 
[16] attempt to develop a systematic characterization of the 
possible cases encountered with the dual site Langmuir (DSL) 
model. Their focus is on a numerical exploration aimed at find-
ing suitable parameters of the DSL model for both the case of 
thermodynamic consistency [17] and inconsistency, i.e. the 
more general case that allows the saturation capacities of the 
sites to vary with the adsorbate. In [16] examples are given for 
cases where the pure component isotherms do not cross but 
an azeotrope is present. Furthermore, they concluded that the 
thermodynamically consistent DSL model has an azeotrope 
when the pure component isotherms cross, while for the more 

general case crossing isotherms could have no azeotrope. A 
more recent study by the same group [19] expanded the explo-
ration of possible cases to consider whether it was possible to 
predict azeotropy at a pressure below the pressure at which the 
pure component isotherms cross, concluding that this was the 
case, citing also Talu’s system of carbon dioxide and propane 
on mordenite [9] as an example.

The aim of this contribution is to provide a set of proofs 
for general properties of adsorption azeotropy valid for any 
adsorption isotherm and subsequently investigate the behav-
iour of the thermodynamically consistent DSL model, as this 
contribution is part of a collection of papers in honour of 
Orhan Talu, who in his publications has always insisted on 
ensuring thermodynamic consistency. The analysis that fol-
lows provides formal proofs to several observations made in 
[16, 19], but also demonstrates some gaps and inconsistencies 
in what was reported.

2  General properties of adsorption 
azeotropy

A simple definition of adsorption azeotropy is that the mole 
fractions of the adsorbed phase and the fluid phase are equal, 
xi = yi , and dxi∕dyi ≠ 1 . These conditions imply that on an 
x–y diagram the equilibrium curve crosses the diagonal at the 
azeotrope.

It is also possible to relate the azeotrope to a maximum or 
minimum of the chemical potential of the solid [15]. As this is 
something that to the author's knowledge has not been demon-
strated in previous work a short proof will be given.

The Gibbs energy of a closed cell containing a gas phase 
and an adsorbent that is maintained at constant pressure (mov-
ing piston) is given by

For a system at equilibrium �i = �Ads
i

 . We can write the dif-
ferential of the Gibbs energy and incorporate the equilibrium 
relationship

The last term on the RHS is zero since the cell is a closed 
system. Therefore, at equilibrium

Defining nT =
∑

i

�
ni + nAds

i

�
 , for a system at an azeotrope 

( xi = yi ) at constant temperature and pressure

(1)G = VS�S +
∑

i

(
ni�i + nAds

i
�Ads
i

)

(2)dG = VSd�S +
∑

i

(
ni + nAds

i

)
d�i +

∑

i
�id

(
ni + nAds

i

)

(3)−VSd�S =
∑

i

(
ni + nAds

i

)
d�i

(4)−VSd�S = nT

∑

i
yid�i = 0
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At constant temperature and pressure the term on the 
RHS is zero from the Gibbs-Duhem equation for the gas 
phase, q.e.d.

It is therefore possible to state that: at constant tempera-
ture and pressure, at the azeotrope the chemical poten-
tial of the solid and as a result the reduced grand poten-
tial are either a maximum or a minimum with respect to 
composition. This can be seen as the equivalent of the case 
in vapour-liquid equilibrium, where the azeotrope results 
in either a maximum or minimum of the total pressure. It is 
therefore possible to identify the presence of an azeotrope 
in terms of the derivatives with respect to composition of 
the reduced grand potential at infinite dilution. The infinite 
dilution activity coefficient can also be used for this purpose 
as shown by Siperstein [18]. While the reduced grand poten-
tial of a mixture is not directly available experimentally, this 
approach for determining the presence of an azeotrope may 
prove to be useful in molecular simulations and in the analy-
sis of multicomponent mixture models. As this is a general 
property of adsorption azeotropy, which is independent of 
the model adopted, it can be seen as the thermodynamic 
necessary and sufficient condition for the existence of an 
adsorption azeotrope.

