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Abstract
The determination and description of adsorption equilibria is critical for the design of several separation processes. In some 
instances, the dependence of the solid phase loading on the fluid phase concentration is complex and it is difficult to find a 
suitable functional form to represent the adsorption equilibria. This difficulty can be overcome by the use of discrete equi-
librium data, i.e., using the experimental data of solid phase loadings and the corresponding fluid phase concentrations in its 
discrete form, without the use of a functional form to describe the adsorption isotherms. In this work we demonstrate how 
discrete equilibrium data can be used to predict binary competitive equilibria using the ideal adsorbed solution theory. Two 
approximations to generate data outside the range of measured values are proposed. The effectiveness of these methods in 
predicting competitive equilibria and elution profile of binary injections is demonstrated using numerical simulations. The 
application of this framework to estimate the regions of achievable separation for a multi-column simulated moving bed 
chromatographic separation is also discussed.

Keywords Adsorption column dynamics · Chromatography · Discrete equilibrium data · Ideal adsorbed solution theory

List of symbols
b  Equilibrium constant in Langmuir isotherm (L g−1)
c  Fluid phase concentration of solute (g L−1)
DL  axial dispersion coefficient ( cm2 s−1)
H  Henry constant
L  Length of column (cm)
m  Dimensionless flow rate ratio
Pu  Target product purity (%)
Q  Volumetric flow rate ( cm3 s−1)
q  Solid phase concentration of solute (g L−1)

q∗  Solid phase equilibrium concentration of solute (g 
L−1)

t  Time (s)
t∗  Switch time (s)
v  Interstitial velocity (cm s−1)
x  Molar fraction on the solid phase
z  Axial coordinate (cm)

Subscripts and superscripts
D  Desorbent
E  Extract
F  Feed
i  Component
j  SMB section
R  Raffinate
sat  Saturation
tot  Total

Greek symbols
�  Column void fraction

1 Introduction

Adsorption and chromatographic separation processes 
exploit the ability of solids to selectively bind one or 
more components from a fluid mixture. The retention 
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characteristic of a particular species in a fixed-bed adsorber 
is described by its adsorption isotherm, that quantifies the 
partitioning of the adsorbate between fluid and adsorbent, 
i.e., solid phases, at a particular temperature. The estima-
tion and mathematical description of adsorption isotherms 
is a critical step in designing adsorption-based separation 
and purification processes; these typically operate at rela-
tively high concentrations, whereby each adsorbable com-
ponent may potentially influence the adsorption behaviour 
of the other(s) (Ruthven 1984; Guiochon et al. 2006; Nicoud 
2015).

Measurement of single component isotherms is rather 
straightforward; both static and dynamic methods are availa-
ble (Seidel-Morgenstern 2004). In both liquid and gas phase 
measurements, when only a small sample of the adsorbent is 
available, e.g., at the adsorbent synthesis stage, static meas-
urements are preferred. For single-component gas phase 
measurements static techniques such as gravimetry and 
volumetry are used, while in the liquid phase, the classical 
technique of batch adsorption is used (Ruthven 1984; Guio-
chon et al. 2006). Static measurements are highly automated 
and, in principle, a large-set of equilibrium measurements 
can be obtained in a straight forward manner. When a larger 
quantity of the adsorbent is available, and when processes 
are to be designed, dynamic measurements are performed 
(Seidel-Morgenstern 2004). In static methods, under con-
trolled conditions the solid is exposed to a fluid mixture 
containing the solutes. Once equilibrium is attained, con-
centrations in the fluid phase, ci , and corresponding equilib-
rium concentrations in the solid phase, q∗

i
= f (ci) , are either 

measured directly, or calculated indirectly using mass bal-
ances. Next, the fluid phase concentration is varied; a new 
equilibrium state is attained and measurements are repeated. 
This process is repeated until the desired concentration range 
is investigated. At the end of these investigations one ends 
up with a set of discrete points, relating q∗

i
 to ci at a par-

ticular temperature, T, i.e., an adsorption isotherm. Among 
dynamic measurement methods, analysis of breakthrough 
curves, e.g., Frontal Analysis is widely applied (Lisec et al. 
2001; Wilkins and Rajendran 2019). In this technique, a 
fixed-bed is initially equilibrated with a solvent or an inert 
carrier. Then, a step change in fluid phase concentration is 
introduced at the column inlet and the outlet concentration 
is recorded. An integration of the response curve, i.e., the 
recorded concentration profile of the outlet fluid stream, 
provides information about the single component loading. 
A single point on the isotherm can be calculated from this 
information. Other points of the isotherm can be obtained 
by repeating the experiment for different initial or feed con-
centrations. Before proceeding, it is worth highlighting that 
with advancements in molecular modelling techniques, it is 
also becoming increasingly common to obtain equilibrium 
points through in-silico simulations (Wilmer et al. 2012).

