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Abstract
A non-isothermal two-dimensional general rate model is formulated and analytically solved to analyze the effects of tem-
perature changes inside liquid chromatographic columns of cylindrical geometry. The model equations form a system of 
convection-diffusion partial differential equations. The finite-Hankel transformation, the Laplace transformation, the eigen-
decomposition technique and a conventional solution technique of ordinary differential equations are used to solve the equa-
tions of the model. The coupling between concentration and temperature fronts is demonstrated and important parameters 
that affect the performance of the column are evaluated. To find the ranges of validity of our analytical results, a semi-discrete 
high resolution finite volume method is applied to solve the same system of equations for both linear and nonlinear isotherms. 
The results of this contribution can be helpful to optimize non-isothermal liquid chromatographic processes in which both 
radial and axial gradients occur. 

Keywords  Non-isothermal chromatography · Linearized isotherm · Two-dimensional general rate model · Analytical 
solutions · Finite volume scheme

1  Introduction

Mathematical modeling has contributed significantly in the 
advancements of liquid chromatography. Different research-
ers, involved in this field, have shown that vital information 
about the chromatographic process can be obtained through 
this approach (Guiochon 2002; Guiochon et al. 2006; Bel-
lot and Condoretm 1991). Several mathematical models, 
characterized by different levels of complexities, have been 
introduced in the literature for describing liquid chroma-
tography processes (Guiochon 2002; Guiochon et al. 2006; 
Guiochon and Lin 2003; Carta 1988; Ruthven 1984; Qamar 
et al. 2016, 2017). 

In the non-isothermal liquid chromatography, several 
experimental studies have been carried out in the literature. 

The earliest documented analysis of thermal effects was car-
ried out to study deviation from linear chromatography by 
changing the sizes and concentrations of the injected pulses 
(Cerro and Smith 1969). Although less works have been 
done in this area, several contributions can still be found 
in the literature (Haynes 1986; Zhong and Meunier 1994; 
Sainio 2005; Sainio et al. 2007, 2011; Vu and Seidel-Mor-
genstern 2011; Javeed et al. 2012; Qamar et al. 2016).

This article extends the previous analysis in Qamar et al. 
(2017) to single-solute two-dimensional (2D) general rate 
model (GRM) of linear non-isothermal liquid chromatog-
raphy. The contribution of this work include quantification 
of temperature effects on the concentration, demonstration 
of the concentration and thermal waves joint occurrence 
and identification of the main parameters that influence the 
temperature gradients in non-isothermal liquid chromatog-
raphy. The equations of the model are solved analytically 
by simultaneously applying the Hankel transformation, the 
Laplace transformation, the eigen-decomposition technique, 
and a conventional technique for the solutions of ordinary 
differential equations (ODEs). The derived solutions are 
transformed back to their original coordinates numerically 
because they involve some complicated functions (Durbin 
1974; Rice and Do 1995). Keeping in view the usefulness 
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of temporal moments (Qamar et al. 2017; Suzuki 1973; 
Miyabe 2009; Qamar et al. 2014; Leweke and von Lieres 
2016; Parveen et al. 2016; David et al. 2018), we numeri-
cally calculate the moments, as the analytical expressions of 
temporal moments are difficult to calculate. Analysis of the 
effects of different kinetic and thermodynamic parameters 
can be done by using these moments. To find the validity 
range of analytical results, we use a reliable finite volume 
scheme to approximate the equations of the model for non-
linear isotherm (David et al. 2018; Koren 1993; Javeed et al. 
2011). Case studies, which cover a wide range of kinetic and 
thermodynamic parameters, are carried out to illustrate the 
potential of our analytical solutions. The results obtained 
are useful for further developments in the non-isothermal 
liquid chromatographic processes. For instance, the current 
analysis can be used (i) to study the effects of mass transfer 
kinetics on the elution profiles, (ii) for sensitivity analysis, 
(iii) for validating numerical solutions, and (iv) for deter-
mining longitudinal and radial dispersion coefficients from 
experimentally determined elution profiles, among others.

The current 2D-model equations and the derived analyti-
cal solutions are useful when a radial profile is introduced 
at the inlet of the column at the time of injection and when 
the radial temperature gradients are occurring in the column 
together with the radial concentration gradients. These sce-
narios could happen when (a) injection at the inlet of the col-
umn is imperfect, (b) ratio of the column radius to its length 
is larger, and (c) the column is not homogeneously packed. 
In many processes of liquid chromatography, the results of 
simple 1D-models deviates more or less strongly from pre-
dictions, however, these differences are difficult to quantify. 
Thus, finding a quantitative tool and a selection criteria for 
the right model becomes necessary. With the present non-
isothermal 2D-GRM, the aforementioned situations can be 
studied by the assuming the inner or outer zones injections.

In summary, this work can be considered as a first ini-
tiative for the simulation of such a complicated process. 
No experimental validation is currently available for such 
a truly 2D-problem. However, this can be made possible 
in future by exploiting a dedicated injection system (to be 
designed and incorporated) utilizing only parts of the inlet 
cross-sectional area.

This article is further arranged as follows. In Sect. 2, a 
2D-GRM is formulated to simulate dynamical processes 
in the non-isothermal liquid chromatographic columns of 
cylindrical geometry. In Sect. 3, analytical solutions of 
the non-isothermal 2D-GRM are derived for Dirichlet and 
Danckwerts boundary conditions (BCs). Section 4 presents 
some numerical test problems followed by the conclusions 
in Sect. 5.

