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Abstract
Standard interpolatory subdivision schemes and their underlying interpolating refin-
able functions are of interest in CAGD, numerical PDEs, and approximation
theory. Generalizing these notions, we introduce and study ns-step interpolatory M-
subdivision schemes and their interpolatingM-refinable functions with ns ∈ N ∪ {∞}
and a dilation factor M ∈ N\{1}. We completely characterize C m-convergence and
smoothness of ns-step interpolatory subdivision schemes and their interpolating M-
refinable functions in terms of their masks. Inspired by ns-step interpolatory stationary
subdivision schemes, we further introduce the notion of r -mask quasi-stationary sub-
division schemes, and then we characterize their C m-convergence and smoothness
properties using only their masks. Moreover, combining ns-step interpolatory sub-
division schemes with r -mask quasi-stationary subdivision schemes, we can obtain
rns-step interpolatory subdivision schemes. Examples and construction procedures of
convergent ns-step interpolatoryM-subdivision schemes are provided to illustrate our
results with dilation factors M = 2, 3, 4. In addition, for the dyadic dilation M = 2
and r = 2, 3, using r masks with only two-ring stencils, we provide examples of C r -
convergent r -step interpolatory r -mask quasi-stationary dyadic subdivision schemes.

Keywords ns-step interpolatory subdivision schemes · sa-interpolating refinable
functions · r -mask quasi-stationary · Convergence · Smoothness · Sum rules
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1 Introduction andmain results

In this paper we are interested in interpolatory subdivision schemes and their inter-
polating refinable functions, because such functions are the backbone for building
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wavelets for image processing and numerical PDEs, and in computer aided geometric
design (CAGD) for developing fast computational algorithms. Throughout this paper,
a positive integerM ∈ N\{1} is called a dilation factor. By l0(Z) we denote the space
of all finitely supported sequences a = {a(k)}k∈Z : Z → C. For any finitely supported
sequence a ∈ l0(Z), its symbol ã(z) is a Laurent polynomial defined by

ã(z) :=
∑

k∈Z
a(k)zk, z ∈ C\{0}.

For a ∈ l0(Z) satisfying
∑

k∈Z a(k) = 1 (i.e., ã(1) = 1), we can define a compactly

supported distribution φ through the Fourier transform φ̂(ξ) := ∏∞
j=1 ã(e

−iM− j ξ ) for

ξ ∈ R, where the Fourier transformhere is defined to be f̂ (ξ) := ∫
R
f (x)e−i xξdx, ξ ∈

R for integrable functions f and can be naturally extended to tempered distributions
through duality. Note that φ̂(0) = 1. It is well known and straightforward that φ is an
M-refinable function satisfying the following refinement equation:

φ = M
∑

k∈Z
a(k)φ(M · −k), or equivalently, φ̂(Mξ) = ã(e−iξ )φ̂(ξ), (1.1)

where the sequence a ∈ l0(Z) in (1.1) is often called the mask for the M-refinable
function φ.

An interpolating function φ is a continuous function on the real line R such that
φ(k) = δ(k) for all k ∈ Z, where δ is the Dirac sequence such that δ(0) = 1 and
δ(k) = 0 for all k ∈ Z\{0}. The simplest example of compactly supported interpolating
functions is probably the hat function

φ(x) := max(1 − |x |, 0), x ∈ R, (1.2)

which is used in numerical PDEs and approximation theory. Note that the hat function
φ in (1.2) is M-refinable with a mask a ∈ l0(Z) given by ã(z) = M−2z1−M(1 + z +
· · · + zM−1)2. Therefore, the hat function φ in (1.2) is also used to build wavelets for
their applications to image processing and computational mathematics. For sa ∈ R,
generalizing standard interpolating functions andmotivated by [7, 21, 22], in this paper
we consider a more general class of interpolating functions φ satisfying

φ(sa + k) = δ(k), ∀ k ∈ Z. (1.3)

For simplicity, we call φ an sa-interpolating function if it is continuous and satisfies
(1.3). For a given function f on R and a mesh size h > 0, the interpolation property
in (1.3) guarantees that g(x) := ∑

k∈Z f (hk)φ(h−1x + sa − k) interpolates f in the
sense that g(hk) = f (hk) for all k ∈ Z.

In this paper, we are interested in sa-interpolating M-refinable functions and their
intrinsic connections to interpolatory subdivision schemes. Except spline refinable
functions such as the hat function in (1.2), an M-refinable function φ with a mask
a ∈ l0(Z) generally cannot have any analytic expression (e.g., see [14, Section 6.1]).
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Consequently, a subdivision scheme is often employed to approximate a refinable
function φ using its mask a ∈ l0(Z). By l(Z) we denote the space of all sequences
v = {v(k)}k∈Z : Z → C. The M-subdivision operator Sa,M : l(Z) → l(Z) is defined
to be

[Sa,Mv]( j) := M
∑

k∈Z
v(k)a( j − Mk), j ∈ Z, v ∈ l(Z). (1.4)

For many applications such as CAGD and numerical algorithms, the subdivision oper-
ator in (1.4) is often implemented using convolution and cosetmasks. For u, v ∈ l0(Z),
their convolution is defined to be [u ∗ v]( j) = ∑

k∈Z u(k)v( j − k) for j ∈ Z. Note
that the symbol of u ∗ v is just ũ(z)ṽ(z). For a mask a ∈ l0(Z) and γ ∈ Z, its γ -coset
mask a[γ :M] is defined to be

a[γ :M](k) := a(γ + Mk), k ∈ Z. (1.5)

Then the definition of the M-subdivision operator Sa,M in (1.4) can be equivalently
expressed as

[Sa,Mv][γ :M]( j) = [Sa,Mv](γ + M j) = M
∑

k∈Z
v(k)a(γ + M( j − k)) = M[v ∗ a[γ :M]]( j), j ∈ Z.

Hence, for γ = 0, . . . ,M−1, eachMa[γ :M] is called a stencil in CAGDand is an n-ring
stencil if a[γ :M] is supported inside [−n, n + δ(γ ) − 1]. Note that a mask a ∈ l0(Z)

has at most n-ring stencils if and only if the mask a is supported inside [−Mn,Mn].
In CAGD and other applications, it is highly desired to have subdivision schemes
with small n-ring stencils for fast implementation and for reducing the number of
special subdivision rules near extraordinary vertices of subdivision surfaces. However,
this greatly restricts the choices of desired subdivision schemes and smooth refinable
functions. Consequently, new settings and ideas are needed to circumvent this obstacle.

Starting from an initial sequence v ∈ l(Z), an M-subdivision scheme iteratively
computes a sequence {Sn

a,Mv}∞n=1 of subdivision data. The backward difference oper-
ator ∇ : l(Z) → l(Z) is defined to be

[∇v](k) := v(k) − v(k − 1), k ∈ Z, v ∈ l(Z) with the convention ∇0v := v.

We now recall the definition of the C m-convergence of a (stationary) M-subdivision
scheme below (e.g., see [18, Theorem 2.1]) and discuss the notion of ∞-step interpo-
latory subdivision schemes:

Definition 1 LetM ∈ N\{1} be a dilation factor. Letm ∈ N0 := N∪{0} and a ∈ l0(Z)

be a finitely supported mask satisfying
∑

k∈Z a(k) = 1.We say that theM-subdivision
scheme with mask a ∈ l0(Z) is C m-convergent if for every initial input sequence
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v ∈ l(Z), there exists a continuous function ηv ∈ C m(R) such that for every constant
K > 0,

lim
n→∞ max

k∈Z∩[−Mn K ,Mn K ] |M
jn[∇ jSn

a,Mv](k)−η( j)
v (M−nk)| = 0, for all j = 0, . . . ,m,

(1.6)

where η
( j)
v stands for the j th derivative of the function ηv . In addition, we say that a

C 0-convergent M-subdivision scheme with mask a ∈ l0(Z) is ∞-step interpolatory
with center sa ∈ R if

ηv(sa + k) = v(k), ∀ k ∈ Z, v ∈ l(Z). (1.7)

For a convergent subdivision scheme with mask a ∈ l0(Z), the limit function ηv in
Definition 1 with the initial input sequence v = δ is called its basis function, which
must be the M-refinable function φ with the mask a (e.g., see Section 3 for details).
For every v ∈ l(Z), noting that v = ∑

k∈Z v(k)δ(·−k) and theM-subdivision scheme
is linear, we have ηv = ∑

k∈Z v(k)φ(·−k). Now it is evident that φ is sa-interpolating
(i.e., φ(sa + k) = δ(k) for all k ∈ Z) if and only if (1.7) holds, i.e., its convergent
subdivision scheme must be ∞-step interpolatory with the center sa . Therefore, to
study the convergence of a subdivision scheme, it is critical to investigate its M-
refinable function φ with a mask a ∈ l0(Z). If φ is a standard interpolating function,
i.e., φ is 0-interpolating, then ηv(k) = v(k) for all k ∈ Z and v ∈ l(Z). Such a
subdivision scheme is called a standard interpolatory M-subdivision scheme, whose
mask a must be M-interpolatory satisfying the condition a(Mk) = M−1δ(k) for all
k ∈ Z. Standard interpolatory subdivision schemes have been extensively studied and
constructed in the literature, for example, see [1–6, 14, 17] and references therein.

Masks having the symmetry property are of particular interest inCAGDandwavelet
analysis (e.g., see [5, 8, 14, 19]). For a mask a ∈ l0(Z), we say that a is symmetric
about the point ca/2 if

a(ca − k) = a(k) ∀ k ∈ Z with ca ∈ Z. (1.8)

A subdivision scheme with a symmetric mask a in (1.8) for an odd (or even) integer ca
is called a dual (or primal) subdivision scheme inCAGD.As pointed out in [7], an open
question was asked by M. Sabin: Does there exist an interpolatory dual subdivision
scheme which is similar to interpolatory primal subdivision schemes? This question
has been recently answered by L. Romani and her collaborators in the interesting
papers [7, 21, 22], showing that this is only possible forM > 2. Moreover, for dilation
factors M > 2, interesting results and several examples are presented in [7, 21–23],
which have greatly motivated this paper. In particular, for M = 2 (which is the most
common choice in CAGD and wavelet analysis), dropping the symmetry property in
(1.8), we are interested in whether there exists an sa-interpolating 2-refinable function
with sa /∈ Z. This further motivates us to characterize all sa-interpolatingM-refinable
functions and their ∞-step interpolatory M-subdivision schemes in terms of their
masks. Indeed, we show in Examples 5 and 6 that there are sa-interpolating 2-refinable
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functions with sa ∈ { 13 , 1
7 } and their dyadic subdivision schemes are 2-step or 3-step

interpolatory.
To present our main results in this paper on sa-interpolating M-refinable functions

and their associated M-subdivision schemes, we recall some necessary definitions.
The convergence and smoothness of a subdivision scheme are linked with the sum
rules of a mask a ∈ l0(Z). For J ∈ N0, we say that a mask a has order J sum rules
with respect to a dilation factor M if

∑

k∈Z
p(γ + Mk)a(γ + Mk) = M−1

∑

k∈Z
p(k)a(k), ∀ p ∈ �J−1, γ ∈ Z, (1.9)

where �J−1 is the space of all polynomials of degree less than J . For convenience,
we define sr(a,M) := J with J in (1.9) being the largest such an integer. Note that
a polynomial sequence {p(k)}k∈Z on Z can be uniquely identified with its underlying
polynomial p on the real line R.

The convergence of a subdivision scheme can be characterized by a technical quan-
tity sm p(a,M), which is introduced in [10]. For a mask a ∈ l0(Z) and 1 ≤ p ≤ ∞,
we define (e.g., see [8, 10, 11, 14])

sm p(a,M) := 1
p − logM ρJ (a,M)p with ρJ (a,M)p := lim sup

n→∞
‖∇ JSn

a,Mδ‖1/nlp(Z), J := sr(a,M).

(1.10)

It is known that an M-subdivision scheme with mask a ∈ l0(Z) is C m-convergent
if and only if sm∞(a,M) > m (e.g., see [10, Theorem 4.3] or [18, Theorem 2.1]).
We shall discuss how to effectively compute and estimate the smoothness exponents
sm2(a,M) and sm∞(a,M) in Section 2.1.

As we shall see in Theorem 1, an M-refinable function φ with a mask a ∈ l0(Z) is
sa-interpolating if and only if itsM-subdivision scheme is C 0-convergent and ∞-step
interpolatory. However, for special centers sa , its subdivision scheme can be ns-step
(instead of∞-step) interpolatory for some finite integer ns ∈ N in the following sense:

Definition 2 For ns ∈ N, we say that anM-subdivision scheme with a mask a ∈ l0(Z)

is ns-step interpolatory if

[Sns
a,Mv](s + Mns k) = v(k), ∀ k ∈ Z, v ∈ l(Z) (1.11)

for some shift s ∈ Z. We often take ns ∈ N to be the smallest integer such that (1.11)
holds.

Using the definition of the subdivision operator in (1.4), we can directly deduce
from (1.11) that

[Sqns
a,Mv]((I +Mns +· · ·+M(q−1)ns )s+Mqns k) = v(k), ∀ k ∈ Z, q ∈ N, v ∈ l(Z).

Hence, the subdivision scheme in Definition 2 interpolates the data after every ns-step
subdivision and the same subdivision scheme is obviously qns-step interpolatory with
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the shift (I +Mns + · · · + M(q−1)ns )s. Note that a standard interpolatory subdivision
scheme is simply 1-step interpolatory with the shift s = 0 and ns = 1 in Definition 2.
Moreover, if an ns-step interpolatory M-subdivision scheme with a mask a ∈ l0(Z)

in Definition 2 is C 0-convergent, then by (1.6) and (1.11), the M-subdivision scheme
must be also ∞-step interpolatory with the center sa := (Mns − 1)−1s and its M-
refinable function φ must be sa-interpolating.

