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Abstract
To match the dynamics of a linear driving force model and the diffusion equation is of great practical importance in the design 
and optimization of adsorption separation processes. A frequency response analysis is applied to show that it is not possible 
to arrive at an equivalence based on a single parameter. Using this as the basis, a universal equivalence for the linear problem 
is constructed and closed form analytical expressions for the two parameters are derived for the sphere and slab geometries. 
The two parameters represent the increased effective mass transfer coefficient and a reduction in the active volume of the 
particle, both corresponding to the internal concentration profiles of the diffusion equation at cyclic steady state.

Keywords Linear driving force · Diffusion · Heat conduction · Adsorption dynamics · Fast cycles.

Notation
a  Surface to volume ratio of solid,  m–1

A  Integration constants
b  Inverse of dimensionless penetration depth, 

√
�

2�

c  Concentration in the fluid phase, mol  m–3

C  Dimensionless concentration in the fluid phase
CIN  Dimensionless column inlet concentration
D  Diffusion coefficient,  m2  s–1

F  Volumetric flowrate,  m3  s–1

G  Transfer function
Ji  Axial dispersive flux of component i in the column 

mass balance, mol  m–2 s–1

K  Dimensionless Henry law constant or slope of 
secant of the adsorption isotherm

kLDF  LDF mass transfer coefficient, m  s–1

L  Column length, m
N  Dimensioless variable used in the solution of the 

diffusion equation for a sphere, �Q
Pe  Column Peclet number
q̄  Average concentration in the adsorbed phase, mol 

 m–3

Q  Dimensionless concentration in the adsorbed phase
q∗  Adsorbed phase concentration at equilibrium with 

concentration in the fluid, mol  m–3

r  Spatial coordinate, m
R  Particle characteristic dimension: radius or half-

thickness, m
s  Dimensionless Laplace domain variable
t  Time, s
tc  Half-cycle time, s
u  Interstitial velocity, m  s–1

VF  Volume of fluid,  m3

VS  Volume of solid,  m3

z  Axial coordinate, m

Greek letters
�  Ratio of half-cycle time and diffusion time constant
�  Column void fraction
�  Ratio of the effective volume of LDF equivalent 

model and the volume of the solid
�  Dimensionless spatial coordinate, r

R
�  Phase lag angle, rad
�  Dimensionless time, t

tc

Ω  Dimensionless parameter that accounts for the 
enhancement of the LDF constant for fast cycles. 
Defined in Eq. 2

1 Introduction

One of Shivaji Sircar’s highly cited papers (Sircar and 
Hufton 2000) is on “Why does the Linear Driving Force 
for adsorption kinetics work?” and describes how different 
methods can be used to arrive at the equivalence between 
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the LDF model and the diffusion equation. This is a topic 
to which he returned most recently in 2018 (Sircar 2018), 
showing that this equivalence is a problem of significant 
practical impact. What may seem an academic question 
and a technique that may be superseded by ever increasing 
computational power, is in fact a very important topic even 
today. This is due to the fact that the design of adsorp-
tion separation processes requires the simulation to cyclic 
steady state (CSS) of multiple columns with a complex 
schedule. If an optimiser is to be used to obtain Pareto 
fronts in order to find conditions that minimize energy 
consumption and maximize productivity, 1000s of calcu-
lations to CCS are required, each in turn consisting in the 
simulation of 100s of cycles. Computationally efficient 
methods are needed. By lumping the mass transfer resist-
ance into an LDF coefficient, the model of an adsorption 
column is reduced by at least one dimension when the 
process is either micro- or macro-pore diffusion limited, 
and the resulting computations are typically one order of 
magnitude faster.