Once a set of equilibrium points is collected, a func-
tional form, based either on a physical model of adsorp-
tion or an empirical formula is typically chosen and fit-
ted to the experimental data (Guiochon et al. 2006). In 
practice, several models are tried and compared, before 
a suitable isotherm equation is finally selected. Models 
that can result in explicit competitive forms are naturally 
preferred as they simplify the computation of column 
dynamics. However, there remain situations where find-
ing a suitable functional form to describe the equilib-
rium data is not straightforward. This is especially true 
for many novel materials such as metal-organic materials 
that exhibit properties that distinguish themselves from 
classical materials (Hefti et al. 2016). In order to describe 
the equilibrium data complex functional forms are chosen 
with multiple fitting parameters (Hefti et al. 2016; Pai 
et al. 2019). These functional forms are usually empiri-
cal and represent a “compromise” between accuracy of 
the fit and the complexity of the isotherm function. Fur-
ther, owning to the many fitting parameters, the ability to 
extrapolate the isotherm beyond measured values remains 
uncertain.

Haghpanah et al. proposed a method to directly include 
discrete equilibrium data from static or dynamic measure-
ments into computer simulations, circumventing the need 
to describe them using a smooth isotherm equation (Hagh-
panah et al. 2012). The key idea behind their approach is to 
describe any kind of complex single component adsorption 
equilibrium behavior without requiring a particular iso-
therm equation and use it to described fixed-bed column 
dynamics. They showed that single component break-
through curves can be obtained with a high level of accu-
racy by using a sufficient number of discrete equilibrium 
data points and linear interpolation. It was also shown that 
discrete equilibrium points can be obtained by using the 
inverse method, where the equilibrium is determined based 
on elution profiles from pulse injections. The agreement 
with independently measured data and that obtained from 
the new approach was shown to be excellent. Other groups 
have also extended this idea (Forssén and Fornstedt 2015).

The main objective of the current work is to extend 
the approach developed by Haghpanah et al. to describe 
binary equilibrium and demonstrate its effectiveness for 
use in the simulation of binary non-linear chromatography. 
The approach of the discrete equilibrium data is briefly 
introduced and a proposal to use the ideal adsorbed solu-
tion theory (IAST) to describe competitive equilibrium 
data based on single-component discrete data is made. The 
effectiveness of this approach is evaluated using a case 
study and applied to the description of an experimental 
system. The potential of applying the approach to design 
multi-column simulated moving bed chromatographic pro-
cesses is also considered.
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2  Brief overview of discrete equilibrium 
data and IAST

2.1  Discrete equilibrium data

The concept of discrete equilibrium data relates to the rep-
resentation of the thermodynamic phase equilibrium data 
in a discrete form, i.e., without the requirement of a func-
tional form. This is illustrated in Fig. 1a where the equilib-
rium solid phase loading and the corresponding fluid phase 
concentration is represented by discrete markers that could 
be obtained through a suitable experimental technique. For 
concentrations, within the range where data is available, a 
simple linear interpolation between the bounding concentra-
tions is used. In other words, the isotherm is represented by 
a piecewise linear function with knots at the positions where 
equilibrium data is available. This piecewise linear function 
can be easily incorporated into a numerical simulator in a 
straightforward fashion. To reiterate, the key advantage with 
this approach is that no functional form is required.

2.2  Ideal adsorbed solution theory

The IAST was introduced by Myers and Prausnitz (1965) to 
predict competitive adsorption equilibria from single com-
ponent isotherms in the gas phase and extended to dilute liq-
uid solutions by Radke and Prausnitz (1972). Let us consider 
the case of a binary adsorption of two solutes: the lighter 
component “1” and the heavier component “2”. The phase 
equilibrium relationship is given by 

where xi is the solid phase mole fraction of component i, 
and c0

i
 is the fictitious concentration of component i at which 

the spreading pressures of the two solutes are identical. The 
equality of the spreading pressure in the case of a liquid 
phase can be represented, without loss of generality (Radke 
and Prausnitz 1972), by

For given values of c1 and c2 , the above equations can be 
solved to obtain c0

1
 , c0

2
 and x. Note that the integrals in Eq. 2 

can be evaluated from single-component isotherms. These 
set of equations can be highly non-linear and the solution 
can be cumbersome in order to be incorporated into col-
umn dynamics simulations. Several approaches have been 
proposed in the literature to overcome the computational 

(1a)c1 =c
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challenges (Landa et al. 2013; Mangano et al. 2015). Once 
the solution is obtained, the total loading of the two compo-
nents q∗

tot
 can be obtained:

where q∗0
i

 is the pure component loading corresponding to 
c0
i
.
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Fig. 1  Concept of discrete equilibrium data. a Illustration of discrete 
equilibrium data with five discrete points upto a maximum concentra-
tion, cmax and extrapolation techniques proposed. The black symbols 
represent discrete data, while the black lines show the piecewise-lin-
ear interpolation. The continuous blue line indicates the extrapolation 
based on constant q∗ and the dotted lines represents that extrapolation 
based on constant slope. b The plot of the c