For special choices of sa ∈ R, the following result,whoseproof is given inSection 3,
characterizes all sa-interpolating M-refinable functions and their C m-convergent ∞-
step interpolatory M-subdivision schemes in terms of their masks.

Theorem 1 LetM ∈ N\{1} be a dilation factor. Let m ∈ N0 and a ∈ l0(Z) be a finitely
supported mask with

∑
k∈Z a(k) = 1. Define a compactly supported distribution φ by

φ̂(ξ) := ∏∞
j=1 ã(e

−iM− j ξ ) for ξ ∈ R. For a real number sa ∈ R satisfying

Mms (Mns − 1)sa ∈ Z for some ms ∈ N0 and ns ∈ N, (1.12)

the following statements are equivalent to each other:

(1) TheM-refinable function φ with mask a belongs toC m(R) and is sa-interpolating
as in (1.3).

(2) sm∞(a,M) > m and there is a finitely supported sequence w ∈ l0(Z) such that

[Ams ∗ w](Mms k) = M−ms δ(k) ∀ k ∈ Z, (1.13)

[Ans ∗ w](Mms (Mns − 1)sa + Mns k) = M−nsw(k), ∀ k ∈ Z, (1.14)

where the finitely supported masks An ∈ l0(Z) are defined to be

An := M−nSn
a,Mδ, or equivalently, Ãn(z) := ã(zM

n−1
)ã(zM

n−2
) · · · ã(zM)ã(z).

(1.15)

For the particular case ms = 0, the conditions in (1.13) and (1.14) together are
equivalent to

Ans ((M
ns − 1)sa + Mns k) = M−ns δ(k) ∀ k ∈ Z, (1.16)

because w = δ is the unique solution to (1.13) with ms = 0 due to A0 = δ and
δ ∗ w = w.

(3) The M-subdivision scheme with mask a is C m-convergent and ∞-step interpo-
latory with the center sa as in the sense of Definition 1. For the particular case
ms = 0, the M-subdivision scheme with mask a is further ns-step interpolatory
with the integer shift (Mns − 1)sa as in the sense of Definition 2.

Moreover, any of the above items (1)–(3) implies that the M-subdivision scheme with
mask a has the following polynomial-interpolation property:

Sn
a,Mp = p(M−n(sa + ·) − sa), ∀ n ∈ N,p ∈ �sr(a,M)−1. (1.17)
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The set of all sa ∈ R satisfying (1.12) is∪∞
ms=0∪∞

ns=1[M−ms (Mns −1)−1
Z], which is

dense inR. Moreover, sa ∈ R satisfies (1.12) if and only if [0, 1)∩(∪∞
j=0[M j sa+Z]) is

a finite set.We shall explain in Section 2.2 the condition (1.12) on sa in details, which is
rooted in the fundamental problem of how to determine the exact (not approximated)
value φ(sa) of a continuous M-refinable function φ (not necessarily interpolating)
within finitely many steps using only its mask a ∈ l0(Z).

For many applications such as curve/surface generation in CAGD and wavelet
methods for numerical PDEs and image processing, d-dimensional refinable functions
φ with the dilation matrix 2Id are highly desired to possess high smoothness (e.g., φ ∈
C 2(Rd) in CAGD for continuity of the curvature of subdivision curves or surfaces),
interpolation property (e.g., interpolating curves/functions in CAGD and numerical
PDEs), and masks of small supports (for fast implementation and boundary treatment
in applications, e.g., see [14, 19]). However, these highly desired properties of φ are
mutually conflicting to each other. For example, [9, Theorem 3.5 and Corollary 4.3]
shows that there are no standard interpolating 2Id -refinable functions φ ∈ C 2(Rd)

whose masks can be supported inside [−3, 3]d . Consequently, it is impossible to have
C 2-convergent (dyadic) 2Id -subdivision schemeswith two-ring stencils.Motivated by
the ns-step interpolatory stationary subdivision schemes inTheorem1 and [9],we shall
show that this can be remedied by introducing the notion of r -mask quasi-stationary
subdivision schemes.

Let r ∈ N and a1, . . . , ar ∈ l0(Z) be finitely supported masks. For n ∈ N, we
define

Sn,r
a1,...,ar ,M

:=
{

[Sar ,M · · ·Sa1,M]�n/r, if n ∈ rN,

Sa{n},MSa{n}−1,M · · ·Sa1,M[Sar ,M · · ·Sa1,M]�n/r, if n /∈ rN,
(1.18)

where �x is the largest integer not greater than x and {n} := n−r�n/r ∈ {0, . . . , r−
1}. For any initial input sequence v ∈ l(Z), we obtain a sequence {Sn,r

a1,...,ar ,M
v}∞n=1

of M-subdivision data. In other words, we apply the M-subdivision operators on the
initial data v ∈ l(Z) using the masks {a1, . . . , ar } in the r -periodic ordering fash-
ion a1, . . . , ar , a1, . . . , ar , . . .. Therefore, such a subdivision scheme using masks
{a1, . . . , ar } will be called an r-mask quasi-stationary subdivision scheme.

Similar to Definition 1, we have

Definition 3 Let M ∈ N\{1} be a dilation factor and r ∈ N. Let m ∈ N0 and
a1, . . . , ar ∈ l0(Z) be finitely supported masks satisfying

∑
k∈Z a�(k) = 1 for

� = 1, . . . , r . We say that the r-mask quasi-stationary M-subdivision scheme with
masks {a1, . . . , ar } is C m-convergent if for every initial input sequence v ∈ l(Z),
there exists a function ηv ∈ C m(R) such that for every constant K > 0,

lim
n→∞ max

k∈Z∩[−Mn K ,Mn K ] |M
jn[∇ jSn,r

a1,...,ar ,M
v](k) − η( j)

v (M−nk)| = 0, for all j = 0, . . . ,m.

(1.19)

Obviously, Definition 3 with r = 1 becomes Definition 1. We now characterize the
C m-convergent quasi-stationary subdivision schemes in the following result, whose
proof is presented in Section 4.
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Theorem 2 Let M ∈ N\{1} be a dilation factor and r ∈ N. Let m ∈ N0 and
a1, . . . , ar ∈ l0(Z) be finitely supported masks with

∑
k∈Z a�(k) = 1 for � = 1, . . . , r .

Define a mask a ∈ l0(Z) by

a := M−rSar ,M · · ·Sa1,Mδ, that is, ã(z) := ã1(zM
r−1

) · · · ãr−1(z
M)ãr (z). (1.20)

Define the compactly supported Mr -refinable function/distribution φ via the Fourier
transform φ̂(ξ) := ∏∞

j=1 ã(e
−iM−r j ξ ) for ξ ∈ R. Note that φ̂(0) = 1. Then the r-mask

quasi-stationary M-subdivision scheme with masks {a1, . . . , ar } is C m-convergent if
and only if

sm∞(a,Mr ) > m and sr(a�,M) > m, ∀ � = 1, . . . , r . (1.21)

Moreover, for every v ∈ l(Z), the limit function ηv in (1.19) of Definition 3 must be
given by ηv = ∑

k∈Z v(k)φ(· − k).

The contributions and potential usefulness of the results in Theorems 1 and 2 are
outlined below:

(1) We introduce the notion of r -mask quasi-stationary subdivision schemes and fully
characterize them in Theorem 2. This notion and examples in Section 2 offer new
ns-step interpolatory 2-subdivision schemes for CAGD and new interpolating
refinable functions for numerical PDEs. In particular, for r = 2, 3, we obtain
C r -convergent r -step interpolatory r -mask quasi-stationary dyadic subdivision
schemes using only two-ring stencils in Examples 2 and 3. Their tensor products
obviously offer d-dimensional C r -convergent r -step interpolatory r -mask quasi-
stationary dyadic 2Id -subdivision schemes using only two-ring stencils.

(2) We introduce the notion of sa-interpolating refinable functions and characterize
them in Theorem 1, leading to ns-step interpolatory subdivision schemes with
ns ∈ N ∪ {∞}. Example 5 shows the existence of 1

3 -interpolating 2-refinable
functions φ ∈ C 1(R) and their C 1-convergent 2-step interpolatory dyadic subdi-
vision schemes. ForM = 3, 4, Examples 4 and 7 obtain several interpolatory dual
M-subdivision schemes with symmetric masks such that their ns-interpolatory
M-subdivision schemes are C 2-convergent with ns ∈ {2,∞}.

(3) For masks symmetric about ca/2, interpolatory dualM-subdivision schemes with
M > 2 have been studied in the interesting papers [7, 21–23]. Because the basis
functions there must be sa-interpolating with sa = ca

2(M−1) (see details after
Proposition 3), the necessary and sufficient Theorem 1 can be applied to this
special case and only uses masks a without requiring symmetry. While [21, The-
orems 3.4 and 3.5] involves both masks a and values of φ on n

T + Z in [21, (11)],
which is further addressed in [7, Assumptions 1 and 2]. Interestingly, we con-
struct in Example 8 a C 2-convergent ∞-interpolatory 2-mask quasi-stationary
dyadic 2-subdivision scheme with masks {a1, a2}, which leads to a symmetric
1
6 -interpolating M-refinable function and a C 2-convergent interpolatory dual M-
subdivision scheme with M = 4.
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(4) Theorems 1 and 2, which can be combined as in Corollary 8, offer new interpo-
lating refinable functions (e.g., see Examples 3 and 8) and wavelets which are of
interest in their applications to numerical PDEs and image processing. Interest-
ingly, the notion of r -mask quasi-stationary subdivision schemes in Theorem 2
offers a flexible framework for constructing non-traditional wavelets with added
features, for which we shall leave it as a future research problem.

The structure of the paper is as follows. In Section 2, we provide several examples
and construction procedures of quasi-stationary 2-subdivision schemes and ns-step
interpolatoryM-subdivision schemes.We also discuss how to estimate the smoothness
exponent sm∞(a,M) and explain in details the condition (1.12) and roles on sa . In
Section 3, we first develop some auxiliary results and then we prove Theorem 1. In
Section 4, we shall prove Theorem2 and thenwe shall present a result in Corollary 8 by
combining both Theorems 1 and 2 for rns-step interpolatory r -mask quasi-stationary
M-subdivision schemes with masks {a1, . . . , ar }.

2 Examples of ns-step interpolatory (quasi)-stationary subdivision
schemes

Applying Theorems 1 and 2, we discuss how to construct desired masks a for sa-
interpolating refinable functions and their ns-step interpolatory subdivision schemes.
We first discuss how to estimate the smoothness exponent sm∞(a,M) and then explain
the condition (1.12) on sa . Then we present some examples of convergent r -step inter-
polatory r -mask quasi-stationary subdivision schemes usingTheorems1 and2with the
commonly used dilation factorM = 2. Next, we provide construction procedures and
several examples ofmasks for sa-interpolatingM-refinable functions usingTheorem 1.
Finally, we apply our constructed ns-step interpolatory subdivision schemes to CAGD
for generating smooth subdivision curves and we explain the roles of sa in CAGD.

To present our examples and discuss their construction, for a mask a ∈ l0(Z), we
define the filter support fsupp(a) to be the smallest interval [la, ha] with la, ha ∈ Z

such that a(la)a(ha) �= 0 and a(k) = 0 for all k ∈ Z\[la, ha]. Then its M-refinable
function φ must be supported inside [ la

M−1 ,
ha

M−1 ].

2.1 Estimate and optimize the smoothness quantity sm∞(a,M)

To construct desired masks in Theorems 1 and 2 for smooth interpolating refinable
functions, we first discuss how to calculate and estimate the smoothness exponent
sm∞(a,M) in (1.10). Because masks a constructed in Theorems 1 and 2 often have
some free parameters, we shall discuss how to search among these free parameters in
the masks a such that the smoothness exponent sm∞(a,M) is as large as possible.

The smoothness exponent smp(a,M) defined in (1.10) for 1 ≤ p ≤ ∞ plays a
critical role in studying subdivision schemes andwavelets. InCAGD, anM-subdivision
scheme with mask a ∈ l0(Z) is C m-convergent if and only if sm∞(a,M) > m
(e.g., see [18, Theorem 2.1] or [14, Theorem 7.3.1]). Even for arbitrary matrix masks
a ∈ (l0(Z))r×r , the vector M-subdivision scheme with mask a is C m-convergent if
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and only if sm∞(a,M) > m (e.g., see [15, Theorem 1]). Moreover, the convergence
rate of the vector subdivision scheme is also determined by sm∞(a,M), e.g., see [15,
Theorem 2]. To study refinable functions in wavelet analysis, recall that the cascade
operatorRa,M : L p(R) → L p(R) is defined to beRa,M f := M

∑
k∈Z a(k) f (M·−k).

Let φ be theM-refinable function with a mask a. Then φ is a fixed point ofRa,M, i.e.,
Ra,Mφ = φ. From the refinement equation (1.1), one can easily see that Rn

a,M f =∑
k∈Z[Sn

a,Mδ](k) f (Mn ·−k), i.e., a cascade algorithm is closely linked to a subdivision
scheme for studying the convergence of the cascade algorithm {Rn

a,M f }∞n=1 in the
Sobolev space Wm

p (R) (e.g., see [10, 14, 16]). Then a cascade algorithm with mask
a converges in Wm

p (R) if and only if sm p(a,M) > m (e.g., see [10, Theorem 4.3]
or [14, Theorem 5.6.16]). The L p-smoothness exponent sm p(φ) is defined later in
(3.12). Then sm p(φ) ≥ sm p(a,M). Moreover, smp(φ) = smp(a,M) holds if the
integer shifts of φ are stable, i.e., span{φ̂(ξ + 2πk) : k ∈ Z} = C for every ξ ∈ R.