Given that the reduced grand potential at low pressure 
reduces to 

∑
iyiPKPi , with KPi the pure component Henry law 

constants, there is always a lower bound on the pressure 
at which an adsorption azeotrope can occur.

A third general property of adsorption azeotropy is 
related to the crossing of the pure component reduced grand 
potentials. Simply stated: if the pure component reduced 
grand potentials cross an azeotrope is present. This is 
only a sufficient condition for adsorption azeotropy and Sip-
erstein and Myers [11] have shown that it is possible to have 
an azeotrope even when the pure component reduced grand 
potentials do not cross. This third property can be proven 
formally.

At the intersection of the pure component reduced grand 
potentials the Ideal Adsorbed Solution Theory [20] gives as 
the solution

for all compositions, as in this case the reference pres-
sures of both components are equal to the total pressure. 
The IAST predicts selectivity reversal at the point where the 
pure component reduced grand potentials cross. This does 
not mean that the IAST predicts an azeotrope in the sense of 
the definition used here as in this case dxi∕dyi = 1 , and it is 
equivalent to an ideal liquid mixture with two components 
that have the same vapour pressure.

Any thermodynamically consistent mixture model will 
cross the IAST predictions [21, 22], therefore at the crossing 
of the reduced grand potentials there will be an azeotrope, 
q.e.d.

(5)xi = yi

A final general property can be inferred from the previous 
one. The reduced grand potential of the pure components is 
obtained from the Gibbs isotherm [23, 24].

 where q0
i
 is the adsorbed amount for component i pure.

At low pressure, for a thermodynamically consistent iso-
therm model [21] Eq. 6 reduces to ψ0

i
= KPiP , where KPi are 

the pure component Henry law constants.
At high pressure the adsorbed amount will become finite 

and equal to the saturation capacity qSi and Eq. 6 will reduce 
to ψ0

i
= Ci + qSilnf  , with Ci a constant.

If we define component 1 such that KP1 > KP2 the pure 
component reduced grand potentials will cross if qS2 > qS1 
and an azeotrope will be present. Note that in this case also 
the pure component isotherms cross. Therefore, the final 
general property can be stated as: define component 1 such 
that KP1 > KP2 , the pure component isotherms and the 
reduced grand potentials will cross if qS2 > qS1 and an 
azeotrope will be present.

This final condition is actually quite important as it shows 
that adsorption azeotropy is always present for differently 
sized molecules where van der Waals forces dominate (all 
non-polar molecules) as the Henry law constant will follow 
the size of the molecules and the saturation capacity will be 
in the opposite order. Consider for example adsorption of 
propane (1) and methane (2) on any microporous adsorbent. 
Due to the difference in size of the molecules the final condi-
tion will apply to this pair of adsorbates, albeit the pressure 
at which the azeotrope will begin to occur may be high as 
enough methane will have to adsorb before this can happen.

In what follows the focus is on the thermodynamically 
consistent dual site Langmuir (DSL) isotherm, which 
ensures that both molecules have the same saturation capac-
ity and as a result the final general property  of adsorption 
azeotropy does not apply. Hence, this model will highlight 
the conditions that result in an azeotrope due to the hetero-
geneity of the adsorbent and not size differences of the mol-
ecules. As most adsorption separations focus on separating 
molecules that are similar to each other, this in itself is an 
important special case to study in detail.

3  Adsorption azeotropy and the dual site 
Langmuir isotherm

Consider an adsorbent that can be described by a DSL iso-
therm. Assume that the isotherm is locally thermodynamically 
consistent, i.e. the saturation capacities for different molecules 

(6)ψ0

i
=

P

∫
0

q0
i
dlnf



1596 Adsorption (2024) 30:1593–1601

1 3

are the same for each site [17]. The binary adsorbed amounts, 
q1 and q2 , are given by

 where y is the mole fraction of component 1 in the gas 
phase and P is the total pressure of the system. Note that in 
the notation letters identify the sites and numbers identify 
the adsorbates.