1
− c

2
 plane showing the 

regions that require extrapolations during the calculation of competi-
tive loading for the case of a Langmuir isotherm c Plot of the inte-
gral used to calculate the spreading pressure. The green region and 
the hatched regions show the contribution to the spreading pressure 
by the explicit function and the discrete equilibrium data, respectively 
(Color figure online)
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Finally, the competitive equilibrium loadings, q∗
1
 , and q∗

2
 

can be obtained from the following two equations: 

Within the framework of the IAST where the isotherm 
is described using a functional form, Eq. 2, can result in a 
closed-form solution, making the solution rather straight-
forward (Tarafder and Mazzotti 2012). Where a closed 
form solution cannot be obtained, the integral is evaluated 
numerically. An essential requirement to apply IAST is the 
availability of single component adsorption equilibria in a 
sufficiently wide concentration range, since fictitious con-
centration values can become quite large for low values of 
xi , i.e., c0

i
≫ ci . This is likely to occur for compounds that 

are either less adsorbed, or significantly diluted, e.g., traces, 
impurities (Mangano et al. 2015; Landa et al. 2013). Very 
often, especially in cases where the adsorption strengths of 
the two components are substantially different, the isotherm 
for the lighter component needs to be extrapolated signifi-
cantly, possibly beyond values for which experimental meas-
urements are available. The need for such an extrapolation 
can be illustrated by using the familiar Langmuir adsorption 
isotherm model which is given by:

For the thermodynamically consistent situation with, 
qsat = qsat

1
= qsat

2
 , the solution of the IAST provides the 

closed form competitive form of the Langmuir isotherm:

For a case where experimental data is available only upto 
maximum concentrations of cmax

1
 and cmax

2
 , three regions can 

be identified on the c1 − c2 plane as shown in Fig. 1b. The 
two lines that separate the three regions are provided by the 
following two equations: 

In the figure, “A” refers to the region where no extrapola-
tion of either isotherms are required; “B” to the one where 
only the light component isotherm needs to be extrapolated; 
and “C” to the one where both isotherms need to be extrapo-
lated. It is worth noting that the IAST framework, requires 

(4a)q∗
1
=q∗

tot
x1

(4b)q∗
2
=q∗
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(

1 − x1
)

(5)q∗
i
= qsat

i
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(6)q∗
i
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1 + b1c1 + b2c2
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(7a)c2 = −
b1

b2
c1 +

b1

b2
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1
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b1

b2
c1 + cmax

2

extrapolation for both components, beyond the maxima of 
the measured concentrations, even if the concentrations 
encountered in the process might be less than the maxi-
mum values. Before proceeding to the implementation, it 
should be pointed out that not all systems can be adequately 
described by the IAST. Many aspects, including heterogene-
ity of the adsorbent, the nature of the adsorbate-adsorbent 
interactions, influence of the solvent, etc., can result in 
deviations from ideality. In such cases, the real adsorbed 
solution theory (RAST) could be invoked to alleviate some 
of the restrictions of the IAST (Myers 1983). In any case, 
the measurement of binary equilibria through appropriate 
experimental techniques is essential to validate the ability 
of these thermodynamic models to predict multi-component 
equilibria before proceeding to process design (Sircar 2006).

3  Incorporating IAST within the discrete 
equilibrium data framework

In the previous section, the IAST was introduced for situa-
tions where the isotherm is described by a functional form. 
Within the framework, the single component isotherms 
are used in evaluating the spreading pressure using Eqn. 2. 
In such a case, where the spreading pressure is evaluated 
numerically, only a smaller number of discrete values of 
q∗
i
∕ci are required. Hence, discrete equilibrium data can be 

incorporated into the IAST in a rather straightforward man-
ner. When doing so, two key challenges arise.

The first challenge relates to “interpolation”. When a 
functional form is used, the summation form of Eq. 2, can 
be performed with practically infinite precision owing to the 
fact that the value of q∗

i
∕ci can be calculated at any value of 

ci . However, in the case of the discrete data loading infor-
mation is available only at those values where experimental 
measurements are performed. Hence, the calculated spread-
ing pressure is generally lower than the one with a functional 
form. The difference gets accentuated when only a few data 
points are available.

The second challenge is that of “extrapolation”. When 
data is required only within region A (see Fig. 1), extrapola-
tion is not required. However, when competitive loadings in 
regions B and C are required the extrapolation can be per-
formed in a straightforward manner provided the functional 
form of the isotherm is available. In the case of the discrete 
equilibrium data, since there is no experimental information 
available beyond cmax

i
 , there is no straightforward method 

for extrapolation. Suitable techniques have to be developed.