That the topic of the LDF equivalence is so important 
is also evidenced by the number of contributions that have 
been focussed on this topic since the pioneering work of 
(Glueckauf 1955). Glueckauf produced the equivalence 
from a series expansion valid for long times of the problem 
of diffusion in a single particle subject to a perfect step 
change in external concentration. This led to two expres-
sions and the simpler one for spherical particles is what 
is so widely used:

He then showed that this was a very good approximation to 
be used in the simulation of breakthrough curves and dis-
cussed also the quadratic driving force model, QDF (Sircar 
and Hufton 2000), of Vermeulen (1953) as an improved 
approximation for nearly rectangular isotherms. The QDF 
model can be seen as a concentration dependent LDF coeffi-
cient and therefore will not be discussed in detail here. Sircar 
and Hufton (2000) showed that in fact for a long column 
where constant pattern behaviour was established the LDF 
model was a good approximation for a system that could be 
described using the Langmuir isotherm.

The equivalence can also be derived considering that 
the concentration profile resulting from the diffusion equa-
tion has to be symmetric with respect to the center of the 
particle and is therefore a sum of even functions or a poly-
nomial with only even powers (Villadsen and Michelsen 
1978). Equation 1 is recovered using the first order approx-
imation that the profile is a parabola, which corresponds 
to the most important term for long times. Higher order 
approximations are possible (Villadsen and Michelsen 

(1)
dq̄

dt
= kLDFa(q

∗ − q̄) = 15
D

R2
(q∗ − q̄)

1978; Do and Rice 1986), but these increase complexity 
and are not easy to generalise to multicomponent systems.

When considering the dynamics of an adsorption col-
umn, the solution to a pulse experiment leads to the defini-
tion of the moments of the response. The first moment will 
depend only on equilibrium properties, while the second 
moment, i.e. the dispersion of the peak, will depend on 
both equilibrium and kinetic parameters (Ruthven 1984). 
Therefore from the first and second moment, which com-
bined can be used to calculate the height equivalent to a 
theoretical plate, it is possible to arrive at general expres-
sions that lump multiple mass transfer resistances into an 
equivalent LDF parameter. Also in this case, for a single 
diffusion resistance Eq. 1 is obtained.

Both the original derivation, based on a long-time 
approximation, and the parabolic concentration profile 
give an insight into when the simple LDF equivalence 
fails. When cycling of the external concentration is fast, 
compared to the diffusion time constant deviations are 
observed and in this case Eq. 1 is generalised to

with Ω a function of the half-cycle time. Nakao and Suzuki 
(1983) were the first to investigate this numerically simulat-
ing a single particle subject to a sinusoidal change in the 
external concentration. Matching the amplitudes of the oscil-
lations from the two models, they found that Ω increases rap-
idly for faster cycle times. Before discussing developments 
that followed, it is important to note that this problem has 
an analogue in heat transfer, which is mathematically iden-
tical. In 1942 Hausen (1942) solved the same problem and 
arrived at effectively the same trend, which was later redis-
covered by Nakao and Suzuki 40 years later. In Hausen’s 
more easily accessible book (Hausen 1983) all geometries 
are discussed as well as the limiting solutions valid for very 
fast cycles and the parabolic profile for slow cycles. The 
only minor difference is that Nakao and Suzuki give a limit 
value for slow cycles of �2 , corresponding to the first eigen-
value of the diffusion equation, while Hausen starts from the 
value corresponding to a parabolic profile, i.e. Glueckauf’s 
15 for the sphere. Figure 1 shows the comparison of the 
two approximations. Note that Hausen also gave analytical 
expressions that can be found in the heat transfer literature 
(Hausen 1983; Schmidt and Willmott 1981), which are simi-
lar to recent formulations for the spherical geometry (Hos-
sain et al. 2016). The values of Ω for the spherical geometry 
that can be found in the literature show a strong enhance-
ment in the effective mass transfer coefficient for fast cycles.

In the mass transfer literature, Alpay and Scott (1992) 
appear to be the first to have rediscovered Hausen’s ana-
lytical limit valid for very fast cycle times. They used 

(2)
dq̄

dt
= kLDFa(q

∗ − q̄) = Ω
D

R2
(q∗ − q̄)
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the solution to the diffusion equation in a semi-infinite 
medium confirming the numerical results of Nakao and 
Suzuki (1983). Additional studies have considered the 
effect of nonlinearity (Carta and Cincotti (1998); Zhang 
and Ritter 1997; Mendes et al. 1994), extension to mul-
ticomponent mixtures (Serbezov and Sotirchos 2001), 
and the shape of the forcing function (Sheng and Costa 
1997), but any effort that is too complex has to be balanced 
against the direct solution of the diffusion equation.

