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Abstract We discuss the thermodynamics of physical

adsorption of gases in porous solids. The measurement of

the amount of gas adsorbed in a solid requires specialized

volumetric and gravimetric techniques based upon the

concept of the surface excess. Excess adsorption isotherms

provide thermodynamic information about the gas-solid

system but are difficult to interpret at high pressure because

of peculiarities such as intersecting isotherms. Quantities

such as pore density and heats of adsorption are undefined

for excess isotherms at high pressure. These difficulties

vanish when excess isotherms are converted to absolute

adsorption. Using the proper definitions, the special fea-

tures of adsorption can be incorporated into a rigorous

framework of solution thermodynamics. Practical applica-

tions including mixed-gas equilibria, equations for

adsorption isotherms, and methods for calculating ther-

modynamic properties are covered. The primary limitations

of the absolute adsorption formalism arise from the need to

estimate pore volumes and in the application to systems

with larger mesopores or macropores at high bulk pressures

and temperatures where the thermodynamic properties may

be dominated by contributions from the bulk fluid. Under

these circumstances a rigorous treatment of the thermo-

dynamics requires consideration of the adsorption cell and

its contents (bulk gas, porous solid and confined fluid).

List of symbols

A, B, C Constants in Eq. (5.30)

Ci Power series coefficients for grand potential,

Eq. (10.4)

Di Power series coefficients for energy, Eq. (10.5)

f Fugacity of gas, Pa

f� Fugacity in perfect-gas reference state (=1 bar)

F Molar integral Helmholtz free energy, J/mol

F� Molar Helmholtz free energy in perfect-gas

state, J/mol

F
E Excess Helmholtz free energy for nonideal

solution, Eq. (5.18), J/mol

Fc
E Excess Helmholtz free energy for activity

coefficients, Eq. (5.5), J/mol

F Helmholtz free energy of solid phase, J/kg; J in

Sect. 3.3

G Gibbs free energy of solid phase, J/kg; J in Sect.

3.3

G�i Standard-state factor for ith component,

Eq. (4.23), (kg/mol)2

h� Molar enthalpy in perfect-gas state, J/mol

h Differential enthalpy, J/mol

H Enthalpy of solid phase, J/kg ; J in Sect. 3.3

kB Boltzmann constant, 1:3806�10�23 J/K

K Henry constant, mol/(kg-Pa)

K� Henry constant at ref. temp. T�
m Adsorbent capacity, mol/kg, Eq. (10.1)

ms Mass of adsorbent, kg

Dm Weighed increase in mass of adsorbent, kg

mE ‘‘Excess mass’’ from Eq. (5.6), kg/mol

M Molecular weight of gas, kg/mol

n Total absolute amount of adsorbate, mol/kg

na Specific absolute adsorption, mol/kg

ne Specific excess adsorption, mol/kg
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ni Absolute amount of ith component, mol/kg; mol

in Sect. 3.3

nn Specific net adsorption, mol/kg

nt Total amount of gas introduced to sample cell,

mol

nHe Amount of He gas used for dead-space

calibration, mol

N Number of molecules

P Pressure in gas phase, Pa

P� Reference pressure in perfect gas state, 1 bar

P� Pressure for helium calibration, Eq. (2.2), Pa

qd Differential heat, J/mol

qst Isosteric heat, J/mol

Q Canonical partition function

R Gas constant, 8.3145 J/(mol K)

s� Entropy in perfect-gas state, J/(mol K)

s Molar integral entropy of solid phase, J/(mol K)

s Differential entropy of gas in solid, J/(mol K)

S Entropy of solid phase, J/(kg K); J/K in Sect. 3.3

S�s Entropy of degassed solid under full vacuum,

J/(kg K)

T Temperature, K

T� Reference temperature for Eq. (10.1) or

temperature for helium calibration, Eq. (2.2), K

u� Molar energy in perfect-gas state, J/mol

u Molar integral energy of solid phase, J/mol

u Differential energy in solid, J/mol

U Energy of solid phase, J/kg; J in Sect. 3.3

V Volume of solid phase, m3/kg; m3 in Sect. 3.3

vp Specific pore volume, m3/kg

vs Specific volume of solid, m3/kg

vsk Specific skeletal volume of solid, m3/kg

Va Volume of adsorbed phase, m3

Vd Volume of dead space, m3

Vg Volume of bulk gas phase, m3

Vp Pore volume, m3

Vs Volume of solid, m3

Vsk Skeletal volume of adsorbent, m3

Vt Volume of sample cell, m3

xi Mole fraction of ith component in pores of solid

yi Mole fraction of ith component in gas phase

z Molar extensive property (u, s, etc.)

z Differential property (u; s, etc.)

Z Specific extensive property (U, S etc.)

ci Activity coefficient of ith component in

adsorbed phase

C Gibbs excess adsorption per unit area, mol/m2

l Chemical potential, J/mol

l� Chemical potential of adsorbate in perfect-gas

state, J/mol

ls
0 Chemical potential of solid, J/kg

N Grand canonical partition function

q Molecular density, m-3, Eq. (1.4)

qg Molar density of bulk gas, mol/m3

qp Pore density, mol/m3

w Reduced grand potential (�X=RT), mol/kg

X Grand potential, J/kg; J in Sect. 3.3

Subscript

i Refers to ith component

Superscript

* Refers to standard state for pure gas at same value of

T and X
id Refers to function for an ideal adsorbed solution

e Refers to excess adsorption from liquid mixtures

E Refers to excess function for deviation from ideal

adsorbed solution

� Refers to state of perfect gas

1 Introduction

The objective of this paper will be obvious to scientists and

engineers working in the field of adsorption: to apply the full

power of thermodynamics to the field of adsorption. Basically,

thermodynamics provides quantitative relationships between

seemingly unrelated phenomena such as the amount adsorbed

and the heat of adsorption. Thermodynamic analysis is able to

quantify the complex behavior of adsorbed mixtures in terms

of the adsorption of single gases, one at a time. Thermody-

namic equations enable physical chemists to explain adsorp-

tion in terms of gas-solid and gas–gas molecular interactions,

while providing engineers with reliable estimates of selec-

tivity, heats of adsorption for energy balances, and the dif-

ference between the actual and equilibrium chemical

potentials which provides the driving force for mass transfer.

Experimental measurements of the amount adsorbed in

porous solids are routinely done via the Gibbs adsorption

excess, defined as the difference between the number of

moles of gas present in the system (sample cell containing

porous solid) and the number of moles that would be present

if all the accessible volume in the system (both inside and

outside the pores) were occupied by the adsorbate gas in its

bulk state at the same temperature and pressure. A formu-

lation of adsorption thermodynamics based upon excess

properties (excess adsorption, excess enthalpy etc.) has been

almost universally adopted in the thermodynamic analysis of

experimental data on adsorption in porous materials even

though it presents significant difficulties. Perhaps the most

significant difficulty is that properties such as energy and

bulk pressure are multivalued functions of the adsorption

excess at sufficiently high pressure and temperature. In this

paper, while recognizing the important role of the Gibbs

excess in determining the amount adsorbed, we challenge the

use of the excess property formulation for the determination
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of properties such as free energies, entropies and enthalpies.

We argue that for adsorption in porous materials thermo-

dynamics should instead focus on absolute adsorption,

defined as the number of moles of gas contained in the porous

material. A fully consistent thermodynamic formalism

emerges by combining the focus on absolute adsorption with

a treatment based on solution thermodynamics where the

porous solid and adsorbed gas are treated as components in a

mixture. The solution thermodynamics approach to adsorp-

tion is not new. We have argued for it previously (Myers

et al. 2002) and it goes back at least to the work of Hill

(1952). For adsorption of gases at low pressures the differ-

ence between adsorption excess and absolute adsorption lies

within the margin of error of typical experimental mea-

surements. However, there is increasing interest in adsorp-

tion operations where the bulk gas is dense and nonideal,

such as pressure-swing-adsorption (PSA) processes and the

storage of supercritical gases. Thus we think it important to

set forth the case for abandoning the Gibbs excess formula-

tion of adsorption thermodynamics in favor of an approach

that does not lead to inconsistencies in this situation and

offers a more rigorous treatment overall. As a bonus, the

solution thermodynamics version of adsorption is relatively

simple and easy to understand because it is based on standard

methods developed for vapor-liquid equilibria.

Consider a solid adsorbent of mass ms that has been

freshly degassed under vacuum and at high temperature to

remove all traces of gas and impurities. Pack this solid into a

sample cell enclosed in a temperature bath and introduce nt

mol of pure gas from a dosing chamber into the sample cell.

Almost all of this first dose will adsorb but a small portion

of gas molecules will remain in the gas phase at equilib-

rium. The amount adsorbed is the total dose less the amount

remaining in the gas phase. If the solid is microporous and

contains a network of nanometer-sized pores, the space in

the cell accessible to gas molecules is the pore volume (Vp)

plus the gas volume external to the solid (Vg). If, after

degassing the solid but before the experiment, nHe mol of

helium gas is introduced at ambient temperature ðT�Þ and

pressure ðP�Þ; the so-called ‘‘dead space’’ (Vd) inside the

sample cell can be measured using the equation of state for

helium. Assuming negligible adsorption of helium and a

pressure sufficiently low to justify the perfect gas law:

Vd ¼
nHeRT�

P�
¼ Vg þ Vp ð1:1Þ

The standard procedure is to calculate excess adsorption

using the helium dead-space correction:

ne ¼
nt � qgVd

ms

ð1:2Þ

The molar density of the gas phase (qg) is a function of

temperature and pressure as given by its PVT equation of

state. Unfortunately this subtraction is an over-correction

by the amount of gas that would be in the pores (qgVp) if

the gas were present at the density of the bulk gas. The

actual or absolute amount of gas in the pores (na) is

obtained by correcting for the previous over-correction:

na ¼ ne þ qgvp ð1:3Þ

where vp = Vp/ms is the specific pore volume of the solid.

A comparison of absolute and excess isotherms related

by Eq. (1.3) is shown on Fig. 1, based on a pore volume

vp = 269 cm3/kg (Vyas et al. 2004). The excess isotherms

exhibit maxima in the range of 30–60 bar. Thermodynamic

properties calculated from these excess isotherms have

bizarre behavior (Salem et al. 1998): the isosteric heat has

a singularity which occurs at the maximum in excess

adsorption, having a limit of þ1 approaching from the left

and a limit of �1 approaching from the right. The two

excess isotherms intersect at about 110 bar; at higher

pressure, the excess amount adsorbed increases with tem-

perature at constant pressure. The excess amount adsorbed

becomes negative at very high pressure (not shown on

Fig. 1). The conclusion is that excess adsorption at high

pressure can be measured but its thermodynamic variables

are abstract and difficult to interpret.

The excess isotherms shown on Fig. 1 are typical for

adsorption of supercritical gases at high pressure. For

example, Specovius and Findenegg (Specovius et al. 1978)

measured similar excess isotherms for adsorption of

methane on graphitized carbon black. There is nothing
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Fig. 1 Absolute and excess isotherms for adsorption of CH4 on 13X

molecular sieve at 258.15 and 318.15 K. Closed symbols: experi-

mental data for excess adsorption (Salem et al. 1998). Open symbols:

absolute adsorption from Eq. (1.3)
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strange or unusual about the absolute isotherms in Fig. 1.

The absolute amount adsorbed increases smoothly and

monotonically with pressure. Since the micropore density

is the amount adsorbed divided by the pore volume, the

density should increase indefinitely with pressure, as

observed for a different system with a vibrating tube den-

simeter (Gruszkiewicz et al. 2012). Differential properties

calculated from the absolute isotherms on Fig. 1 are shown

on Fig. 4 of Sect. 3; the absolute differential functions are

smooth functions of pressure, without the discontinuities

observed for differential excess functions. Excess adsorp-

tion is abstract; absolute adsorption describes the physical

phenomenon of molecules confined in porous materials.

The central thesis of this paper is that the use of the

Gibbs excess formulation for calculating thermodynamic

properties from adsorption isotherms is inappropriate for

porous solids. To understand this argument it is useful to

begin by discussing the Gibbs excess formulation as

applied to planar interfaces. The concept was originally

applied to the vapor-liquid interface (Rowlinson et al.

2003) where the density varies between the vapor and

liquid phase in the manner shown in Fig. 2. We see that

there is a region where the density smoothly varies from

that of the vapor to that of the liquid. In order to focus on

the properties of this interfacial region without precisely

determining its extent, the Gibbs excess is introduced

together with the concept of the Gibbs dividing surface,

determined in this case by the condition that the Gibbs

excess (C) vanishes.

C ¼
Zzdiv

�1

qðzÞ � qv½ �dzþ
Z1

zdiv

qðzÞ � ql½ �dz ¼ 0 ð1:4Þ

For a planar solid-fluid interface where the solid is con-

sidered inert the fluid density profile might look something

like that in Fig. 3, with the detailed form of the profile

depending on whether the bulk is gas or liquid and the nature

of the solid-fluid and fluid-fluid interactions. Again we are

dealing with a spatially varying density and an interfacial

region of unknown extent. The Gibbs excess formulation is

perfectly appropriate for this situation. The Gibbs dividing

surface in this case is chosen as the surface of the solid.

Consider now adsorption in a porous material in contact

with a bulk fluid phase. The sample morphologies encoun-

tered encompass a wide spectrum. This spectrum includes

single crystals of a zeolite with adsorption mainly within the

micropores of the zeolite crystal, ordered mesoporous

materials like MCM-41 with fairly uniform cylindrical

mesopores, and disordered materials like activated carbons or

silica gels, which are collections of porous particles of various

sizes with micropores and mesopores within the particles and

macropores in the spaces between them (we adopt the IUPAC

definition of micropores, mesopores and macropores for the

purposes of this discussion). In general we have a bulk fluid

(gas or liquid) in contact with another phase consisting of

porous solid and adsorbed fluid. The fluid density inside the

porous material is certainly locally inhomogeneous. However

this does not preclude the treatment of the porous solid and

adsorbed fluid as a single phase system. The situation is
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Fig. 2 Density profile of vapor-liquid interface. z is distance

measured perpendicular to the planar interface. The dashed line is

the Gibbs dividing surface fixed by Eq. (1.4)
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Fig. 3 Profile of gas density adjacent to gas-solid interface. Distance

z is measured perpendicular to the planar surface of the solid
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comparable to that encountered in the thermodynamics of

bulk phases in equilibrium (vapor-liquid, solid-liquid etc.)

where we can measure or compute the state of the system

without inquiring as to the nature of the interface between

these bulk phases. This is also appropriate for adsorption

equilibrium between a bulk fluid phase and a porous solid

phase containing an adsorbed fluid. For convenience we will

refer to the latter as the solid phase.