3.1  Effect of interpolation

Haghpanah et  al, illustrated the impact of the num-
ber of experimental points on the ability of the discrete 
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equilibrium data to describe pulse elution profiles (Hagh-
panah et al. 2012). When a suitable number of points were 
available, excellent prediction of the profiles was possi-
ble. However, when fewer points were available, spurious 
oscillations occurred in the elution profiles and it was pos-
sible to link this to the “non-smooth” nature of the piece-
wise-linear form of the discrete equilibrium data. When 
considering IAST calculations, these errors also affect the 
estimation of the competitive loadings. This is illustrated 
in Fig. 1c, where the evaluation of the spreading pressure 
summation as seen in Eq. 2 is required. As seen in the 
same figure, the values of q∗

i
 are only available at discrete 

points. In the implementation of the summation, the trap-
ezoidal rule could be used for calculating the areas. This 
approach will use a linear interpolation between adjacent 
values of q∗

i
∕ci . For a Type 1 isotherm, this approximation 

will overestimate the area for ci . Naturally, the error will 
reduce when additional discrete points are available. At 
this point, it is worth noting that for the purpose of inte-
gration, a linear interpolation of q∗

i
∕ci will cause a lesser 

error in estimating the spreading pressure compared to 
using a linear interpolation of q∗

i
.

In order to illustrate the error caused by interpolation, 
we consider a model system of two solutes that can be 
described by classical Langmuir isotherms:

Specifically, we consider two systems, one which 
has a low non-linearity and the other that has a high 
non-linearity. For low non-linearity, we consider , 
qsat
1

= qsat
2

= 10 gL−1, b1 = 0.1 Lg−1, b2 = 0.2 Lg−1  . 
For the high non-linearity system, we consider , 
qsat
1

= qsat
1

= 10 gL−1, b1 = 1 Lg−1, b2 = 2 Lg−1 . Note that 
both systems have a selectivity of 2. The isotherm for 
both the systems are shown in Fig. 2 . In the case study, 

(8)q∗
i
=

qsat
i
bici

1 + b1c1 + b2c2

we assume that five experimental discrete data points, i.e., 
N = 5 , are available up to maximum concentrations of 2 gL−1 
and that the data points are spread evenly in this range. The 
goal is to evaluate the error that is caused in the calculation 
of the equilibrium loadings owing to the interpolation. The 
competitive loadings are calculated using the IAST approach 
described earlier. The error obtained for each solute is cal-
culated as

 
where q∗

i
 and q̂∗

i
 are the competitive loadings calculated 

using the discrete equilibrium data and the explicit Lang-
muir isotherm provided in Eq. 8.

The contours of the error for the two systems is depicted 
in Fig. 3. The red triangle depicts the region A, i.e., where 
no extrapolation is required for either component. In both 
systems, the interpolation errors result in the prediction 
of lower q∗

i
 values as compared to the explicit competi-

tive Langmuir isotherms. Generally, the errors in the case 
of the low non-linearity are smaller than those observed 
for the high non-linearity system. In fact, the errors are 
more pronounced at the low concentration regions. This is 
understandable as the q̂∗

i
 itself is quite small in this region 

and even a small error in the calculation of q∗
i
 will result in 

a higher fractional error. Note that the magnitude of errors 
will reduce if the number of available discrete equilibrium 
data increases.

3.2  Extrapolation strategies

As discussed above, in regions B and C, there is a need 
to extrapolate the isotherms to values beyond cmax

i
 . In this 

work, we explore two simple extrapolation strategies, called 
“Constant q*” and “Constant Slope” that are defined as 

In the “Constant q*” strategy, the solid loading is 
assumed to be constant beyond cmax

i
 and is pegged to the 

value of q∗ corresponding to cmax
i

 . In the “Constant Slope” 
strategy the slope of the isotherm beyond cmax

i
 is set to be 

identical to that calculated from the last two points, N − 1 
and N, of the available data. The extrapolation strategies are 
shown in Fig. 1a.

At this point, it is worth discussing the impact of these 
assumptions. On the one hand, the “Constant q*” is 
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Fig. 2  Isotherms of the two discrete-equilibrium data systems used 
for the case studies. The green and the black symbols show the dis-
crete data for the high non-linearity, and the low non-linearity sys-
tems, respectively. The open and closed symbols correspond to the 
heavy and light components, respectively (Color figure online)
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expected to be a good assumption if the available discrete 
equilibrium data is tending towards saturation. On the other 
hand, the “Constant Slope” is ideal for data that are closer 
to linear isotherms. Note that a preliminary estimate of 
this can be obtained by considering the magnitude of the 
local slope of the data. It is worth noting that other suit-
able extrapolations can be performed, for instance by fit-
ting the existing data to any functional form. However, in 
the spirit of avoiding any functional description, we chose 
these two simple limiting approaches. As discussed in the 
earlier section, the use of IAST requires extrapolation of the 
isotherms. Figure 1c shows the effect of different extrapola-
tion strategies. The fact that the capacity of an adsorbent is 

finite should require the value of q∗
i
∕ci to approach zero as 

ci → ∞ . While the Constant q∗ extrapolation technique will 
comply with this requirement, the Constant Slope technique 
would not. For a Type 1 isotherm, the plot of q∗

i
∕ci vs ci is 

shown in Fig. 1c. Beyond cmax
i

 , the Constant q∗ extrapolation 
will underestimate the spreading pressure, while the Con-
stant slope approach will overestimate it. At this juncture, 
it is worth pointing out that from a practical perspective, 
when an accurate picture of the adsorption phenomena is 
not known, any type of extrapolation beyond the vicinity of 
cmax
i