The extension of the LDF equivalence to full processes 
was investigated by Raghavan et  al. (1986) and is also 
discussed by Sircar and Hufton (2000). In both cases the 
correlations are qualitatively similar to the trend of Nakao 
and Suzuki (1983), but the values of Ω do not overlap and 
are lower. In the case of the heatless dryer (Raghavan et al. 
1986), the coefficient Ω was found to appear to level-off to a 
value between 30 and 40 for very fast cycles. This was later 
found to be the result of an insufficient number of colloca-
tion points in the solution of the diffusion equation (Ahn 
and Brandani 2005). The difference between single parti-
cle dynamics and full process simulations indicates that the 
approach is only an approximation and an improved method 
can be found.

To understand the limitations of trying to match the 
dynamics of the single particle one has to consider that 
in a general flow system subject to a sinusoidal input the 
response will have two important properties: the amplitude 
of the resulting sinusoidal function at the outlet and the 
phase lag between the input and output functions (Stepha-
nopoulos 1983). The approach of (Hausen 1942; Nakao and 
Suzuki 1983) matches only the amplitude of the oscillations, 
which can therefore exit the system at a time that is not 
the same as the full diffusion model. Dias and Rodrigues 
(1998) used a frequency response analysis to calculate Ω 
and showed that different results are obtained when match-
ing the amplitude or the phase lag. Mendes et al. (1994) 

used a numerical approach and first calculated Ω to match 
the amplitudes and then added a phase shift to achieve a full 
match. Their conclusion was that there exists no universal 
equivalence criterion.

The aim of this contribution is to derive the analytical 
expressions that allow to calculate for a linear isothermal 
system, i.e. a system with a linear adsorption isotherm and a 
constant diffusion coefficient, the exact equivalence between 
the diffusion equation and the LDF model at cyclic steady 
state. This will be done introducing a second physically 
meaningful parameter and will be generalized to process 
simulations.

2  Theory

2.1  From column mass balance to individual 
particle

The heart of an adsorption process simulator is the column 
model. In the standard dispersed plug-flow one dimen-
sional model (Ruthven 1984) the mass balance is written 
as

With the associated Danckwerts boundary conditions. 
Here q̄ is the average adsorbed phase concentration; c is the 
fluid phase concentration; u is the interstitial velocity; J is 
the dispersive flux; and � is the void fraction of the column.

This model reduces to the well mixed adsorber when the 
length of the column becomes very short and the axial dis-
persion term dominates (Aris 1991). In this limit, the overall 
mass balance becomes

Here F is the volumetric flowrate; VS is the volume of 
the solid in the column; and VF is the volume of the fluid in 
the column.

The dynamics of the adsorbed phase reduces in both cases 
to that of the individual particle when the volumetric flow-
rate is very high. In this limit all the particles will see the 
same external concentration.

This shows how single particle dynamics are equivalent 
to column dynamics at least in one limiting condition, there-
fore an exact equivalence has to apply also to single particle 
dynamics.

(3)(1 − 𝜀)
𝜕q̄i

𝜕t
+ 𝜀

𝜕ci

𝜕t
+ 𝜀

𝜕uci

𝜕z
+ 𝜀

𝜕Ji

𝜕z
= 0

(4)VS

dq̄i

dt
+ VF

dci

dt
=
(
Fci

)
IN

−
(
Fci

)
OUT

Fig. 1  Equivalent LDF coefficient for a sphere over a range of half-
cycle times, t

c
 . � =

Dt
c

R2
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2.2  Single particle exact equivalence 
from frequency response

We assume a sinusoidal fluctuation, Δc sin
(
�

t

tc

)
, with half-

cycle time, tc , of the fluid concentration and develop the 
solution in terms of dimensionless deviation functions 
(Stephanopoulos 1983), starting from Eq. 1 and

The “Appendix” shows the derivation of the Laplace 
domain transfer functions between the forcing function, 
oscillating external concentration, and the average adsorbed 
phase concentration for the sphere and the slab.

where � =
tcD

R2
 is the ratio of the half-cycle time and the dif-

fusion time constant. This parameter determines if a cycle is 
fast. When 𝛼 > 1 Glueckauf’s constant equivalence is a good 
approximation. For fast cycles, when 𝛼 < 1 , the equivalence 
becomes a function of the parameter �.