2 � The non‑isothermal 2D‑GRM

Consider a non-isothermal adsorption column packed with 
spherical shaped fully-porous particles having radius Rp . We 
take t, z and r to represent the time, axial and radial coordi-
nates, respectively. Two specific conditions of injection are 
considered for triggering the radial mass and heat transfer 
effects. A new parameter r̃ is introduced for dividing the 
inlet cross sectional area of the column into an inner cylin-
drical core and into an outer annular ring, see Qamar et al. 
(2014, 2017) and David et al. (2018). Thus, sample can be 
injected to the column either through an inner, through an 
outer ring, or through the whole cross section. The latter 
case is possible when r̃ is set equal to the radius of the col-
umn denoted by Rc . The classical equation of mass balance 
for a single-solute in the bulk phase of the fluid is given as 
Qamar et al. (2014, 2017), David et al. (2018)

In the equation above, c represents the solute concentration 
in the bulk phase of the fluid, q̄ represents averaged concen-
tration in the solid particles, �b is the external porosity, u 
represents the velocity, Dz denotes the dispersion coefficient 
in the axial direction and Dr denotes the dispersion coef-
ficient in the radial direction. The averaged concentration 
in the spherical solid particles of volume Vp and radius RP 
is defined as

where �p is the internal particle porosity, cp is the solute 
concentration in the particle pores and qp is the local equi-
librium concentration of solute in stationary phase. Thus, for 
the time derivative of Eq. (2), considering the external mass 
transfer resistance, holds

where rp represents the radial coordinate with spherical par-
ticles of radius Rp and kext denotes external mass transfer 
coefficient.

The equation of mass for the solute concentration in the 
particles pores can be given as

(1)
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where, Dp is the pore diffusivity.
The corresponding energy balance of the column is given 

as

where, Tb is the bulk temperature, T is the averaged tempera-
ture of the particles, �eff,z represents the effective axial heat 
conductivity, �eff,r denotes the effective radial heat conduc-
tivity coefficient, �L is the density per unit volume, and cL

P
 is 

the heat capacity for the liquid phase. Moreover,

Here, �S is the density and cS
P
 is the heat capacity of the 

solid phase. Furthermore, �L , �S , cL
P
 and cS

P
 are considered 

independent of temperature, which are valid in a limited 
temperature range.

The averaged particle temperature is defined as

The time derivative of Eq. (7) is due to heat transport over 
the particle surface according to

where, heff is the effective particle to fluid heat transfer 
coefficient.

The radial temperature profile inside the spherical parti-
cles pores can be described by

where, ΔHA represents the enthalpy of adsorption and �p 
denotes the internal heat diffusivity coefficient.

The amount of absorbed solute is dependent on the tem-
perature and is described by the enthalpy of adsorption by 
the van’t Hoff relation. Therefore, the equilibrium relation 
in concentration is expressed as

(5)
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(9)
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,

(10)qp(cp, Tp) = arefcp exp

(
−ΔHA

Rg

(
1

Tp
−

1
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))
.

Here, aref represents the equilibrium constant at the reference 
temperature T ref and Rg is the general gas constant.

In order to proceed, we define

By using Eq. (3) in Eq. (1), Eq. (8) in Eq. (5), Eq. (6) in Eq. 
(9) and the above transformations in Eqs. (1), (4), (5) and 
(9), we get

Here, Fb =
1−�b

�b
 and Fp =
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�p
 . The following dimensionless 

variables are used to reduce and simplify the model 
equations:

Here, L is the characteristic column length, Pez and Pez,T are 
the axial peclet numbers, Pe� and Pe�,T are the radial peclet 
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numbers, � and �T are the Biot numbers for mass and energy, 
and � , �T , � , and �T are the dimensionless constants. Using 
the above dimensionless variables in Eqs. (12)–(15), we get

We use the Taylor-expansion up to first order to linearize the 
equilibrium relation in Eq. (10) by assuming small changes 
in the temperature and concentration:

The expression given in Eq. (21) above, is determined and 
further simplified as

Here, aref , cref and T ref represent the adsorption coefficient at 
reference temperature, reference concentration and reference 
temperature, respectively.

The initial conditions for a regenerated column are given 
as
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(21)
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2
,
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Here, cinit
2

 and cinit
p,2

 represent the initial bulk and particle tem-
peratures, respectively.

The boundary conditions for Eqs. (17) and (19), which 
correspond to the nonporous walls of the column and the 
symmetry of radial profile, are used along the radial coordi-
nate at � = 0 and � = 1:

For Eqs. (17) and (19), we apply the Dirichlet and Danckw-
erts boundary conditions considering two types of injections 
(inner region and outer region injections) along the axial 
coordinate, see Qamar et al. (2014, 2017) and  David et al. 
(2018) for more details. We give Danckwerts BCs and pro-
vide conditions under which these BCs reduce to Dirichlet 
BCs. Let us define

where r̃ divides the inlet cross sectional area of the column 
into inner and outer zones and Rc denotes the radius of the 
column (Qamar et al. 2014, 2017; David et al. 2018).

For pulse injection as Danckwerts inlet boundary condi-
tions via the inner region, they are expressed for j = 1, 2 as 

While, for pulse injection as Danckwerts inlet boundary con-
ditions via the outer region, they are expressed as

The Neumann boundary conditions at the outlet of a finite 
length column are considered:

Here, cinj
1

 and cinj
2

 are the inlet concentration and bulk tem-
perature, respectively. Further, Pej represents Pez and Pez,T 
for j = 1 and j = 2 , respectively. The Dirichlet BCs are 
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deduced from the Danckwerts BCs by letting Pez → ∞ and 
Pez,T → ∞ in Eqs. (27a) and (27b) and by replacing x = ∞ 
in Eq. (27c).

For Eqs. (18) and (20), the boundary conditions at �p = 0 
and �p = 1 are expressed as

 Here, �j represents � and �T for j = 1 and j = 2 , respectively.