The ratio of the mole fraction in the adsorbed phase to that 
in the gas phase is given by

For an azeotrope to occur this ratio must be 1.
This relationship can be rearranged to give

We can see that if molecule 1 is more strongly adsorbed 
on both sites bA1 > bA2 and bB1 > bB2 no azeotrope can be 
present. The only case that needs to be considered is bA1 > bA2 
and bB1 < bB2 , since site A can be defined as the one for which 
molecule 1 has a larger affinity.

Introducing a set of dimensionless parameters.

 where � is the fraction of sites of type A, while the Γ param-
eters represent the ratios of the affinities.

Equation 10 can be rewritten as

which leads to the pressure at which an azeotrope will occur

and the composition at which an azeotrope will occur

(7)

q1 = qAS
bA1Py

1 + bA1Py + bA2P(1 − y)
+ qBS

bB1Py
1 + bB1Py + bB2P(1 − y)

(8)

q2 = qAS
bA2P(1 − y)

1 + bA1Py + bA2P(1 − y)
+ qBS

bB2P(1 − y)
1 + bB1Py + bB2P(1 − y)

(9)
x

y
=

qAS
bA1P

1+bA1Py+bA2P(1−y)
+ qBS

bB1P

1+bB1Py+bB2P(1−y)

qAS
bA1Py+bA2P(1−y)

1+bA1Py+bA2P(1−y)
+ qBS

bB1Py+bB2P(1−y)

1+bB1Py+bB2P(1−y)

(10)

qAS
bA1 − bA2

1 + bA1Py + bA2P(1 − y)
+ qBS

bB1 − bB2

1 + bB1Py + bB2P(1 − y)
= 0

(11)

𝜙 =
qAS

qAS + qBS
;ΓA =

bA1

bA2
> 1;ΓB =

bB1

bB2
< 1;Γ2 =

bA2

bB2

(12)

� =
(1 − �)

(
1 − ΓB

)

�
(
ΓA − 1

) =
Γ2 + bA2P

[
1 − y

(
1 − ΓB

)]

1 + bA2P
[
1 + y

(
ΓA − 1

)] = F(P, y)

(13)bA2PAz =
� − Γ2

1 − y
(
1 − ΓB

)
− �

[
1 + y

(
ΓA − 1

)]

(14)yAz =
Γ2 + bA2P − �

(
1 + bA2P

)

[
�
(
ΓA − 1

)
+
(
1 − ΓB

)]
bA2P

The term on the LHS of Eq. 12 is a constant, � . There-
fore the condition for the existence of an azeotrope can 
be analysed by inspecting the function on the RHS, F . 
To understand if an azeotrope will be present one has to 
consider the dependence of this function on mole fraction 
and pressure.

By inspection 𝜕F
𝜕y

|
|
|P

< 0 apart for P = 0 where �F
�y

|
|
|0
= 0.

This function is more complex as �F
�P

||
|y

 changes sign when

yI = 0 when Γ2 = 1 . If Γ2 > 1 , yI is always negative and 
there will not be a change of sign. By inspection 𝜕F

𝜕P

||
|y
< 0 

when Γ2 ≥ 1.
yI = 1 when Γ2 = ΓB∕ΓA . If Γ2 < ΓB∕ΓA, yI is always 

greater than 1 and there will not be a change of sign. By 
inspection 𝜕F

𝜕P

||
|y
> 0 when Γ2 < ΓB∕ΓA.

If ΓB∕ΓA < Γ2 < 1 there will be a change of sign with 
𝜕F

𝜕P

||
|y
> 0 for y < yI  ,  and 𝜕F

𝜕P

||
|y
< 0 for y > yI  ,  and 

F
(
P, yI

)
= Γ2.