 is merely an approximate estimation. In liquid systems 
particularly, if cmax

i
 is near the solubility limit of the solute, 

any extrapolation is only hypothetical. 
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Fig. 3  Contour of the errors of equilibrium loading showing the 
impact of interpolation. In these cases 5 equally-spaced discrete equi-
librium data was available between 0 and 2 g/L. The areas shaded 

with red and blue colours represent regions A and B as defined in 
Fig. 1b, respectively (Color figure online)
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Fig. 4  Contour of the errors 
showing the impact of extrapo-
lation using the two schemes, 
viz., Constant q∗ and Constant 
Slope. In these cases 20 equally-
spaced discrete equilibrium data 
was available between 0 and 2 
g/L. The areas shaded with red, 
blue and green colours represent 
regions A, B and C as defined 
in Fig. 1b, respectively (Color 
figure online)
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The errors caused by the two extrapolation strategies are 
illustrated in Fig. 4. For these calculations, since the goal was 
to study the effect of extrapolation techniques, we considered 
that there are 20 equally spaced points between 0 and 2 g/L for 
both components. Beyond 2 g/L, either of the two extrapola-
tion strategies were employed. The low and high non-linearity 
systems show very different results. In the case of the low non-
linearity case, the Constant slope extrapolation gives a better 
prediction, while the Constant q∗ extrapolation works better for 
the high non-linearity system. The results are not surprising 
when considering that the high non-linearity system is indeed 
close to the saturation value at the conditions considered here. 
Summarizing, the choice of extrapolation technique should be 
based on the judgement of the available measured data.

Here, we have proposed two simple extrapolation tech-
niques, that do not require any information about the competi-
tive behaviour. In practice, it is quite possible that some form 
of information (either elution profiles or loadings) under com-
petitive conditions is available. In such a situation, it is indeed 
possible to use other extrapolation strategies: for instance, the 
range beyond the last available experimental data point can 
again be discretized and these discrete points could be adjusted 
in order to describe the available experimental data, i.e., an 
approach similar to what was proposed for the single compo-
nent (Haghpanah et al. 2012).

4  Simulation of chromatographic column 
dynamics

In the previous section, the errors associated with both interpo-
lation and extrapolation were calculated. From a practical per-
spective it is important to understand how these errors translate 
into the prediction of chromatographic pulses. In order to do 
this the lumped kinetic model of chromatography is chosen. 
An axially-dispersed plug flow model is used and the column 
is considered to be isothermal. Under these assumptions the 
component mass balance can be written as

(11)DL,i

�
2ci

�z2
− v

�ci

�z
−

�

�t

[

ci +
1 − �

�
qi

]

= 0; i = 1, 2

where DL,i is the axial dispersion coefficient, � is the total 
column voidage, v is the interstitial velocity and qi is the 
solid phase loading. The mass transfer between the fluid 
and solid phase is described by a linear driving force (LDF) 
model given by

where ki is the LDF coefficient. In this work the chromato-
graphic column is discretized along the axial direction into 
100 cells using the Finite Volume Method. This transforms 
the PDEs into an ODE system to be integrated in time. The 
system of ODEs are then solved using the ode45 solver in 
MATLAB, along with suitable initial and boundary condi-
tions. In this work three chromatographic systems are con-
sidered. The specific dimensions and operating conditions 
are provided in Table 1.

The discrete equilibrium data is incorporated into the 
simulations in the following manner. The set of single-com-
ponent equilibrium data, as available, is considered and for 
any value of the concentration less than the maximum avail-
able value, a piecewise linear interpolation is used. Beyond 
the maximum concentrations, based on the extrapolation 
method chosen, a sufficiently large number of equilibrium 
points are generated. Note that, once the single-component 
data is defined, the competitive loadings can be calculated 
at any arbitrary concentration pair, by solving the IAST 
as described above. Hence, the complete set of q∗

i
 is esti-

mated and is fitted, a-priori, to a linear interpolant function 
available in Matlab called griddedinterpolant, that can be 
explicit for an arbitrary ci . The interpolant function is then 
directly incorporated into the chromatographic simulations. 
This approach eliminates the solution of IAST at every node 
over the course of the temporal integration of the ODE sys-
tem, thereby reducing the time required for solving the mass 
balance equations.

(12)
dqi

dt
= ki

(

q∗
i
− qi

)

Table 1  Parameters used 
for the three systems in the 
simulation studies

Parameter Langmuir system TB system (Seidel-Morgen-
stern and Guiochon 1993)

SMB system

Length (cm) 25 25 10
Diameter (cm) 0.46 0.46 1
Voidage, � (–) 0.59 0.66 0.59
Axial dispersion, D

L
 ( cm2/s) 3.0 × 10

−3
1.8 × 10

−3
3.0 × 10

−2

LDF coefficient, k, (1/s) 10 10 10
Volumetric flow rate ( cm3/min) 2 0.5 Various
SMB configuration – – 1/1/1/1
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4.1  Simulation of a model system

At this point, we consider the effect of interpolation on chro-
matograms. In order to do this, a pulse injection of a 50:50 
mixture of the two solutes is considered with the details 
provided in Table 1 and the caption of Fig. 5. Both low 
non-linearity and high non-linearity systems are considered.