Generally, computing sm∞(a,M) is not an easy task, but we can often estimate
sm∞(a,M). Let a ∈ l0(Z) be a finitely supported mask. Define J := sr(a,M), the
highest order sum rules of the mask a with respect to a dilation factorM. Then we can
write

ã(z) = (1 + z + · · · + zM−1)J b̃(z) for some sequence b ∈ l0(Z). (2.1)

It is well known that a mask a ∈ l0(Z) has order J sum rules as defined in (1.9) if and
only if (2.1) holds (e.g., see [13, Theorem 3.5] or [14, Theorem 1.2.5]). Recall that
the quantity ρJ (a,M)p is defined in (1.10). Then we must have

ρJ (a,M)p = ρ0(b,M)p := lim sup
n→∞

‖Sn
b,Mδ‖1/nlp(Z)

(2.2)

(e.g., see [8, Theorem 2.1] and Lemma 6) and by [14, Corollary 5.8.5] and [8, Corol-
lary 2.2],

sm∞(a,M) = − logM ρ0(b,M)∞ and ρ0(b,M)∞ = inf
n∈N sup

γ=0,...,Mn−1

[ ∑

k∈Z
|[Sn

b,Mδ](γ + Mnk)|
] 1

n
.

(2.3)

In particular, for every n ∈ N, we obviously have the following lower bounds of
sm∞(a,M):

sm∞(a,M) = − logM ρ0(b,M)∞ ≥ − logM
(

sup
γ=0,...,Mn−1

[∑

k∈Z
|[Sn

b,Mδ](γ + Mnk)|
] 1

n
)
.

(2.4)

If there exists γ0 ∈ Z such that

b(γ0 + Mk)=0 ∀ k ∈ Z\{0} and
∑

k∈Z
|b(γ + Mk)| ≤ |b(γ0)|, ∀ γ =0, . . . ,M−1,

(2.5)
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then ρ0(b,M)∞ = M|b(γ0)| by [8, Corollary 2.2], and hence, sm∞(a,M) = −1 −
logM |b(γ0)|. Otherwise, we often have to take large integers n in (2.4) to obtain
accurate low bounds of sm∞(a,M).

Fortunately, for the special case p = 2, the quantities sm2(a,M) and ρ0(b,M)2 can
be effectively computed by finding the spectral radius of some special finite matrix
B. Because b is finitely supported, we define [lb, hb] := fsupp(b) to be the filter
support of b. Define a sequence c ∈ l0(Z) by c( j) := ∑hb

k=lb
b( j + k)b(k) for j ∈ Z.

That is, c̃(e−iξ ) = |b̃(e−iξ )|2 for ξ ∈ R. Then fsupp(c) = [lb − hb, hb − lb]. By [8,
Theorem 2.1] or [14, Corollary 5.8.5], we have ρ0(b,M)2 = M

√
ρ(B) and

sm2(a,M) = − 1
2 − 1

2 logM ρ(B) wi th B := (c(Mk − j))−� hb−lb
M−1 ≤ j,k≤� hb−lb

M−1 ,
(2.6)

where ρ(B) is the spectral radius of the finite matrix B and � hb−lb
M−1  is the largest inte-

ger ≤ hb−lb
M−1 . Note that the sequence c must be symmetric about the origin. Therefore,

taking advantages of symmetry of the sequence c, we can further speed up the cal-
culation of sm2(a,M) by computing the spectral radius of a smaller matrix (roughly
speaking, half size of the matrix B in (2.6)), see [11, Algorithm 2.1]. Moreover, the
quantity sm∞(a,M) can be estimated from sm2(a,M) by

sm2(a,M) − 1
2 ≤ sm∞(a,M) ≤ sm2(a,M). (2.7)

We also refer to [14, Corollary 5.8.5] for other ways of estimating the smoothness
exponent sm∞(a,M).

In all our examples constructed through Theorems 1 and 2, the masks a ∈ l0(Z)

often have several free parameters. Because we often have to solve nonlinear equa-
tions in Theorems 1 and 2, in fact we often obtain several families of masks with free
parameters and complicated expressions. Consequently, to find special values of the
parameters such that the smoothness exponent sm∞(a,M) is as large as possible, we
simply use a brute force method by locally searching for the highest possible smooth-
ness sm2(a,M) among the parameters until sm2(a,M) achieves a local maximum
value among such parameters. Due to (2.7), such smoothness exponent sm∞(a,M) at
the special parameter values is nearly the highest among all values of the parameters.
Directly minimizing the spectral radius ρ(B) among the parameters of masks a is
difficult, because the masks a obtained by Theorems 1 and 2 often have complicated
structure and many parameters. For relatively simple masks with free parameters, this
issue has been addressed in [20, Section 4] for constructing smooth bivariate Hermite
subdivision schemes aided by spectral radius optimization.

2.2 The condition (1.12) on sa in Theorem 1 for sa-interpolating refinable
functions

At first glance, the condition (1.12) in Theorem 1 may appear to be artificial and
complicated to the readers. But (1.12) is in fact rooted in the fundamental problem of
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how to determine the exact (not approximated) value φ(sa) of a general continuous
M-refinable function φ (not necessarily interpolating) within finitely many steps using
only its mask a ∈ l0(Z). As we mentioned before, except spline refinable functions,
anM-refinable function φ with a mask a ∈ l0(Z) cannot have any analytic expression
(e.g., see [14, Chapter 6.1]) and is only theoretically defined through the Fourier
transform by φ̂(ξ) := ∏∞

j=1 ã(e
−iM− j ξ ) for ξ ∈ R, or equivalently, φ is the unique

latent solution to the refinement equation (1.1) under the normalization condition
φ̂(0) = 1. Consequently, to satisfy the condition φ(sa + k) = δ(k) for all k ∈ Z in
(1.3), the exact values φ(sa + k) for k ∈ Z must be able to be determined in finitely
many steps from its mask a ∈ l0(Z) through the refinement equation (1.1).

Iterating the refinement equation (1.1), one can easily deduce that

φ(x) =
∑

k∈Z
[Sn

a,Mδ](k)φ(Mnx − k) = Mn
∑

k∈Z
An(k)φ(Mnx − k), n ∈ N, x ∈ R,

(2.8)

where An is defined in (1.15), i.e., An := M−nSn
a,Mδ. Therefore, an M-refinable

function φ with mask a is also an Mn-refinable function with the mask An for every
n ∈ N.

For any given sa ∈ R, without assuming that the continuous M-refinable function
φ is interpolating, now we discuss how to determine the exact value φ(sa) in finitely
many steps by using the mask a. Let ms ∈ N0. If the exact values φ(Mms sa + k) for
all k ∈ Z are known, then (2.8) with n = ms and x = sa uniquely determines φ(sa)
in finitely many steps through the mask a (more precisely, Ams ). For simplicity, we
define s := Mms sa with ms ∈ N0 and rewrite the refinement equation (1.1) as

φ(M−1x) = M
∑

k∈Z
a(k)φ(x − k), x ∈ R. (2.9)

If the exact values ofφ on s+Z are known, then the refinement equation (2.9) uniquely
determines the values ofφ onM−1s+M−1

Z. Repeating the same argument, we deduce
that the exact values of φ on M−ns + M−n

Z are uniquely determined by (2.9) for all
n ∈ Z. Hence, we have two cases:

Case 1: s ∈ M−ns + M−n
Z with s := Mms sa for some n = ns ∈ N and some

ms ∈ N0. Then we must have (Mns − 1)s ∈ Z. Consequently, we obtain the condition
(1.12):

Mms (Mns − 1)sa = (Mns − 1)s ∈ Z.

In this case, we have [s+Z] ⊆ [M−ns s+M−nsZ]. Consequently, the exact values of φ
on s+Z are determined by the values of φ onM−ns s+M−nsZ, which are determined
in turn by the values of φ on s+Z through (2.8) with n = ns and x ∈ M−ns s+M−nsZ.
Therefore, if the finitely supported mask a is known, then the exact values of φ on
s + Z can be uniquely determined by finitely many equations plus the normalization
condition

∑
k∈Z φ(s+k) = 1. Consequently, because s = Mms sa , the valuesφ(sa+k)

for all k ∈ Z are uniquely determined by (2.8) with n = ms and x ∈ sa +Z. To have a
necessary condition for φ to be sa-interpolating, the above argument and the condition
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(1.12) eventually lead to the key nonlinear equations (1.13) and (1.14) in Theorem 1.
Note that sa ∈ R satisfies (1.12) if and only if sa ∈ ∪∞

ms=0∪∞
ns=1 [M−ms (Mns −1)−1

Z],
which is dense in R.

Next we claim that sa ∈ R satisfies (1.12) if and only if [0, 1)∩(∪∞
j=0[M j sa+Z]) is

a finite set. If sa satisfies (1.12), then sa ∈ M−ms (Mns − 1)−1
Z for some ms ∈ N0 and

ns ∈ N. Obviously, [M j sa+Z] ⊆ M−ms (Mns −1)−1
Z for all j ∈ N0. Because [0, 1)∩

M−ms (Mns −1)−1
Z is obviously a finite set,we conclude that [0, 1)∩(∪∞

j=0[M j sa+Z])
must be a finite set. Conversely, suppose that T := [0, 1) ∩ (∪∞

j=0[M j sa + Z]) is a
finite set. Then for each j ∈ N0, there must exist unique k j ∈ Z and t j ∈ T such that
M j sa + k j = t j ∈ T . Because T is a finite set, there must exist 0 ≤ j < � < ∞
such that t j = t�. Hence M j sa + k j = t j = t� = M�sa + k�, from which we have
M j (M�− j − 1)sa = M�sa − M j sa = k j − k� ∈ Z. Therefore, (1.12) is satisfied with
ms = j ∈ N0 and ns = �− j ∈ N. Thanks to the fact that [0, 1)∩(∪∞

j=1[M j sa +Z]) is
a finite set, our argument for Case 1 shows that the exact value φ(sa) can be obtained
in finitely many steps by only using the mask a.

Case 2: s /∈ M−ns + M−n
Z with s := Mms sa for all n ∈ N and ms ∈ N0. Then

(1.12) on sa fails and the set [0, 1) ∩ (∪∞
j=0[M j sa + Z]) must be infinite. For this

case, we are not aware of any known method for computing the exact value φ(sa) of
a continuous M-refinable function φ within finitely many steps from its mask or the
existence of any sa-interpolating refinable function when (1.12) fails.

Letφ be a continuousM-refinable functionwith amask a such that sm∞(a,M) > 0.
Without assuming that φ is interpolating, we shall further discuss how to effectively
compute φ(sa) in finitely many steps by only using its mask a at the end of Section 3
for any sa ∈ R satisfying (1.12). We shall also explain the rule of sa ∈ R from the
perspective of subdivision curves in CAGD in Section 2.8.

2.3 Examples of r-step interpolatory r-mask quasi-stationary dyadic subdivision
schemes with symmetry

The dilation factor M = 2 is the most widely studied case in the literature. Though
it is highly desired to have C 2-convergent dyadic subdivision schemes with masks
having two-ring stencils, as discussed in Section 1, there are no standard inter-
polating 2Id -refinable functions φ ∈ C 2(Rd) and no C 2-convergent interpolatory
2Id -subdivision schemes with masks having two-ring stencils ([9, Corollary 4.3]).
Applying Theorems 1 and 2, we now present examples to show that this shortcoming
can be remedied by using r -step interpolatory r -mask quasi-stationary 2-subdivision
schemeswith r ∈ {2, 3} and all symmetric masks {a1, . . . , ar } having at most two-ring
stencils.

Example 1 Let M = 2 and r = 2. Let a1, a2 ∈ l0(Z) be symmetric masks supported
inside [−2, 2] with ca = 0 in (1.8) and sr(a1,M) = sr(a2,M) = 2 as follows:

ã1(z) = 1
4 z

−1(1 + z)2(t1z
−1 + 1 − 2t1 + t1z),

ã2(z) = 1
4 z

−1(1 + z)2(t2z
−1 + 1 − 2t2 + t2z),
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with t1, t2 ∈ R. Note that both masks a1 and a2 have only one-ring stencils: the even
stencil {2a�(−2), 2a�(0), 2a�(2)}, and the odd stencil {2a�(−1), 2a�(1)} for � = 1, 2.
Define a new mask a ∈ l0(Z) by ã(z) := ã1(z2)ã2(z). Solving the interpolation
condition a(4k) = 0 for all k ∈ Z\{0} (i.e., a(−4) = a(4) = 0), we obtain t1 =

t2
2(t2−1) with t2 ∈ R\{1}. Optimizing the smoothness quantity sm2(a, 4) as described in

Section 2.1 among choices of the parameter t2, we have t2 = 11
32 (and hence t1 = − 11

42 )
with sm2(a, 4) ≈ 1.709055. Explicitly,

a1 = {− 11
168 ,

1
4 ,

53
84 ,

1
4 ,− 11

168 }[−2,2], a2 = { 11
128 ,

1
4 ,

21
64 ,

1
4 ,

11
128 }[−2,2]. (2.10)

Note that the mask a is supported inside [−6, 6] and its 4-refinable function φ is
supported inside [−2, 2]. Because sm∞(a, 4) ≥ 1.512277 using (2.3) with n = 3,
by Theorems 1 and 2 (also see Corollary 8), the 4-refinable function φ ∈ C 1(R) is
0-interpolating with φ(k) = δ(k) for all k ∈ Z. Moreover, the 2-step interpolatory
2-mask quasi-stationary 2-subdivision scheme with masks {a1, a2} is C 1-convergent.
See Fig. 1 for the graph of the 0-interpolating 4-refinable function φ ∈ C 1(R) for
the masks {a1, a2} in (2.10). Moreover, sm2(a1, 2) ≈ 0.860944 and sm2(a2, 2) ≈
1.989281.