As a result of the considerations above it is possible 
to state:

1. If Γ2 > 1 , F(P, y) has a maximum at F(0,0) = Γ2 and a 
minimum at F(∞, 1) =

ΓB

ΓA

 . An azeotrope will exist 

if Γ2 > 𝛼 >
ΓB

ΓA

2. If 1 > Γ2 > ΓB∕ΓA ,  F(P, y) has a maximum at 
F(∞, 0) = 1 and a minimum at F(∞, 1) =

ΓB

ΓA

 . In this case 

an azeotrope will exist if1 > 𝛼 >
ΓB

ΓA

3. If Γ2 < ΓB∕ΓA , F(P, y) has a maximum at F(∞, 0) = 1 
and a minimum at F(0,1) = Γ2 . In this case an azeotrope 
will exist if1 > 𝛼 > Γ2

From Eq. 14

(15)

�F
�y

|

|

|

|P
= −

bA2P
(

1 − ΓB
)

1 + bA2P
[

1 + y
(

ΓA − 1
)]

−
bA2P

(

ΓA − 1
){

Γ2 + bA2P
[

1 − y
(

1 − ΓB
)]}

{

1 + bA2P
[

1 + y
(

ΓA − 1
)]}2

(16)
�F

�P

||
|
|y
= −

bA2
[
Γ2 − 1 + y

[
1 − ΓB + Γ2

(
ΓA − 1

)]]

{
1 + bA2P

[
1 + y

(
ΓA − 1

)]}2

(17)y = yI =
1 − Γ2

1 − ΓB + Γ2

(
ΓA − 1

)

(18)bA2
�PAz

�y
=

(
� − Γ2

)[(
1 − ΓB

)
+ �

(
ΓA − 1

)]

{
1 − y

(
1 − ΓB

)
− �

[
1 + y

(
ΓA − 1

)]}2
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When Γ2 > 1,𝛼 < Γ2 and 𝜕PAz

𝜕y
< 0 . This leads to a very 

interesting behaviour:

4. If 𝛼 > 1 the azeotrope will only appear in a limited pres-
sure range:𝛼−Γ2

1−𝛼
> bA2PAz >

𝛼−Γ2

ΓB−ΓA𝛼

5. If � ≤ 1 , then bA2PAz >
𝛼−Γ2

ΓB−ΓA𝛼
 , while the concentration 

range will be limited to

When ΓB

ΓA

< Γ2 < 1 there will be two further cases to 
consider.

6. If 𝛼 > Γ2 , 
𝜕PAz

𝜕y
> 0 and the pressure will be bA2PAz >

𝛼−Γ2

1−𝛼
 

as 𝛼 >
ΓB

ΓA

 . The concentration range will be limited to 
0 < yAz <

1−𝛼

1−ΓB+𝛼(ΓA−1)
.

7. If 𝛼 < Γ2 , 
𝜕PAz

𝜕y
< 0 and bA2PAz >

𝛼−Γ2

ΓB−ΓA𝛼
 , while the con-

centration range will be limited to1 > yAz >
1−𝛼

1−ΓB+𝛼(ΓA−1)

When Γ2 <
ΓB

ΓA

 there will be two final cases to consider.

8. If 𝛼 > Γ2 , 
𝜕PAz

𝜕y
> 0 and the pressure will be bA2PAz >

𝛼−Γ2

1−𝛼
 

when 𝛼 >
ΓB

ΓA

 . The concentration range will be limited 

to0 < yAz <
1−𝛼

1−ΓB+𝛼(ΓA−1)

9. If 𝛼 > Γ2 , 
𝜕PAz

𝜕y
> 0 and when 𝛼 <

ΓB

ΓA

 the azeotrope will 
be  p re sen t  on ly  in  a  l imi t ed  p re s su re 
range: 𝛼−Γ2

ΓB−ΓA𝛼
> bA2PAz >

𝛼−Γ2

1−𝛼

All these conditions allow the definition of six categories 
of azeotropes that can be obtained from the thermodynami-
cally consistent DSL isotherm. These are summarised in 
Table 1 along with all the expressions useful for the study of 

Table 1  Summary of 
relationships for binary 
adsorption azeotropy with the 
dual site Langmuir isotherm. 
Site A is the adsorption site 
for which molecule 1 is more 
strongly adsorbed

Isotherm q
1
= qAS

bA1Py

1+bA1Py+bA2P(1−y)
+ qBS

bB1Py

1+bB1Py+bB2P(1−y)

q
2
= qAS

bA2P(1−y)

1+bA1Py+bA2P(1−y)
+ qBS

bB2P(1−y)

1+bB1Py+bB2P(1−y)