Since adsorption experiments yield the Gibbs excess it is

necessary to convert this quantity to absolute adsorption and

we will review methods for doing this, which involve esti-

mating the pore volume of the porous material. We also lay

out the formulation of adsorption thermodynamics in terms

of absolute quantities, treating each phase, bulk fluid or

porous solid plus adsorbed fluid, by the equations of solution

thermodynamics. The first benefit of the absolute property

approach is that the fluid density is always a monotonically

increasing function of the bulk pressure or chemical potential

and can therefore itself be treated as an independent state

variable. Consequently the concept of ‘‘isosteric’’ tempera-

ture derivatives of adsorption isotherms is valid under all

conditions in the absolute property formulation. The equa-

tions for mixture adsorption in this formalism are quite

similar to those based on the excess formalism with excess

properties replaced by absolute properties. The definition of

the ideal adsorbed solution is modified so that the reference

state for each component is the pure adsorbed fluid at the

same grand potential as the adsorbed mixture. Throughout

the presentation we provide illustrative calculations using

simple models and experimental data. We emphasize that the

solution thermodynamics approach based on absolute

quantities for adsorption in porous materials is not just an

alternative to Gibbs excess thermodynamics; it is a rigorous

replacement for a somewhat flawed structure. It is also evi-

dent from our presentation that quantities like surface tension

or spreading pressure, concepts associated with adsorption at

planar solid-fluid interfaces, need not appear in the thermo-

dynamics of adsorption in porous materials.

We have written this paper in full recognition of the

divisions in the adsorption community on the issue of

excess versus absolute properties for quantifying adsorp-

tion and we do not necessarily expect to convince everyone

that our view should prevail. Our intention is to provide a

detailed explanation of the issues involved and to present

our own conclusions. We particularly hope that this paper

will assist those new to the field of adsorption in devel-

oping their own understanding of the thermodynamics.

The remainder of the paper is organized as follows. In

Sect. 2 we review the methods for quantifying adsorption

experimentally (Gibbs excess, net adsorption, absolute

adsorption) and show how they are determined by volu-

metric and gravimetric measurements. Next we present the

solution thermodynamics approach to adsorption in Sect. 3.

Section 4 covers ideal adsorbed solutions in the framework

of solution thermodynamics, including a numerical calcu-

lation. We discuss excess mixing functions and activity

coefficients in Sect. 5 and liquid mixtures adsorption in

Sect. 6. We consider calorimetric measurements in Sect. 7

and in Sect. 8 we briefly discuss the impact of this formalism

in modeling adsorption column dynamics. We give a sum-

mary of the points raised in this paper and our conclusions in

Sect. 9. The appendices provide illustrative calculations of

thermodynamic properties for pure gases and their mixtures.

2 Quantifying adsorption

Porous adsorbents may contain pores ranging from micropores

with pore diameters of less than 1 nm to macropores with

diameters of 50 nm or more. The degree of order of the solid

ranges from crystalline materials like zeolites to highly disor-

dered materials such as activated carbons. Typical adsorbents

are silica gel, activated carbon, zeolites, metal organic frame-

works, ordered mesoporous materials [e.g. MCM-41 (Vartuli

et al. 1992)], and carbon nanotubes. Regardless of the chemical

composition and structure of the adsorbent, there are three

definitions for the amount of gas or vapor adsorbed in the solid:

• Gibbs excess

• Net

• Absolute

The first two definitions, Gibbs excess and net adsorption,

are measured experimentally using macroscopic methods. A

thorough discussion of net adsorption is given in a recent paper

by Gumma and Talu (Gumma et al. 2010). The third defini-

tion, absolute adsorption, is the ‘‘actual’’ amount of gas in the

solid phase. Absolute adsorption is required for thermody-

namic calculations and arises naturally in theoretical models

and molecular simulations. Therefore the conversion of excess

or net adsorption to absolute adsorption is a crucial step toward

the understanding and analysis of experimental data.

Two techniques are used for the measurement of Gibbs

excess and net adsorption:

• Volumetric

• Gravimetric

The volumetric technique is more accurate at low

pressure because almost all of the metered dose is adsor-

bed. The gravimetric technique has the disadvantage at low

pressure that the amount adsorbed is the difference of two

nearly equal numbers. At high pressure1, the volumetric

1 High pressure is defined as greater than 10 bar and low pressure is

defined as less than 10 bar. The value of 10 bar is somewhat arbitrary

and depends upon the gas and the temperature. See Sect. 2.3.1 where

the difference between excess and absolute adsorption is related to the

bulk density.
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technique gives the amount adsorbed as the sum of a large

number of doses with an associated cumulative error. The

gravimetric technique is more accurate at high pressure

because the measured amount adsorbed is referenced to the

weight of the adsorbent in a vacuum. Both techniques can

be automated.

2.1 Gibbs excess adsorption

2.1.1 Volumetric method

The volumetric technique is to introduce a known mass

(ms) of adsorbent into a sample cell of calibrated volume

(Vt). Following desorption of the solid using high temper-

ature and vacuum, a fixed temperature is imposed by a

temperature bath and a measured dose of gas (Dn) is

introduced to the sample cell. After adsorption is complete,

at equilibrium, the temperature (T) and pressure (P) are

measured and the specific excess amount adsorbed (ne) is

defined by a mass balance:

ne ¼
nt � qgVd

ms
ð2:1Þ

where Vd is the helium dead space of the sample cell,

qg(T, P) is the density of the bulk gas (mol/m3) obtained

from an equation of state and nt ¼
P

jðDnjÞ is the total

amount of gas in the sample cell. At sufficiently low

pressure, the density of the bulk gas phase is given by the

perfect gas law (qg = P/RT).

The helium dead space (Vd) is obtained from a cali-

bration with helium gas at ambient temperature ðT�Þ and

pressure P� before starting the experiment. If the pressure

is sufficiently low, the perfect gas law gives:

Vd ¼
nHe

qHe

¼ nHeRT�
P�

ð2:2Þ

Equation (2.2) follows from Eq. (2.1) by setting ne equal to

zero (for helium). The determination of the dead space

does not depend on the perfect gas law, which can be

replaced if necessary by the experimental molar density of

helium (qHe) from an equation of state. The implicit

assumption of Eq. (2.2) is that helium does not adsorb at P�
and therefore measures the pore volume of the solid as well

as the volume of the bulk gas phase. The question of

whether corrections should be applied for the small but

finite adsorption of helium inside the pores is considered in

Sect. 2.6

The total volume of the sample cell is:

Vt ¼ Vd þ Vsk ð2:3Þ

Vsk is the skeletal volume or ‘‘backbone’’ of the solid

material which is inaccessible to gas molecules. The

reporting of experimental adsorption isotherms should

include the specific skeletal volume:

vsk ¼
Vsk

ms

¼ Vt � Vd

ms

ð2:4Þ

because it allows the pore volume of the solid (vp) to be

calculated from its specific volume (vs), or the reverse:

vs ¼ vsk þ vp ð2:5Þ

2.1.2 Gravimetric method

A mass (ms) of solid adsorbent is loaded into a bucket

attached to a microbalance. Following desorption of the

solid using high temperature and vacuum, a fixed temper-

ature is imposed by a temperature bath and gas is admitted

to the sample cell. After adsorption is complete, at equi-

librium, the temperature (T) and pressure (P) are measured

and the adsorption is determined from the weight of the

bucket containing the solid and adsorbed gas. The weight

of gas adsorbed is equal to the weight of the bucket con-

taining the solid minus its degassed tare weight under full

vacuum (Dw). Using the local ‘‘g’’, the corresponding mass

of gas adsorbed is Dm ¼ Dw=g. The Gibbs excess amount

adsorbed is:

ne ¼
Dm

Mms

þ qgvsk ð2:6Þ

where M is the molecular weight of the gas.

The second term (qgvsk) in Eq. (2.6) is a buoyancy

correction. Since the solid is weighed while immersed in a

gas, a buoyancy correction equal to the weight of bulk gas

displaced is added to the weight registered by the micro-

balance. The Gibbs excess model is based on the pore

volume being filled with gas at its bulk density, so this

portion of the solid needs no buoyancy correction. The

correction for buoyancy is restricted to the skeletal volume

of the solid. The specific skeletal volume is determined by

a helium calibration of the degassed adsorbent:

vsk ¼
ð�DmÞ
qgMms

ð2:7Þ

where Dm is the recorded mass increase of the adsorbent in

helium gas relative to its tare weight in a perfect vacuum.

The molar density (qg) and molecular weight (M) refer to

the helium. Dm is negative because the displaced helium

exerts a lifting force. Eq. (2.7) follows from (2.6) by setting

ne to zero (for helium).

Regardless of the experimental method, volumetric or

gravimetric, the skeletal volume of the solid must be

determined separately by helium calibration. The value of

the skeletal volume provides useful information about

absolute adsorption through Eq. (2.5).
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2.2 Net adsorption

2.2.1 Volumetric method

The volumetric technique for net adsorption (nn) is the

same as for Gibbs excess but the definition (Gumma et al.

2010) is:

nn ¼
nt � qgVt

ms

ð2:8Þ

where Vt is the total volume of the sample cell. No helium

calibration is required.

2.2.2 Gravimetric method

Net adsorption (nn) is measured gravimetrically using the

procedure described for Gibbs excess but using the

definition:

nn ¼
Dm

Mms

ð2:9Þ

Consider the specific volume of the solid (vs). This space

experiences a buoyancy force from the displaced bulk gas,

but the same space devoid of adsorbent experiences the

same buoyancy force. Since net adsorption is relative to the

space filled with gas but devoid of adsorbent, the buoyancy

correction for the adsorbent cancels exactly with the

buoyancy correction for the reference state. As for the

volumetric method, no helium calibration is required for

the determination of net adsorption.

2.3 Absolute adsorption

Absolute adsorption (na) is defined in terms of the volu-

metric method by a mass balance:

na ¼
nt � qgVg

ms

ð2:10Þ

where nt is the total amount of gas introduced to the sample

cell, Vg is the volume of the bulk gas phase, and qg(P, T) is

the molar density of the bulk gas phase. In other words, the

adsorbed gas is the total amount of gas in the sample cell

less the amount in the gas phase. Comparing Eqs. (2.1) and

(2.10):

na ¼ ne þ
qgðVd � VgÞ

ms

ð2:11Þ

The dead space Vd determined by the helium calibration is

divided into two parts, a bulk gas phase Vg and a pore

volume Vp:

Vd ¼ Vg þ Vp ð2:12Þ

Eq. (2.11) becomes:

na ¼ ne þ
qgVp

ms

ð2:13Þ

or

na ¼ ne þ qgvp ð2:14Þ

where vp = Vp/ms is the specific pore volume of the solid.

Determination of vp in Eq. (2.14) is essential for the use

of the absolute adsorption formalism and we return to this

question in Sect. 2.4

2.3.1 Comparison of absolute and excess adsorption

The difference between absolute and excess adsorption can

best be understood by comparing bulk density with pore

density. Referring to Eq. (2.14), the difference is negligible

if:

qgvp � na ð2:15Þ

or

qg �
na

vp

ð2:16Þ

but na/vp is pore density (qp) so absolute and excess

adsorption may be considered equal for:

qg � qp ð2:17Þ

In the low-pressure region of the adsorption isotherm

where Henry’s law is valid:

na ¼ KP ¼ KRTqg ð2:18Þ

or

qp

qg

¼ KRT

vp

ð2:19Þ

For supercritical gases, typical values of the ratio qp/qg are

in the range of 104 to 105 and Eq. (2.17) is easily satisfied.

This large ratio is explained by the Boltzmann factor

(e�U1S=kBT ) for the probability of finding molecules inside

the pores of the solid, as compared to the bulk gas phase,

where U1S is gas-solid potential energy.

The ratio of densities (qp/qg) decreases as the pore

density approaches a limit comparable to the density of a

liquid. Referring to a bulk gas at STP, the molecular den-

sity is 0.026 nm-3. The molecular density of a liquid is

&10 nm-3. With these numerical references in mind,

Table 1 shows how the ratio varies with bulk density. The

difference between excess and absolute adsorption

becomes significant for qg [ 0.1 nm-3, for which the ratio

qp/qg cannot exceed 100. At a bulk density of &1 nm-3,

the ratio of qp/qg cannot exceed 10. Under these conditions,

the excess adsorption exhibits a maximum even though the

absolute adsorption is increasing with bulk density (see
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Fig. 1). At a bulk density of qg = 10 nm-3, the pore

density is approximately equal to the bulk density and the

excess adsorption is zero.

In summary, at a bulk density less than 0.1 nm-3, the

values for excess and absolute adsorption may be consid-

ered equal within experimental error. At values of bulk

density exceeding 1 nm-3, the surface excess presents a

misleading picture of adsorption in pores because the

thermodynamic properties have multiple values and non-

physical singularities. The density values in Table 1 are

imprecise but provide guidance about the difference

between absolute and excess adsorption.

2.3.2 Absolute adsorption from net adsorption

In the measurement of net adsorption using Eq. (2.8), the

pre-calibrated total volume of the sample cell (Vt) is the

sum of two macroscopic phases, the gas phase and the solid

phase:

Vt ¼ Vg þ Vs ð2:20Þ

Comparing Eqs. (2.18) and (2.10) and using Eq. (2.20):

na ¼ nn þ qgvs ð2:21Þ

If the specific volume of the solid (vs) is known, absolute

adsorption can be calculated directly from the net adsorption

by Eq. (2.21), thus bypassing entirely the measurement of

surface excess using a helium calibration of the dead space.

Net adsorption isotherms have the same shape as the

excess isotherms on Fig. 1 but na [ ne [ nn. Excess

adsorption is preferred over net adsorption because it is

closer to absolute adsorption at low pressure.

Net adsorption is useful for studying the gas storage

capacity of adsorbents at high pressure because the maxi-

mum in the net adsorption isotherm identifies the pressure

of maximum adsorptive storage capacity compared to pure

compression.

2.3.3 Absolute adsorption from molecular simulation

and theory

Molecular theory and simulations of adsorption yield the

absolute adsorption. For instance, absolute adsorption

emerges naturally from grand canonical Monte Carlo

(GCMC) simulations. The absolute amount adsorbed (na)

is obtained as an ensemble average for fixed values of the

independent variables: the chemical potential (fugacity)

and temperature. The absolute differential energy is cal-

culated from fluctuations in the energy and amount

adsorbed or directly by differentiation of an isotherm of

energy versus the amount adsorbed (Vuong et al. 1996).

The pore volume of the solid (vp) can be calculated for a

molecular model from the ensemble average for the

amount of helium in the pores at ambient temperature and

low pressure, thus mimicking the actual experiment.

Much of this carries over to the study of adsorption via

classical density functional theory (Monson 2012). Clas-

sical density functional theory yields a prediction of the

density distribution in a porous material, and again nat-

urally yields the absolute adsorption by integration of this

distribution.