With a sinusoidal forcing function, the CSS amplitude 
ratio and phase lag can be determined from the Laplace 
domain solution of the transfer function substituting s = i� . 
This is equivalent to the traditional use of i� (Stephanopou-
los 1983), with � the frequency due to use of the half-cycle 
time in the definition of the dimensionless time. The result-
ing amplitude ratio is the modulus of the transfer function, 
while the phase lag is the argument.

(5)
dq̄

dt
= Da

(
𝜕q

𝜕r

)

r=R

(6)GLDF(s,Ω) =
̃̄Q

C̃
=

Ω𝛼

s + Ω𝛼

(7)GDsp(s) = 3
�

s

[√
s

�
coth

(√
s

�

)
− 1

]
andGDsl(s) =

√
�

s
tanh

(√
s

�

)

As discussed in Dias and Rodrigues (1998) it is not 
possible to match both amplitude ratio and phase lag with 
a single empirical constant. Figure 2 shows the single 
parameters obtained by matching either the phase lag or 
the amplitude ratios for the spherical and slab geometries. 
The plots show also existing correlations (Nakao and 
Suzuki 1983; Hausen 1983), and demonstrate that indeed 
the frequency response analysis can provide in an elegant 
manner the approximations obtained previously.

Figure 3 shows the difference in phase lags that results 
from using the value of Ω that matches the amplitude 
ratio. Note that the diffusion model lags behind and this 
is important to understand what happens in column and 
process simulations. If there is a phase shift, the driving 
force will not be correct and this is not apparent when 
matching only the single particle. Process based numeri-
cal approaches (Sircar and Hufton 2000; Raghavan et al. 
1986) show correlations for Ω with values that are smaller 

Fig. 2  Equivalent LDF coefficient obtained matching the amplitudes or the phase lags for a sphere and a slab. Included are previous approxima-
tions that match only the amplitudes of the frequency response
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Fig. 3  Difference between the phase lag angle (rad) of the aver-
age adsorbed phase for the diffusion model and the LDF model that 
matches the amplitude ratio (Mod)
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than those of Nakao and Suzuki (1983). This is most likely 
due to the effect of the incorrect match of the phase lag.

We note that a match of the phase lag is consistent with 
Glueckauf’s limiting value of Ω = 15 . The other important 
consideration is the fact that with the single parameter 
approach we obtain a coefficient that increases monotoni-
cally, giving the impression that faster cycle times are 
always beneficial and result in a significant increase of the 
equivalent mass transfer coefficient. The values of Ω from 
the phase lag are larger than the corresponding values that 
match the amplitudes, with an asymptote for fast cycles 
that is inversely proportional to � , not 

√
� . The values are 

diverging as the cycles become faster.
Figure 4 shows snapshots of internal concentration 

profiles for the spherical and slab geometries, generated 
from the amplitude ratio and phase lag calculated from the 
Laplace domain transfer function of the internal profile: 
for the spherical geometry see Eq. 27. These profiles show 
two important features for fast cycles: the profiles deviate 
significantly from the parabolic shape, with very sharp 
gradients near the surface; and the internal core does not 
see that the external concentration is fluctuating. This is 
consistent with the approach of assuming a semi-infinite 
medium, but more importantly it shows that the true equiv-
alence should also include the fact that the increased mass 
transfer coefficient corresponding to steeper internal gra-
dients near the surface has as a counterpart a decreasing 
fraction of solid that is active.

To arrive at an exact equivalence between the two mod-
els, there is the need to reduce the volume of the solid and 
increase the mass transfer coefficient. With two equations, 
matching both amplitude and phase lag, the problem would 
appear to be numerical (Rouse and Brandani 2001), but 
in fact with the appropriate understanding of the physical 
meaning of the parameters closed analytical expressions can 
be obtained.