Define
� =

qAS

qAS+qBS
; ΓA =

bA1

bA2
> 1; ΓB =

bB1

bB2
< 1; Γ

2
=

bA2

bB2
; 
� =

(1−�)(1−ΓB)
�(ΓA−1)

Azeotrope
� =

Γ
2
+bA2P[1−y(1−ΓB)]

1+bA2P[1+y(ΓA−1)]

Given P
yAz =

Γ
2
+bA2P−�(1+bA2P)

[�(ΓA−1)+(1−ΓB)]bA2P

Given y bA2PAz =
�−Γ

2

1−y(1−ΓB)−�[1+y(ΓA−1)]

Requirement for azeotrope Γ
2
> 𝛼 >

ΓB

ΓA

 if Γ
2
≥ 1

1 > 𝛼 >
ΓB

ΓA

 if 1 > Γ
2
≥ ΓB

ΓA

1 > 𝛼 > Γ
2
 if ΓB

ΓA

> Γ
2

Category 1
Γ
2
> 𝛼 and 

� > 1 �−Γ2
1−�

> bA2PAz >
�−Γ2

ΓB−ΓA�  
𝛼−Γ

2

1−𝛼
> bA2PAz >

𝛼−Γ
2

ΓB−ΓA𝛼
 any y

Crossing isotherms
PCross < PAz

Category 2 Γ
2
≥ 1 and ΓB

ΓA

< 𝛼 < 1 bA2PAz >
𝛼−Γ

2

ΓB−ΓA𝛼
 1 > yAz >

1−𝛼

1−ΓB+𝛼(ΓA−1)
Crossing isotherms
PCross < PAz

Category 3 𝛼 > Γ
2
>

ΓB

ΓA

 and 1 > 𝛼 bA2PAz >
𝛼−Γ

2

1−𝛼
 0 < yAz <

1−𝛼

1−ΓB+𝛼(ΓA−1)
Non-crossing isotherms possible
PCross > PAz is possible

Category 4 1
Non-crossing isotherms possible
PCross > PAz is possible

Category 5 Γ
2
<

ΓB

ΓA

 and 1 > 𝛼 >
ΓB

ΓA

 bA2PAz >
𝛼−Γ

2

1−𝛼
 0 < yAz <

1−𝛼

1−ΓB+𝛼(ΓA−1)
Crossing isotherms
PCross < PAz

Category 6 Γ
2
<

ΓB

ΓA

 and ΓB

ΓA

> 𝛼 > Γ
2
 𝛼−Γ

2

ΓB−ΓA𝛼
> bA2PAz >

𝛼−Γ
2

1−𝛼
 any y

Crossing isotherms
PCross < PAz
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an azeotrope with the DSL isotherm. The six categories are 
ordered in decreasing value of Γ2 and depend on which bounds 
limit the pressure and the concentration as well as whether 
azeotropes can be present when the isotherms do not cross.

Categories 1–3 are the mirrors of categories 6 − 4 
obtained by inverting both the order of the sites and that of 
the adsorbates. Categories 1 and 6 are both characterized 
by a finite range of pressures for azeotropes, something first 
observed by Cook and Basmadjian [6]. Categories 2 and 
5 have only a lower bound in pressure and a limited range 
of compositions possible, but when an azeotrope is present 
the pure component isotherms cross. Categories 3 and 4 
have only a lower bound in pressure and a limited range of 
compositions possible, but allow azeotropes even when the 
pure component isotherms do not cross, and when the pure 
component isotherms cross the bound on the azeotrope pres-
sure is lower that the pressure at which the pure component 
isotherms cross.

4  Relationship to previous work on the DSL 
model

Do and Do [7] analysed a subset of the possible cases pre-
sented here as they considered that only the more weakly 
adsorbed component on site A could adsorb on site B. There-
fore, the particular case considered in [7] can be obtained 
from the previous analysis setting bB1 = 0 or ΓB = 0 , and 
note that the pure component isotherms always cross.

In the analysis of azeotropy and the DSL isotherm pre-
sented recently [16, 19] a dimensionless parameter was 
introduced based on the differences of the Henry law con-
stants of the sites.