2.4 Estimation of pore volume

The characterization of porous solids is a highly developed

field focused on measuring the pore size distribution and

other properties of adsorbent materials. Monographs are

available (Lowell et al. 2006; Rouqerol et al. 1998) and an

IUPAC commission has (Sing et al. 2005) provided rec-

ommendations for the measurement and analysis of

adsorption data for the purposes of pore structure charac-

terization. The most widely accepted method for pore

volume estimation is the adsorption of nitrogen or argon at

their respective boiling point. Plateaus in the resulting

isotherms, associated with the filling of micropores and

mesopores, can be used to estimate pore volumes assuming

that the average density in the filled pores is equal to the

bulk liquid density (Sing et al. 2005). In addition extensive

databases of pore volumes calculated from structural data

are available online for zeolites (First et al. 2011) (http://

helios.princeton.edu/zeomics) and metal-organic-frame-

works (MOF) (First et al. 2013) (http://helios.princeton.

edu/mofomics).

As noted by Sing et al. (Sing et al. 2005) this method is

unsuitable for macropores and perhaps also for the largest

mesopores because the pore filling may occur too close to

the saturation pressure, giving rise to large uncertainties in

the amount adsorbed. For macropores much of the inter-

esting molecular behavior occurs near the pore wall surface

and the formation of the adsorbed layers occurs at low

pressures where the distinction between absolute and

excess adsorption is insignificant. For higher pressures and

supercritical temperatures the overall thermodynamics may

be dominated by contributions from the bulk fluid away

from the pore walls.

Table 1 Effect of bulk molecular density upon difference between

absolute adsorption (na) and Gibbs excess (ne)

Density (nm-3) Comments

0.01 (ne - na) difference negligible

0.1 (ne - na) difference 1% of na

1.0 ne has maximum value

10.0 ne = 0
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2.5 Reporting experimental data

Experimental measurements should be reported as Gibbs

excess adsorption so that the raw data can be converted by

Eq. (2.14) to absolute adsorption based upon the currently

accepted value for the pore volume. If published as abso-

lute adsorption, the pore volume should be stated. For

either choice, excess or absolute, the data should include

the skeletal volume of the solid obtained by the helium

calibration (Eq. (2.4) or Eq. (2.7)).

2.6 Helium calibration

Experimental measurement of Gibbs excess adsorption by

volumetric or gravimetric methods requires a pre-calibra-

tion with helium gas to measure the dead space and skeletal

volume of the solid adsorbent. This dependence of the

Gibbs excess measurement upon helium calibration has led

to interest in net adsorption (Gumma et al. 2010), which

does not require a helium calibration for its measurement.

The standard procedure for volumetric or gravimetric

determination of Gibbs excess is to measure the dead space in

the system using helium gas at low pressure and at ambient

temperature (&25 �C). The assumption is that helium does

not adsorb under these conditions. Adsorption of helium at

ambient temperature and low pressure is very small but non-

zero. This had led to the suggestion that the helium calibra-

tion be modified to account for helium adsorption (Gumma

et al. 2003; Sircar 2001). The helium calibration at ambient

temperature would be replaced by a more complicated pro-

cedure which requires the determination of the Henry con-

stant for adsorption of helium. The value calculated for the

dead space would decrease slightly and change slightly the

value of excess adsorption. However, the value of the pore

volume would decrease by the same amount so that the value

obtained for absolute adsorption would be unaffected by the

choice of helium calibration procedure. We do not support

the recommendation that the dead space measurement be

corrected for adsorption of helium because nothing is gained

by the extra effort. The traditional definition of Gibbs excess

as the amount adsorbed relative to ‘‘non-adsorbing’’ helium

at ambient temperature is convenient and should be retained.

For low-temperature experiments, (e.g. 77 K), the

helium calibration should be performed at ambient tem-

perature because adsorption of helium in the pores at 77 K

is not negligible. Adsorption thermodynamics is based

upon the assumption that the specific volume of the solid,

including its pore volume, is independent of temperature.

2.7 Treating the sample cell as the system

A concept closely related to net adsorption is the treatment

of the entire sample cell as the system for the purposes of

thermodynamics. This eliminates the need for both pore

volume estimation and helium calibration. On the other

hand Hill (Hill 1952) said in regard to this: ‘‘This is the

program that must be adopted to be absolutely rigorous

thermodynamically, and it is certainly important that

workers in the field realize it. However, in the present

writer’s opinion, if this program were actually used by

experimentalists, the severe price paid, in loss of contact

with molecular reality inside the container, would far

exceed the value of the last ounce of exactness gained.’’

For larger pores at high pressure both absolute and

excess formulations are inappropriate and treating the

sample cell as the system is the only rigorous way to do the

thermodynamics.

2.8 Experimental methods for mixtures

Equation (2.1) for volumetric adsorption of a single gas

also applies to excess adsorption of the ith component of a

mixture; the density (q) of the bulk gas is replaced by the

bulk density of the ith component. Calculation of this

density requires the composition of the bulk gas inside the

sample cell, which is difficult to measure without disturb-

ing the equilibrium conditions.

Gravimetric measurements by Eq. (2.6) cannot be

extended to mixtures. However, binary gas measurements

of the total mass adsorbed (at constant temperature and

pressure) as a function of gas-phase composition can be

converted to excess adsorption for the individual compo-

nents using a rigorous procedure based upon the Gibbs

adsorption isotherm (Myers 1989).

Binary mixture adsorption can be calculated from

simultaneous volumetric and gravimetric measurements

(Keller et al. 1992). The volumetric method measures the

total amount adsorbed (moles) and the gravimetric method

measures the total mass adsorbed. If the molecular weights

of the gases are different, the individual amounts adsorbed

are obtained as solutions of a pair of linear algebraic

equations.

All of these methods require the temperature, pressure,

and composition of the bulk gas phase. Equilibration of

mixture adsorption is a slow process due to the need to

relax the composition distribution in the system. Revers-

ibility should be checked by approaching data points from

different directions.

2.9 Isotherms with hysteresis loops

In many instances adsorption isotherms exhibit hysteresis

between adsorption and desorption. This is especially true

for adsorption in mesoporous materials (Monson 2012),

where it is associated with metastability of vapor-like and

liquid-like states in the pores. Most studies of hysteresis are
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done for subcritical bulk gases, e.g. nitrogen at its normal

boiling temperature, at low pressures where the difference

between excess and absolute adsorption is small. In general

it is not expected that presentation of hysteresis loops in

terms of absolute adsorption rather than adsorption excess

should affect the interpretation of the behavior.

3 Solution thermodynamics formulation of adsorption

equilibrium in terms of absolute adsorption

For the reasons given in Sect. 1, the remainder of this paper

is devoted to the application of solution thermodynamics to

adsorption in terms of absolute variables. Adsorption is

cast as a special case of phase equilibrium between a solid

and a gas phase. Equations written in the language of

solution thermodynamics are straightforward and are

derived without any discussion of a dividing surface, Gibbs

excess, or spreading pressure.

3.1 Conditions for equilibrium

The equilibrium conditions are the equality in both phases

of temperature and the chemical potential of each gaseous

component. If we restrict the treatment to inert solids

(nonvolatile and incompressible) then the equality of

pressure in both phases is not an equilibrium condition. The

chemical species are the solid adsorbent and one or more

adsorbed gases. Compositions are normally described in

terms of the mole fraction of each component, but mole

fractions do not apply to adsorption because the solid

adsorbent has no molecular weight. The composition of the

solid phase is expressed as a ratio: moles of adsorbate per

kilogram of solid adsorbent (mol/kg) for each adsorbate

component.

The chemical potential of the solid adsorbent varies with

temperature and with the amount of gas adsorbed but it is

otherwise inert. Since the adsorbent exists only in the solid

phase, its chemical potential is redundant for the determi-

nation of equilibrium. The equilibrium condition for

equality of chemical potential in the solid and gas phases

applies only to adsorbates.

For Nc gaseous components and two phases (gas and

solid), there are (Nc ? 1) thermodynamic degrees of free-

dom for the system. For adsorption of a single gas there

two degrees of freedom and for adsorption of a binary gas

mixture, there are three degrees of freedom, e.g. {T, P, y1}.

3.2 Properties of bulk gas phase

The driving force for adsorption of a gas is its chemical

potential which it is convenient to quantify via the fugacity

(fi):

li ¼ l�i ðTÞ þ RT ln
fi

f �i
ðconst. TÞ ð3:1Þ

where li is the chemical potential, l�i refers to the chem-

ical potential in the perfect-gas reference state at the same

temperature and f �i : 1 bar. The density of the gas phase

and the fugacities of its components may be calculated

from the Soave-Redlich-Kwong or Peng-Robinson equa-

tion of state, given the temperature, pressure, and compo-

sition of the gaseous mixture. Parameters needed for this

calculation are the critical properties fTc and Pcg and

‘‘acentric factor’’ (x) of each component; the calculation is

described in thermodynamic textbooks (Smith et al. 1996).

The fugacity of a pure component is given by the pressure

(f = P) and the fugacity of a component in a mixture is

given by its partial pressure (fi = Pyi) provided that P \ 2

bar. A 2-bar limitation for applying the perfect-gas law is

only a suggestion; the range of the perfect-gas law depends

upon the system and the accuracy of the experimental data.

The properties (enthalpy, entropy, etc.) of the gas phase

obey the perfect-gas law at low pressure or an equation of

state at higher pressure. We assume the availability of a

suitable equation of state when required for high pressure

so that attention in this development is focused on the solid

phase.

3.3 Thermodynamics of the solid phase

The fundamental thermodynamic equation for adsorption

in a solid is:

dU ¼ TdS� PdV þ l0sdms þ
X

li dni ð3:2Þ

This equation applies to an open system with a differential

amount dni of adsorbate i entering the solid phase. The

summation is over the gas species present, one term for

each gas. The equilibrium condition is that the chemical

potential of the adsorbate in the solid phase (li) is equal to

its chemical potential in the bulk gas phase. l0s in the

chemical potential of the solid adsorbent and the prime

symbol is intended to emphasize its mass basis of J/kg. dms

refers to differential mass of solid adsorbent. For adsorp-

tion, the solid phase is open to the adsorbates but closed to

the solid material. dms is zero but the term l0s dms is

retained as a reminder that the chemical potential of the

solid l0s is altered by adsorption. Mole numbers (ni) refer to

absolute adsorption in this and subsequent sections unless

stated otherwise.

The extensive properties of the solid phase are energy

U in J, entropy S in J/K, volume V in m3, mass of solid ms

in kg, and absolute amount ni of ith gaseous component in

moles. The extensive properties (U, S, V) refer to the entire

solid phase including the adsorbate. Since the function

UðS;V ;ms; n1; n2; . . .Þ is homogeneous first-order in the
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variables S, V, ms, and amounts ni, Eq. (3.2) may be inte-

grated directly:

Internal energy: U ¼ TS� PV þ l0sms þ
X

lini

ð3:3Þ

The summation term is over the gases; the solid is

accounted for in the l0sms term.

For independent variables V, T, and n in the solid phase,

the Helmholtz free energy is:

Helmholtz free energy:

F ¼ U � TS ¼ �PV þ l0sms þ
X

lini
ð3:4Þ

The grand potential transforms the independent variables

for the gases from mole numbers (in F) to chemical

potentials (in X):

Grand potential: X ¼ F �
X

lini ¼ �PV þ l0sms

ð3:5Þ

The differential equations for the auxiliary functions are:

dF ¼ �SdT � PdV þ l0sdms þ
X

li dni ð3:6Þ

dX ¼ �SdT � PdV þ l0sdms �
X

nidli ð3:7Þ

The natural thermodynamic functions for adsorption are

the Helmholtz free energy and grand potential. Enthalpy

and Gibbs free energy functions are less useful for the solid

phase but they are well defined:

Enthalpy: H ¼ U þ PV ð3:8Þ
Gibbs free energy: G ¼ F þ PV ð3:9Þ

Sample values of the PV product are listed in Table 2

for a typical zeolite with a density of 2 kg/dm3 and a

loading of 5 mol/kg. Since values of energy and free

energy are within the range of 10–30 kJ/mol, the approx-

imations H & U and G & F are valid at pressures below

10 bar.

The special character of a gas-solid mixture allows a

major simplification: the volume V of the solid adsorbent is

effectively constant. Although the solid may expand

according to its temperature coefficient of expansion,

contract according to its isothermal compressibility, or

swell due to adsorption, changes in V are normally negli-

gible. If the volume of the solid varies significantly over

the range of the experiment, the principles of phase

equilibrium are still valid but with the complication that the

volume of the solid phase must be included as a variable in

the thermodynamic equations. This complication will not

be pursued here, but to do so would be straightforward.

The volume of a porous solid must be defined. Here, V is

the volume of the solid including its pores, that is the

skeletal volume plus its open and closed pores. This vol-

ume excludes interstitial void between the adsorbent par-

ticles. The density of the solid, which is the mass of the

particle divided by this volume, is called the ‘‘effective

particle density’’ in particle technology. If the solid is

ordered and crystallographic data are available, the effec-

tive particle density is that of the unit cell. The effective

particle density of a solid material is always greater than its

bulk density, for which the volume includes the void space

outside the particles.

Imposing the constancy of the solid volume and the fact

that the system is closed for the solid material, the differ-

ential equations simplify to:

dU ¼ TdSþ
X

li dni ð3:10Þ

dF ¼ �SdT þ
X

li dni ð3:11Þ

dX ¼ �SdT �
X

nidli ð3:12Þ

Eqations (3.10)–(3.12) exploit the advantage of the

Helmholtz representation for systems of constant volume.

The thermodynamic functions (U; S;F;X) refer to the

entire solid phase consisting of the solid material and the

gas adsorbed in its pores. What is striking about these

equations is the absence of pressure and volume variables.

In preparation for a discussion of the Gibbs adsorption

isotherm, Eq. (3.12) is compared term-by-term with the

Gibbs-Duhem equation which plays a central role in vapor-

liquid equilibrium:

Gibbs-Duhem: SdT � VdPþ
X

nidli ¼ 0

Eq. (3.12): SdT þ dXþ
X

nidli ¼ 0

For vapor-liquid equilibrium, the independent variables

which define the standard states for the components of the

mixture are T and P. By analogy, the standard states for

mixture adsorption are determined by T and X.

3.4 Gibbs adsorption isotherm for solid phase

In all equations that follow in this paper, unless stated

otherwise, the extensive thermodynamic functions

describing the solid phase are specific extensive functions

per unit mass of solid adsorbent: U, F, and X in J/kg, S in

J/(kg K), V in m3/kg, and ni in mol/kg. Equation (3.12) is

unchanged:

Table 2 Values for PV product

in solid phase for a typical

zeolite

P (bar) PV (kJ/mol)

1 0.01

10 0.1

100 1.0
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dX ¼ �SdT �
X

ni dli ð3:13Þ

but the extensive variables have been converted to specific

quantities per unit mass of solid adsorbent. At constant

temperature:

dX ¼ �
X

ni dli ð3:14Þ

This equation, which is called the Gibbs adsorption

isotherm, provides a powerful basis for describing the

properties of adsorbed mixtures. In calculations, it is

convenient to introduce a reduced grand potential (w)

w � � X
RT

ð3:15Þ

Using Eqs. (3.1) and (3.15), the Gibbs adsorption isotherm

is written:

dw ¼
P

nid ln fi ð3:16Þ

The reduced grand potential w has units of mol/kg.