The two-parameter equivalence starts by matching the 
phase lag to fix the value of Ω . Then the ratio of the result-
ing moduli is the volume correction. This can be understood 
considering that when the adsorbed amounts are matched, 
this ratio becomes the ratio of the volumes of the diffusion 
and LDF models, � . Note that this second parameter will 
not affect the phase lag, because the expression of the argu-
ment contains the ratio of the real and imaginary parts and 
therefore it is also equivalent to the ratio of the real and 
imaginary parts of the adsorbed amounts, i.e. the volumes 
in the calculation of the phase lag cancel.

Therefore the two-parameter LDF equivalence is given by

The argument of a complex number z = x + iy is given 
by the inverse tangent of the ratio of the imaginary and real 
parts of the complex number, y

x
.

Therefore the transfer function of the LDF model can be 
written as

(8)

arg
[
GLDF(i�,Ω)

]
= arg

[
GD(i�)

]
and

1

�
=

||GLDF(i�,Ω)
||

||GD(i�)
||

=
VS

VLDF
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Fig. 4  Dimensionless internal concentration profiles at 1
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The parameters are found from

Equation 10 can be used directly with any mathemati-
cal software or language that handles complex numbers and 
functions. For completeness we report the full analytical 
expressions for the sphere and slab, which can be used when 
only real numbers and functions are available.

The equivalence parameters reduce to simple expressions 
for slow and very fast cycles. For the sphere.

While for the slab.

From the physical meaning of the parameter � it is possi-
ble to see that 1

b
 is the dimensionless penetration depth of the 

semi-infinite medium (Carslaw and Jaeger 1959). Figures 5 
and 6 show the two parameters and their limiting values/
trends as a function of � for the sphere and slab, respectively.

2.3  From single particle to full column

Now that the exact equivalence is established for the single 
particle we proceed to show that this is in fact the equiva-
lence needed for any process.

(9)

GLDF(i�,Ω) =
Ω�

�2 + Ω2�2
(Ω� − i�) or

Re
[
GLDF(i�,Ω)

]

Im
[
GLDF(i�,Ω)

] = −
Ω�

�

(10)

Ω = −
�

�

Re
[
GD(i�)

]

Im
[
GD(i�)

] and 1

�
=

√(
Ω2�2

�2+Ω2�2

)2

+

(
Ω��

�2+Ω2�2

)2

√
Re

[
GD(i�)

]2
+ Im

[
GD(i�)

]2

(10a)Re
[
GDsp(i�)

]
=

3

2b

tanh b
[
(cot b)2 + tanh b cot b − coth b cot b + 1

]

(tanh b cot b)2 + 1
with b =

√
�

2�

(10b)Im
[
GDsp(i�)

]
=

−3

2b

{
tanh b

[
(cot b)2 − tanh b cot b + coth b cot b + 1

]

(tanh b cot b)2 + 1
−

1

b

}

(10c)Re
[
GDsl(i�)

]
=

1

2b

sinh b cosh b + sin b cos b

(cosh b cos b)2 + (sinh b sin b)2

(10d)Im
[
GDsl(i�)

]
=

−1

2b

sinh b cosh b − sin b cos b

(cosh b cos b)2 + (sinh b sin b)2

(11)

𝛼 > 2 ∶ Ω = 15; 𝜂 = 1 and 𝛼 < 0.02 ∶ Ω =
𝜋

𝛼
; 𝜂 =

3

b

(12)

𝛼 > 5 ∶ Ω = 3; 𝜂 = 1 and 𝛼 < 0.2 ∶ Ω =
𝜋

𝛼
; 𝜂 =

1

b

Consider the well mixed adsorber equations and take the 
Laplace transform of Eq. 4. For deviation variables the ini-
tial condition is 0.

For the system to be linear, a constant flowrate was 
assumed, i.e. a dilute system consistent with a linear 
isotherm.