Example 2 Let M = 2 and r = 2. Let a1, a2 ∈ l0(Z) be symmetric masks supported
inside [−4, 4] with ca = 0 in (1.8) and sr(a1,M) = sr(a2,M) = 4 as follows:

ã1(z) = 1
16 z

−2(1 + z)4(t2z
−2 + t1z

−1 + 1 − 2t1 − 2t2 + t1z + t2z
2),

ã2(z) = 1
16 z

−2(1 + z)4(t4z
−2 + t3z

−1 + 1 − 2t3 − 2t4 + t3z + t4z
2),

(2.11)

with t1, . . . , t4 ∈ R. Note that both masks a1 and a2 have two-ring stencils:
the even stencil {2a�(−4), 2a�(−2), 2a�(0), 2a�(2), 2a�(4)}, and the odd stencil
{2a�(−3), 2a�(−1), 2a�(1), 2a�(3)} for � = 1, 2. Define a new mask a ∈ l0(Z) by
ã(z) := ã1(z2)ã2(z). Solving the interpolation condition a(4k) = 0 for all k ∈ Z\{0}
(i.e., a(4) = a(8) = a(12) = 0 by using symmetry), we obtain four solution families
of masks a below:

{t1 = − 1
4 − 3t2 − s2, t3 = − 3

2 − 4t2 + 4s2, t4 = 0}, {t1 = − 1
4 − 3t2 + s2, t3 = − 3

2 − 4t2 − 4s2, t4 = 0},
{t1 = − 1

4 − t4
8 + s4, t2 = 0, t3 = − 3

2 − 7
2 t4 − 4s4}, {t1 = − 1

4 − t4
8 − s4, t2 = 0, t3 = − 3

2 − 7
2 t4 + 4s4},

where s2 := 1
4

√
16t22 + 24t2 + 1 and s4 := 1

8

√
t24 + 12t4 + 4. Note that t2 is a free

parameter in the first two solutions while t4 is a free parameter in the third and fourth
solutions. Optimizing the smoothness quantity sm2(a, 4) as described in Section 2.1
in the third and fourth solution families with the parameter t4, we find t4 = − 9

32 in
the fourth solution leading to

t1 = −
√
721+55
256 , t2 = 0, t3 =

√
721−33
64 , t4 = − 9

32 with sm2(a, 4) ≈ 2.62522.
(2.12)
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Note that the mask a is supported inside [−10, 10] and its 4-refinable function φ is
supported inside [− 10

3 , 10
3 ]. Because sm∞(a, 4) ≥ sm2(a, 4) − 0.5 ≈ 2.12522 > 2,

by Theorems 1 and 2 (also see Corollary 8), the 4-refinable function φ ∈ C 2(R) is
0-interpolating with φ(k) = δ(k) for all k ∈ Z. The 2-step interpolatory 2-mask quasi-
stationary 2-subdivision scheme with masks {a1, a2} is C 2-convergent. Moreover,
sm2(a1, 2) ≈ 2.747783 and sm2(a2, 2) ≈ 2.623172.

Optimizing the smoothness quantity sm2(a, 4) as described in Section 2.1 in the
first and second solution families with the free parameter t2, we find t2 = 5

16 in the
first solution leading to

t1 = −
√
161+19
16 , t2 = 5

16 , t3 =
√
161−11
4 , t4 = 0 with sm2(a, 4) ≈ 3.073353.

(2.13)

Note that the mask a is supported inside [−11, 11] and its 4-refinable function φ is
supported inside [− 11

3 , 11
3 ]. Because sm∞(a, 4) ≥ sm2(a, 4) − 0.5 ≈ 2.573353 (or

sm∞(a, 4) ≥ 2.806997 using (2.3) with n = 3), by Theorems 1 and 2, the 4-refinable
function φ ∈ C 2(R) is 0-interpolating with φ(k) = δ(k) for all k ∈ Z. The 2-step
interpolatory 2-mask quasi-stationary 2-subdivision scheme with masks {a1, a2} is
C 2-convergent. Moreover, sm2(a1, 2) ≈ 1.3074664 and sm2(a2) ≈ 3.991650. See
Fig. 1 for the graph of the interpolating 4-refinable function φ ∈ C 2(R) with the
parameters t1, . . . , t4 in (2.13). For both cases with the dyadic dilation factor M = 2,
the 2-step interpolatory 2-mask quasi-stationary 2-subdivision schemes with masks
{a1, a2} have the 2-step interpolation property:

[(Sa2,MSa1,M)nv](M2nk) = [S2n,2
a1,a2,M

v](M2nk) = [Sn
a,M2v](M2nk) = v(k), ∀ k ∈ Z, n ∈ N, v ∈ l(Z).

Example 3 Let M = 2 and r = 3. Let a1, a2, a3 ∈ l0(Z) be symmetric masks sup-
ported inside [−4, 4]with ca = 0 in (1.8) and sr(a1,M) = sr(a2,M) = sr(a3,M) = 4

Fig. 1 (a) is the graph of the interpolating 4-refinable function φ ∈ C 1(R) in Example 1 and (d) is its
first-order derivative φ′. (b) is the graph of the interpolating 4-refinable function φ ∈ C 2(R) in Example 2
with parameters in (2.13) and (e) is its second-order derivative φ′′. (c) is the graph of the interpolating
8-refinable function φ ∈ C 3(R) in Example 3 and (f) is its third-order derivative φ′′′
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such that masks a1, a2 are given in (2.11) and the mask a3 is parameterized as follows:

ã3(z) = 1
16 z

−2(1 + z)4(t5z
−1 + 1 − 2t5 + t5z)

with t1, . . . , t5 ∈ R. Define a mask a ∈ l0(Z) by ã(z) := ã1(z4)ã2(z2)ã3(z). Solving
the interpolation condition a(8k) = 0 for all k ∈ Z\{0} (i.e., a(8) = a(16) = a(24) =
0 by using symmetry), we obtain nine solution families of masks a. Optimizing the
smoothness quantity sm2(a, 8) for each solution family of masks among their free
parameters, we have

t1 = −
√
713+41
32 , t2 = 11

32 , t3 = 179
√
713

616 − 140873
19712 , t4 = 40137

39424− 51
√
713

1232 , t5 = 19
64

with sm2(a, 8) ≈ 3.4519942. That is, we set t2 = 11
32 and t5 = 19

64 in the particular
solution family

{t1 = − 1
4 −3t2− 1

4 s2, t3 = 2t5+5
8(2t5−3) (13+32t2+2t5−8s2), t4 = − 2t5+1

16(2t5−3) (13+32t2+2t5−8s2)}

with s2 :=
√
16t22 + 24t2 + 1. Note that the mask a is supported inside [−27, 27]

and its 8-refinable function φ is supported inside [− 27
7 , 27

7 ]. Because sm∞(a, 8) ≥
3.216038 using (2.3) with n = 4, by Theorems 1 and 2, the 8-refinable func-
tion φ ∈ C 3(R) is 0-interpolating with φ(k) = δ(k) for all k ∈ Z. The 3-step
interpolatory 3-mask quasi-stationary 2-subdivision scheme with masks {a1, a2, a3}
is C 3-convergent. Moreover, sm2(a1, 2) ≈ 1.239518, sm2(a2) ≈ 3.955358, and
sm2(a3, 2) ≈ 3.995045. See Fig. 1 for the graph of the interpolating 8-refinable
function φ ∈ C 3(R). Finally, we point out that solution families of masks a with
simple expressions may not lead to large sm2(a,M), for example, the solution
family {t1 = − 9

4 , t2 = 3
8 , t3 = −4t4, t5 = 3

2 } can achieve the almost highest
sm2(a,M) ≈ 2.405870 at t4 = − 3

32 and sm∞(a,M) ≥ 2.160594 using (2.3) with
n = 2.

2.4 Construction procedure of all desiredmasks in Theorem 1

In order to provide some examples using Theorem 1, we now discuss how to con-
struct sa-interpolating refinable functions and their ns-step interpolatory subdivision
schemes.

Except the special case ms = 0 and ns = 1 for standard interpolatory subdivision
schemes, the conditions in (1.13), (1.14) and (1.16) of Theorem 1 involve nonlinear
equations, which are computationally challenging. Therefore, it is helpful to obtain
further necessary conditions to facilitate the construction through Theorem 1.We shall
take advantages of linear-phase moments in [10, 12, 13] to facilitate the construction
of sa-interpolating M-refinable functions. For convenience, throughout the paper we
shall adopt the following big O notion: For J ∈ N0 and smooth functions f and g,

f (ξ) = g(ξ)+O(|ξ |J ), ξ → 0 stands for f ( j)(0)=g( j)(0), ∀ j =0, . . . , J−1.
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Now we have the following result about necessary conditions on sa-interpolating M-
refinable functions.

Proposition 3 LetM ∈ N\{1} be a dilation factor. Let φ be a compactly supported sa-
interpolating M-refinable function normalized by φ̂(0) = 1 with a finitely supported
mask a ∈ l0(Z). Define J := sr(a,M) (i.e., the mask a has order J sum rules with
respect to M as in (1.9) or (2.1)). Then

∑

k∈Z
k jφ(x + k) = (sa − x) j , ∀ j = 0, . . . , J − 1 and x ∈ R, (2.14)

∑

k∈Z
k ja(k) = m j

a, ∀ j =0, . . . , J − 1 with ma := (M − 1)sa, (2.15)

and both the function φ and mask a must have order J linear-phase moments as
follows:

φ̂(ξ) = e−isaξ + O(|ξ |J ) and ã(e−iξ ) = e−imaξ + O(|ξ |J ), ξ → 0. (2.16)

Consequently, if sr(a,M) ≥ 2, then the real numbers sa and ma must be given by

sa = i(φ̂)′(0) =
∫

R

xφ(x)dx = ma

M − 1
with ma := (M − 1)sa =

∑

k∈Z
ka(k).

(2.17)

Proof To prove the claims, the key ingredient of the proof is to show that sr(a,M) = J
implies

∑

k∈Z
p(k)φ(x − k) =

J−1∑

j=0

(−i) j

j ! p( j)(x)φ̂( j)(0), ∀ p ∈ �J−1. (2.18)

For convenience of discussion, we define â(ξ) := ã(e−iξ ) = ∑
k∈Z a(k)e−ikξ . Then

φ̂(Mξ) = â(ξ)φ̂(ξ). Note that sr(a,M) ≥ J if and only if (e.g., see [13, Theorem 3.5]
or [14, Theorem 1.2.5])

â(ξ + 2πM−1γ ) = O(|ξ |J ), ξ → 0 for all γ ∈ Z\[MZ]. (2.19)

For k ∈ Z\{0}, we can uniquely write k = Mnγ with n ∈ N0 and γ ∈ Z\[MZ].
Recursively applying φ̂(ξ) = â(M−1ξ)φ̂(M−1ξ) and noting that â is 2π -periodic, we
derive from (2.19) that

φ̂(ξ+2πk) = φ̂(ξ+2πMnγ ) =
⎡

⎣
n∏

j=1

â(M− j ξ)

⎤

⎦ â(M−n−1ξ+2πM−1γ )φ̂(M−n−1ξ+2πM−1γ ) = O(|ξ |J ),
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as ξ → 0. Hence, we proved

φ̂(0) = 1 and φ̂(ξ + 2πk) = O(|ξ |J ), ξ → 0 for all k ∈ Z\{0}. (2.20)

For the 1-periodic function f (x) := ∑
k∈Z(x − k) jφ(x − k), we observe that its

Fourier coefficient
∫ 1
0 f (x)e−i2πkxdx = ∫

R
x jφ(x)e−i2πkxdx = i j φ̂( j)(2πk) for

k ∈ Z. Hence, using the Fourier series of the 1-periodic function f , we easily deduce
from (2.20) that

∑

k∈Z
(x − k) jφ(x − k) = i j φ̂( j)(0), j = 0, . . . , J − 1. (2.21)

Using the Taylor expansion of p(k) = p(x − (x − k)) = ∑∞
j=0

(−1) j

j ! p( j)(x)(x − k) j

at the base point x , we conclude from (2.21) (also see [14, Theorem 5.5.1]) that (2.18)
holds by noting

∑

k∈Z
p(k)φ(x−k) =

∞∑

j=0

(−1) j

j ! p( j)(x)
∑

k∈Z
(x−k) jφ(x−k) =

J−1∑

j=0

(−i) j

j ! p( j)(x)φ̂( j)(0), p ∈ �J−1.

Because φ(sa + n) = δ(n) for all n ∈ Z, plugging x = sa + n into (2.18) and using
the Taylor expansion of p at the base point sa + n, we observe

J−1∑

j=0

(−i) j

j ! p( j)(sa + n)φ̂( j)(0) = p(n) =
∞∑

j=0

1

j !p
( j)(sa + n)(−sa)

j , ∀ p ∈ �J−1, n ∈ Z.

Form = 0, . . . , J −1, we deduce from the above identity using p(x) = (x− sa −n)m

that φ̂(m)(0) = (−isa)m . This proves φ̂(ξ) = e−isaξ +O(|ξ |J ) as ξ → 0, i.e., the first
identity in (2.16) holds. Using the refinement equation φ̂(Mξ) = â(ξ)φ̂(ξ), we have
e−iMsaξ = â(ξ)e−isaξ + O(|ξ |J ) as ξ → 0, from which we have the second identity
in (2.16) and consequently, (2.15) holds. Using (2.16) and (2.18) with p(x) = x j , we
have (2.14). If sr(a,M) ≥ 2 (i.e., J ≥ 2), thenwe obtain from (2.16) that φ̂′(0) = −isa
and â′(0) = −ima , i.e., sa = i φ̂′(0) and ma = i â′(0) = ∑

k∈Z ka(k). This proves
(2.17). ��

Under the condition sr(a,M) ≥ 2, from (2.17) of Proposition 3, we must have
sa = ma

M−1 with ma = ∑
k∈Z ka(k), that is, the real number sa is uniquely determined

by the mask a of an sa-interpolating M-refinable function φ. Note that if a mask
a ∈ l0(Z) has symmetry in (1.8) and

∑
k∈Z a(k) = 1, then (2.17) of Proposition 3

tells us

ma =
∑

k∈Z
ka(k) =

∑

k∈Z
ka(ca − k) =

∑

k∈Z
(ca − k)a(k) = ca − ma,

from which we must have ma = ca/2, the symmetry center of the symmetric mask a.
Hence, for symmetric masks a satisfying the symmetry property in (1.8), it follows
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from Proposition 3 that

sa = ca
2(M − 1)

. (2.22)

Moreover, we deduce from the refinement equation that its M-refinable function φ

must be supported inside 1
M−1 fsupp(a) and have the symmetry φ(2sa − ·) = φ.