3.5 Massieu grand potential function

The grand potential in Eq. (3.13) is a double Legendre

transformation of the internal energy:

X ¼ U � TS�
X

lini ð3:17Þ

The Massieu companion function (Callen 1985) is a double

Legendre transformation of the entropy:

� X
T

� �
¼ S� 1

T

� �
U þ

X li

T

� �
ni ð3:18Þ

which generates the differential equation:

�d
X
T

� �
¼ �Ud

1

T

� �
þ
X

ni d
li

T

� �
ð3:19Þ

or, using Eq. (3.15):

Rdw ¼ �Ud
1

T

� �
þ
X

ni d
li

T

� �
ð3:20Þ

This equation is used to calculate the energy by differen-

tiating chemical potential at constant w, in the same way

that Eq. (3.13) yields the entropy by differentiating

chemical potential at constant X.

3.6 Helmholtz free energy from grand potential

From Eq. (3.5):

F ¼
X

lini þ X ð3:21Þ

For adsorption of a single gas:

F ¼ lnþ X ð3:22Þ

Isothermal integration for F and X using Eqs. (3.11) and

(3.12) gives:Z
ldn ¼ ln�

Z
ndl ð3:23Þ

Comparison of the two previous equations shows that the

determination of F in terms of X involves an integration by

parts.

3.7 Connection to statistical mechanics

Switching from the gas constant R and ‘‘moles’’ to the

Boltzmann constant kB and ‘‘molecules’’, the Helmholtz free

energy is related to the canonical partition function (Q):

FðV ; T;NÞ ¼ �kBT ln QðV ;T ;NÞ ð3:24Þ

and the grand potential is related to the grand canonical

partition function ðNÞ:

XðV ; T ; lÞ ¼ �kBT ln NðV ; T; lÞ ð3:25Þ

The set of independent variables (v, T, l) is matched to those

of adsorption thermodynamics. GCMC methods are espe-

cially well suited to molecular simulation of adsorption. These

simulations can be carried out within a sample of the solid

phase using periodic boundary conditions or for a sample of

the solid phase in contact with the bulk fluid (Sarkisov et al.

2000, 2001). The number of molecules adsorbed in the solid

and the integral energy are obtained as ensemble averages.

Alternatively the above equations can be written in

terms of Massieu functions

�FðV; 1=T;NÞ=T ¼ kB ln QðV ; 1=T;NÞ ð3:26Þ

and

�XðV ; 1=T; l=TÞ=T ¼ kB ln NðV; 1=T; l=TÞ ð3:27Þ

3.8 Differential properties of solid phase for adsorption

of gaseous mixtures

The partial molar volume of a pure fluid is the same as its

molar volume. Adsorption is distinguished from the ther-

modynamics of fluids in that molar integral functions for a

single adsorbate are not equal to their differential values. For

adsorption of amount n of a pure gas, extensive properties

(Z) such as U, S, and F possess a molar integral value (z):

z ¼ Z

n
ð3:28Þ

and an associated differential property:

z ¼ oZ

on

� �
T

ð3:29Þ

but z 6¼ z. The integral quantity is obtained by isothermal

integration of the associated differential property:
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z ¼ Z

n
¼ 1

n

Zn

0

oZ

on

� �
T

dnþ z� (constant T) ð3:30Þ

For multicomponent adsorption, each gaseous component

has its own set of differential properties:

zi ¼
oZ

oni

� �
T ;nj

ð3:31Þ

It is important to distinguish differential properties (zi) of

the solid phase from partial molar quantities for bulk fluid

phases such as, for example, the partial molar entropy of a

component of a liquid mixture:

si ¼
oS

oni

� �
T ;P;nj

for which the entropy of the fluid mixture is given by

S ¼
P

sini. Partial molar properties do not apply to

adsorption of a gas in a porous solid material. For gases

adsorbed in a solid, integral properties are the solution of a

differential equation. For a binary mixture:

dZ ¼ oZ

on1

� �
T ;n2

dn1 þ
oZ

on2

� �
T ;n1

dn2 (constant T) ð3:32Þ

A path for the integration must be specified, but since Z is a

state function, the value obtained for Z is independent of

the path. The enormous difficulty of integrating differential

equations like Eq. (3.32) using experimental data is the

motivation for using excess mixing functions and activity

coefficients to describe mixture behavior.

Notation for integral and differential forms is summa-

rized in Table 3. The reference state identified by the

superscript � is the pure, perfect gas at the same tempera-

ture and at a pressure of 1 bar.

From Eq. (3.11) for the chemical potential:

li ¼
oF

oni

� �
T ;nj

ð3:33Þ

The bar signifying a differential variable was omitted

for li in Table 3 to indicate its dual status as a differential

for the solid and partial molar variable for the bulk gas:

li ¼
oG

oni

� �
T ;P;nj

ð3:34Þ

The differential energy is derived from Eq. (3.10):

oU

oni

� �
T ;nj

¼ T
oS

oni

� �
T ;nj

þli ð3:35Þ

From the Maxwell equation for the Helmholtz free energy,

Eq. (3.11):

oS

oni

� �
T ;nj

¼ � oli

oT

� �
ni;nj

ð3:36Þ

Substitution of Eq. (3.36) into Eq. (3.35) gives:

oU

oni

� �
T ;nj

¼ li � T
oli

oT

� �
ni;nj

¼ �T2 o

oT

li

T

� �� �
ni;nj

ð3:37Þ

From Eq. (3.1):

li ¼ l�i ðTÞ þ RT ln
fi

f �i

� �
ð3:38Þ

The reference fugacity f �i is a constant equal to 1 bar. The

reference chemical potential l�i (T) refers to the pure,

perfect-gas reference state at a pressure of 1 bar. In the

perfect-gas reference state:

l�i ¼ h�i � Ts�i ð3:39Þ

From Eq. (3.39), the Gibbs-Helmholtz equation for the

perfect-gas reference state is:

h�i ¼ �T2 d

dT

l�i
T

� �
ð3:40Þ

Substituting Eq. (3.1) into Eq. (3.37) and using Eqs. (3.39)

and (3.40):

oU

oni

� �
T ;nj

¼ �RT2 o ln fi

oT

� �
ni;nj

þh�i ð3:41Þ

The differential energy of adsorption is exothermic and

negative. Equation (3.41) applies to multicomponent

adsorption from a real gas and provides a rigorous con-

nection between adsorption isotherms and the differential

energy of adsorption (‘‘heats’’) measured in adsorption

calorimetry (see Sect. 7).

An equation similar to Eq. (3.41) for the differential

entropy is derived from Eq. (3.35):

T
oS

oni

� �
T ;nj

¼ oU

oni

� �
T ;nj

�li ð3:42Þ

Substituting Eqs. (3.41) and (3.1) into (3.42) and using

Eq. (3.39):

Table 3 Notation for differential and integral properties

Type Energy Helmholtz free

energy

Entropy

Integral U F S

Molar integral u F s

Differential ui ¼
�
oU
oni

	
T ;nj

li ¼
�
oF
oni

	
T ;nj

si ¼
�

oS
oni

	
T ;nj

Molar value,

perfect gas

u�i F
�
i s�i
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oS

oni

� �
T ;nj

¼ �RT
o ln fi

oT

� �
ni;nj

�R ln
fi

f �

� �
þ s�i ð3:43Þ

The differential entropy of adsorption relative to the per-

fect-gas reference state ðs�i Þ is negative, as expected for a

molecule going from the perfect-gas state to a confined

state inside the pore of the adsorbent.

3.9 Differential and integral properties of solid

for single-gas adsorption

The development to this point has been for multi-compo-

nent adsorption. For a single gas, the subscript notation

may be eliminated and from Eq. (3.41):

u ¼ �RT2 o ln f

oT

� �
n

þh� ð3:44Þ

where u � ðoU=onÞT . This equation is rigorous for single-

gas adsorption. The enthalpy reference instead of energy is

the consequence of using l� ¼ ðh� � T s�Þ as the perfect-

gas reference state for the chemical potential. Similarly for

the differential entropy of adsorption from Eq. (3.43):

s ¼ �RT
o ln f

oT

� �
n

�R ln
f

f �

� �
þ s� ð3:45Þ

If the pressure does not exceed a few bars, the perfect gas

approximation f = P may be applied:

u ¼ �RT2 o ln P

oT

� �
n

þ h� ð3:46Þ

This is arguably the most important equation of adsorption

thermodynamics. u is the differential energy in the solid

phase in J/kg and n is specific absolute adsorption in mol/kg.

h� is the molar enthalpy of the gas in its perfect-gas reference

state at the same temperature T. The term containing the

derivative is called isosteric heat in the adsorption literature:

qst � RT2 o ln P

oT

� �
n

ð3:47Þ

Heats of adsorption are discussed in Sect. 7.

For the molar integral properties, we have:

u ¼ U

n
¼ 1

n

Zn

0

u dnþ U�

n
ð3:48Þ

s ¼ S

n
¼ 1

n

Zn

0

s dnþ S�

n
ð3:49Þ

F ¼ F

n
¼ 1

n

Zn

0

l dnþ F�

n
ð3:50Þ

The integrals are at constant temperature and the quantities

fU�; S�;F�g refer to the clean solid under full vacuum.

Note that the differential Helmholtz free energy

(F ¼ u� Ts) is equal to the chemical potential (l); see

Table 7 in Sect. 4.

The integral properties are also given by Clapeyron-type

equations. For the integral energy, it can be shown (Sip-

erstein et al. 2001) that:

u ¼
R n

0
u dn

n
¼ �RT2 o ln f

oT

� �
w

þh� ð3:51Þ

This equation seems to provide a shortcut to the integral

quantities in Eqs. (3.48)–(3.50). Since the grand potential is

itself an integral, differentiation at constant reduced grand

potential w is awkward. For analysis of experimental data,

it is easier to apply Eqs. (3.44) and (3.45) to the adsorption

isotherm and then integrate for u and s.

3.10 Clapeyron equation

Equation (3.46) is the adsorption version of the Clapeyron

equation. Let Dv ¼ vg � vs and let k ¼ h�g � u. Assume

that the molar volume of the adsorbed gas vs is negligible

compared to vg so that Dv ¼ RT=P. With these perfect-gas

approximations, Eq (3.46) becomes:

oP

oT

� �
n

¼ k
TDv

ð3:52Þ

so the slope of the ‘‘vapor pressure’’ curve for adsorption at

constant loading may be compared to the Clapeyron

equation:

dP

dT
¼ L

TDv
ð3:53Þ

for the slope of a coexistence curve of specific latent heat

L and specific volume change Dv. Eq. (3.52) shows the

association of Eq. (3.44) to the Clapeyron equation but is

not intended for calculations because of its approximations.

3.11 Properties at high pressure

Equations (3.44) and (3.45) are valid up to high pressure of

the order of 100 bar without making any approximations.

An example is shown on Fig. 4. Using the absolute iso-

therms in Fig. 1, the differential energy (u) was calculated

from Eq. (3.44) and the differential entropy (s) from

Eq. (3.45). Fugacity was estimated from the Soave-Red-

lich-Kwong equation of state. The differential energy is

relative to the enthalpy ðh�Þ in the perfect-gas state at

285 K. The differential entropy of the adsorbed gas, which

is measured relative to the entropy in the perfect-gas state

at 285 K, has a limit of infinity at zero pressure. The
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differential energy and differential entropy intersect at a

pressure of 1 bar where the chemical potential of the gas is

zero (l ¼ u� Ts). Ts has a minimum of -24.4 kJ/mol,

which at 285 K corresponds to an entropy of vaporization

of 86 J/mol K. A rule of thumb estimate for the entropy of

vaporization of a liquid at its NBP is 88 J/mol K (the

Trouton constant). Even though the adsorbed methane gas

is supercritical, its entropy of vaporization from a micro-

pore at high pressure is comparable to the entropy of

vaporization from its liquid state at 112 K.

4 Ideal adsorbed solutions

At the time when the theory of ideal adsorbed solutions

(IAS) was developed (Myers et al. 1965), the Gibbs excess

formalism was the standard approach to adsorption, as it is

today. The physical picture most commonly used in

thinking about such systems was quasi two-dimensional

adsorption at a planar surface rather than adsorption in a

three-dimensional pore network. The standard state for the

definition of an ideal adsorbed solution was taken to be the

pure adsorbed components at the same spreading pressure

(or solid-fluid interfacial tension) as the mixture.

The application of solution thermodynamics to adsorp-

tion in porous materials leads to equations similar to those

for vapor-liquid equilibria. Surface area and spreading

pressure variables are eliminated. The proposed definition

of an ideal solution for adsorption in porous materials is:

liðT;X; xÞ � l�i ðT ;XÞ þ RT ln xi ð4:1Þ

for the chemical potential of the ith component. This is

the simplest expression for the composition dependence

of the chemical potential that is consistent with the

known results in the Henry’s law (low pressure) limit. It

is equivalent to the definition of an ideal solution in the

bulk. We will show that all results for IAS follow from

this.

The chemical potential of the pure gas in its standard

state (li
*) is determined by temperature (T) and grand

potential (X). Alternatively, based on the reduced grand

potential w from Eq. (3.15) for the standard state:

liðT;w; xÞ ¼ l�i ðT ;wÞ þ RT ln xi ð4:2Þ

From Eq. (3.13):

dX ¼ �SdT �
X

ni dli ð4:3Þ

From this we can write for the molar entropy:

s ¼ �
X

xi

oli

oT

� �
X;x

ð4:4Þ

and for IAS from Eq. (4.1):

sid ¼
X

xis
�
i � R

X
xi ln xi ð4:5Þ

Equation (3.20) is based on the Massieu formulation for

the grand potential:

Rdw ¼ �Ud
1

T

� �
þ
X

ni d
li

T

� �
ð4:6Þ

From this the molar energy is:

u ¼
X

xi

oðli=TÞ
oð1=TÞ

� �
w;x

ð4:7Þ

and for IAS from Eq. (4.2):

uid ¼
X

xiu
�
i ð4:8Þ

The Helmholtz free energy for IAS is:

F
id ¼ uid � Tsid ¼

X
xiF
�
i þ RT

X
xi ln xi ð4:9Þ

with F
�
i ¼ ðu�i � Ts�i Þ.