3 � Analytical solutions

The aforementioned model equations are solved applying 
first the Hankel transform, followed by Laplace transform, 
the decoupling technique and a conventional ODE solution 
technique. The Hankel transform of c(�, x, �) is defined as 
(c.f. Carslaw and Jaeger 1953; Chen et al. 2011; Crank 1975; 
Sneddon 1972)

After applying the above transformation on Eqs. (17) and 
(19) with respect to coordinate � , we obtain

Here, cH,j(�n, x, �) and cpH,j(�n, x, �) denote the zeroth-order 
finite Hankel transforms of cj(�, x, �) and cp,j(�p, �, x, �) , 
respectively. Thus, the Hankel transformation eliminates 
the radial derivatives from the partial differential equations 
(PDEs). Next, we apply the Laplace transform defined as 
(c.f Sneddon 1972)
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on Eqs. (29) and (30) with respect to � for zero initial con-
centration of the solute to obtain

Subsequently, applying the Hankel and Laplace transforma-
tions on the Danckwerts boundary conditions given in Eqs. 
(27a) and (27c), we obtain

and

Here, c̄H,j denotes the concentration after Hankel and 
Laplace transformation for j = 1 and temperature for j = 2 , 
respectively.

Injecting through the inner region, F(�n) is given as
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Next, using Eq. (22) in Eqs. (18) and (20) and after rephras-
ing, we obtain

where

After applying the Hankel and Laplace transforms on Eqs. 
(40) and (41), we obtain

where, �1(s) =
a∗
1
s

�
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2
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�T
.

Representing Eqs. (43) and (44) in matrix notation, we 
obtain

We have a coupled system of equations above and the eigen-
decomposition technique is used to decouple the system in 
order to find the solutions by using the boundary conditions 
in Eq. (27d). Hence, Let B represent the coefficient matrix 
of the system as
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(
arefcref

(ΔHA)
2

Rg�
LcL

p
(T ref)2

)
,

a∗
2
= (1 − �p)

(
arefcref

ΔHA

Rg(T
ref)2

)
,

a∗
3
= (1 − �p)

(
aref

ΔHA

�LcL
p

)
.

(43)
d2

d𝜌2
p

(𝜌pc̄pH,1) = 𝛼1(s)𝜌pc̄pH,1 + 𝛼2(s)𝜌pc̄pH,2 ,

(44)
d2

d𝜌2
p

(𝜌pc̄pH,2) = 𝛼3(s)𝜌pc̄pH,1 + 𝛼4(s)𝜌pc̄pH,2 ,

(45)
d2

d𝜌2
p

(
𝜌pc̄pH,1

𝜌pc̄pH,2

)
=

(
𝛼1(s) 𝛼2(s)

𝛼3(s) 𝛼4(s)

)(
𝜌pc̄pH,1

𝜌pc̄pH,2

)
.

The above matrix has two distinct eigenvalues which are 
given as

and the corresponding distinct eigenvectors

Therefore, based on the above eigenvalues, the transforma-
tion matrix A is obtained as

Using the matrix A, we can formulate the following linear 
transformation as

We use the linear transformation above on Eq. (45) to obtain

Now, we have a system of ODEs in Eq. (51) with the follow-
ing explicit solutions

From Eqs. (27d) and (50), we obtain the boundary conditions

By using the above boundary conditions, we get from Eq. 
(52) C1 = −C2 and D1 = −D2 . Therefore, Eq. (52) reduces to

By using the values of b̄pH,1 and b̄pH,1 in the transformation 
given by Eq. (50), we obtain the following results

(46)B =

(
�1(s) �2(s)

�3(s) �4(s)

)
.

(47)
�1,2 =

1

2
(�1(s) + �4(s))

±
1

2

√
(�1(s) − �4(s))

2 + 4�2(s)�3(s) ,

(48)x1 =

[
�1 − �4(s)

�3(s)

]
, x2 =

[
�2 − �4(s)

�3(s)

]
.

(49)A =

(
�1 − �4(s) �2 − �4(s)

�3(s) �3(s)

)
.

(50)
[
c̄pH,1

c̄pH,2

]
=

(
𝜆1 − 𝛼4(s) 𝜆2 − 𝛼4(s)

𝛼3(s) 𝛼3(s)

)[
b̄pH,1

b̄pH,2

]
.

(51)
d2

d𝜌2
p

(
𝜌pb̄pH,1

𝜌pb̄pH,2

)
=

(
𝜆1 0

0 𝜆2

)(
𝜌pb̄pH,1

𝜌pb̄pH,2

)
.

(52)

b̄pH,1 =
1

𝜌p
[C1e

√
𝜆1𝜌p + C2e

−
√
𝜆1𝜌p],

b̄pH,2 =
1

𝜌p
[D1e

√
𝜆2𝜌p + D2e

−
√
𝜆2𝜌p].

(53)
𝜕b̄pH,1

𝜕𝜌p

|||||𝜌p=0
= 0,

𝜕b̄pH,2

𝜕𝜌p

|||||𝜌p=0
= 0.

(54)

b̄pH,1 =
2C1

𝜌p
sinh(

√
𝜆1𝜌p), b̄pH,2 =

2D1

𝜌p
sinh(

√
𝜆2𝜌p).
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By using the boundary conditions of Eq. (27d) at �p = 1 in 
Eq. (55), we obtain

where

By using these values in Eq. (55), we get

(55)

c̄pH,1 =
�
𝜆1 − 𝛼4(s)

��2C1

𝜌p
sinh(

√
𝜆1𝜌p)

�

+
�
𝜆2 − 𝛼4(s)

��2D1

𝜌p
sinh(

√
𝜆2𝜌p)

�
,

c̄pH,2 = 𝛼3(s)

�
2C1

𝜌p
sinh(

√
𝜆1𝜌p)

�

+ 𝛼3(s)

�
2D1

𝜌p
sinh(

√
𝜆2𝜌p)

�
.