Consequently, the interpolating refinable functions in convergent interpolatory dual
subdivision schemes considered in [7, 21–23] are sa-interpolating M-refinable func-
tions with the particular choice sa = ca

2(M−1) for an odd integer ca .

Let sa ∈ R satisfy (1.12)withms ∈ N0 andns ∈ N, i.e., sa = M−ms (Mns−1)−1k for
some integer k. Note that sr(a,M) ≥ sm∞(a,M) by (3.9).We now discuss and outline
how to construct all desired masks a ∈ l0(Z) in Theorem 1 aided by Proposition 3 for
sa-interpolating M-refinable functions.

Construction Procedure Let m ∈ N0 and a positive integer J > m. Take sa ∈ R

satisfying (1.12) and select la, ha ∈ Z with ha ≥ la + (M − 1)J . Then all possible
desiredmasks a ∈ l0(Z) in Theorem1 satisfying fsupp(a) ⊆ [la, ha] and sr(a,M) ≥ J
are given by the following procedure:

(S1) Parameterize masks a by ã(z) = (1 + z + · · · + zM−1)J b̃(z) with unknown
b = {b(lb), . . . , b(hb)}[lb,hb], where lb := la and hb := ha − (M − 1)J .
If the mask a is required to have symmetry in (1.8) (i.e., a(ca − k) = a(k) for
all k ∈ Z and this is only possible for sa in (2.22) with ca = la + ha), then we
further require b(k) = b(hb + lb − k) for all k = lb, . . . , hb.

(S2) Solve the linear equation (2.15), i.e., more precisely,

ha∑

k=la

k j a(k) = (ma)
j , for all j = 0, . . . , J − 1

with ma := (M − 1)sa for the unknowns b(lb), . . . , b(hb).
(S3) Case 1: ms = 0. Then we solve the nonlinear equation (1.16), i.e., more explic-

itly, Ans ((M
ns − 1)sa +Mns k) = δ(k) for all k = � (1−M−ns )(la−(M−1)sa)

M−1 �, . . . ,
� (1−M−ns )(ha−(M−1)sa)

M−1 , for the remaining free parameters among b(lb), . . . ,
b(hb) after (S2).

(S3’) Case 2: ms > 0. Then we parameterize a sequence w ∈ l0(Z) with filter
support [lw, hw] := Z ∩ ( la

M−1 − Mms sa,
ha

M−1 − Mms sa). First, we solve the
linear equations

hw∑

k=lw

k jw(k) = (sa − Mms sa)
j , j = 0, . . . , J − 1 (2.23)

for the unknowns w(lw), . . . , w(hw). Then we solve the nonlinear equations
(1.13) and (1.14) of Theorem 1 for the remaining unknowns after (S2).

123



   98 Page 20 of 49 B. Han

(S4) Compute and optimize sm2(a,M) as described in Section 2.1 for selecting
special parameter values among all remaining free parameters such that
sm2(a,M) is as large as possible.

If sm2(a,M) > m+ 1
2 for the selected values of parameters in (S4), then sm∞(a,M) >

m and item (2) of Theorem 1 is satisfied. Hence, all the claims in items (1)–(3) and
(1.17) of Theorem 1 hold.

As we shall see in the proof of Theorem 1 in Section 3, the sequence w in (2.23)
must be given in (3.14), that is, w(k) = φ(Mms sa + k) for all k ∈ Z. Hence, the linear
equations in (2.23) is equivalent to those in (2.14). Note that the function φ(Mms sa +·)
is supported inside [ la

M−1 − Mms sa,
ha

M−1 − Mms sa]. Because we are constructing an
sa-interpolatingM-refinable function φ through Theorem 1, the function φ is required
to be continuous and hence, it is necessary that φ( la

M−1 − Mms sa) = 0 and φ( ha
M−1 −

Mms sa) = 0. Consequently, the sequence w must be supported inside [lw, hw] :=
Z ∩ ( la

M−1 − Mms sa,
ha

M−1 − Mms sa). Therefore, all the desired masks in Theorem 1
for sa-interpolating M-refinable functions can indeed be constructed by the above
Construction Procedure.

Let φ be the M-refinable function with mask a ∈ l0(Z). For any γ ∈ Z, the
function φ(· + γ

M−1 ) is the M-refinable function with mask a(· + γ ), while φ(−·) is
theM-refinable function with mask a(−·). Therefore, it is sufficient for us to consider
sa ∈ [0, 1

2(M−1) ] for sa-interpolating M-refinable functions.

2.5 Special casems = 0 for sa-interpolating refinable functions and ns-step
interpolatory subdivision schemes

We are interested in the special cases of sa satisfying (1.12) with ms = 0, (i.e.,
sa = k

Mns−1 for some k ∈ Z and ns ∈ N), due to their special properties and structures.
Forms = 0, it is crucial to observe that the equations in (1.13) simply becomew = δ

due to Ams = A0 = δ and hence (1.14) is reduced to (1.16). Because (Mns −1)sa ∈ Z

by (1.12) with ms = 0, we can define a shifted mask A(k) := Ans ((M
ns − 1)sa + k)

for k ∈ Z and define a function 
 := φ(sa +·). Then 
 is obviously a 0-interpolating
(i.e., standard interpolating)Mns -refinable function with an interpolatory mask Awith
respect to the dilation factor Mns satisfying


 = Mns
∑

k∈Z
A(k)
(Mns · −k) and 
(k) = δ(k), A(Mns k) = M−ns δ(k), ∀ k ∈ Z.

Hence, 
 is just a standard interpolating Mns -refinable function and its mask A
is a standard interpolatory mask with respect to Mns . Thus, the M-refinable function
φ is just a shifted version (precisely, φ = 
(· − sa)) of the standard interpolating
Mns -refinable function 
. In particular, we have A = a and sa ∈ (M − 1)−1

Z for
standard interpolatory M-subdivision schemes if ms = 0, ns = 1.

For symmetric masks a in (1.8), we must have (2.22), i.e., sa = ca
2(M−1) , where ca/2

is the symmetry center of the mask a. Because sa = ca
2(M−1) , we have the following

two cases for ms = 0 in (1.12):

123



Interpolating refinable functions... Page 21 of 49    98 

Case 1: ca is an even integer. Then sa = ca
2(M−1) = ca/2

M−1 satisfies the condition
(1.12) with ms = 0 and ns = 1, due to ca/2 ∈ Z. Hence, φ(sa + ·) is a standard
interpolating M-refinable function with the standard interpolatory mask a( ca2 + ·).
That is, the sa-interpolating M-refinable function φ is just an integer-shifted version
of a standard interpolating M-refinable function and its subdivision scheme is 1-step
interpolatory.

Case 2: ca is an odd integer and M is an odd dilation factor. Then sa = ca
2(M−1) =

ca(M+1)/2
M2−1

satisfies the condition (1.12) with ms = 0 and ns = 2, due to (M + 1)/2 ∈
Z. Therefore, according to item (3) of Theorem 1, its subdivision scheme is 2-step
interpolatory with the integer shift (M2 − 1)sa (i.e., ca(M + 1)/2). As we discussed
above,φ(sa+·) is a standard interpolatingM2-refinable functionwith the interpolatory
mask A2((M2 − 1)sa + ·), where the mask A2 is defined in (1.15).

For sa satisfying (1.12) with ms = 0 and ns = 2, or equivalently, sa = k
M2−1

for some k ∈ Z, we now show that Construction Procedure described in Section 2.4
becomes much simpler. Because ms = 0 and ns = 2, the equations in (1.16) of
Theorem 1 can be equivalently expressed as

∑

j∈Z
a( j)a((M2 − 1)sa + M2k − M j) = M−2δ(k), k ∈ Z. (2.24)

We can easily observe that (2.15) in (S2) and sr(a,M) ≥ J together are equivalent to

∑

k∈Z
k ja(γ + Mk) = M−1− j (ma − γ ) j , for all j = 0, . . . , J − 1 (2.25)

and for all γ = 0, . . . ,M − 1. Recall that the γ -coset mask a[γ :M](k) := a(γ + Mk)
for all k ∈ Z as defined in (1.5). If

#Sγa = J with Sγa := fsupp(a[γa :M]) ⊆ Z, γa := (M2 − 1)sa, (2.26)

where #Sγa is the cardinality of the set Sγa , then using the invertibility of a square
Vandermonde matrix, one can easily conclude (e.g., see [9, Theorem 2.1]) that the
linear equations in (2.25) for the particular γ = γa must have a unique solution of
{a(γa + Mk)}k∈Sγa

, i.e., the linear equations

∑

k∈Sγa

k j a(γa + Mk) = M−1− j (ma − γa)
j , for all j = 0, . . . , J − 1 (2.27)

must have a unique solution for {a(γa + Mk)}k∈Sγa
. Thus, because a[γa :M] on the set

Sγa (with the convention that a
[γa :M](k) = 0 for all k ∈ Z\Sγa ) is uniquely determined

and available now, the nonlinear equations in (2.24) simply become a system of linear
equations, which can be easily solved.

Consequently, Construction Procedure in Section 2.4 can be significantly reduced
to
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Special construction procedure Suppose that sa satisfies (1.12) with ms = 0, ns = 2
(i.e., sa = k

M2−1
with k ∈ Z). All the desired masks a ∈ l0(Z) in Theorem 1 with

sr(a,M) ≥ J can be obtained by the following procedure:

(S1) Parameterize masks a by ã(z) := (1 + z + · · · + zM−1)J b̃(z) with unknown
b = {b(lb), . . . , b(hb)}[lb,hb]. Note that fsupp(a) = [lb, hb + (M − 1)J ]. To
have symmetric masks a, we additionally require b(k) = b(hb + lb − k) for
k = lb, . . . , hb.

(S2) Let γa := (M2 −1)sa and obtain the coset mask a[γa :M] from the parameterized
mask a. Then solve the system of linear equations (2.27) for {a[γa :M](k)}k∈Sγa

with Sγa := fsupp(a[γa :M]).
(S3) Set a[γa :M](k) = 0 for all k ∈ Z\Sγa . Use the remaining freedoms in the mask

a to solve the nonlinear equations (2.24), which become a system of linear
equations if the solution {a[γa :M](k)}k∈Sγa

in (S2) is one of the following cases:

(1) The solution {a[γa :M](k)}k∈Sγa
in (S2) is unique, which is true if #Sγa = J

or if one could increase the integer J in (2.27) until it has a unique solution
{a[γa :M](k)}k∈Sγa

.
(2) The free parameters in solution {a[γa :M](k)}k∈Sγa

of (S2) are not treated as
unknowns in (S3) or simply preassigned parameter values in advance before
solving (2.24) in (S3).

As we shall see in the following example, quite often the solution in (S2) is unique
even if #Sγa > J . Consequently, we only need to solve linear equations in (S3).
Note that the subdivision schemes are 2-step interpolatory. For an odd dilation factor
M and sa = 1

2(M−1) , our computation indicates that there often exist desired unique
symmetric masks a satisfying (2.24) with the highest possible order J of sum rules
with respect to a prescribed filter support fsupp(a). Here we provide an example of 2-
step interpolatory M-subdivision schemes with M = 3 by using Special Construction
Procedure.

Example 4 LetM = 3 and sa = ca
2(M−1) with ca = 1. Note that γa := (M2−1)sa = 2.

We consider symmetric masks a such that fsupp(a) = [−3, 4] and sr(a,M) = J
with J = 2. We parameterize masks a in (S1) by ã(z) = (1 + z + z2)J b̃(z) with
b = {t1, t2, t2, t1}[−3,0]. Note that Sγa := fsupp(a[γa :M]) = {−1, 0}. and #Sγa = J .
Hence, the condition (2.26) guarantees the unique solution {a[γa :M](k)}k∈Sγa

to (2.27)
in (S2), which is given through the solution t2 = 1

18 − t1 with t1 ∈ R. Explicitly,

a[γa :M] = { 16 , 1
6 }[−1,0] and b = {t1, 1

18 − t1,
1
18 − t1, t1}[−3,0].

Now solving the linear equations (2.24) in (S3) with fsupp(a) = [−3, 4], we obtain
a unique solution t1 = − 1

36 and hence we obtain a symmetric mask a ∈ l0(Z) with
sr(a,M) = 2:

a = {− 1
36 ,

1
36 ,

1
6 ,

1
3 ,

1
3 ,

1
6 ,

1
36 ,− 1

36 }[−3,4], b = {− 1
36 ,

1
12 ,

1
12 ,− 1

36 }[−3,0].

By calculation, we have sm2(a,M) ≈ 1.393267. Moreover, we conclude from
(2.4) and (2.5) with γ0 = −1 that ρ0(b,M)∞ = M|b(−1)| = 1

4 and hence
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sm∞(a,M) = − logM ρ0(b,M)∞ = log3 4 ≈ 1.261860.ByTheorem1, its symmetric
M-refinable function φ ∈ C 1(R) must be sa-interpolating and its 2-step interpolatory
M-subdivision scheme must be C 1-convergent.