Finally the total amount adsorbed (n) is calculated from

the Gibbs adsorption isotherm, Eq. (3.14):

�
X

ni dli ¼ dX ð4:10Þ

or

�
X

xi dli ¼
1

n
dX ð4:11Þ

and

�
X

xi

oli

oX

� �
T ;x

¼ 1

n
ð4:12Þ
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Fig. 4 Absolute differential energy and differential entropy at 285 K

for adsorption of CH4 on 13X molecular sieve
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For an ideal solution and using the pure component version

of Eq. (4.10):

�
X

xi

oli

oX

� �
T ;x

¼
X xi

n�i
ð4:13Þ

so that for IAS:

1

n
¼
X xi

n�i
ð4:14Þ

Referring the chemical potential to its standard state li
*

instead of the perfect-gas reference state as in Eq. (3.1):

li ¼ l�i þ RT ln
fi

f �i
ð4:15Þ

Comparison of Eqs. (4.15) and (4.1) gives:

fi ¼ f �i xi ð4:16Þ

Equations (4.16) and (4.14) are the working equations for

an ideal adsorbed solution. In the special (and usual) case

of a perfect gas, the fugacity in the bulk gas phase fi = Pyi

and Eq. (4.16) becomes Raoult’s law. 1/n is the mass of

solid adsorbent required to adsorb one mole of the gas

mixture of composition x. The reciprocal relationship in

Eq. (4.14) is simply the requirement that, for an ideal

solution, the mass of adsorbent needed to adsorb a mixture

is the same mass required to adsorb the individual com-

ponents separately in their standard states.

4.1 Statement of the adsorption equilibrium problem

for mixtures

For a system of Nc gases plus the solid adsorbent, there are

Nc ? 1 components, two phases (solid and gas) and Nc ? 1

degrees of freedom according to the Gibbs phase rule. The

system is therefore fully specified by the temperature and

Nc values of fugacity. These Nc fugacities in the bulk gas

phase are given by fi = Pyi/i, where the fugacity coeffi-

cient /i(P, yi) is calculated from an equation of state for

the gaseous mixture, e.g., Soave-Redlich-Kwong or Peng-

Robinson, as discussed in Sect. 3.2 The approximation

/i = 1 and fi = Pyi may be used for P \ 2 bar.

4.2 Simultaneous solution of equilibrium equations

We focus on a binary mixture of gases (Nc = 2) with

specified variables f1, f2, and T. From Eq. (4.16), the phase

equilibrium equations are:

f �1 ðwÞx1 ¼ f1 ð4:17Þ

f �2 ðwÞx2 ¼ f2 ð4:18Þ

The gas-phase fugacities (f1, f2) at temperature T are the

input variables. The mole fractions sum to unity:

x1 þ x2 ¼ 1 ð4:19Þ

Since x2 = (1 - x1), there are two Eqs. (4.17) and (4.18),

and two unknowns (w, x1).

The simultaneous solution of these equations obviously

requires the standard-state fugacity functions fi
*(w). If the

adsorption isotherm is based upon fugacity (or pressure) for

the independent variable, integration for w yields the

function w(fi
*), which must be inverted to solve the fugacity

equations. The model isotherm in Appendix 1 has n as

independent variable so its integration yields w(ni
*), which

is inverted to obtain ni
*(w) as described in Appendix 3. The

function required to solve the fugacity equations is then the

composite function fi
*[ni

*(w)]. Solution of Eqs. (4.17) and

(4.18) by Newton’s method for w and x1 is described in

Appendix 2. For multicomponent mixtures beyond binary

solutions, each additional component adds one additional

composition unknown (xi) and one additional fugacity

equation.

Solution of the phase equilibrium equations for w and

the composition variables xi yields as a bonus the standard-

state amounts adsorbed ni
*. Eq. (4.14) gives the total

amount adsorbed n and the individual amounts adsorbed

are:

ni ¼ nxi ð4:20Þ

Note. Substitution of the fugacity equations into

Eq. (4.19) for a binary mixture gives:

f1

f �1 ðwÞ
þ f2

f �2 ðwÞ
¼ 1

which is a single equation in a single unknown (w).

Numerical solution of this equation is problematic because

of its high degree of nonlinearity. Attempting to solve for w
with this equation is not recommended. Simultaneous

numerical solution of the fugacity equations is robust and

less likely to stray outside the physical domain of w[ 0

and 0 \ xi \ 1.

4.3 Energy and entropy functions

Expressions for the molar integral properties of an ideal

adsorbed solution (uid; sid; F
id) have been given in terms of

the corresponding properties of the components in their

standard state.

For differential energy, the task is to relate uid
i in the

mixture to its value in the standard state (u�i ) It can be

shown (Siperstein et al. 2001) that for an ideal solution:

n�i ðuid
i � u�i Þ ¼

P
xjG�j n�j ðu�j � u�j ÞP

xjG�j
ð4:21Þ

Specifically, the differential energy of component 1 in a

mixture of components 1 and 2 is:
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uid
1 ¼ u�1 þ

1

n�1

x1G�1n�1ðu�1 � u�1Þ þ x2G�2n�2ðu�2 � u�2Þ
x1G�1 þ x2G�2

� �

ð4:22Þ

All of the quantities on the R.H.S. of Eq. (4.22) are

evaluated in the standard state (same T and w as the

mixture). u means differential energy and u means integral

energy. The standard-state quantity G�i is given by:

G�i ¼
1

ðn�i Þ
2

o ln n�i
o ln f �i

� �
T

ð4:23Þ

The derivative is the dimensionless slope of the adsorption

isotherm of the ith component in its standard state, or

ðo ln n=o ln PÞT for a perfect gas. Specifically, for

Eq. (10.1), the reciprocal of the dimensionless slope is

given by Eq. (10.15).

In the limit of pure adsorbate no. 1, its differential

energy is the value for the standard state:

lim
x1!1

uid
1 ¼ u�1 þ ðu�1 � u�1Þ ¼ u�1 ð4:24Þ

as required. At low pressure in the Henry’s law region as

n ? 0, the integral and differential energy functions in the

mixture and in the standard state (ui; ui; u
�
i ; u
�
i ) are equal.

Having calculated the differential energy of adsorption

(uid
i ) by Eq. (4.21), the differential entropy is given by

Eq. (3.42):

sid
i ¼

uid
i � li

T
ð4:25Þ

4.4 Numerical example for ideal adsorbed solution

This calculation uses Eq. (10.1) to fit the single-gas iso-

therms. Equations for standard-state properties based upon

Eq. (10.1) are explicit in terms of loading (n). Eq. (10.12)

provides the standard state w(n) and its inverse function n(w)

generates composite functions u[n(w)], s[n(w)], f[n(w)] etc.

for calculating standard-state properties as functions of w.

The use of Newton’s method to invert the function w(n) is

covered in Appendix 3.

For a binary solution, given the input variables

(T, f1, f2), the phase equilibrium Eqs. (4.17) and (4.18) are

solved for w and x1. The numerical solution of the fugacity

equations by Newton’s method is given in Appendix 2.

The system chosen here is a binary mixture of CO2 and

C2H4 adsorbed on zeolite FAU. The experimental single-

gas adsorption isotherms (Siperstein et al. 2001) are plotted

on Fig. 5 and the differential energies obtained by calo-

rimetry (Siperstein et al. 2001) are shown on Fig. 6. Con-

stants of Eq. (10.1) for these plots are in Tables 4, 5 and 6.

Consider specifically the set of input variables

T = 293.15 K, f1 = 50 kPa, f2 = 50 kPa. In this case,

the temperature of the isotherm is chosen to be the

reference temperature T� in Eq. (10.1). Based on the per-

fect gas law, P = 100 kPa and y1 = y2 = 0.5 but the input

variables are the fugacities, not the pressure. Solution of

Eqs. (4.17) and (4.18) gives x1 = 0.7889 and w = 20.82

mol/kg. The solution procedure based on Newton’s method

is described in Appendix 2. Here, Eq. (10.1) for fi(ni) and

Eq. (10.12) for w(ni) are used. However, the function w(ni)

for the standard states must be inverted to ni(w) as

described in Appendix 3.
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Fig. 5 Single-gas adsorption isotherms of CO2 and C2H4 on zeolite

FAU at 293.15 K (Siperstein et al. 2001)
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zeolite FAU at 298.15 K (Siperstein et al. 2001)
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Standard-state properties are given in Table 7 and the

results for the mixture are listed in Table 8. The reference

states for energy, entropy, and free energy are enthalpy

(h�), entropy (s�), and chemical potential (l�), respectively,

in the perfect-gas state at 293.15 K.

In Table 8, T, f1 and f2 are input variables. w and x1 are

obtained by simultaneous solution of the fugacity equa-

tions. x2 = (1 - x1). n, n1 and n2 are from Eqs. (4.14) and

(4.20). The differential and integral energies and entropies

are from Eqs. (10.5) – (10.8). li ¼ ui � Tsi and F ¼
u� Ts.

Equation (3.21) provides an overall check of the mixture

properties in Table 8:

F ¼
X

xili � RTw=n

¼ ð0:7889Þð�1:69Þ þ ð0:2111Þð�1:69Þ
� ð0:0083145Þð293:15Þð20:82Þ=ð5:301Þ
¼ �11:26 kJ/mol

which agrees with F ¼ u� Ts from Table 8.

The calculation in Table 8 is for the point at T = 293.15

K, P = 1 bar, and y1 = 0.5. Fig. 7 shows an isobar (P = 1

bar) for individual and total amounts adsorbed at 293.15 K.

Figure 8 is a plot of the isobaric energy and entropy

properties for the same conditions, 293.15 K and 1 bar.

Figure 9 shows the isobaric differential energies (‘‘heats’’)

relative to h� at 293.15 K and 1 bar calculated from

Eq. (4.22). The points identified by 	 are ‘‘infinite dilution

heats’’, which could be measured with a calorimeter after pre-

loading the other component to its equilibrium value.

5 Excess mixing functions

Experiments (Siperstein et al. 2001) and simulations

(Dunne et al. 1996) show that most adsorbed mixtures

show negative deviations from ideality, which means that

adsorbed-phase activity coefficients are less than unity. The

cause of this behavior is understood (Myers 1983) but it is

still not possible to predict the magnitude of the deviations,

although attempts have been made (Myers 2005). Here,

procedures are described for using experimental data to

calculate thermodynamic properties by accounting for the

effects of temperature, loading, and composition on activ-

ity coefficients.

Most binary liquid mixtures show positive deviations

from ideality, which means that activity coefficients are

Table 4 Constants of Eq. (10.1) for zeolite FAU

No. Gas K� (mol/(kg kPa)) m (mol/kg) T� (K)

1 CO2 27.253 6.4674 293.15

2 C2H4 5.2039 4.5341 293.15

Table 5 Grand potential power series for zeolite FAU

No. Gas C1 C2 C3 C4

1 CO2 1.2338 -0.1241 0.0038 0.0

2 C2H4 0.3850 0.0075 0.0012 0.0012

For n in units of mol/kg, the coefficients Ci yield the dimensionless

function C(n) in Eq. (10.4)

Table 6 Differential energy power series for zeolite FAU

No. Gas D0 D1 D2 D3 D4

1 CO2 -47.776 1.8994 2.2273 -0.7006 0.0562

2 C2H4 -41.836 0.3215 -1.2203 0.9452 -0.1576

For n in units of mol/kg, the coefficients Di yield the function D(n) in

Eq. (10.5) in units of kJ/mol

Table 7 Standard-state properties for zeolite FAU at 293.15 K and w = 20.82 mol/kg

No. Gas n (mol/kg) f (kPa) u (kJ/mol) Ts (kJ/mol) l (kJ/mol) u (kJ/mol) Ts (kJ/mol) F (kJ/mol)

1 CO2 5.624 63.38 -35.05 -33.94 -1.112 -38.86 -28.73 -10.13

2 C2H4 4.364 236.8 -42.28 -44.38 2.102 -40.67 -31.15 -9.52

Equations (10.1) (10.5) (10.7) (3.1) (10.6) (10.8)

The standard-state loadings (n) were obtained from the inversion of Eq. (10.12) and the other properties were obtained as explicit functions of

loading using the equations listed. Note that l ¼ u� Ts and F ¼ u� Ts

Table 8 Mixture point for ideal solution of CO2 (1) and C2H4 (2)

adsorbed in zeolite FAU

Property Value Property Value (kJ/mol)

T 293.15 K l1 -1.69

w 20.82 mol/kg l2 -1.69

f1 50.0 kPa u1 -35.62

f2 50.0 kPa u2 -36.49

x1 0.7889 Ts1 -33.93

x2 0.2111 Ts2 -34.80

n1 4.182 mol/kg u -39.24

n2 1.119 mol/kg Ts -27.98

n 5.301 mol/kg F -11.26
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greater than unity and the free energy of the solution is

greater (more positive) than for an ideal solution. For

sufficiently large and positive values of activity coeffi-

cients, the homogeneous solution becomes thermodynam-

ically unstable and splits into two immiscible liquid phases.

Other binary liquid mixtures exhibit negative deviations

from ideality when mixture pairs form weak bonds such as

hydrogen bonds; a classic example is chloroform and

acetone.

For adsorption, one might expect a correlation between

activity coefficients of adsorbed and liquid solutions. As it

turns out, there is no correlation because the binary

adsorbate interactions are overwhelmed by the stronger

energy of their interactions with the solid. For adsorption in

micropores, activity coefficients are either unity (ideal

solution) or negative deviations from ideality.

The explanation for negative deviations from ideality

(activity coefficients less than unity) for adsorbed mixtures

is the segregation of components into different regions of

the pore space where the local composition differs from the

overall composition. Imagine an extreme case in which the

adsorbent is a mixture of two different microporous

materials. Suppose that each adsorbent (by itself) forms an

ideal adsorbed solution but with different compositions, for

example x1 = 0.2 on one adsorbent and x1 = 0.4 on the

other adsorbent. If this heterogeneous mixture of adsor-

bents is treated (incorrectly) as a single adsorbent with a

single (averaged) adsorbed-phase composition, then the

composite system will appear to generate large negative

deviations from ideality. It can be shown (Dunne et al.

1996) that segregation into regions of different composi-

tion (e.g., in different micropores) always generates nega-

tive deviations from ideality if the mixture is falsely

assumed to be homogeneous.
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5.1 Activity coefficients

Following the practice for vapor-liquid equilibria, activity

coefficients (ci) for adsorption in porous materials are

defined by

liðT;X; xÞ � l�i ðT ;XÞ þ RT ln xi þ RT ln ci ð5:1Þ

for the chemical potential. Expressions for all excess

mixing functions follow from Eq. (5.1), which reduces to

Eq. (4.1) for an ideal solution (ci = 1).

The chemical potential of the pure adsorbate in its

standard state (li
*) is determined by temperature (T) and

grand potential (X). Alternatively, based on the reduced

grand potential w from Eq. (3.15) for the standard state:

liðT;w; xÞ � l�i ðT ;wÞ þ RT ln xi þ RT ln ci ð5:2Þ

In terms of fugacity, Eqs. (5.1) and (5.2) are written:

li ¼ l�i þ RT ln
fi

f �i
ð5:3Þ

or

fi ¼ f �i cixi ð5:4Þ

fi is the fugacity in the bulk gas phase and fi
* is the fugacity

of the gas in the solid phase at the standard state.