(56)C1 = −
1

2 sinh(
√
𝜆1)

�
𝜙1(s)

𝜐(s)
c̄H,1 −

𝜙2(s)

𝜐(s)
c̄H,2

�
,

(57)D1 =
1

2 sinh(
√
𝜆2)

�
𝜙3(s)

𝜐(s)
c̄H,1 −

𝜙4(s)

𝜐(s)
c̄H,2

�
,

(58)

�1(s) = �[�T − 1 +
√
�1 coth(

√
�1)],

�2(s) =
(�1 − �4(s))

�3(s)
�T [� − 1 +

√
�1 coth(

√
�1)],

�3(s) = �[�T − 1 +
√
�2 coth(

√
�2)],

�4(s) =
(�2 − �4(s))

�3(s)
�T [� − 1 +

√
�2 coth(

√
�2)],

�(s) = (�2 − �4(s))[� − 1 +
√
�2 coth(

√
�2)][�T − 1

+
√
�1 coth(

√
�1)]

− (�1 − �4(s))[� − 1 +
√
�1 coth(

√
�1)][�T − 1

+
√
�2 coth(

√
�2)].

(59)

c̄pH,1
|||𝜌p=1 =

[
(𝜆2 − 𝛼4(s))

𝜙3(s)

𝜐(s)

−(𝜆1 − 𝛼4(s))
𝜙1(s)

𝜐(s)

]
c̄H,1

+

[
(𝜆1 − 𝛼4(s))

𝜙2(s)

𝜐(s)
− (𝜆2 − 𝛼4(s))

𝜙4(s)

𝜐(s)

]
c̄H,2,

(60)
c̄pH,2

|||𝜌p=1 = 𝛼3(s)

[
𝜙3(s)

𝜐(s)
−

𝜙1(s)

𝜐(s)

]
c̄H,1

+ 𝛼3(s)

[
𝜙2(s)

𝜐(s)
−

𝜙4(s)

𝜐(s)

]
c̄H,2.

Putting the values of Eqs. (59) and (60) in Eqs. (32) and 
(33), we get the system of equations

Here,

and

In a similar manner, we decouple the system in Eq. (61) by 
using the following transformation

where,

Thus, we get the form

The solutions of Eq. (69) are given as

(61)

d2

dx2

(
c̄H,1

c̄H,2

)
−

(
Pez
Pez,T

)
d

dx

(
c̄H,1

c̄H,2

)

=

(
𝛾1(s, 𝜆n) 𝜓2(s)

𝜓3(s) 𝛾2(s, 𝜆n)

)(
c̄H,1

c̄H,2

)
.

(62)

�1(s, �n) =Pez

(
s +

�2
n

Pe�

)
+ �1(s),

�2(s, �n) =Pez,T

(
s +

�2
n

Pe�,T

)
+ �4(s)

(63)

�1(s) = Pez�

[
1 − (�2 − �4(s))

�3(s)

�(s)
+ (�1 − �4(s))

�1(s)

�(s)

]
,

(64)

�2(s) = −Pez�

[
(�1 − �4(s))

�4(s)

�(s)
− (�2 − �4(s))

�2(s)

�(s)

]
,

(65)�3(s) = −�3(s)Pez,T�T

[
�3(s)

�(s)
−

�1(s)

�(s)

]
,

(66)�4(s) = Pez,T�T

[
1 + �3(s)

(
�2(s)

�(s)
−

�4(s)

�(s)

)]
.

(67)
[
c̄H,1

c̄H,2

]
=

(
𝜆3 − 𝛾2(s, 𝜆n) 𝜆4 − 𝛾2(s, 𝜆n)

𝜓3(s) 𝜓3(s)

)[
b̄H,1

b̄H,2

]
,

(68)
�3,4 =

1

2
(�1(s, �n) + �2(s, �n))

±
1

2

√
(�1(s, �n) − �2(s, �n))

2 + 4�2(s)�3(s) .

(69)

d2

dx2

(
b̄H,1

b̄H,2

)
−

(
Pez
Pez,T

)
d

dx

(
b̄H,1

b̄H,2

)
=

(
𝜆3 0

0 𝜆4

)(
b̄H,1

b̄H,2

)
.

(70)
b̄H,1(x, s) =C3e

m1x + C4e
m2x, b̄H,2(x, s)

=D3e
n1x + D4e

n2x.
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Here,

In Eq. (71), m1 and n1 are obtained by choosing the plus sign 
and m2 and n2 are obtained by considering the minus sign. 
Next, we use the two types of axial boundary conditions to 
find the integration constants C3 , C4 , D3 and D4.

By utilizing the transformation in Eq. (67), we can trans-
form the boundary conditions in Eq. (70). After following a 
similar procedure of analytical solution derivation discussed 
in Qamar et al. (2017), we obtain the following Hankel-
Laplace domains solutions for Dirichlet boundary conditions 
from Eqs. (36) and (37) for Pei → ∞ and x = ∞ as

(71)
m1,2 =

1

2
Pez ±

1

2

√
Pe2

z
− 4�3 ,

n1,2 =
1

2
Pez,T ±

1

2

√
Pe2

z,T
− 4�4.

(72)
cH,1(�n, x, s) =

(1 − e−s�inj)c
inj

1
F(�n)

(�3 − �4)s

[
(�3 − �2(s, �n))e

m2x − (�4 − �2(s, �n))e
n2x

]

+
(1 − e−s�inj )c

inj

2
F(�n)(�3 − �2(s, �n))(�4 − �2(s, �n))

�3(s)(�3 − �4)s

[
em2x − en2x

]
,

(73)
cH,2(�n, x, s) =

(1 − e−s�inj )�3(s)c
inj

1
F(�n)

(�3 − �4)s

[
em2x − en2x

]

+
(1 − e−s�inj)c

inj

2
F(�n)

(�3 − �4)s

[
(�4 − �2(s, �n))e

m2x − (�3 − �2(s, �n))e
n2x

]
.