This can be rearranged to obtain the transfer function for 
the well mixed adsorber

(11)VSs ̃̄qi + VFsc̃i = F
(
c̃i
)
IN

− Fc̃i
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Fig. 5  Sphere LDF equivalence parameters as a function of � =
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including limiting trends
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Equation 12 shows that the transfer function of the well 
mixed adsorber can be expressed in terms of the transfer 
function of the individual particle, ̃̄qi

c̃i
 . Therefore, if the 

exact equivalence is applied to the single particle, also the 
well mixed adsorber will be exactly equivalent.

The same applies to the full column, because each dif-
ferential slice of a full column is a well mixed adsorber. 
Locally, at each position along the column, the mass bal-
ance in the Laplace domain can be written in terms of the 
fluid phase concentration and the transfer function ̃̄qi

c̃i
.

We have therefore proven that a universal equivalence 
at CSS does exist for the linear LDF and diffusion models 
for linear adsorption systems.

Figure 7 shows the concentration at 1/10 the column 
length for an adsorption column with the diffusion model, 
the exact equivalence and single parameter equivalences. 
The purpose of this figure is primarily to show that sin-
gle parameter corrections do not reproduce correctly how 
the concentration waves are dampened in the column. The 
match of the full diffusion model and the exact equivalence 
serves only as a verification of the proof above. The two 
cannot be distinguished and the figure shows the equiva-
lent LDF results as symbols.

To clarify how the equivalence is applied, the mass bal-
ance equation in a column is written as

 with

Ω = 23.2 corresponds to matching the amplitude of the 
transfer function and this means that ΔQ

ΔC
 is the same as the 

ratio obtained from the diffusion equation, but the shift 
changes the driving force which gives an incorrect overall 
result. Ω = 16 was obtained by matching the amplitude ratio 
at this position. It is a lower value than Nakao and Suzuki 
(1983) and a different value would be obtained at a different 
position. This is consistent with what is reported in Sircar 
and Hufton (2000) that single parameter correlations are 
dependent of the configuration.

The exact equivalence provides a very useful means of 
testing the numerical discretization used inside the particle 
for the diffusion equation, at least for the linear model. 
For very fast cycles Ahn and Brandani (2005) have shown 
how this can be optimised to achieve high accuracy with-
out having to increase the number of discretization points 

(12)
c̃i(
c̃i
)
IN

=
F

VSs
̃̄qi

c̃i
+ VFs + F

(13)(1 − 𝜀)𝜂i
𝜕q̄i

𝜕t
+ 𝜀

𝜕ci

𝜕t
+ 𝜀

𝜕uci

𝜕z
+ 𝜀

𝜕Ji

𝜕z
= 0

(14)
𝜕q̄i

𝜕t
= Ωi

Di

R2

(
q∗
i
− q̄i

)

by scaling two regions appropriately. Figure  8 shows 
the effect of reducing the number of internal collocation 
intervals in a cubic orthogonal collocation on finite ele-
ments solution of the diffusion equation within the column 
model. Figure 7 was obtained with 50 elements, which is 
over specified.

What has not been discussed so far is the effect of the 
shape of the forcing function, but the exact equivalence is 
extended easily to this case. Any function can be represented 
by a Fourier series and each harmonic will have its corre-
sponding equivalence. As a result an exact transfer function 
can be obtained for any shape of the inlet concentration con-
structing the Fourier series of the outlet concentration. What 
is really important though is that the higher harmonics affect 
progressively smaller effective volumes therefore only the 
primary harmonics need to be considered. This is particu-
larly true when considering an adsorption column instead 
of the single particle dynamics. As the concentration wave 
travels over a long column the higher frequencies will be 
progressively dampened. An adsorption column effectively 
acts as a filter to high frequencies, and this indicates that for 
design purposes the use of the first harmonic based on the 
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half-cycle time constant should be sufficient to define the 
equivalent LDF coefficients. This is also consistent with the 
arguments of Sircar and Hufton (2000), who pointed out that 
what is important is not to match an instantaneous snapshot 
but the average over the entire cycle.