An excess Helmholtz free energy function for the mix-

ture is defined by:

F
E
c � RT

P
xi ln ci ð5:5Þ

and an excess mass mE is defined by:

mE � 1

n
�
X xi

n�i
ð5:6Þ

The name excess mass is appropriate because reciprocal

loading (1/n) has units of kg/mol. The pore volume of an

adsorbent is directly proportional to its mass, so Eq. (5.6) is

the adsorption equivalent of vE = v -
P

xivi
* for the

excess volume of a liquid mixture.

The terminology and notation for excess functions like mE

and F
E is copied from excess functions for liquid mixtures and

has no relation to excess adsorption notation such as ne for the

Gibbs surface excess discussed in Sect. 2. Here, excess nota-

tion refers to the difference between the actual mixture and an

ideal solution. For example, the excess energy is defined by

uE ¼ uðactual adsorbed mixture atfT ;w; xgÞ

� uðideal solution at samefT;w; xgÞ
ð5:7Þ

Similar definitions hold for excess entropy sE, excess

Helmholtz free energy F
E, and excess mass mE.

As will be shown, the excess Helmholtz free energy

function in Eq. (5.5) contains complete thermodynamic

information about the mixture, not only activity coeffi-

cients but also excess mass, energy, entropy, etc. The

natural independent variables of this ‘‘master’’ function are

temperature (T), composition (x), and either grand potential

(C) or reduced grand potential (w).

The integral entropy of the mixture is obtained from

Eq. (4.4):

s ¼ �
X

xi

oli

oT

� �
X;x

ð5:8Þ

Using Eqs. (3.13), (5.1), and (5.5):

s ¼
X

xis
�
i � R

X
xi ln xi �

oF
E
c

oT

 !

X;x

ð5:9Þ

Substituting Eq. (4.5), the excess entropy is:

sE ¼ s� sid ¼ �
oF

E
c

oT

 !

X;x

ð5:10Þ

The integral energy of the mixtures is obtained from Eq. (4.7):

u ¼
X

xi

oðli=TÞ
oð1=TÞ

� �
w;x

ð5:11Þ

Using Eqs. (3.20), (5.2), and (5.5):

u ¼
X

xiu
�
i þ

oðFE
c =TÞ

oð1=TÞ

 !

w;x

ð5:12Þ

Substituting Eq. (4.8), the excess energy is:

uE ¼ u� uid ¼
oðFE

c =TÞ
oð1=TÞ

 !

w;x

ð5:13Þ

Recalling that X ¼ �RTw, it is noteworthy that entropy is

obtained by differentiation with respect to T at constant X,

but energy is obtained by differentiation with respect to

T at constant w. We have

F
E ¼ uE � TsE ð5:14Þ

but F
E 6¼ F

E
c . The function Fc

E is merely the definition in

Eq. (5.5). The direct determination of F
E is from Eq. (3.21):

F ¼
X

nili þ X ð5:15Þ

for which the single component version is:

F�i ¼ n�i l
�
i þ X ð5:16Þ

where the superscript * refers to a single adsorbate in its

standard state at the same value of T and X as the mixture.

Inserting the chemical potential from Eq. (5.1) into (5.15)

and using (5.16):
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F ¼
X

xiF
�
i þ RT

X
xi ln xi þ RT

X
xi ln ci

þ X
1

n
�
X

i

xi

n�i

" #
ð5:17Þ

where F : F/n and Fi
* = Fi

*/ni
*. Using Eq. (4.9) and the

definitions from Eqs. (5.5) and (5.6):

F
E ¼ F

E
c þ XmE

ð5:18Þ

where

F
E ¼ F � F

id ð5:19Þ

An expression for the excess mass (mE) is derived from the

Gibbs adsorption isotherm, Eq. (3.14).

dX ¼ �
X

ni dli ð5:20Þ

and for single components in their standard states:

dX ¼ �n�i dl�i ð5:21Þ

The remainder of the derivation is at constant T and

x. From Eq. (5.1):

dli ¼ dl�i þ RTd ln ci ð5:22Þ

From Eq. (5.5):

dF
E
c ¼ RT

X
xid ln ci ð5:23Þ

Combination of the last four equations at constant T and

x gives:

dF
E
c ¼ �

1

n
�
X xi

n�i

� �
dX ð5:24Þ

which may be written using Eq. (5.6):

mE ¼ �
oF

E
c

oX

" #

T ;x

ð5:25Þ

Alternatively in terms of w ¼ �X=RT:

mE ¼
oF

E
c =RT

ow

" #

T ;x

ð5:26Þ

We have seen that excess functions (uE; sE; F
E;mE) are

calculable from Eq. (5.5) by differentiation. It can be

shown from Eq. (3.13) that activity coefficients are related

to the F
E
c function by:

RT ln ci ¼
onF

E
c

oni

" #

T ;w;nj

ð5:27Þ

5.2 Adsorption analog of Gibbs-Helmholtz equation

The Gibbs-Helmholtz equation for excess mixing functions

of liquid mixtures is:

HE ¼ oðGE=TÞ
oð1=TÞ

� �
P;x

ð5:28Þ

The adsorption equivalent for a binary mixture is:

UE ¼ oðFE=TÞ
oð1=TÞ

� �
n1;n2

ð5:29Þ

which is derived from Eqs. (3.4) and (3.10).

Holding the absolute adsorption of each component of a

mixture fixed while varying the temperature, either

experimentally or theoretically, is awkward. For adsorp-

tion, FE = UE - TSE but the independent variables for

activity coefficients are {w, x, T}, not {n1, n2, T}.

5.3 Model for activity coefficients and excess functions

In order to proceed, a model for activity coefficients and

excess functions is needed. The excess functions are all

zero for ideal solutions. For nonideal solutions, the sim-

plest equation for activity coefficients (Siperstein et al.

2001) which has the proper limits and takes into account

the set of independent variables {T, w, x} is:

F
E
c ¼ ðAþ BTÞx1x2½1� e�Cw� ð5:30Þ

There are three constants {A, B, C} for a binary mixture of

gases. At the limit of low loading, w ? 0 and Fc
E ? 0. This

limit enforces ideal solution behavior in the Henry’s law

region. The absolute values of the excess functions reach a

maximum as w!1: The quadratic composition depen-

dence satisfies the boundary condition that Fc
E ? 0 for the

pure adsorbates. More complex asymmetrical behavior can

be introduced into F
E at the expense of additional constants.

The linearity of the excess free energy with temperature

predicts a temperature-independent energy of adsorption,

which is the usual approximation for adsorption over a

limited range of temperature.

From Eq. (5.27) for activity coefficients:

ln c1 ¼
ðAþ BTÞ

RT
ð1� e�CwÞx2

2 ð5:31Þ

ln c2 ¼
ðAþ BTÞ

RT
ð1� e�CwÞx2

1 ð5:32Þ

The excess mass from Eq. (5.26) is:

mE ¼ CðAþ BTÞ
RT

x1x2e�Cw ð5:33Þ

The value of the excess mass at the limit of zero loading

(w ? 0) has the form (1�1) as shown by Eq. (5.6).

Although the limiting value of mE from Eq. (5.33) is finite,

Eq. (5.6) reduces to Eq. (4.14) as w ? 0, as required for an

ideal solution. From Eqs. (5.13), (5.10) and (5.18)

uE ¼ u� uid ¼ Ax1x2½1� e�Cw� ð5:34Þ
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sE ¼ s� sid ¼ �Bx1x2½1� e�Cw� þ CðAþ BTÞ
T

x1x2we�Cw

ð5:35Þ

F
E ¼ F � F

id ¼ ðAþ BTÞx1x2½1� ð1þ CwÞe�Cw� ð5:36Þ

Differential properties for nonideal mixtures depend

upon temperature coefficients of the activity coefficients. It

can be shown (Siperstein et al. 2001) that the differential

energy for a binary mixture is:

ui ¼ ðu�i þ dAiÞ þ
1

n�i
þ dBi

� � �P
xjG�j n�j ðu�j � u�j Þ

	
þ dC�P

xjG�j
	
þ dD

" #

ð5:37Þ

where

dAi ¼ RT2 o ln ci

oT

� �
w;x

dBi ¼
o ln ci

ow

� �
T ;x

dC ¼ RT2 omE

oT

� �
w;x

dD ¼ �
omE

ow

� �
T ;x

G�i is defined by Eq. (4.23). The set of derivatives

{dA, dB, dC, dD} vanishes for an ideal solution. For a single

component, the limit from Eq. (5.37) is

lim
x1!1

u1 ¼ u�1

which means that in the limit of single-component

adsorption, the differential energy of the ith component of

a mixture is equal to its differential energy in the standard

state, as required.

In terms of the model from Eqs. (5.31), (5.32), and

(5.33):

RT2 o ln c1

oT

� �
w;x

¼ �Að1� e�CwÞx2
2

RT2 o ln c2

oT

� �
w;x

¼ �Að1� e�CwÞx2
1

o ln c1

ow

� �
T ;x

¼ ðAþ BTÞ
RT

Ce�Cwx2
2

o ln c2

ow

� �
T ;x

¼ ðAþ BTÞ
RT

Ce�Cwx2
1

RT2 omE

oT

� �
w;x

¼ �ACe�Cwx1x2

omE

ow

� �
T ;x

¼ �ðAþ BTÞ
RT

C2e�Cwx1x2

Note the minus signs so that dD ¼ ðAþBTÞ
RT

C2e�Cwx1x2.

5.4 Extraction of constants from experimental data

Consider a set of N experimental points for a binary mix-

ture. For each point, the input variables are temperature and

fugacities (T, f1, f2) and the measured variables are the

loadings (n1, n2). Activity coefficients must be calculated

indirectly. From Eq. (5.4), the activity coefficient ci =

fi/(fi
*xi) but the standard-state fugacity (fi

*) is unknown

because w is unknown. The extraction of the constants

{A,B,C} is a three-parameter optimization problem for

which the objective function is the summation of error in

loadings for the N data points.

The constants derived from experimental data will not fit

the experimental data exactly for two reasons. First, the

actual behavior of the mixture may be more complex than

the three-constant model described here. Second, the

experimental data may be thermodynamically inconsistent

and thus incapable of being fit.

5.5 Solution procedure

Given the constants for Eq. (5.30), the calculation is

similar to that for an ideal solution. The condition for

equilibrium is equality of chemical potentials of the gases

in the solid and gas phases, which is equivalent to equality

of fugacities in both phases. For a binary mixture of gases

(Nc = 2) the specified variables are f1, f2, and T. Using

Eq. (5.4) for the solid phase, the conditions for equilib-

rium are:

f �1 ðwÞc1ðw; x1Þx1 ¼ f1 ð5:38Þ

f �2 ðwÞc2ðw; x2Þx2 ¼ f2 ð5:39Þ

The gas-phase fugacities (f1, f2) at temperature T are the

input variables. The mole fractions sum to unity:

x1 þ x2 ¼ 1 ð5:40Þ

Since x2 = (1 - x1), there are two Eqs. (5.38) and (5.39),

and two unknowns (w, x1). Solution of the fugacity Eqs.

(5.38) and (5.39) by Newton’s method for w and x1 is

described in Appendix 2. The total amount adsorbed from

Eq. (5.6) is:

1

n
¼
X

i

xi

n�i
þ mE ð5:41Þ

with mE from Eq. (5.33). Individual amounts adsorbed are:

n1 ¼ nx1 ð5:42Þ
n2 ¼ nx2 ð5:43Þ

Equations (5.34) and (5.35) give the molar integral

functions u and s in terms of the corresponding excess

functions uE and sE and the expressions for ideal solutions,

Eqs. (4.8) and (4.5). The differential energies ui are cal-

culated from Eq. (5.37). Finally, the differential entropy

follows from the differential energy according to

Eq. (4.25).
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5.6 Numerical example

Consider a binary mixture of CO2 and C2H4 adsorbed on

zeolite FAU, the same system used in the calculation for an

ideal solution in Sect. 4. The constants of Eq. (10.1) for the

single-gas isotherms are tabulated in Tables 4, 5, 6. For the

mixture, the constants determined experimentally (Siper-

stein et al. 2001) for Eq. (5.30) are: A = -6.5 kJ/mol,

B = 0.0145 kJ/mol K, C = 0.030 kg/mol.

The numerical calculation is reproduced for the input

variables T = 293.15 K and f1 = f2 = 50 kPa. Based upon

the perfect-gas law, P = 100 kPa and y1 = y2 = 0.5, but

the input variables are the fugacities, not the pressure.

Solution of the fugacity Eqs. (5.38) and (5.39) by Newton’s

method as described in Appendix 2 gives x1 = 0.7537 and

w = 21.23 mol/kg. The standard-state properties for this

value of w are given in Table 9.

The mixture point calculation summarized in Table 10 is

based on standard state properties in Table 9. Input variables

are T, f1 and f2. w and x1 are obtained by simultaneous solu-

tion of the fugacity Eqs. (5.38) and (5.39). x2 = (1 - x1). n,

n1 and n2 are from Eqs. (5.41) – (5.43). Activity coefficients ci

are from Eqs. (5.31) and (5.32). Integral properties u and s are

from Eqs. (5.34) and (5.35). Differential energies ui are from

Eq. (5.37) and differential entropies si from Eq. (4.25). Note

that li ¼ ui � Tsi and F ¼ u� Ts.

Equation (3.21) provides an overall check of the cal-

culations in Table 10:

F ¼
X

xili þ X=n ¼
X

xili � RTw=n

¼ ð0:7537Þð�1:69Þ þ ð0:2463Þð�1:69Þ
� ð8:3145 
 10�3Þð293:15Þð21:23Þ=ð5:362Þ
¼ �11:34 kJ/mol

which agrees with the value for F ¼ u� Ts in Table 10.

This example is for the point at T = 293.15 K, P = 1

bar and y1 = 0.5. Figure 10 shows individual and total

amounts for an isobar (P = 1 bar). The solid lines are from

experimental data as fit by Eq. (5.30) and the dashed lines

are the prediction for an ideal solution from Fig. 7.

The differential energies (‘‘heats’’) are plotted on

Fig. 11. Comparison with the values predicted for an ideal

solution on Fig. 9 show that the differential properties

are sensitive to deviations from Raoult’s law. The

experimental values at infinite dilution identified by an 	
are about 8 percent lower (absolute values) than the values

predicted for an ideal solution (Table 11). The dominant

coefficient dAi in Eq. (5.37) is always positive in sign so

that experimental differential heats should generally be less

Table 9 Standard-state properties for zeolite FAU at T = 293.15 K and w = 21.23 mol/kg

No. Gas n (mol/kg) f (kPa) u (kJ/mol) Ts (kJ/mol) l (kJ/mol) u (kJ/mol) Ts (kJ/mol) F (kJ/mol)

1 CO2 5.670 68.11 -35.02 -34.09 -0.936 -38.83 -28.77 -10.06

2 C2H4 4.377 259.9 -42.39 -44.72 2.328 -40.68 -31.19 -9.49

Equations (10.1) (10.5) (10.7) (3.1) (10.6) (10.8)

The standard-state loadings n were obtained from Eq. (10.12) inverted as described in Appendix 3

Table 10 Mixture point for CO2 (1) and C2H4 (2) adsorbed in zeolite

FAU

Property Value Property Value

T 293.15 K n 5.362 mol/kg

w 21.23 mol/kg l1 -1.69 kJ/mol

f1 50.0 kPa l2 -1.69 kJ/mol

f2 50.0 kPa u1 -34.27 kJ/mol

c1 0.9740 u2 -33.45 kJ/mol

c2 0.7812 Ts1 -32.58 kJ/mol

x1 0.7537 Ts2 -31.76 kJ/mol

x2 0.2463 u -39.86 kJ/mol

n1 4.042 mol/kg Ts -28.52 kJ/mol

n2 1.320 mol/kg F -11.34 kJ/mol
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Fig. 10 Adsorption of CO2 and C2H4 on zeolite FAU at 293.15 K

and 1 bar. Solid lines: from experimental data fit by Eqs. (5.31) and

(5.32). Dashed lines: prediction for ideal adsorbed solution
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negative (smaller in absolute value) than IAS predictions,

as is the case for this mixture.