Analytical Laplace and Hankel inversions are not possible 
for the above equations. Thus, to get back the solutions in 
the actual coordinates, we use the numerical Laplace and 
Hankel inversions (Durbin 1974). In the Appendix 1 of this 
manuscript, we have presented a detailed derivation of the 
Durbin method (Durbin 1974). The Matlab software was 
used to implement this technique.

Next, applying the transformation in Eq. (67) in a similar 
manner and following the solution procedure presented in 
Qamar et al. (2017), we obtain the following Hankel-Laplace 
domains solutions for the Danckwerts boundary conditions

(74)

cH,1(�n, x, s)

=
(1 − e−s�inj)c

inj

1
F(�n)

(�3 − �4)s

[
�1(�3 − �2(s, �n))(m1e

m2x − m2e
m1(x−1)+m2 )

]

−
(1 − e−s�inj )c

inj

1
F(�n)

(�3 − �4)s

[
�2(�4 − �2(s, �n))(n1e

n2x − n2e
n1(x−1)+n2 )

]

−
(1 − e−s�inj )c

inj

2
F(�n)(�3 − �2(s, �n))(�4 − �2(s, �n))

�3(s)(�3 − �4)s

[
�1(m1e

m2x − m2e
m1(x−1)+m2 )

]

−
(1 − e−s�inj )c

inj

2
F(�n)(�3 − �2(s, �n))(�4 − �2(s, �n))

�3(s)(�3 − �4)s

[
�2(n1e

n2x − n2e
n1(x−1)+n2 )

]
,
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Here,

To get back solutions in the actual coordinates, we again 
apply the numerical Laplace and Hankel inversions to the 
above equations (Durbin 1974) as discussed in the Appendix 
1 of this manuscript.

4 � Numerical case studies

Here, a few test problems are carried out to validate the 
derived analytical solutions. A high resolution finite vol-
ume scheme (HR-FVS) of Koren is also applied to the linear 
and nonlinear models for identifying the validity ranges of 

(75)

cH,2(�n, x, s)

=
(1 − e−s�inj)�3(s)c

inj

1
F(�n)

(�3 − �4)s

[
�1(m1e

m2x − m2e
m1(x−1)+m2 )

]

−
(1 − e−s�inj)�3(s)c

inj

1
F(�n)

(�3 − �4)s

[
�2(n1e

n2x − n2e
n1(x−1)+n2 )

]

+
(1 − e−s�inj)c

inj

2
F(�n)

(�3 − �4)s

[
�1(�4 − �2(s, �n))(m2e

m1(x−1)+m2 − m1e
m2x)

]

+
(1 − e−s�inj)c

inj

2
F(�n)

(�3 − �4)s

[
�2(�3 − �2(s, �n))(n1e

n2x − n2e
n1(x−1)+n2 )

]
.

(76)�1 =
Pez

m1(Pez − m2) + m2(m1 − Pez)e
m2−m1

,

(77)�2 =
Pez,T

n1(Pez,T − n2) + n2(n1 − Pez,T )e
n2−n1

.

analytical results and for getting confidence on them (David 
et al. 2018; Koren 1993; Javeed et al. 2011). The suggested 
2D numerical scheme has already been applied and derived 
in our previous article for isothermal 2D-GRM (David et al. 
2018). The derivation of this scheme for the current non-
isothermal 2D-GRM follows the same procedure and is, 
therefore, omitted in this manuscript. For that reason, we 
refer the reader to our article (David et al. 2018) for more 
details about the numerical scheme. The considered numeri-
cal scheme was programmed in C language for grid points of 
100 × 40 × 20 . The coupling between the concentration and 
thermal fronts is analyzed. All parameters used in the simu-
lation, which are typically used in high performance liquid 
chromatographic (HPLC) applications, are listed in Table 1.

4.1 � Isothermal case ( 1HA = 0  kJ/mol)

Here, we start with an isothermal case which is a reference 
case for the non-isothermal behavior. The plots are given 
for the Danckwerts boundary conditions using the solutions 
given in Eqs. (74) and (75). The sample is injected through 
the inner cylindrical region at the column inlet (i.e. at x = 0 ). 
The injected temperature Tinj , the initial temperature Tinit and 
the reference temperature T ref are taken the same. The 3D 
plots in Fig. 1a and c are obtained at the column outlet. 
While, the 1D plots in Fig. 1b and d are the outlet concentra-
tion and temperature profiles averaged over the whole radius 
of the column. These plots show that no change occurs in the 
temperature profile when the enthalpy of adsorption is zero 
(i.e. ΔHA = 0 kJ/mol). The 1D plots show a good agreement 
between the analytical and numerical results for linear iso-
therm. The 3D graphs show that the radial transfer with the 
considered radial Peclet number, Pe� = 15 , is not fast enough 
to eliminate the radial gradients introduced via injection.

4.2 � Non‑isothermal case ( 1HA ≠ 0  kJ/mol)

Under this subsection, we analyze the effects of enthalpy 
of adsorption. Figures 2 and 3 show the plots for inner and 