In terms of the dimensionless groups used here

According to [16, 19] the condition for azeotropy requires

While, defining 1
Γ1

=
ΓB

ΓAΓ2

=
bB1

bA1
 , the analysis presented 

here indicates that in fact

When Γ2 > 1 , 1 >
1

Γ1

> 0 , therefore, there will be a range 
of values of � where this condition is met.

(19)� =
KPB2 − KPB1

KPA1 − KPA2

=
bB2 − bB1

bA1 − bA2

qBS

qAS

(20)� =
�

Γ2

(21)1 > 𝜒 > 0

(22)1 > 𝜒 >
1

Γ1

If Γ2 > 1

 and

When Γ2 < 1 , 1
Γ1

<
1

Γ2

 , therefore, there will be a range of 
values of � where the conditions in Eqs. 23, 24 are met.

It is easy to generate sets of parameters for the different 
categories. One can start by setting bA2 and bB2 to obtain Γ2 
in the range of interest, i.e. below or above 1. Suitable values 
of the remaining affinities can then be set ensuring ΓA > 1 
and ΓB < 1 . As the fraction of total sites of type A, � , can be 

(23)
1

Γ2

> 𝜒 >
1

Γ1

If 1 > Γ2 >
ΓB

ΓA

(24)
1

Γ2

> 𝜒 > 1 If Γ2 <
ΓB

ΓA
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Fig. 1    System for which 𝜒 > 0 but there is no azeotrope as in all 
cases x

y
> 1 . Γ

2
= 0.2 ; ΓA = 2.5 ; ΓB = 0.1 ; � = 0.03 ; 1

Γ
1

= 0.2 . Pure 
component isotherms do not cross
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Fig. 2  System (category 5) for which 𝜒 > 1 and there is an azeotrope. 
Γ
2
= 0.05 ; ΓA = 3 ; ΓB = 0.4 ; � = 0.25 ; bA2P = 7.5
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changed arbitrarily between 0 and 1 it is possible to obtain 
any value for �.

Figure 1 shows an example where 1

Γ1

> 𝜒 > 0 and an 
azeotrope is not present.

Figure 2 shows an example where 𝜒 > 1 . Therefore, 
there are conditions of adsorption azeotropy for the ther-
modynamically consistent DSL model that have not been 
identified previously in [16, 19] as the search for viable 
parameter values started by ensuring that the constraint 
given by Eq. 21 was met.

5  Crossing of pure component isotherms

While crossing of the pure component isotherms is not a 
requirement for adsorption azeotropy, it is a potential indi-
cator that the mixture can have an azeotrope. It is therefore 
useful to complete the analysis of the thermodynamically 
consistent DSL model and discuss whether the six categories 
for azeotropy will always have crossing isotherms or not.

The condition for the presence of an intersection of the 
pure component isotherms is given by

After some algebraic manipulation it is possible to recast 
this condition as the solution of the quadratic equation. 

where

One positive bA2PCross value, 
�
−B +

√
B2 − 4C

�
∕2 , ful-

fils the crossing of the isotherms condition when C < 0 . 
This results in the following condition

If Γ2 > 1 the condition for C < 0 is wider than that of 
the azeotrope.

If Γ2 <
ΓB

ΓA

 the condition for C < 0 is wider than that of the 
azeotrope. Therefore, this case is similar to the previous one.

Categories 1, 2, 5 and 6 in Table 1 will always have 
crossing isotherms when an azeotrope is present, but there 
will be ranges of parameters where the isotherms will 
cross but there will not be an azeotrope, contrary to what 
was stated in [16]. Figure 3 shows an example of crossing 
isotherms but no azeotrope.

(25)

qAS
bA1P

1 + bA1P
+ qBS

bB1P

1 + bB1P
= qAS

bA2P

1 + bA2P
+ qBS

bB2P

1 + bB2P

(26)
(
bA2P

)2
+ BbA2P + C = 0

B = Γ2

ΓB + 1 − �
(
ΓA + 1

)

ΓB − ΓAΓ2�
andC = Γ2

Γ2 − �

ΓB − ΓAΓ2�

(27)
ΓB

Γ2ΓA

> 𝛼 > Γ2 or
ΓB

Γ2ΓA

< 𝛼 < Γ2

If 1 > Γ2 >
ΓB

ΓA

 the condition for C < 0 is more stringent 
than that of the azeotrope.