Next we consider symmetric masks a such that fsupp(a) = [−6, 7] and sr(a,M) =
J with J = 3. We parameterize masks a in (S1) by ã(z) = (1 + z + z2)J b̃(z) with
b = {t1, t2, t3, t4, t4, t3, t2, t1}[−6,1]. Then Sγa = {−2,−1, 0, 1} and hence, #Sγa =
4 > J = 3. Obtaining the coset mask a[γa :M] and solving the linear system (2.27)
in (S2), we find that a[γa :M] is actually uniquely determined by (2.27) with a solution
t3 = − 1

48 − 6t1 − 3t2 and t4 = 17
432 + 5t1 + 2t2 for free parameters t1, t2. Explicitly,

a[γa :M] = {− 1
48 ,

3
16 ,

3
16 ,− 1

48 }[−2,1].

Consequently, solving the linear equations (2.24) in (S3), we obtain a solution t2 =
− 1

432 − 4t1 and the symmetric mask a ∈ l0(Z) with the symmetry center 1/2 and
sr(a,M) = 3 is given by

a = {t1,− 1
432 − t1,− 1

48 ,− 1
48 − 2t1, 17

432 + 2t1, 3
16 ,

137
432 ,

137
432 ,

3
16 ,

17
432 + 2t1,− 1

48 − 2t1,− 1
48 ,− 1

432 − t1, t1}[−6,7], (2.28)

where t1 ∈ R. For t1 = 0, we have sm2(a,M) ≈ 2.173176 and fsupp(a) = [−5, 6].
For t1 = 1

432 , we have sm2(a,M) ≈ 2.458912 and sm∞(a,M) ≥ 2.136745 > 2 by
using (2.3) with n = 4. According to Theorem 1, its symmetric M-refinable function
φ ∈ C 2(R)must be sa-interpolating and its 2-step interpolatoryM-subdivision scheme
must be C 2-convergent.

Next we consider symmetric masks a such that fsupp(a) = [−11, 12] and
sr(a,M) = J with J = 5.Weparameterizemasksa in (S1) by ã(z) = (1+z+z2)J b̃(z)
with

b = {t1, t2, t3, t4, t5, t6, t7, t7, t6, t5, t4, t3, t2, t1}[−11,2].

Then we have Sγa = fsupp(a[γa :M]) = [−4, 3] ∩ Z and hence, #Sγa = 8 > J = 5.
Obtaining the coset a[γa :M] and solving the linear equations (2.27) in (S2), we have a
solution

t5 = 1
256−70t1−35t2−15t3−5t4, t6 = − 2875

186624+189t1+90t2+35t3+9t4, t7 = 1265
93312−120t1−56t2−5t4

with free parameters t1, t2, t3, t4 ∈ R. Then we obtain a[γa :M] with only one free
parameter below:

a[γa :M] = {t, 1
256 − 5t,− 25

768 + 9t, 25
128 − 5t, 25

128 − 5t,− 25
768 + 9t, 1

256 − 5t, t}[−4,3]

with t := 5t1 + t2. If we preset t = 0 (i.e., set t2 = −5t1), then we only need to solve
linear equations in (S3) with three unknowns {t1, t3, t4} in the symmetric mask b. The
solution is given by t3 = −40t1, t4 = 5305

9144576 + 291t1 and hence

b|[−4,2] = { 97445
9144576 − 455t1,− 46565

4572288 + 958t1, 2299
2286144 − 750t1, 5305

9144576 + 291t1,−40t1,−5t1, t1}[−4,2]
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with t1 ∈ R. Optimizing the smoothness quantity sm2(a,M) and choosing t1 = 1
150528 ,

we obtain a symmetric mask a ∈ l0(Z) with symmetry center 1/2 and sr(a,M) = 5
such that

a|[1,12] = { 1155834536578304 ,
25
128 ,

921259
18289152 ,− 59711

2032128 ,− 25
768 ,− 110615

12192768 ,
178057

36578304 ,
1

256 ,

16199
18289152 ,− 25

75264 , 0,
1

150528 }[1,12]

with sm2(a,M) ≈ 3.329871 and sm∞(a,M) ≥ 3.136794 by using (2.3) with n = 2.
By Theorem 1, its M-refinable function φ ∈ C 3(R) must be sa-interpolating and its
2-step interpolatory subdivision scheme must be C 3-convergent. See Fig. 2 for graph
of the sa-interpolating M-refinable function φ. We mention that an example of C 3-
convergence 2-step interpolatory 3-subdivision schemes is reported in [7, (28)] whose
mask has support [−14, 15], which is longer than the support [−11, 12] of our C 3

example here.

2.6 Examples of ns-step interpolatory dyadic subdivision schemes with M = 2

In this subsection, we only considerM = 2. For sa-interpolating 2-refinable functions
with symmetric masks, we know from (2.22) that sa = ca

2(M−1) = ca/2 ∈ [ 12 + Z]
must hold for any odd integer ca . Before presenting some examples, generalizing a
result in [7] for symmetric masks, we prove that even without symmetry, there are no
sa-interpolating 2-refinable functions for sa ∈ [ 12 + Z].

Lemma 4 For M = 2 and sa ∈ [ 12 + Z], there does not exist a compactly supported
continuous sa-interpolating M-refinable function with a finitely supported mask a ∈
l0(Z).

Proof We use proof by contradiction. Suppose not. Then we have an sa-interpolating
M-refinable function φ with a finitely supported mask a ∈ l0(Z). As we discussed
before, it suffices to consider sa = 1

2 . Define [la, ha] := fsupp(a), the filter support
of the mask a. Then a(la)a(ha) �= 0. Define a sequence w by w(k) := φ(1 + k) for
all k ∈ Z and define [lw, hw] := fsupp(w). Note that w(lw)w(hw) �= 0. From the

Fig. 2 (a) is the graph of the 1
4 -interpolating 3-refinable function φ ∈ C 2(R) in Example 4 with the mask

a in (2.28) with t1 = 1
432 , sr(a, 3) = 3, fsupp(a) = [−6, 7] and supp(φ) = [−3, 7

2 ]. (b) is the graph of the
second-order derivative φ′′ in (a). (c) is the graph of the 1

4 -interpolating 3-refinable function φ ∈ C 3(R)

with the mask a with t1 = 1
150528 , sr(a, 3) = 5, fsupp(a) = [−11, 12] and supp(φ) = [− 11

2 , 6]. (d) is the
graph of the third-order derivative φ′′′ in (c)
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refinement equation φ(x) = ∑ha
k=la

a(k)φ(2x − k) with x = 1 + j and x = 1
2 + j

with j ∈ Z, noting φ(1 + j) = w( j) and φ( 12 + j) = δ( j) for all j ∈ Z, we have

ha∑

k=la

a(k)w(1 + 2 j − k) = 2−1w( j), ∀ j ∈ Z, (2.29)

ha∑

k=la

a(k)w(2 j − k) = 2−1δ( j), ∀ j ∈ Z. (2.30)

Note that φ must be supported inside [la, ha] and φ(la) = φ(ha) = 0 because φ is
continuous. Therefore, we must have

la ≤ lw ≤ hw ≤ ha − 2. (2.31)

If la + lw is an odd integer, then (2.29) with j = la+lw−1
2 becomes a(la)w(lw) =

2−1w( la+lw−1
2 ). Since a(la)w(lw) �= 0, we must have la+lw−1

2 ≥ lw, i.e., lw ≤ la − 1,

contradicting (2.31).Hence, la+lw must be an even integer.Now (2.30)with j = la+lw
2

becomes a(la)w(lw) = 2−1δ( la+lw
2 ), which forces lw = −la because a(la)w(lw) �= 0.

If ha+hw is an odd integer, then (2.29) with j = ha+hw−1
2 becomes a(ha)w(hw) =

2−1w( ha+hw−1
2 ), which forces ha+hw−1

2 ≤ hw, that is, hw ≥ ha − 1, contradicting

(2.31). Therefore, ha + hw must be an even integer. Then (2.30) with j = ha+hw

2
becomes a(ha)w(hw) = 2−1δ( ha+hw

2 ), which forces ha+hw = 0, that is, hw = −ha ,
due to a(ha)w(hw) �= 0.

Hence, we proved lw = −la and hw = −ha , from which we must have la = ha
by lw ≤ hw and la ≤ ha . But la = ha contradicts la ≤ ha − 2 in (2.31). This proves
the nonexistence of continuous sa-interpolating 2-refinable functions with finitely
supported masks a ∈ l0(Z). ��

We now present a few examples of sa-interpolating 2-refinable functions and their
dyadic subdivision schemes using Theorem 1 and Special Construction Procedure in
Section 2.5.

Example 5 Let M = 2 and sa = 1
3 which satisfies (1.12) with ms = 0 and ns = 2.

Note that γa := (M2 − 1)sa = 1. We consider masks a with fsupp(a) = [−2, 4] and
sr(a,M) = J with J = 2. We parameterize masks a in (S1) by ã(z) = (1 + z)J b̃(z)
with b = {t1, t2, t3, t4, t5}[−2,2]. Then Sγa := fsupp(a[γa :M]) = {−1, 0, 1} and #Sγa =
3 > J = 2. Obtaining the coset a[γa :M] and solving the linear equations (2.27) in (S2),
we have a solution t4 = 2

3 − 4t1 − 3t2 − 2t3, t5 = − 5
12 + 3t1 + 2t2 + t3 with the free

parameters t1, t2, t3 ∈ R. Now the coset mask a[γa :M] is given by

a[γa :M] = { 16 + t, 1
3 − 2t, t}[−1,1],

where t := 2t1+t2− 1
6 .Not regarding t as an unknown (i.e., set t2 = 1

6−2t1+t and only
solving for {t1, t3} but not t), we see that the nonlinear equation (2.24) of (S3) actually
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becomes linear equations,whichhave aunique solution t1 = 36t2+12t+1
12(6t−1) , t3 = t(12t−7)

2(1−6t) ,
which leads to

a =
{

(1+6t)2

72t−12 , 1
6 + t, 36t2−6s+7

12−72t , 1
3 − 2t, 6s2−3t

2−12t , t, 3t2
6t−1

}

[−2,4] , (2.32)

where t ∈ R\{ 16 }. For t = 0, we have fsupp(a) = [−2, 1] and sm2(a,M) ≈ 1.04123;
Moreover, by b = {− 1

12 ,
1
3 }[−2,−1], we conclude from (2.4) and (2.5) with γ0 = −1

(also see [8, Theorem 2.1 and Corollary 2.2]) that ρ0(b,M)∞ = M|b(γ0)| = 2
3 and

hence sm∞(a, 2) = − log2
2
3 ≈ 0.584962. By Theorem 1, its M-refinable function φ

must be sa-interpolating. For t = − 1
18 , we have sm2(a,M) ≈ 1.821703 and hence,

sm∞(a,M) ≥ sm2(a,M) − 0.5 ≥ 1.243484. In fact, sm∞(a,M) ≥ 1.305626 by
(2.3) with n = 5. Hence, according to Theorem 1, itsM-refinable function φ ∈ C 1(R)

must be sa-interpolating and its 2-step interpolatory dyadic subdivision scheme isC 1-
convergent. See Fig. 3 for the graph of the sa-interpolating 2-refinable function φ with
the mask a in (2.32) and t = − 1

18 .
For M = 2 and sa = 1

3 , we consider masks a with fsupp(a) = [−6, 4] and

sr(a,M) = J with J = 4. We parameterize masks a in (S1) by ã(z) = (1 + z)J b̃(z)
with b = {t1, t2, t3, t4, t5, t6, t7}[−6,0]. Note that γa = 1 and Sγa := fsupp(a[γa :M]) =
[−3, 1] ∩Z. Hence, #Sγa = 5 > J = 4. Obtaining the coset mask a[γa :M] and solving
the linear equations (2.27) in (S2), we obtain a solution

t1 = − 91
2592 + t5 + 4t6 + 10t7, t2 = 37

216 − 4t5 − 15t6 − 36t7,

t3 = 45t7 + 20t6 + 6t5 − 277
864 , t4 = 20

81 − 4t5 − 10t6 − 20t7

with free parameters t5, t6, t7 ∈ R. Hence, we find that a[γa :M] has only one free
parameter given by

a[γa :M] = { 5
162 + s,− 4

27 − 4s, 10
27 + 6s, 20

81 − 4s, s}[−1,1],

where s := t6 + 4t7. Now solving the nonlinear equations (2.24) in (S3), we obtain
four solution families with complicated expressions. One of the solutions is given by

t5 = 4
81 t

3+ 37
81 t

2 − 991
5184 t + 323

10368 , t6 = 5
81 t, t7 = − 4

405 t
3− 13

135 t
2 − 121

2880 t − 323
51840 ,

where t is a root of 512t4 + 5504t3 + 6370t2 + 2501t + 323 = 0. For the root
t ≈ −0.319621, we have sm2(a,M) ≈ 2.25960. Hence, sm∞(a,M) ≥ 1.75960. By
Theorem 1, for the mask a with t ≈ −0.319621, the 2-refinable function φ ∈ C 1(R)

is sa-interpolating and its subdivision scheme is C 1-convergent 2-step interpolatory
subdivision scheme. SeeFig. 3 for the graph of the sa-interpolating 2-refinable function
φ with the above mask a and t ≈ −0.319621, which is approximately given by

a ≈ {0.00010829639, 0.0018661071, 0.010752801, −0.032155785, −0.06531331, 0.19638181,

0.51228456, 0.36290592, 0.044484714, −0.028998091, −0.0023170997}[−6,4].
(2.33)
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Fig. 3 (a) is the graph of the 1
3 -interpolating 2-refinable function φ ∈ C 0(R) in Example 5 with the mask

a in (2.32) and t = 0. (b) is the graph of the 1
3 -interpolating 2-refinable function φ ∈ C 1(R) with the mask

a in (2.32) and t = − 1
18 . (c) is the graph of the 1

3 -interpolating 2-refinable function φ ∈ C 1(R) with the

mask a in (2.33). (d) is the graph of the 1
7 -interpolating 2-refinable function φ ∈ C 0(R) in Example 6 with

the mask a in (2.34)

See Fig. 3 for the graph of the sa-interpolating 2-refinable function φ.