Table 1   Standard parameters used in the test problems

Parameter Symbol Value

Reference Henry’s constant aref 1.0
External porosity �b 0.4
Internal porosity �p 0.333
Density times heat capacity of liquid �LcL

p
4 kJ/Kl

Axial Peclet numbers Pez = Pez,T 600
Radial Peclet numbers Pe� = Pe�,T 15
Dimensionless constant � 3.1
Dimensionless constant �T 28.2
Dimensionless constant � 40
Dimensionless constant �T 88.6
Injected concentration cinj 1 mol/l
Injected temperature Tinj 300 K
Reference temperature Tref 300 K
Time of injection �inj 0.3
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outer annular zone injections, respectively. The parameters 
used in both figures are the same and are given in Table 1. 
Here, we have considered radial Peclet number as Pe� = 15 
which corresponds to the slow radial dispersion. In the 3D 
plots at the column outlet, larger values of concentration 
and temperature profiles can be seen in the inner region of 
the column for the inner zone injection (c.f. Fig. 2a and c). 
On the other hand, the concentration and temperature pro-
files have larger values in the outer region of the column 
for the outer annular zone injection (c.f. Fig. 3a and c). In 
Figures 2b, d and  3b, d, where the averaged concentration 
and temperature profiles are plotted, it can be seen that a 
nonzero value of the enthalpy of adsorption ( ΔHA = −10 kJ/
mol) generates fluctuations in the temperature profile with-
out causing any visible change in the concentration profile 

due to the considered linearization of the isotherm. The plots 
in Figs. 2d and 3d show that adsorption front elutes first and 
causes a significant rise in the temperature profile followed 
by a desorption which causes a drop in the temperature pro-
file. After a complete desorption, the temperature profile 
attains back its reference value. For the considered two types 
of injections, a strong similarity is observed in the behavior 
of the plots. In the 1D plots, a good agreement between the 
analytical and numerical results for linear isotherm verifies 
the correctness of the analytical solutions and accuracy of 
the proposed numerical algorithm.

Figure 4 displays the effects of ΔHA on the averaged con-
centration and temperature profiles. The linearized analytical 
results were obtained for the Dancwerts boundary condi-
tions using the solutions in Eqs. (74) and (75), while the 
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Fig. 1   Isothermal case ( ΔHA = 0 kJ/mol ): Plots a and c are obtained from analytical solutions, while plots b and d show a comparison of ana-
lytical and numerical solutions for linear isotherm. Here, Danckwerts boundary conditions and outer zone injection are considered
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numerical solutions were obtained using a nonlinear iso-
therm given in Eq. (10). It can be seen that linear analytical 
solutions deviate from the nonlinear solutions of the HR-
FVS for |ΔHA| ≥ 10 kJ/mol. Moreover, the analytical solu-
tions give over predicted results, while the numerical solu-
tions show accurate deviations from the isothermal behavior 
for larger values of the enthalpy of adsorption. Thus, the 
assumption for linearizing the isotherm for moderate adsorp-
tion enthalpy of adsorption is justified by these results.

4.3 � Non‑isothermal case: effects of dispersions 
and mass transfer coefficients

Figures 5 and 6 show the effects of radial Peclet numbers (or 
radial dispersion coefficients) on the solution profiles for a 

nonzero enthalpy of adsorption ( ΔHA = −10 kJ/mol). The 
plots are once again produced by using Eqs. (74) and (75) for 
the inner zone injection and keeping all other parameters the 
same as given in Table 1. It can be seen in Fig. 5a and b that 
a smaller value of the Pe� (here 1.5) generates no concentra-
tion and temperature gradients along the radial coordinate 
of the column, i.e. the radial dispersion is faster enough to 
eliminate the concentration and temperature gradients intro-
duced via injection at the column inlet ( x = 0 ). This indi-
cates that smaller values of the radial Peclet number reduce 
the current 2D-model to a 1D-model, as no dynamics are 
observed along the radial coordinate of the column. This fact 
is also verified by the 1D plots for averaged concentrations 
in Fig. 5f. On the other hand, for larger value of the Pe� (here 
25), dynamics in the concentration and temperature profiles 
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Fig. 2   Non-isothermal case ( ΔHA = −10 kJ/mol ): Plots a and c are obtained from analytical solutions, while plots b and d show a comparison of 
analytical and numerical solutions for linear isotherm. Here, Danckwerts boundary conditions and inner zone injection are considered
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are visible along the radial coordinate of the column (c.f. 
Fig. 5c and d). This indicates that larger value of Pe� (i.e. 
slower radial dispersion) slows down the rate of elimination 
of concentration gradients introduced during the injection. 
Furthermore, the 1D plots in Fig. 5e displays the dynamic 
evolution of radial concentration gradients at the center of 
the column (i.e. at x = 0.5 ) which also justifies our above 
discussion. The concentration plots in Fig. 5f show a com-
parison of solutions obtained from the 1D-GRM and from 
the current 2D-GRM. The solutions of 2D-GRM are plotted 
for three different values of the radial Peclet number (i.e. for 
Pe�=1.5, 15, 25) which only appears in this 2D-model. A 
clearer difference is visible between the solutions of the 1D 

and 2D-models for the cases of larger radial Peclet numbers 
(i.e. for columns of larger diameters) as compared to the case 
of smaller radial Peclet number (i.e. for a column of smaller 
diameter). Thus, the application of 2D-model is only useful 
for the columns having larger radial Peclet numbers. Similar 
behavior can be observed for the radial Peclet number of 
temperature ( Pe�,T ) It can be seen in Fig. 6a and c that Pe�,T 
has no visible effect on the concentration profiles which is 
also evident from the 1D plots given in Fig. 6e. The 1D plots 
are again given at the center of the column (at x = 0.5 ). It 
should be noted that while investigating the effects of Pe� by 
increasing or reducing its values, the value of Pe�,T = 15 was 
kept fixed and vice-versa.
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Fig. 3   Non-isothermal case ( ΔHA = −10 kJ/mol ): Plots a and c are obtained from analytical solutions, while plots b and d show a comparison of 
analytical and numerical solutions for linear isotherm. Here, Danckwerts boundary conditions and outer zone injection are considered
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Figure 7 shows the results for different values of Pez and 
Pez,T while keeping Pe� = 15 = Pe�,T fixed. It is evident that 
solutions generated by a smaller value of Pez (here 100) are 
broadened and have lowest peaks as compared to the results 
generated by higher values of Pez (here 300 and 600).