The integral properties are insensitive to deviations

from ideal solution behavior. The experimental integral

properties (u; s; F) for a non-ideal mixture are nearly

indistinguishable from the ideal values plotted on Fig. 8.

Table 12 compares integral properties for the experi-

mental data with those for an ideal solution. Note that the

experimental standard state for w differs slightly from the

standard state for an ideal adsorbed solution in Table 8.

Having specified the independent variables {f1, f2, T}, the

standard state (w) for the point depends upon the

nonideality of the mixture. Excess functions for a nonideal

mixture are defined by Eq. (5.7), or w = 21.23 kJ/mol for

this particular point.

The isobar shown on Fig. 10 must satisfy the Gibbs

adsorption isotherm Eq. (3.16) integrated from y1 = 0 to

y1 = 1. Assuming a perfect gas so that f1 = Py1 and

f2 = Py2:

Dw ¼ w1 � w2 ¼
Z1

y1¼0

n1

y1

� n2

y2

� �
dy1 ð5:44Þ

For the single gas isotherms at 1 bar, w1 = 23.450,

w2 = 17.125, and Dw ¼ 6:325 mol/kg. The integrands for

Eq. (5.44) are plotted on Fig. 12. Both integrals are 6.325

mol/kg so both the ideal solution and the experimental data

satisfy the consistency test.

Obviously adsorption data can be both thermodynami-

cally consistent and incorrect. The consistency test is most

useful when it fails. For example, Fig. 13 shows linear

individual isotherms for a hypothetical isobar at 1 bar and

293.15 K. (Individual isotherms are linear at low pressure).

The pure component loadings agree with experiment for

the CO2 - C2H4 mixture but the integral of Eq. (5.44) is

Dw ¼ 1:68 mol/kg compared to the value of 6.325 mol/kg

obtained from the single-gas adsorption isotherms. Thus

the linear individual isotherms at 1 bar plotted on Fig. 13

are thermodynamically inconsistent and erroneous.

6 Adsorption from liquid mixtures

Immersion of a microporous material in a pure liquid

causes pore filling but the amount of liquid in the pores at
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Fig. 11 Differential energy of adsorption of CO2 and C2H4 on zeolite

FAU at 293.15 K and 1 bar from calorimetric data. Compare with Fig. 9

for ideal solution. The points labeled 	 are values at infinite dilution

Table 11 Differential energy at

infinite dilution for mixtures of

CO2 and C2H4 adsorbed on

zeolite FAU

CO2 C2H4

IAS -39.56 -35.60

Exper. -36.92 -32.63

Table 12 Integral properties (kJ/mol) for CO2 (1) and C2H4 (2) in

zeolite FAU for point f1 = f2 = 50 kPa, T = 293.15 K

u Ts F w (mol/kg)

Exper. -39.86 -28.52 -11.34 21.23

Ideal -39.24 -27.98 -11.26 20.82

Excess -0.568 -0.512 -0.056 21.23
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Fig. 12 Integration of Gibbs adsorption isotherm for binary mixture

of CO2 (1) and C2H4 (2) at 1 bar and 293.15 K. Dashed line is for

ideal solution and solid line is for experimental data. The integral for

both curves is Dw ¼ 6:325 mol/kg
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equilibrium is difficult to measure. However the heat of

immersion or integral energy change associated with

immersion of a solid in a liquid can be measured with a

calorimeter.

Consider equilibrium between a microporous solid

material and a binary liquid mixture. Contact of clean

adsorbent with a binary liquid mixture generates a change

in the composition of the liquid ðDx1Þ from its initial value

x�1 to the equilibrium value (x1
‘). This preferential adsorp-

tion of one component over another has been applied

commercially to adsorptive separation of close-boiling

liquid mixtures such as xylene isomers. Dx1 can be related

to the adsorbed liquid by a mass balance as follows:

n� ¼ n‘ þ na (total amount) ð6:1Þ

n�i ¼ n‘i þ na
i (component i) ð6:2Þ

n� is the total amount before contact with the adsorbent; n‘

is the amount in the liquid phase at equilibrium; na is the

absolute amount in the solid phase at equilibrium.

Mole fractions are defined by:

n�i ¼ n�x�i (before contact) ð6:3Þ

n‘i ¼ n‘x‘i (in liquid phase) ð6:4Þ

na
i ¼ naxa

i (in solid phase) ð6:5Þ

Using the mass balance for a binary liquid mixture, a

quantity called excess adsorption (ni
e) is defined:

ne
1 ¼ n�ðx�1 � x‘1Þ ¼ naðxa

1 � x‘1Þ ¼ na
1x‘2 � na

2x‘1 ð6:6Þ

ne
2 ¼ n�ðx�2 � x‘2Þ ¼ naðxa

2 � x‘2Þ ¼ na
2x‘1 � na

1x‘2 ð6:7Þ

This definition of excess by a superscript e for adsorption

from a liquid mixture is unrelated to the Gibbs excess

adsorption from a gas (ne) discussed in Sect. 2 It is

apparent that n1
e ? n2

e = 0 and the preferentially adsorbed

component has a positive excess. The quantity n�Dx is

measured by experiment without knowing either na or x1
a.

The excess terminology is appropriate because n1
e is the

amount of component no. 1 in the pores (n1
a) minus the

hypothetical amount nax1
‘ that would be present in the

pores if the composition were the same as the liquid

phase.

The liquid phase is governed by the Gibbs-Duhem

equation for a binary liquid mixture:

vdP ¼ x‘1d ln f1 þ x‘2d ln f2 ðconst: TÞ ð6:8Þ

and the liquid in the pores obeys the Gibbs adsorption

isotherm, Eq. (3.16):

dw ¼ na
1d ln f1 þ na

2d ln f2 ðconst: TÞ ð6:9Þ

Assuming that the vdP term in the Gibbs-Duhem equation

is negligible, as is the practice in vapor-liquid equilibrium:

dw ¼ na
1d ln f1 �

x‘1
x‘2

na
2d ln f1

¼ na
1x‘2 � na

2x‘1
x‘2

d ln f1 ðconst: TÞ ð6:10Þ

Using Eq. (6.6):

dw ¼ ne
1

x‘2
d ln f1 (const. T) ð6:11Þ

Since temperature is fixed, the fugacity in the liquid may be

replaced by activity:

dw ¼ ne
1

x‘2
d ln a‘1 ¼

ne
1

x‘2a‘1
da‘1 (const. T) ð6:12Þ

where the activity in the liquid is ai
‘ = ci

‘ xi
‘ and ci

‘ is the

activity coefficient in the liquid phase.

Given isothermal measurements of n1
e as a function of

liquid-phase composition, Eq. (6.12) may be integrated for

the difference Dw:

ws
1 � ws

2 ¼
Z1

0

ne
1

x‘2a‘1
da‘1 ð6:13Þ

wi
s is the reduced grand potential for immersion of the solid in

pure liquid, so the integral in Eq. (6.13) can be verified (Myers

et al. 1972) by integrating the absolute adsorption isotherms

of pure i vapors from zero pressure to the vapor pressure

according to Eq. (10.11). Alternatively, Eq. (6.13) provides a

basis for a thermodynamic consistency test which can be

applied to three binary pairs of three liquids: the three
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Fig. 13 Hypothetical (and incorrect) linear adsorption isotherms for

CO2 and C2H4 on zeolite FAU at 293.15 K and 1 bar. These

individual isotherms violate the Gibbs adsorption isotherm
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differences (w1
s - w2

s), (w2
s - w3

s) and (w3
s - w1

s) obtained

by integrating Eq. (6.13) must sum to zero (Sircar et al. 1971).

It is interesting that Eq. (6.13) for excess adsorption

from a liquid mixture was derived from a mass balance

based on absolute adsorption in the solid phase.

Excess adsorption from liquids can be predicted from

single-gas adsorption isotherms and vapor-liquid equilib-

rium data (activity coefficients) for the binary system.

Given the temperature and liquid composition, the pair of

fugacities in the liquid phase are given by fi = fi
s ci xi

‘. This

pair of fugacities combined with the temperature provides

the input data for predicting the amounts of each compo-

nent adsorbed (n1
a,n2

a) for an ideal adsorbed solution. The

individual amounts adsorbed combined with the known

liquid composition yield n1
E from Eq. (6.6).

Usually single-gas adsorption isotherms for vapors are

unavailable for such calculations and the standard proce-

dure is to measure excess adsorption directly from liquid-

phase measurements of n�Dx‘ according to Eq. (6.6). It can

be shown that for the case of ideal solutions in both the

liquid and adsorbed phase and for molecules with identical

saturation capacities (m):

ne
1 ¼

mx‘1x‘2ðs� 1Þ
sx‘1 þ x‘2

ðs [ 1Þ ð6:14Þ

Substitution of Eq. (6.14) in (6.13) gives Dw ¼ m ln s. The

quantity s is a ratio defined by the fugacity of pure

saturated liquid (fi
s) and adsorption Henry constant (Ki):

s ¼ f s
1 K1

f s
2 K2

The skewed quadratic Eq. (6.14) generates a maximum in

n1
e at

x‘1 ¼
ffiffi
s
p � 1

s� 1

In spite of the drastic approximations required for its der-

ivation, Eq. (6.14) provides a qualitative fit of experimental

data for ideal or nearly ideal mixtures. An example is

shown on Fig. 14.

7 Heats of adsorption

The key equation of adsorption thermodynamics is

Eq. (3.41)

ui ¼ �RT2 o ln fi

oT

� �
ni;nj

þh�i ð7:1Þ

This exact Clapeyron-type equation for multicomponent

adsorption connects the differential energy with the

adsorption isotherm. The differential energy is:

ui �
oU

oni

� �
T ;nj

ð7:2Þ

For binary adsorption at constant temperature, we have

from the calculus and Eq. (7.2):

dU ¼ u1dn1 þ u2dn2 (const. T) ð7:3Þ

which provides immediately a consistency test for binary

mixtures:

ou1

on2

� �
T ;n1

¼ � ou2

on1

� �
T ;n2

ð7:4Þ

Equation (7.3) was used to make calorimetric

measurements of differential energies in binary mixtures

(Dunne et al. 1997). Focusing upon adsorption of a single

pure gas, Eq. (7.1) simplifies to:

u ¼ �RT2 o ln f

oT

� �
n

þh� ð7:5Þ

The perfect-gas enthalpy reference ðh�Þ for the differential

energy is the consequence of using l� ¼ h� � T s� as the

reference state for the chemical potential.

For calorimetry, the differential heat of adsorption is

defined by:

qd ¼ ug � ua ð7:6Þ

where ua is the differential energy in the adsorbed phase

and ug is the molar energy of the equilibrium gas phase.

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

x1,  mole fraction in liquid

n 1
e ,  

m
ol

/k
g

Fig. 14 Excess adsorption of benzene from liquid mixture of

benzene and cyclohexane on BPL activated carbon at 303.15 K.

Points are experimental data (Valenzuela et al. 1989). Solid line is

Eq. (6.14) with m = 2.25 mol/kg and s = 12.9
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The subscript notation is needed to distinguish the

adsorbed phase (a) from the gas phase (g).

For energy balances in adsorption columns, the isosteric

heat of adsorption is defined by:

qst ¼ hg � ha ð7:7Þ

The differential enthalpy and differential energy in the

adsorbed phase are related by:

ha ¼ ua þ
Vs

ðon=oPÞT
ð7:8Þ

where (qn/qP)T is the slope of the adsorption isotherm.

Combining Eqs. (7.5), (7.7) and (7.8):

qst ¼ RT2 o ln f

oT

� �
n

þhR
g �

Vs

ðon=oPÞT
ð7:9Þ

where hg
R = (hg - hg

�) is the residual enthalpy of the gas

phase, usually calculated from a PVT equation of state for

the bulk gas.

The volume of the solid (Vs) is of order 1 dm3/kg and

equations for the heats simplify considerably at pressures at

or below 2 bar where ha � ua and the perfect gas approxi-

mations hg ¼ h�g and ug ¼ u�g ¼ ðh�g � RTÞ are valid:

qst ¼ RT2 o ln P

oT

� �
n

¼ qd þ RT ð7:10Þ

The nomenclature of heats (qst and qd) is a misnomer

because heats depend upon the path and both of these

quantities are the difference between state functions. The

isosteric heat qst is an enthalpy difference Dh; but the heat

terminology is firmly established in the adsorption literature.

The isosteric and differential heats of adsorption are

defined as positive quantities. Since heats of adsorption are

exothermic and therefore negative in the standard ther-

modynamic sign convention, confusion about the sign of

the heat of adsorption is unavoidable.

8 Remarks on applications to adsorption column

dynamics

The choice of variables affects the basic equations for the

dynamics of adsorption columns. These equations include

the mass balances for each gaseous component and the

energy balance for the packed column. Which variables

should be used in the equations of transport which deter-

mine column dynamics: absolute or excess? Textbooks on

adsorption (Ruthven 1984) ignore the difference between

absolute and excess variables for heat and mass transfer.

We recommend the use of absolute variables for column

design. Mass transfer between the solid and the gas is

proportional to the difference between the absolute amount

adsorbed in the micropores at time t and the amount that

would be adsorbed at equilibrium for the prevailing tem-

perature and fugacities (partial pressures) in the bulk gas

phase.

The heat capacity needed for the accumulation term of

the energy equation is the sum of the heat capacity of the

bulk gas (per unit volume) and the heat capacity of the

solid (per unit volume). The heat capacity of the solid

phase, which includes the gas in its micropores, is the sum

of the heat capacity of the clean adsorbent under full

vacuum and the heat capacities of the gases in their perfect-

gas state. The isosteric heat accounts for gas-gas and gas-

solid interactions.

It has been argued that excess properties are suitable for

the equations of adsorption column dynamics (Sircar

1985). However, at high pressure, the excess approach

collapses because of the singularity in the isosteric heat

when the excess amount adsorbed passes through a maxi-

mum. Even at low pressure where it makes no difference,

the use of absolute variables is more intuitive than excess

variables for modeling of heat and mass transport.