For the purpose of studying the effect of interpolation, 
the injection concentrations were chosen in such way that all 
possible concentration states that will be formed within the 
column will stay within region A (red shade) in Fig. 3. Fig-
ure 5 shows comparisons of the chromatograms for both the 
low non-linearity and the high non-linearity cases. For the 
low non-linearity case, the match between the explicit form 
and the discrete data is excellent. Here, as seen from Fig. 3, 
errors arising from the discrete equilibrium data are rather 
modest. In the case of low concentration injections, the inter-
action between shock and wave transitions are weak and 
band broadening is controlled by dispersion. Hence, unless 
dispersion is strong, the feed concentration is not sufficiently 
degenerated. These phenomena contribute to a good repre-
sentation of pulse dynamics, also using discrete equilibrium 
data. For the case of the high non-linearity system, while the 
position of shock fronts is predicted correctly, the overall 
prediction is less than desirable. Specifically, the mismatch 

is pronounced at low concentrations for the component 1. 
The match for the heavier component is rather good. This is 
in accordance with the errors observed in Fig. 3.

The effect of extrapolation on the ability to predict 
chromatographic pulses is shown in Fig. 5c, d. The dif-
ference between the discrete data points based calculation 
and that from the explicit form are quite pronounced in 
the case of the low non-linearity system. Specifically, the 
constant q∗ extrapolation shows significant deviations from 
the actual profile as compared to constant slope extrapola-
tion. As seen in Fig. 5, deviations for solute 1 are more 
pronounced than those for solute 2. The reason for this 
can be explained by considering the error that arises in the 
prediction of the loading. Note that the error in the estima-
tion of the light component is always larger compared to 
the heavy component. This is indeed surprising, consid-
ering the errors seen in Fig. 4. However, this result can 
be rationalized by considering the dynamics of non-linear 
pulses in chromatographic columns. As it is well known, 
for the case of small volume injections under non-linear 
conditions, owing to wave interactions, the feed concentra-
tions are eroded as the pulse propagates through the col-
umn. The higher the non-linearity, the more eroded is the 
feed concentration (Rajendran and Mazzotti 2011). This is 
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Fig. 5  Comparison of the chromatograms calculated using the 
explicit form and the discrete-equilibrium data. The top row shows 
the impact of interpolation and the bottom row shows the impact of 
extrapolation. a, c refer to the low non-linearity case, b and d refer to 

the high non-linearity case. In all figures, the symbols were from the 
explicit form. For the bottom row, the dashed and solid lines repre-
sent the Constant slope and Constant q∗ extrapolation schemes
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clearly seen in the chromatograms shown in Fig. 5 where 
the elution profiles for the two cases are very different.

4.2  Simulation of experimental pulse elutions

Seidel-Morgenstern and Guiochon reported the pulse elution 
of the enantiomers of Tröger’s base (TB) on a microcrystal-
line cellulose triacetate with ethanol as the solvent (Seidel-
Morgenstern and Guiochon 1993). The single-component and 
binary-injections were reported. Table 1 provides the details of 
the experimental conditions and additional model parameters. 
The isotherms of the two enantiomers were measured using 

single-component Frontal Analysis. A total of 23 points were 
collected for (+)-TB and 19 points for (−)-TB. This is a very 
interesting and challenging system in which (−)-TB exhibits a 
classical Langmuirian-type isotherm while (+)-TB exhibits an 
isotherm with an inflection point. Figure 6a shows the experi-
mentally measured discrete equilibrium points and the plot of 
q∗∕c for the two enantiomers. It is clear that (+)-TB exhibits 
an inflection point around 0.4 g/L. The authors used Langmuir 
and quadratic isotherms to model the single-component equi-
librium behaviour of (−)-TB and (+)-TB respectively: 
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Fig. 6  Case study of the modeling of TB enantioners. a Experi-
mentally measured discrete equilibrium data and the plot of q∗∕c . b 
Experimental (symbols) and simulated elution profiles for (+)-TB 
enantiomer. Injection volumes were 10, 30, 90 and 250 μ L. The injec-
tion concentration was 15 g/L. c Experimental (symbols) and simu-
lated elution profiles for (−)-TB enantiomer. Injection volumes were 
10, 30, 90 and 250 μ L. The injection concentration was 15 g/L. d–f 

Binary injections of the two enantiomers with the injection concen-
tration of each enantiomer being 1.5 g/L. The injection volumes are 
given in the inset. In all the elution profiles, the black, blue and the 
red curves represents the profile calculated using the explicit iso-
therm, the Constant q∗ extrapolation strategy and the Constant slope 
extrapolation strategy, respectively (Color figure online)
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Since at that time an explicit competitive form could not 
be found, they used the IAST to describe the multicompo-
nent behaviour, numerically. Later, a closed-form binary 
equilibrium solution applying IAST was developed by Ilić 
et al. (2010).