Figure 8 shows the comparison of analytical solutions for 
two different boundary conditions (BCs) (i.e. for Danckwerts 
and Dirichlet BCs). Here, the 1D plots of averaged concen-
tration and temperature (integrated over the radius of the 
column) are shown. The results were achieved by changing 
the values of Pez while keep all other parameters fixed as 
given in Table 1. It can be seen that for a larger axial Peclet 
number (i.e. smaller axial dispersion) the solutions of both 

BCs are the same. However, for a smaller axial Peclet num-
ber (or larger axial dispersion coefficient), differences can be 
seen in the concentration and temperature profiles obtained 
for these two types of BCs. Moreover, the retention times 
are increased as the axial Peclet numbers are reduced (i.e. 
the column efficiency is reduced). Except for the concentra-
tion profiles, on which Pez,T has no obvious effect, similar 
results were witnessed when the value of Pez,T was changed 
while keeping Pez unchanged. Figure 9 shows the effects 
of model parameter � , which expresses the intraparticle 
diffusivity of the fluid, and parameter �T , which expresses 
the intraparticle diffusivity of the temperature. We noticed 
that �T has no obvious effects on the averaged concentration 
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Fig. 4   Non-isothermal case ( ΔHA ≠ 0 kJ/mol ): A comparison of 
analytical solutions for linear isotherm with the numerical solutions 
for nonlinear isotherm considering different values of enthalpy of 

adsorption ( ΔHA ). Here, inner zone injection and Danckwerts bound-
ary conditions are considered
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Fig. 5   Non-isothermal case ( ΔHA = −10 kJ/mol ): Analytical solu-
tions for different values of radial Peclet number ( Pe� ). Plots in e are 
given at the center of the column ( x = 0.5 ) and plots in (f) compare 

the solution of 1D-GRM with the solutions of current 2D-GRM. 
Here, inner zone injection and Danckwerts Boundary conditions are 
considered
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Fig. 6   Non-isothermal case ( ΔHA = −10 kJ/mol ): Analytical solutions for different values of Pe�,T . Here, plots in e and f show 1D plots at the 
center of the column ( x = 0.5 ). Also, inner zone injection and Danckwerts boundary conditions are considered



1502	 Adsorption (2019) 25:1487–1509

1 3

0
2

4
6

8
10

12

0

0.5

1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τρ

c 1(ρ
,x

=
1,
τ)

 [m
ol

/l]

(a) Pe
z
=100=Pe

z,T

0
2

4
6

8
10

12

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

τρ

c 2(ρ
,x

=
1,
τ)

 [K
]

(b)
Pe

z
=100=Pe

z,T

0
2

4
6

8
10

12

0

0.5

1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τρ

c 1(ρ
,x

=
1,
τ)

 [m
ol

/l]

Pe
z
=300=Pe

z,T(c)

0
2

4
6

8
10

12

0
0.2

0.4
0.6

0.8
1

−1.5

−1

−0.5

0

0.5

1

1.5

τρ

c 2(ρ
,x

=
1,
τ)

 [K
]

Pe
z
=300=Pe

z,T

(d)

0
2

4
6

8
10

12

0

0.5

1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τρ

c 1(ρ
,x

=
1,
τ)

 [m
ol

/l]

Pe
z
=600=Pe

z,T(e)

0
2

4
6

8
10

12

0
0.2

0.4
0.6

0.8
1

−1.5

−1

−0.5

0

0.5

1

1.5

τρ

c 2(ρ
,x

=
1,
τ)

 [K
]

Pe
z
=600=Pe

z,T

(f)

Fig. 7   Non-isothermal case ( ΔHA = −10 kJ/mol ): Analytical solutions for different values of Pez and Pez,T . Here, inner zone injection and 
Danckwerts boundary conditions are considered
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profile (Fig. 9c). The diffusion rates are relatively slow for 
small values of � and �T , which leads to tailed and broad-
ened peaks of the averaged concentration and temperature 
profiles.

4.4 � Non‑isothermal case: effect of the 
�S

cS
p

�L
cL
p

Here, we analyze the effect of the ratio 
�ScS

p

�LcL
p

 on the solution 

profiles under the non-isothermal operation, while all other 
parameters are kept the same as given in Table 1. In Fig. 10a 
and b, we have chosen �ScS

p
= 4 and �LcL

p
= 60 . It is evident 

that adsorption part of the temperature profile is moving 
faster and is decoupled from the concentration profile, while 
the slower desorption part is coupled with the concentration 
profile. Thus, the temperature wave is moving faster than the 
concentration profile. In Fig. 10c and d, for �ScS

p
= 4 and 

�LcL
p
= 4 , we see that both the concentration and temperature 

waves are moving at almost the same speed. Lastly, in 
Fig. 10e and f, for �ScS

p
= 60 and �LcL

p
= 4 , we can see that 

the speed of concentration profile is larger than the speed of 
temperature wave. It is also evident that adsorption part of 
the temperature wave is coupled with the faster moving con-
centration profile, while the slower desorption part leaves 
the column at a later time.
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Fig. 8   Non-isothermal case ( ΔHA = −10 kJ/mol ): A comparison of 
analytical solutions for Dirichlet and Danckwerts boundary condi-
tions. The effect axial Peclet number ( Pez ) (or axial dispersion coef-

ficient) is analyzed on these solutions. Here, inner zone injection and 
Danckwerts boundary conditions are considered
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4.5 � Non‑isothermal case: numerical temporal 
moments of concentration profiles

Here, the temporal moments of outlet concentration profiles 
are numerically calculated up to the fourth order. At the col-
umn outlet ( x = 1 ), the temporal moments along the radial 
coordinate of the column are obtained as

The normalized averaged moments at the column outlet 
( x = 1 ) are obtained as

(78)�i(�) = ∫
∞

0

c1(�, x = 1, �) � id� , i = 1, 2, 3, 4,

(79)�i,av =
∫ ∞

0
c1,av(x = 1, �) � id�

�0,av

, i = 1, 2, 3, 4,

where, �0,av is given by

and the averaged concentration c1,av is obtained by integra-
tion c1(�, x = 1, �) over �:

(80)�0,av = ∫
∞

0

c1,av(x = 1, �)d�

(81)c1,av(x = 1, �) = 2

1

∫
0

c1(�, x = 1, �)�d�.
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Fig. 9   Non-isothermal case ( ΔHA = −10 kJ/mol ): Analytical solutions analyzing the effects of � and �T . Here, inner zone injection and Danckw-
erts boundary conditions are considered

Fig. 10   Non-isothermal case ( ΔHA = −10 kJ/mol ): Analytical solu-
tions analyzing the effect of ratio 

�ScS
p

�LcL
p

 . Here, inner zone injection and 
Danckwerts boundary conditions are considered
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Furthermore, the normalized averaged central moment is 
calculated by

The dimensionless moments are first plotted to analyze the 
effects of axial dispersion coefficient ( Pez ) on the concen-
tration profile using the solution of the Dirichlet BCs for 
injections via the inner zone. The Dancwerts BCs give simi-
lar results. Figure 11 displays the plots of averaged central 
moments for the concentration profile. It can be seen that 

(82)��
i,av

=
∫ ∞

0
c1,av(x = 1, �) (� − �1,av)

id�

�0,av

, i = 2, 3, 4.

Pez has no effects on the first moments. However, it affects 
the second, third and fourth moments. As the value of Pez 
increases, the values of moments decreases. These results 
also agree with those presented in Fig. 8.

Figure  12 illustrates the effects of Pe� on the local 
moments obtained through Eq. (78). These plots indicate 
that smaller values of Pe� generate constant values of the 
moments along the radial coordinate ( � ) of the column. 
In the case of outer zone injection, similar results were 
recorded. These results also agree well with those shown 
in Fig. 5.
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Fig. 11   Non-isothermal case ( ΔHA = −10 kJ/mol ): The first four averaged temporal moments of c1[mol∕l] for Dirichlet boundary conditions. 
Here, inner zone injection is considered
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5 � Conclusion

A linearized non-isothermal two-dimensional general rate 
model was formulated and analytically solved to investigate 
the effects of temperature fluctuations in liquid chromato-
graphic columns of cylindrical geometry. The analytical 
solutions were derived by successively applying the finite 
Hankel and Laplace transformations along with the eigen-
decomposition technique and a conventional solution tech-
nique of ordinary differential equations (ODEs). The solu-
tions were derived for Dirichlet and Dancwerts boundary 
conditions. In order to verify the analytical results and to 
find their validity ranges, a high resolution finite volume 
scheme was applied to numerically approximate the model 

equations for linear and nonlinear isotherms. Several case 
studies, covering a wide range of kinetic and thermodynamic 
parameters, were conducted to demonstrate the coupling 
between the concentration and thermal waves. The derived 
analytical solutions of the 2D-model can play significant 
roles in further developments of the non-isothermal chro-
matography. For instance, the derived analytical solutions 
can be used as an effective tool for parameter estimation, 
for sensitivity analysis and for analyzing the performance 
of numerical schemes.
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Appendix 1

Numerical Laplace inversion technique
To achieve back the time domain solution cH,j(�n, x, �) , 

for j = 1, 2 , we follow the following numerical procedure, 
which is based on a Fourier series expansion (Durbin 1974; 
Rice and Do 1995). The analytical Laplace inversion for-
mula is given as

with s = a + ib ; a, b ∈ ℝ and integration is taken along the 
Bromwich contour. Therefore, the real part of all the singu-
larities of c̄H,j(𝜆n, x, s) is exceeded by the real constant a. The 
integrals in Eqs. (28) and (A-1) exist for Re(s) > 𝛾 ∈ ℝ if

(a)	 cH,j is locally integrable,
(b)	 there is  a  �0 ≥ 0 and p, � ∈ ℝ ,  such that 

cH,j(�n, x, �) ≤ pe�� for all � ≥ �0,
(c)	 for all � ∈ (0,∞) , there exists a neighborhood in which 

cH,j is of bounded variation.

In the discussion below, it is assumed always that cH,j fulfils 
the aforementioned conditions and additionally, no singu-
larities of c̄H,j(𝜆n, x, s) exist on the right side of the origin. 
Thus, Eqs. (28) and (A-1) are well-defined for all y > 0 . The 
provision for selecting a > 0 arbitrarily provides a founda-
tion for the Durbin methods Durbin (1974). The integral 
in Eq. (A-1) is given in the interval [0, 2T] equivalently as 
Durbin (1974)

Finally, the following approximate expression is used to 
replace the expression in Eq. (A-2) Durbin (1974):

(A-1)

cH,j(𝜆n, x, 𝜏) =L
−1[c̄H,j(𝜆n, x, s)]

=
1

2𝜋i

a+i∞

∫
a−i∞

e−𝜏sc̄H,j(𝜆n, x, s)ds, j = 1, 2,

(A-2)
cH,j(𝜆n, x, 𝜏) =

ea𝜏

𝜋

∞

∫
0

[Re{c̄H,j(𝜆n, x, s)} cos(b𝜏)

− Im{c̄H,j(𝜆n, x, s)} sin(b𝜏)]db.

During the computer implementation, the infinite series in 
Eq. (A-3) have to be replaced by finite number Np of terms 
only. Therefore, a truncation error appears in the numerical 
results. In our simulations, we have chosen Np = 103.

Hankel inversion technique
Lastly, the following Hankel inversion formula is used 

to obtain the solution back to the actual radial coordinate 
Chen et al. (2011):

The above solution is again a series solution. In the numeri-
cal computations, the infinite series in Eq. (A-4) is added up 
to a finite number Nn of terms only. In our computations, we 
have used Nn = 103.

The above techniques were implemented in the Matlab 
software.
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