We now consider another example using sa = 1
7 which satisfies (1.12) with ms =

0 and ns = 3. Therefore, we have to use the general Construction Procedure in
Section 2.4.

Example 6 Let M = 2 and sa = 1
7 which satisfies (1.12) with ms = 0 and ns =

3. Note that (1.13) becomes w = δ due to ms = 0. We consider masks a with
fsupp(a) = [−2, 1] and sr(a,M) = J with J = 2. We parameterize masks a in (S1)
by ã(z) = (1 + z)J b̃(z) with b = {t1, t2}[−2,−1] for unknowns t1 and t2. Solving the
linear equations (2.15) in (S2) of Construction Procedure, we have a unique solution
t1 = − 1

28 , t2 = 2
7 . Because ms = 0, for (S3), we can directly check that the nonlinear

equation (1.16) with ns = 3 are automatically satisfied. Hence, we obtain a unique
solution:

a = {− 1
28 ,

3
14 ,

15
28 ,

2
7 }[−2,1], b = {− 1

28 ,
2
7 }[−2,−1] with sm2(a,M) ≈ 1.29617.

(2.34)

By (2.4) and (2.5) with γ0 = −1, we have ρ0(b, 2)∞ = M|b(γ0)| = 4
7 and hence

sm∞(a, 2) = − log2
4
7 ≈ 0.80735. Hence, according to Theorem 1, the 2-refinable

function φ must be sa-interpolating and the dyadic subdivision scheme is 3-step inter-
polatory. See Fig. 3 for the graph of the sa-interpolating 2-refinable function φ.

2.7 The casems > 0 for sa-interpolatingM-refinable functions and∞-step
interpolatory subdivision schemes

For ms > 0, we have to employ the general Construction Procedure in Section 2.4
to construct sa-interpolating refinable functions. Their constructions are often much
more complicated and we have to deal with nonlinear equations in (1.13) and (1.14).

For symmetric masks a satisfying (1.8), we must have sa = ca
2(M−1) in (2.22). If ca

is an odd integer and M is even, then sa = ca
2(M−1) = caM/2

M(M−1) satisfies the condition
(1.12) with ms = 1 and ns = 1. Therefore, according to item (3) of Theorem 1, its
subdivision scheme is only∞-step (i.e., limit) interpolatory.We now particularly look
at the special case ms = ns = 1. Then the nonlinear equations (1.13) and (1.14) in
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Construction Procedure with ms = ns = 1 become

[a ∗ w](Mk) = M−1δ(k) and [a ∗ w](M(M − 1)sa + Mk) = M−1w(k), k ∈ Z.

(2.35)

The above nonlinear equations in (2.35) become linear equations if the solution w to
(2.23) is unique (which can be always achieved by increasing J in (2.23) until it has
a unique solution) or the remaining free parameters in the solution w of (2.23) are
not regarded as unknowns or take preassigned values in advance. For simplicity of
presentation, here we only consider M = 4 and symmetric masks.

Example 7 Let M = 4 and sa = ca
2(M−1) with ca = 1. Note that sa = ca

2(M−1) = 1
6

satisfies (1.12) with ms = ns = 1. We consider symmetric masks a with fsupp(a) =
[−4, 5] and sr(a,M) = J with J = 2. We parameterize a in (S1) by ã(z) = (1+ z +
z2 + z3)J b̃(z) such that b = {t1, t2, t2, t1}[−4,−1]. Solving the linear equations (2.15)
in (S2) of Construction Procedure, we have t1 = 1

32 − t2 with the free parameter
t2. Because ms = 1 > 0, we have to use (S3’) in Construction Procedure. Noting
that lw = −1 and hw = 0 due to supp(φ) = [− 4

3 ,
5
3 ], we solve the linear equations

(2.23) of (S3’) and we obtain a unique solution w = { 12 , 1
2 }[−1,0]. Now the nonlinear

equations (1.13) and (1.14) in (S3’) (i.e., (2.35)) become linear equations. The linear
equations (2.35) have a unique solution t2 = 3

64 and we obtain a symmetric mask
a ∈ l0(Z) with fsupp(a) = [−4, 5] and sr(a,M) = 2:

a={− 1
64 ,

1
64 ,

3
32 ,

5
32 ,

1
4 ,

1
4 ,

5
32 ,

3
32 ,

1
64 ,− 1

64 }[−4,5], b={− 1
64 ,

3
64 ,

3
63 ,− 1

64 }[−4,−1].

By calculation, we have sm2(a,M) ≈ 1.419518. Using (2.4) and (2.5) with γ0 =
−2, we have ρ0(b,M)∞ = M|b(γ0)| = 3

16 and hence, we have sm∞(a,M) =
− logM ρ0(b,M)∞ = log4

16
3 ≈ 1.207519. By Theorem 1, its symmetric M-refinable

function φ ∈ C 1(R) must be 1
6 -interpolating and its ∞-step interpolatory M-

subdivision scheme must be C 1-convergent.
Next we consider symmetric masks a with fsupp(a) = [−7, 8] and sr(a,M) = J

with J = 3. We parameterize a in (S1) by ã(z) = (1 + z + z2 + z3)J b̃(z) such
that b = {t1, t2, t3, t4, t3, t2, t1}[−7,−1]. Solving the linear equations (2.15) in (S2) of
Construction Procedure, we have t3 = −9t1 − 4t2 − 15

512 and t4 = 16t1 + 6t2 + 19
256

with the free parameters t1, t2 ∈ R. Because ms = 1 > 0, we have to use (S3’) in
Construction Procedure. Noting that lw = −2 and hw = 1 due to supp(φ) = [− 7

3 ,
8
3 ],

we solve the linear equations (2.23) of (S3’) and we obtain

w = {− 1
8 − s, 3

4 + 3s, 3
8 − 3s, s}[−2,1], (2.36)

where s ∈ R. Then we use it to further solve the nonlinear equations (2.35) in (S3’)
and obtain a solution t2 = 6t1 and s = − 1

16 with the free parameter t1 ∈ R. That is,
we now obtain

b = {t1, 6t1,− 15
512 − 33t1, 19

256 + 52t1,− 15
512 − 33t1, 6t1, t1}[−7,−1].
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In fact, if we would use J = 4 instead of J = 3 in (2.23), then (2.23) has a unique
solution in (2.36) with s = − 1

16 and then the nonlinear equations (2.35) become linear
equations, yielding the same solution t2 = 6t1. Moreover, up to an integer shift and
a multiplicative factor 4, the above mask a agrees with the mask A reported in [22,
Proposition 3.5].

Optimizing sm2(a,M) among values of t1 as described in Section 2.1, we take
t1 = − 1

832 and obtain a symmetric mask a ∈ l0(Z) with the symmetry center 1/2 and
sr(a,M) = 3 given by

a={− 1
832 ,− 9

832 ,− 123
6656 ,− 83

6656 ,
141
6656 ,

645
6656 ,

607
3328 ,

807
3328 ,

807
3328 ,

607
3328 ,

645
6656 ,

141
6656 ,

− 83
6656 ,− 123

6656 ,− 9
832 ,− 1

832 }[−7,8].

By calculation, we have sm2(a,M) ≈ 2.264759 and sm∞(a,M) ≥ 2.132628 using
(2.3) with n = 2. By Theorem 1, its symmetric M-refinable function φ ∈ C 2(R)

must be 1
6 -interpolating and its ∞-step interpolatory subdivision scheme must be

C 2-convergent.
Finally, we consider symmetricmasks awith fsupp(a) = [−12, 13] and sr(a,M) =

J with J = 5. We parameterize a in (S1) by ã(z) = (1+ z + z2 + z3)J b̃(z) such that
b = {t1, t2, t3, t4, t5, t6, t5, t4, t3, t2, t1}[−12,−2]. Solving the linear equations (2.15) in
(S2) of Construction Procedure, we have

t4 = 715
131072 −50t1−20t2−6t3, t5 = − 815

32768 +175t1+64t2+15t3, t6 = 2609
65536 −252t1−90t2−20t3

with the free parameters t1, t2, t3. Because ms = 1 > 0, we have to use (S3’) in
Construction Procedure. Noting that lw = −4 and hw = 3 due to supp(φ) = [−4, 13

3 ],
we solve the linear (2.23) of (S3’) and we obtain

w = {s1, s2, s3, 35
128 − 35s1 − 15s2 − 5s3, 35

32 + 105s1 + 40s2 + 10s3, − 35
64 − 126s1 − 45s2 − 10s3,

7
32 + 70s1 + 24s2 + 5s3, − 5

128 − 15s1 − 5s2 − s3}[−4,3],

where s1, s2, s3 ∈ R. Then we use it to further solve the nonlinear equations (1.13)
and (1.14) in (S3’) and obtain three solution families. The solution with the simplest
expresses is given by

t2 = 10
3 t1, t3 = 2145

3670016 + 55
3 t1, s1 = 0, s2 = 3

256 , s3 = − 25
256

with t1 ∈ R. Optimizing sm2(a,M) among values of t1 as described in Section 2.1, we
take t1 = 103

3670016 and obtain a symmetric mask a ∈ l0(Z) with the symmetry center
1/2 and sr(a,M) = 5 such that a|[1,13] is given by

{ 745
3072 ,

343905
1835008 ,

188627
1835008 ,

284335
11010048 ,− 183955

11010048 ,− 101845
3670016 ,− 65735

3670016 ,− 10793
2752512 ,

5585
2752512 ,

12725
3670016 ,

7295
3670016 ,

2575
11010048 ,

103
3670016 }[1,13]

with sm2(a,M) ≈ 3.109024 and sm∞(a,M) ≥ 2.873247 using (2.3) with n = 6.
By Theorem 1, its M-refinable function φ ∈ C 2(R) must be 1

6 -interpolating and its
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∞-step interpolatory M-subdivision scheme must be C 2-convergent. See Fig. 4 for
graphs of the sa-interpolating M-refinable functions φ.

Finally, combining Theorems 1 and 2 (more precisely, see Corollary 8), we present
an example of sa-interpolating 4-refinable function using 2-mask quasi-stationary
subdivision schemes.

Example 8 Let a1, a2 ∈ l0(Z) be symmetric dyadic masks with sr(a1, 2) =
sr(a2, 2) = J with J = 3 as follows:

ã1(z) = 1
8 z

−1(1 + z)3(t1z
−1 + 1 − 2t1 + t1z),

ã2(z) = 1
8 z

−2(1 + z)3(t3z
−2 + t2z

−1 + 1 − 2t2 − 2t3 + t2z + t3z
2),

LetM := 4 and define a newmask a ∈ l0(Z) by ã(z) := ã1(z2)ã2(z). Then sr(a,M) =
3, fsupp(a) = [−8, 9] and a is symmetric about the point 1/2. Applying Construction
Procedure and solving nonlinear equations, we obtain a solution given by

t2 = t(1088t21 + 510t1 − 15), t3 = −t(64t41 + 62t31 + 271t21 + 128t1),

where t := (64t31 + 32t21 − 16t1 + 8)−1, and

w = 1
16−32t1

{2t31 + 2t21 ,−6t31 − 3t21 + 2t1 − 1, 4t31 + 2t21 − 18t1 + 9,

4t31 + 2t21 − 18t1 + 9,−6t31 − 3t21 + 2t1 − 1, 2t31 + t21 }[−3,2],

where t1 ∈ R is a free parameter. Optimizing sm2(a,M) and selecting t1 = − 65
128 ,

we have sm2(a,M) ≈ 2.380804 and sm∞(a,M) ≥ 2.205219 using (2.3) with n = 3.
Explicitly, for t1 = − 65

128 , we have

a1 = 1
1024 {−65, 63, 514, 514, 63,−65}[−2,3],

a2 = 1
536738816 {−4280965, 14764145, 90418427, 167467801, 167467801,

90418427, 14764145,−4280965}[−4,3].

By Theorems 1 and 2 or Corollary 8, the M-refinable function φ ∈ C 2(R) must be
1
6 -interpolating and its ∞-step interpolatory 2-mask quasi-stationary 2-subdivision
scheme using masks {a1, a2} must be C 2-convergent. See Fig. 4 for the graph of the
1
6 -interpolating M-refinable function φ.

2.8 Application to subdivision curves

We first explain the rule of sa ∈ R from the perspective of subdivision curves in
CAGD. Let M ∈ N\{1} be a dilation factor and a ∈ l0(Z) be a mask. Given an
initial control polygonal v = (vx , vy, vz) : Z → R

3 in the Euclidean space R
3.

That is, the initial control polygonal is given by the points (vx (k), vy(k), vz(k)) in R
3
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Fig. 4 (a) is the graph of the 1
6 -interpolating 4-refinable function φ ∈ C 2(R) in Example 7 with the mask

a satisfying sr(a, 4) = 3. (d) is the graph of φ′′ in (a). (b) is the graph of the 1
6 -interpolating 4-refinable

function φ ∈ C 2(R) in Example 7 with the mask a satisfying sr(a, 4) = 5. (e) is the graph of φ′′ in
(b). (c) is the graph of the 1

6 -interpolating 4-refinable function φ ∈ C 2(R) with 2-mask quasi-stationary

2-subdivision scheme in Example 8 with t1 = − 65
128 . (f) is the graph of φ′′ in (c)

for k ∈ Z which are connected in a natural way. The subdivision scheme is applied
componentwise to the vector sequence v to produce finer and finer subdivided curves
consisting of points {(Sn

a,Mvx ,Sn
a,Mvy,Sn

a,Mvz)}∞n=1. As n goes to ∞, one obtains a

subdivision curve in R
3. Obviously, no function expressions are explicitly given by

the subdivision procedure to describe the limit subdivision curve in R
3. To analyze

the convergence and smoothness of the limit curve, it is necessary to find parametric
expressions for the limit curve. The most natural way is to consider the subdivision
scheme acting on a special initial control polygon in R

2: (v0, v) : Z → R
2 with

v0(k) := k for k ∈ Z and v being one of the component sequences vx , vy, vz . Then
we obtain the following sequence of subdivision point data:

(Sn
a,Mv0,Sn

a,Mv) ∈ R
2, n ∈ N. (2.37)

Suppose now that the mask a has at least order 2 sum rules with respect to the dilation
factor M, i.e., sr(a,M) ≥ 2. Define a special linear polynomial p(x) := x for x ∈ R.
Then v0(k) = p(k) and p′ = 1 for all k ∈ Z. It is known in [10, (2.20)] (also see
(3.13) in this paper) that

[Sa,Mv0](k) = [Sa,Mp](k) = p(M−1k)
∑

k∈Z
a(k)−M−1p′(M−1k)

∑

k∈Z
ka(k) = M−1k−M−1ma,

where we used
∑

k∈Z a(k) = 1 and ma := ∑
k∈Z ka(k). Consequently, by induction

we conclude from the above identity that

[Sn
a,Mv0](k)=M−nk − M−nma − M1−nma − · · · − M−1ma =M−nk − 1 − M−n

M − 1
ma .