The goal of this study was to use the data provided in 
the original paper and describe the pulse elution profiles 
using the discrete equilibrium data approach developed in 
this study. As an aside, it was important to point out that 
the original article used the equilibrium-dispersive model 
to describe the elution profiles and the current one uses a 
lumped kinetic model. Hence, a recalibration of the dis-
persion and mass transfer parameters was necessary and 
this was performed by fitting the elution profile using the 
detailed model to one of the published experimental profiles. 
The number of discrete equilibrium data points, measured 
experimentally, were retained.

Simulation results for the single-component elution are 
shown in Fig. 6 for both single component (sub-figures (b) 
and (c)) and the binary injections (sub-figures (d) to (f)) 
along with experimental profiles and calculations from the 
explicit isotherm. For the single component case, the match 
between the discrete equilibrium data and the explicit for-
mulation is very good. In the case of the binary injections, 
for the lowest injection volume of 250 μL , the two extrapola-
tion strategies are indistinguishable from the explicit form. 
For larger injection volumes, such as 4 and 6 mL injections, 
there is a clear difference between the two extrapolation 
strategies. Specifically, the Constant slope technique is much 
closer to the explicit form as compared to the Constant q∗ . 
However, none of these formalisms, including the explicit 
form, are able to accurately describe the competitive behav-
iour. Note that the plateau formed in the 4 and 6 mL injec-
tions at around 2 g/L for the first component is a result of the 
roll-up (note that the injection concentration is only 1.5 g/L). 
None of the competitive forms predict this state accurately. 
While the explicit form and Constant slope underpredict 
this state, the Constant q∗ overpredicts it. Nevertheless, this 
example showcases the potential of using discrete equilib-
rium data, in combination with the IAST, to also describe 
binary elution profiles for rather complex systems displaying 
inflection points.

(13a)(-)-TB ∶ q∗ =
3.09c−

1 + 0.157c−

(13b)(+)-TB ∶ q∗ =
6.38c+ + 14.43c2

+

1 + 0.948c+ + 1.072c2+

5  Design of simulated moving bed 
chromatography

As a third and final case study, we explore the potential of 
the discrete-equilibrium data approach to predict the perfor-
mance of a simulated moving bed chromatography (SMB) 
unit. The SMB is a well-known process that is used for the 
continuous chromatographic separation of a binary mixture 
(Rajendran et al. 2009; Nicoud 2015; Rodrigues 2015). The 
classical SMB consists of 4 sections (1 through 4). The sol-
vent is introduced into Sect. 1; the extract (richer in heavy 
product) is removed between Sects. 1 and 2; feed is intro-
duced in between Sects. 2 and 3; the raffinate (richer in light 
product) is removed between Sects. 3 and 4; and solvent is 
removed at the outlet of Sect. 4. Each section has a specific 
task: Sect. 1 to regenerate the solid phase; 2 and 3 to per-
form the separation; and 4 to regenerate the solvent. The 
main feature of SMB is the discrete periodic countercurrent 
movement of solid and fluid phases. The simulated move-
ment is achieved by packing the stationary phase in fixed 
beds and sequentially switching the inlet and outlet ports in 
the direction of fluid flow. The SMB, and its variants, are 
commercially used, for example in enantiomer separations, 
sugar separations etc. (Nicoud 2015; Rodrigues 2015).

The performance of the SMB is governed by the dimen-
sionless flowrate ratio mj , which is defined as

where Qj is the volumetric internal flow rate in section j, t∗ 
is the switch time, V the column volume and � the column 
void fraction (Mazzotti et al. 1997). The internal flow rates 
are related to the external flow rates through the following 
nodal balances:

Although the SMB is a fairly complex process, it is pos-
sible to understand (and design) the SMB using the separa-
tion regions plotted on the m2 − m3 plane. Provided the two 
conditions, m1 > H2 and m4 < H1 are met, the purity of the 
extract and raffinate can be identified on the m2 − m3 plane. 
It is worth noting that for the case of linear isotherms, these 
purity contours can be obtained analytically for the case of 
perfectly efficient columns (Rajendran 2008). For the case 
of low-efficiency columns and/or for the case of non-linear 

(14)mj =
Qjt

∗ − V�

V(1 − �)

(15)Q1 =QD

(16)Q2 =Q1 − QE

(17)Q3 =Q2 + QF

(18)Q4 =Q3 − QR
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isotherms these contours can be calculated using numerical 
simulations (Kaspereit et al. 2007; Maruyama et al. 2019). 
For SMB separations, the purity of extract and raffinate 
streams are calculated as:

and

where n denotes the number of moles of the product col-
lected in a specific stream within one switch time.