9 Summary and conclusions

In this paper we have discussed the thermodynamics of

adsorption in porous materials. We have highlighted the

difficulties with the Gibbs excess formalism for these

systems and have argued that an approach based on abso-

lute properties is a more appropriate approach to the ther-

modynamics. Solution thermodynamics based on absolute

adsorption provides a complete description of equilibrium

adsorption of pure fluids and their mixtures in porous

materials without any reference to surface area, dividing

surfaces, or excess variables. The equations of solution

thermodynamics are rigorous, even at the highest pressures

(e.g., 100 bar). One should only have confidence in the

Gibbs approach for sufficiently low pressures that the dif-

ference between absolute and excess adsorption is negli-

gible. At other conditions, the absolute formalism is

necessary and this will impact many applications, e.g.

mixed-gas adsorption equilibria and the differential equa-

tions describing adsorption column dynamics.

As we have noted earlier the main difficulties with the

absolute approach concern the ability to determine pore

volumes and the application to larger mesopores and

macropores. Pore volume is a concept that is widely used

in the characterization of porous materials but for small

mesopores and micropores we have the issue that the

accessible volume depends on the probe molecule. A

similar problem arises in the determination of Vd via

helium pycnometry. The choice is either to accept the
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potential errors in absolute adsorption associated with the

pore volume estimates or the clear flaws in the Gibbs

excess formalism of adsorption thermodynamics.

The difficulties with application of the absolute for-

malism to larger mesopores and macropores stems from the

large regions of the void space where the confined fluid is

bulk-like. In nitrogen adsorption at 77 K pore filling will

occur quite close to saturation making it difficult to esti-

mate the pore volume. At the same time the absolute

adsorption for such pores will be dominated by contribu-

tions from the bulk with the effects of adsorption and

confinement heavily masked by this. Thus the absolute

formalism is unsuitable for quantifying selective adsorp-

tion in large pores except at low pressures. Of course we

have already shown that the excess formalism is unsuitable

for such situations as well. For these pore sizes at high

pressure the only sensible route to the thermodynamics is

then to treat the contents of the sample cell (bulk gas,

porous solid and confined fluid) as the system. This of

course limits what adsorption measurements can tell us

about the properties of the fluid in the pores (Hill 1952).
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Appendix 1: Illustrative calculations based

on a mathematical model for absolute adsorption

in microporous adsorbents

Complete thermodynamic information on the adsorption of

a single gas is provided either by a series of adsorption

isotherms, or by a single adsorption isotherm coupled with

calorimetric measurement of its differential energy. Equa-

tion (10.1) provides a quantitative fit of data for adsorption

in microporous materials (see Fig. 15) and is therefore

suitable for calculating energy and entropy.

Isotherms for adsorption of pure gases are usually in the

form n(P) for loading as a function of pressure. The cal-

culation of thermodynamic properties requires a more

general function n(P, T) for loading as a function of both

pressure and temperature. It is apparent from Eq. (3.44)

that an inverted form more useful for calculating thermo-

dynamic properties would replace the independent vari-

ables P and T by n and T, with fugacity as the dependent

variable:

f ¼ n

K�

m

m� n

h i
exp

DðnÞ
R

1

T
� 1

T�

� �� �
exp CðnÞ½ � ð10:1Þ

For C(n) = 0, D(n) = 0, and f = P, this reduces to the

(inverted) Langmuir equation. m is the saturation capacity

parameter of the Langmuir equation corresponding to pore

filling.

Henry constant

K is the Henry constant:

K ¼ lim
P!0

n

P
ð10:2Þ

and K0 in Eq. (10.1) is the Henry constant at reference

temperature T0. From Eqs. (10.1) and (10.2):

K ¼ K� exp
�D�

R

1

T
� 1

T�

� �� �
ð10:3Þ

The Henry constant K decreases exponentially with

increasing temperature.
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Fig. 15 Points are experimental data for adsorption of ethylene on

13X molecular sieve at 25, 50, and 100 �C (Valenzuela et al. 1989).

Solid lines are Eq. (10.1) with constants from Table 13

Table 13 Constants for adsorption of C2H4 on 13X molecular sieve

Constant Value Units

K0 1.9155 mol kg/ kPa

m 2. 9997 mol/kg

T0 298.15 K

C1 0.841 (mol/kg)-1

C2 -0.06311 (mol/kg)-2

C3 -0.009415 (mol/kg)-3

D0 -39.5 (kJ/mol)

D1 2.25 (kJ/mol) (mol/kg)-1
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Energy and entropy properties

The Langmuir equation accounts for molecules adsorbed

singly in identical micropores and thus neglects entirely

gas-gas interactions and variations in gas-solid interaction

energy. The function C(n) in the exponential of Eq. (10.1)

is a power series:

CðnÞ ¼ C1nþ C2n2 þ C3n3 þ 
 
 
 ð10:4Þ

The exponential factor eC(n) in the adsorption equation

modifies the grand potential by adding a truncated power

series to the Langmuir result, as shown in Eq. (10.12).

C(n) is dimensionless and its Ci coefficients are measured

at the reference temperature T0. This series converges

rapidly; typically termination after 3 or 4 coefficients

provides quantitative agreement with experiment.

Application of Eq. (3.44) to Eq. (10.1) yields the power

series D(n) for the differential energy:

u ¼ DðnÞ ¼ D� þ D1nþ D2n2 þ D3n3 þ 
 
 
 ð10:5Þ

D(n), like the differential energy, is negative in sign with

units of J/mol. The constant D� is the differential energy at

the limit of zero pressure. The assumption that the coeffi-

cients Ci and Di in the power series are constants is

equivalent to neglecting sensible heat in comparison to

latent heat for the solid phase over a limited range of

temperature. The energy u is relative to h� in the perfect-

gas state at the reference temperature T�.
The integral energy from Eq. (3.48) and the differential

and integral entropies from Eqs. (3.45) and (3.49) are:

u ¼ DintðnÞ ð10:6Þ
s

R
¼ � ln

m

P�K

h i
� ln

n

m� n

h i
þ DðnÞ

RT�
� CðnÞ ð10:7Þ

s

R
¼ � ln

m

P�K

h i
� ln

n

m� n

h i
þ m

n
ln

m

m� n

h i
þ DintðnÞ

RT�
� CintðnÞ

ð10:8Þ

where

DintðnÞ ¼
R

DðnÞdn

n
¼ D� þ

D1

2
nþ D2

3
n2 þ D3

4
n3 þ 
 
 


ð10:9Þ

CintðnÞ ¼
R

CðnÞdn

n
¼ C1

2
nþ C2

3
n2 þ C3

4
n3þ ð10:10Þ

Cint(n), like C(n), is dimensionless. Dint, like D(n), is a

negative quantity with units of J/mol. The molar energy

u is relative to the perfect-gas enthalpy h� and the molar

entropy s is relative to the perfect-gas entropy s�, both at

the reference temperature T� in Eq. (10.1). The reference

pressure P� = 1 bar in Eqs. (10.7) and (10.8).

Grand potential

Standard states for mixture equilibria are fixed by the

reduced grand potential (w), which is obtained by inte-

grating Eq. (3.16):

w ¼
Zf

0

n d ln f ¼
Zn

0

d ln f

d ln n
dn (constant T) ð10:11Þ

Substituting for the fugacity f from Eq. (10.1) followed by

integration yields:

w ¼ m ln
m

m� n

� �
þ DwðnÞ

R

1

T
� 1

T�

� �
þ CwðnÞ ð10:12Þ

where the power series for w are:

CwðnÞ ¼
Zn

0

nC0ðnÞdn ¼ 1

2
C1n2 þ 2

3
C2n3 þ 3

4
C3n4 þ 
 
 


ð10:13Þ

DwðnÞ ¼
Zn

0

nD0ðnÞdn ¼ 1

2
D1n2 þ 2

3
D2n3 þ 3

4
D3n4 þ 
 
 


ð10:14Þ

Cw(n) has units of mol/kg and Dw(n) has units of J/kg. The

domain of w is 0 B n \ m and the limit at low loading is:

lim
n!0

w
n
¼ 1

Slope of adsorption isotherm

The calculation of differential energy or heat of adsorption

of individual components of mixtures requires the slope of

the adsorption isotherm evaluated at its standard state.

From Eq. (10.1), the reciprocal of the dimensionless slope

of an adsorption isotherm for a single gas is:

o ln f

o ln n

� �
T

¼ m

m� n
þ DsðnÞ

R

1

T
� 1

T�

� �
þ CsðnÞ ð10:15Þ

The standard state notation is simplified by writing fi
* as

f and ni
* as n. T� is the reference temperature for the

determination of the Ci coefficients in Eq. (10.1). The

power series for Eq. (10.15) are:

CsðnÞ ¼ C1nþ 2C2n2 þ 3C3n3 þ 
 
 
 ð10:16Þ

DsðnÞ ¼ D1nþ 2D2n2 þ 3D3n3 þ 
 
 
 ð10:17Þ

Cs(n) is dimensionless and Ds(n) has units of J/mol. The

limit at zero loading is:

lim
n!0

o ln f

o ln n

� �
T

¼ 1 ð10:18Þ
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Example

The first step is to select an isotherm measured at a refer-

ence temperature (T�) suitable for extracting the constants

m, K�, and the Ci coefficients. Equation (4.21) written in

the form:

u ¼ R
o ln f

oð1=TÞ

� �
n

ð10:19Þ

exploits the near-linearity of ln f versus 1/T at constant n to

determine values of the differential energy, which are fit

with the Di coefficients. An example is shown in Fig. 15,

which compares Eq. (10.1) with adsorption isotherms

measured at 25, 50 and 100 �C. The other isotherms at 0,

75, and 125 �C are interpolations and extrapolations.

Having fit the adsorption isotherms with Eq. (10.1), the

thermodynamic functions are given by explicit equations.

On Fig. 16 are plotted the integral and differential func-

tions calculated from the equations in this Appendix. The

functions {S, U, F} are integrals with respect to n of the

differential functions fs; u; lg. In addition,

F ¼ U � TS; l ¼ u� Ts, and ðF=nÞ ¼ lþ ðX=nÞ.
The l function is the adsorption isotherm at 298.15 K.

Equation (10.1) is based upon the simplification that U and

S are independent of temperature, an approximation justi-

fied for the temperature range of the experimental data on

Fig. 15.

All functions are negative in sign. Entropy and free

energy functions are undefined at the limit of zero loading.

The energy is finite at zero loading corresponding to the

energy of a single molecule interacting with the solid. The

grand potential ðXÞ has a finite value (-nRT) at zero

loading, where ðX=nÞ ¼ �RT ¼ �2:48 kJ/mol.

Appendix 2: Simultaneous solution of fugacity

equations

Ideal solution

The objective is the solution of the fugacity Eq. (4.16) for

w and composition x. For an ideal binary mixture with

x2 = (1 - x1), we seek the simultaneous solution of the

pair of fugacity equations at temperature T:

F1ðx1;wÞ
F2ðx2;wÞ

� �
¼ lnðf �1 x1=f1Þ

lnðf �2 x2=f2Þ

� �
¼ 0

0

� �
ð11:1Þ

for which the Jacobian is:

oF1

ox1

� �
w

oF1

ow

� �
x1

oF2

ox1

� �
w

oF2

ow

� �
x1

2
6664

3
7775 ¼

1

x1

1

n�1

� 1

x2

1

n�2

2
664

3
775 ð11:2Þ

The size of the Jacobian is equal to the number of gaseous

components. Solution of the linear equations:

1

x1

1

n�1

� 1

x2

1

n�2

2
664

3
775 Dx1

Dw

� �
¼ F1

F2

� �
ð11:3Þ

gives successive iterations according to Newton’s method:

ðx1Þiþ1 ¼ ðx1Þi � Dx1 ð11:4Þ

wiþ1 ¼ wi � Dw ð11:5Þ

If the single-gas isotherms obey Eq. (10.1), a suitable first

guess is:

xi ¼
KifiP
i½Kifi�

ð11:6Þ

w ¼
P

i½fimi lnð1þ Kifi=miÞ�P
i fi

ð11:7Þ

Ki is the Henry constant for the ith component from

Eq. (10.3).

Two pure-component functions are needed: ni
*(w) (see

Appendix 3) and the composite function fi
*[ni

*(w)].
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Fig. 16 Properties for adsorption of ethylene on 13X molecular sieve

at 298.15 K derived from experimental adsorption isotherms plotted

on Fig. 15. Values of energy and entropy relative to perfect-gas state

for gases and fully evacuated adsorbent for solid, both at 298.15 K.

l ¼ u� Ts. F ¼ U � TS ¼ lnþ X
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Activity coefficients

Insertion of activity coefficients into Eq. (11.1) gives:

F1ðx1;wÞ
F2ðx2;wÞ

� �
¼ lnðf �1 c1x1=f1Þ

lnðf �2 c2x2=f2Þ

� �
¼ 0

0

� �
ð11:8Þ

Using Eqs. (5.31), (5.32) and (5.33), the Jacobian is:

oF1

ox1

� �
w

oF1

ow

� �
x1

oF2

ox1

� �
w

oF2

ow

� �
x1

2
6664

3
7775 ¼

a11 a12

a21 a22

� �
ð11:9Þ

where:

a11 ¼
1

x1

� ðAþ BTÞ
RT

ð1� e�CwÞ2x2

a21 ¼ �
1

x2

þ ðAþ BTÞ
RT

ð1� e�CwÞ2x1

a12 ¼
1

n�1
þ ðAþ BTÞ

RT
Ce�Cwx2

2

a22 ¼
1

n�2
þ ðAþ BTÞ

RT
Ce�Cwx2

1

Except for the more complicated form of the Jacobian, Eqs.

(11.3)–(11.7) are unchanged.

Appendix 3: Inversion of grand potential function

for mixture equilibria

Equation (10.12) is the function w(n) for single-gas

adsorption but its inverse function is needed to fix the

standard state. Define PðnÞ � wðnÞ and find the solution of

the function HðnÞ ¼ 0:

HðnÞ ¼ PðnÞ � w ¼ 0 ð12:1Þ

Solve Eq. (12.1) by Newton’s method using:

njþ1 ¼ nj �
H
H0 ð12:2Þ

with

H0 ¼ w0ðnÞ ¼ m

m� n
þ ðC1nþ 2C2n2 þ 3C3n3 þ 
 
 
Þ

þ 1

R

1

T
� 1

T�

� �
ðD1nþ 2D2n2 þ 3D3n3 þ 
 
 
Þ

ð12:3Þ

A suitable first guess is n = m(1 - e-w/m). w increases

monotonically with n and the iterative solution for the

inverse function n(w) converges rapidly. The above nota-

tion for n is a simplification for ni
*, the standard-state

loading of single gas i. w and its standard-state properties

(fi
*, ui

*, si
*) are all explicit functions of ni

*.
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