It is necessary to consider also the case of B < 0 
and C > 0 

Of these only the subset that fulfils B2 > 4C will result in 
pure component isotherms that cross twice.

Categories 3 and 4 in Table 1 can have an azeotrope 
when the isotherms do not cross as the conditions for 
crossing of the isotherms are more stringent that those 

(28)

ΓB

Γ2ΓA

> 𝛼 >
ΓB + 1

ΓA + 1
andΓ2 > 𝛼 or

ΓB

Γ2ΓA

< 𝛼 <
ΓB + 1

ΓA + 1
and Γ2 < 𝛼
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Fig. 3  System for which pure component isotherms cross but there is 
no azeotrope as in all cases x

y
> 1 . Γ

2
= 2.5 ; ΓA = 3 ; ΓB = 0.25 ; 

� = 0.05 ; 1
Γ
1

= 0.033
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Fig. 4  System (category 3) where  the pure component isotherms do 
not cross and there is an azeotrope. Γ

2
= 0.067 ; ΓA = 7.5 ; ΓB = 0.1 ; 

� = 0.3 ; bA2P = 1.67
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that lead to an azeotrope. Figure 4 shows an example of 
isotherms not crossing but an azeotrope is present.

For azeotropes belonging to categories 3 and 4 it has 
been observed that when the isotherms cross the lower 
bound of the azeotrope pressure is less than that of the 
crossing of the pure component isotherms. As an exam-
ple consider the case where B2 ≈ 4C . Selecting param-
eters that will give a denominator of B close to 0 allows 
to increase bA2PCross ≈ −B . Figure 5 shows an example 
of an azeotrope belonging to category 4 where the azeo-
trope can be present below the pressure at which the pure 
component isotherms cross. In the case shown bA2PAz is 
half of bA2PCross = 0.099 (second value is 0.11), while the 
pressure at which an azeotrope will first occur corresponds 
to bA2PAz(y = 1) = 0.017.

6  Conclusions

A formal proof has been provided for the following prop-
erties valid for adsorption in a porous material (finite satu-
ration capacity) irrespective of the adsorption isotherm:

1. At constant temperature and pressure, at the azeotrope 
the chemical potential of the solid and as a result the 
reduced grand potential are either a maximum or a mini-
mum with respect to composition.

2. There is always a lower bound on the pressure at which 
an adsorption azeotrope can occur.

3. If the pure component reduced grand potentials cross an 
azeotrope is present.

4. Define component 1 such that KP1 > KP2 , the pure com-
ponent isotherms and the reduced grand potentials will 
cross if qS2 > qS1 and an azeotrope will be present.

The thermodynamically consistent DSL model has been 
used to show that heterogeneity of the adsorbent can lead 
to different categories of azeotropes that can be grouped 
into three mirror pairs. A formal analysis based on dimen-
sionless ratios allows to define the category to which a 
system belongs and a discussion of the relationship of the 
azeotropes and the crossing of the pure component iso-
therms was included.

The condition for adsorption azeotropy for the thermo-
dynamically consistent DSL model has been shown to be 
different from what was previously reported in the litera-
ture [16, 19], allowing to identify cases where previously 
it was thought that an azeotrope would not occur as well as 
cases where one would have predicted the existence of an 
azeotrope when in fact this would not be the case.

A concise overview of the analysis carried out for the 
thermodynamically consistent DSL model has been pro-
vided in Table 1. This includes a complete set of relation-
ships that clarify if an azeotrope can occur with an upper 
bound on pressure; if there is a lower or upper bound on the 
mole fraction in the fluid phase; if an azeotrope can be pre-
sent if the pure component isotherms cross; if the isotherms 
can cross without the presence of an azeotrope; and if the 
azeotrope pressure can be lower that the pressure at which 
the pure component isotherms cross.
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