(19)PuE =
n2,E

n1,E + n2,E

(20)PuR =
n1,R

n1,R + n2,R

The configuration of the SMB and the column dimen-
sions used for this study are given in Table 1. The low non-
linearity system that was considered earlier in this work was 
considered for the SMB separation. It was assumed that 
20 equally spaced equilibrium points were available upto 
cmax
i

= 2g/L . Beyond this point, the two extrapolation tech-
niques discussed above were used. The values of the m1 and 
m4 were fixed at 10 and 0.1, respectively, and the m2 − m3 
plane was discretized into a number of points. For each point 
on the m2 − m3 plane, the switch time was calculated using a 
minimum switch time method (Maruyama et al. 2019) and 
SMB simulations were carried out until cyclic steady state 
and the purities of the extract and raffinate streams were 
calculated. This was repeated for three different sets of feed 
concentrations, namely c1 = c2 = 0.1 g/L , c1 = c2 = 1.0g/L 
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Fig. 8  Internal concentration profiles of the two components for cases 
where the raffinate and extract purities were ≈ 99% (left column) and 
70% (right column). The red and the blue plots refer to the heavy 
and light component, respectively. The symbols indicate predictions 
from the explicit isotherm, the dashed and straight lines correspond 

to the ones from the Constant slope and Constant q∗ extrapolation 
techniques, respectively. The specific values of m

2
 , m

3
 , feed concen-

trations and the purity/recovery values obtained from detailed simula-
tions are provided in each sub-figure (Color figure online)
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and c1 = c2 = 2.0 g/L . The purity contours are provided in 
Fig. 7. For the sake of clarity, only the contours of 99% and 
70% purity are provided. At low concentrations, the con-
tours predicted by the three approaches (explicit Langmuir, 
Constant slope and Constant q∗ ) virtually overlap with each 
other. At the intermediate concentration c1 = c2 = 1.0 g/L , 
the contours from Constant Slope extrapolation overlap with 
the explicit isotherm, while the Constant q∗ shows deviation. 
It is worth noting that even under this situation, the region 
of complete separation, i.e., the space delimited by the 99% 
purity contour is well predicted by both extrapolation tech-
niques. For the case of c1 = c2 = 2.0 g/L , while the 99% 
contour is predicted correctly by the Constant slope tech-
nique, there is a deviation for the 70% case. The Constant q∗ 
extrapolation technique shows larger deviations.

The reasons for these deviations can be explained by con-
sidering the internal concentration profiles that are provided 
alongside each of the separation region plots for a specific 
operating condition shown in Fig. 8. At low concentrations, 
the prediction of the internal concentration profile is excel-
lent. At higher concentrations, the deviation between the 
Constant q∗ extrapolation (solid line) and the explicit form 
(symbols) start becoming obvious. The Constant slope 
extrapolation strategy works well in predicting the internal 
concentration profiles, while the Constant q∗ extrapolation 
shows larger deviations, for the same reasons as discussed 
in the case of pulse elutions. It is worth noting that, unlike in 
the case of pulse injection, the feed state persists in the SMB 
case and the ability to predict the concentration profiles 
without applying an explicit isotherm is rather satisfactory.

6  Conclusions

This work provides a contribution to directly use discrete 
single component adsorption equilibrium points in order to 
generate a prediction regarding the equilibria in mixtures 
without applying an explicit single component isotherm 
model. For this the thermodynamically consistent ideal 
adsorbed solution theory (IAST) is applied. Effects and mag-
nitudes of unavoidable interpolation and extrapolation errors 
are discussed and quantified. The method was demonstrated 
by describing adsorption dynamics in fixed-beds numeri-
cally, considering three different case studies of increasing 
complexity. In one of the case studies, a comparison with 
experimental data could be done. In the final case study, 
suitable operating conditions were predicted efficiently for 
the challenging multi-column simulated moving bed (SMB) 
chromatography process. As a key result of this work, we 
can recommend considering the direct processing of discrete 
single component equilibrium data as a suitable alternative 

for generating reasonable estimates of the courses of mixture 
separation processes. While we do not anticipate that this 
approach will provide any savings in computational time, 
it can be helpful for speeding-up process design and opti-
mization, particularly to obtain preliminary results in order 
to decide upon the need for additional experimental efforts.

Before concluding, it is important to emphasize that the 
discrete equilibrium data that is proposed here should not be 
considered as a replacement to the time-tested methods of 
using thermodynamically consistent isotherm models that 
are based on the understanding of fluid-solid interactions. 
The ideal place to use such approaches are system that do 
not immediately lend themselves to an easy description by 
isotherm functions. Further, the discrete equilibrium data 
approach should be used with caution under the following 
situations: 

1. Only a few discrete equilibrium points are available. 
Under these conditions, as shown here, significant errors 
can be expected.

2. The solutes show differences in their isotherm non-line-
arities. In this case, significant errors can be made in the 
estimation of competitive loadings.

3. When isotherms have been measured at concentrations 
much lower than where the process needs to be operated.

4. When significant errors are anticipated in the equilib-
rium measurements. In the case of using a functional 
form, some of these errors could be “smoothed-out”, 
whereas in the current approach, they will show up as 
discontinuities. This can result in either numerical issues 
or produce spurious oscillations in elution profiles.

It is worth noting that many of the limitations remain as 
obstacles even when using explicit isotherms. This empha-
sizes the need for thorough experimental characterization 
of competitive adsorption prior to process development.
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