3  Conclusions

General analytical expressions have been derived that allow 
to determine the equivalence between the LDF model and 
the diffusion equation for linear adsorption systems. At fast 
cycle times two physical parameters are needed: the first cor-
responds to the enhancement, Ω , of the effective mass trans-
fer coefficient as the cycle time is decreased; the second, � , 
takes into account the fact that only the external portion of 
the volume is active at fast cycle times. For relatively slow 
cycles the equivalence reduces to Glueckauf’s expression, 
which in the case of a sphere gives � = 1 and Ω = 15 , while 
for a slab Ω = 3.

The equivalence is exact at cyclic steady state. The tran-
sient to CSS is accelerated by the reduction of the effective 

volume. This is a further indirect advantage of this equiva-
lence, especially in design and optimization studies. The 
equivalence is applicable also in heat transfer applications 
such as direct contact recuperators (Hausen 1983; Schmidt 
and Willmott 1981; Levenspiel 2014).

In systems with multiple adsorbates that are character-
ised by sufficiently different diffusion coefficients, differ-
ent equivalence parameters are needed for each adsorbate. 
A full discussion of this aspect, which depends also on 
whether the multicomponent adsorption isotherm is linear 
or not, was beyond the scope of this contribution, but due 
to the physical nature of the equivalence parameters it is 
possible to tackle this problem and this will be the focus of 
a separate investigation. Here we note that this is a likely 
case in macropore diffusion limited systems, where there is 
a high equilibrium selectivity and in mixtures containing 
water in hydrophilic adsorbents.

It is important to emphasise that this equivalence should 
be not used to estimate the number of cycles needed to 
reach CSS nor used in process control applications, where 
the inertia of the system has to be accounted for correctly. 
In such cases either a separate transient for the portion 
of the solid that is inert at CSS has to be added or the 
diffusion model has to be solved, and for this optimized 
discretization strategies are available (Ahn and Brandani 
2005) and should be used.

This contribution is in memoriam of Shivaji Sircar who 
has been a champion of adsorption engineering throughout 
his career in both industry and academia. He has inspired 
many researchers in the field, reminding many that it is 
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evant problems. It is hoped that he would have appreciated 
the solution of a fundamental problem to which he often 
returned over the years.
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Appendix

Derivation of transfer functions

The diffusion equation in a sphere can be written as

with boundary conditions of zero flux at the centre

and equilibrium at the surface

where K is the Henry law constant.
Defining the following dimensionless deviation 

functions.

and dimensionless variables.

The diffusion equation in a sphere becomes

With boundary conditions.

Equation 20 can be simplified introducing the new vari-
able N = �Q

With

Taking the Laplace transform of these equations

Which has as a general solution

(15)
�q

�t
= D

(
�2q

�r2
+

2

r

�q

�r

)

(16)
(
�q

�r

)

r=0

= 0

(17)(q)r=R = Kc

(18)Q =
q − q0

KΔc
;C =

c − c0

Δc

(19)� =
t

tc
; � =

r

R

(20)
�Q

��
= �

(
�2Q

��2
+

2

�

�Q

��

)

(21)Q�=1 = C;

(
�Q

��

)

�=0

= 0

(22)
�N

��
= �

�2N

��2

(23)N�=1 = C; (N)�=0 = 0

(24)sÑ = 𝛼
d2Ñ

d𝜉2

Applying the boundary conditions A1 = −A2 = A and

Therefore

Equation 5 

can be written in dimensionless form as

Transformed in the Laplace domain and substituting the 
solution (27)

Dividing by s the transfer function of the diffusion equa-
tion for the single spherical particle is obtained. The same 
procedure allows to obtain the transfer function for the slab 
geometry. Given that the mathematical derivation for the two 
geometries differs only by one boundary condition, the full 
derivation for the slab geometry is omitted.

For the LDF model, Eq. 2 

can be rewritten in terms of deviation variables and trans-
formed in the Laplace domain giving

Which rearranged gives the transfer function for the LDF 
model for both geometries.

(25)Ñ = A1exp

(√
s

𝛼
𝜉

)
+ A2exp

(
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√
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𝛼
𝜉

)
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)

(5)
dq̄

dt
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)

r=R
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dq̄
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= kLDFa(q
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