(2.38)

Hence, the second component [Sn
a,Mv](k) for k ∈ Z in (2.37) is associated with the

first component [Sn
a,Mv0](k), which is just the valueM−nk − 1−M−n

M−1 ma . Let ηv be the
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limit function in Definition 1 with m = 0 for C m-convergence. Take t := M−n0k0
with n0 ∈ N0 and k0 ∈ Z. By t = M−n(Mn−n0k0) and Mn−n0k0 ∈ Z for n ≥ n0, we
observe from (1.6) with j = 0 in Definition 1 that

ηv(t) = lim
n→∞ ηv(M−n(Mn−n0k0)) = lim

n→∞[Sn
a,Mv](Mn−n0k0).

Because the first component of the point ([Sn
a,Mv0](Mn−n0k0), [Sn

a,Mv](Mn−n0k0))
in the subdivision data is [Sn

a,Mv0](Mn−n0k0), which is equal to M−n[Mn−n0k0] −
1−M−n

M−1 ma = t − 1−M−n

M−1 ma by (2.38), we conclude that its first component of the
subdivided curve goes to

lim
n→∞[Sn

a,Mv0](Mn−n0k0) = lim
n→∞

(
t − 1−M−n

M−1 ma

)
= t − sa with sa := ma

M − 1
.

In other words, we must associate the subdivision data [Sn
a,Mv](k) with the ref-

erence/parameter point [Sn
a,Mv0](k) in (2.38) on the real line R, i.e., the point

M−n − 1−M−n

M−1 ma = M−n(k − sa) − sa . Because ∪∞
n0=0 ∪k0∈Z M−n0k0 is dense in

R, this naturally creates a parametric equation x = t − sa, y = ηv(t) in R
2 for the

subdivision curvewith the initial polygon {(v0(k), v(k))}k∈Z. By a change of variables,
the limit two-dimensional subdivision curve is described by the parametric equation
in R

2:
x = t, y = ηv(sa + t), t ∈ R.

Now for the subdivision curve in R
3 generated from the initial control curve

{(vx (k), vy(k), vz(k))}k∈Z, a parametric equation for the limit subdivision curve is
just given by x = ηvx (sa + t), y = ηvy (sa + t), z = ηvz (sa + t) for t ∈ R. If
the subdivision scheme interpolates the initial sequence {(v0(k), v(k))}k∈Z, then for
t = k ∈ Z, we must have η(sa + k) = v(k) for all k ∈ Z. In particular, for v = δ, we
have φ(sa + k) = ηδ(k) = δ(k). This explains sa = ma

M−1 with ma = ∑
k∈Z ka(k),

which also agrees with (2.17) in Proposition 3. Moreover, if a mask a has the symme-
try a(ca − k) = a(k) for all k ∈ Z with ca ∈ Z, then we already explained after the
proof of Proposition 3 that sa = ma

M−1 withma = ∑
k∈Z ka(k), which also agrees with

our discussion of sa from the perspective in CAGD. Consequently, regardless whether
ca is an even integer for primal subdivision schemes or ca is an odd integer for dual
subdivision schemes, because we explained the role of sa above without requiring a
symmetric mask a, there are no essential differences between primal and dual subdivi-
sion schemes. In summary, the subdivided data [Sn

a,Mv](k) for k ∈ Zmust be naturally
associated with the parameter point [Sn

a,Mv0](k), i.e., the pointM−n(k − sa)− sa with
sa := ma

M−1 and ma := ∑
k∈Z ka(k).

Finally, see Figs. 5 and 6 for some examples of subdivision curves by applying
our constructed interpolatory (quasi)-stationary subdivision schemes to produce some
simple subdivision curves.
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Fig. 5 (a) is the initial control polygon in R
2. The dots in (b)-(h) indicate the vertices of the initial control

polygon in (a) for illustrating the ns -step interpolation property. (b)–(d) are subdivision curves with levels
1, 2, 4 using theC 1-convergent 2-step interpolatory 2-subdivision schemewithmask a in (2.32) of Example
5 with t = − 1

18 . (e)–(f) are subdivision curves with levels 1, 2 using theC
2-convergent 2-step interpolatory

3-subdivision scheme with mask a in Example 4 with sr(a, 3) = 3 and t1 = 1
432 . (g)–(h) are subdivision

curves with levels 1, 2 using the C 2-convergent ∞-step interpolatory 4-subdivision scheme with mask a
in Example 7 with sr(a, 4) = 3 and t1 = − 1

832

3 Proof of Theorem 1

In this section we shall prove Theorem 1, whose proof is critically built on two ingre-
dients: the eigenvalues of shifted transition operators Ta,M,γ below and the structure
of the number sa satisfying the condition (1.12). We already addressed the roles of sa
satisfying the condition (1.12) in Section 2.2. To prove Theorem 1, we further need
some auxiliary results about the structure of shifted transition operators Ta,M,γ .

For a ∈ l0(Z) and γ ∈ Z, we define a shifted transition operator Ta,M,γ : l0(Z) →
l0(Z) by

[Ta,M,γ v](n) := M
∑

k∈Z
a(k)v(γ + Mn − k), n ∈ Z, v ∈ l0(Z). (3.1)

We first study the eigenvalues of Ta,M,γ acting on the linear space l0(Z). By
spec(Ta,M,γ ) we denotes the multiset of all the eigenvalues of Ta,M,γ counting the
multiplicity of nonzero eigenvalues of Ta,M,γ .We now study some properties of Ta,M,γ

by generalizing the corresponding results in [14, 16] for M = 2.

Lemma 5 Let M ∈ N\{1} be a dilation factor. Let a ∈ l0(Z) and γ ∈ Z.

(1) Ta,M,γ �(Ka,γ ) ⊆ �(Ka,γ ), where �(Ka,γ ) is the space of all sequences v ∈ l0(Z)

such that v is supported inside Z ∩ Ka,γ with Ka,γ := (M− 1)−1[fsupp(a) − γ ].
(2) If Ta,M,γ v = λv for some λ ∈ C\{0} and v ∈ l0(Z), then v ∈ �(Ka,γ ).
(3) Ta,M,γ+M j (v(· + m)) = [Ta,M,γ+mv](· + j) for all j,m ∈ Z. Hence,

spec(Ta,M,γ+(M−1) j ) = spec(Ta,M,γ ) for all j ∈ Z.
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Fig. 6 (a)–(d) are subdivision curves with levels 1, . . . , 4 using the C 2-convergent 2-step interpolatory
2-mask quasi-stationary 2-subdivision scheme in Example 2 with masks {a1, a2} (having two-ring stencils)
in (2.11) using parameters in (2.12). (e)–(h) are subdivision curves with levels 2, . . . , 5 using the C 3-
convergent 3-step interpolatory 3-mask quasi-stationary 2-subdivision scheme in Example 3 with masks
{a1, a2, a3} having two-ring stencils. (i)–(j) are subdivision curves with levels 2, 4 using theC 1-convergent
2-step interpolatory 2-subdivision scheme in Example 1withmask {a1, a2} having one-ring stencils. (k)–(1)
are subdivision curves with levels 2, 4 using the C 2-convergent 2-step interpolatory 2-subdivision scheme
with mask a in Example 2 using parameters in (2.13) and having two-ring stencils

Proof (1) Recall that fsupp(a) is the smallest interval such that a(k) = 0 for all k ∈
Z\ fsupp(a). Let v ∈ �(Ka,γ ). Then [Ta,M,γ v](n) �= 0 only if a(k)v(γ +Mn−k) �= 0
for some k ∈ Z, from which we have k ∈ fsupp(a) and γ + Mn − k ∈ Ka,γ , which
implies n ∈ M−1[fsupp(a) + Ka,γ − γ ]. By the definition of Ka,γ , we observe

M−1[fsupp(a) + Ka,γ − γ ] = M−1[fsupp(a) + (M − 1)−1 fsupp(a) − (M − 1)−1γ − γ ]
= (M − 1)−1 fsupp(a) − (M − 1)−1γ = Ka,γ .

This proves that v is supported inside Ka,γ . Hence, we proved item (1).
(2) If v is identically zero, then the claim is obviously true. So, we assume that v is

not identically zero. If v(n) �= 0 for some n ∈ Z, then λ−1[Ta,M,γ v](n) = v(n) �= 0.
By the above same argument,wemust have n ∈ M−1 fsupp(a)−M−1γ +M−1 fsupp(v)

from which we must have

fsupp(v) ⊆ M−1 fsupp(v) + M−1[fsupp(a) − γ ].
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Recursively applying the above relation (e.g., see [16]), we conclude that

fsupp(v) ⊆
∞∑

j=1

M− j [fsupp(a) − γ ] = (M − 1)−1[fsupp(a) − γ ] = Ka,γ .

This proves item (2).
(3) Note that

Ta,M,γ+M j (v(· + m)) = M
∑

k∈Z
a(k)v(γ + M j + M · −k + m)

= M
∑

k∈Z
a(k)v(γ + m + M(· + j) − k)=[Ta,M,γ+mv](· + j).

Hence, consideringm = j , we have spec(Ta,M,γ+M j ) = spec(Ta,M,γ+ j ) for all j, γ ∈
Z, fromwhichwe further have spec(Ta,M,γ+(M−1) j ) = spec(Ta,M,γ ). This proves item
(3). ��

We now study the eigenvalues of shifted transition operators Ta,M,γ and prove the
identity (2.2).

Lemma 6 Let M ∈ N\{1} be a dilation factor. Let a ∈ l0(Z) and J ∈ N0 such that
ã(z) = (1 + z + · · · + zM−1)J b̃(z) for some b ∈ l0(Z). Define An := M−nSn

a,Mδ and
Bn := M−nSn

b,Mδ, i.e.,

Ãn(z) := ã(zM
n−1

) · · · ã(zM)ã(z), B̃n(z) := b̃(zM
n−1

) · · · b̃(zM)b̃(z), n ∈ N.

(3.2)

Let u ∈ l0(Z) and take N ∈ N such that all the sequences a, b, u are supported inside
(−N , N ). Then

2J (1/p−1)N−J ‖Bn ∗ u‖l p(Z) ≤ ‖∇ J (An ∗ u)‖l p(Z) ≤ 2J‖Bn ∗ u‖l p(Z), ∀ n ∈ N, 1 ≤ p ≤ ∞
(3.3)

and

lim inf
n→∞ ‖Bn ∗ u‖1/nlp(Z)

≥ M
1
p −1−J |ã(1)|, ∀ u ∈ l0(Z) such that

∑

k∈Z
u(k) �= 0,

(3.4)

where ã(1) := ∑
k∈Z a(k). Moreover,

spec(Ta,M,γ ) = {ã(1),M−1ã(1), . . . ,M1−J ã(1)} ∪ spec(Tb,M,γ ) (3.5)
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and it follows directly from (3.3) and (3.4) that

lim sup
n→∞

‖∇ JSn
a,Mδ‖1/nlp(Z) = lim sup

n→∞
‖Sn

b,Mδ‖1/nlp(Z) = M lim sup
n→∞

‖Bn‖1/nlp(Z) ≥ M
1
p −J |ã(1)|.

(3.6)

Proof By (1 − z)(1 + z + · · · + zM−1) = 1 − zM, the symbol of ∇ J (An ∗ u) is

(1 − z)J Ãn(z)ũ(z) = (1 − zM
n
)J B̃n(z)ũ(z) =

J∑

j=0

J !
j !(J − j)! (−1) j zM

n j B̃n(z)ũ(z).

(3.7)

Therefore, we deduce from the above identity in (3.7) that

‖∇ J (An ∗ u)‖l p(Z) ≤
J∑

j=0

J !
j !(J − j)! ‖Bn ∗ u‖l p(Z) = 2J‖Bn ∗ u‖l p(Z).

This proves the upper bound in (3.3). Define a sequence wn ∈ l0(Z) by w̃n(z) :=
(1+ zM

n + (zM
n
)2 + · · · + (zM

n
)2N−1)J . On the other hand, to prove the lower bound

in (3.3), we have

w̃n(z)(1 − z)J Ãn(z)ũ(z) = w̃n(z)(1 − zM
n
)J B̃n(z)ũ(z)

= (1 − z2NMn
)J B̃n(z)ũ(z) =

J∑

j=0

J !
j !(J − j)! (−1) j z2N jMn

B̃n(z)ũ(z).

Because all the sequences a, b, u are supported inside [1−N , N −1], we observe that
the sequence Bn ∗ u is supported inside [1 − NMn, NMn − 1]. Hence, the sequences
having the symbols z2N jMn

B̃n(z)ũ(z) must have mutually disjoint supports for j =
0, . . . , J . Then we deduce from the above identity that

2J/p‖Bn ∗ u‖l p(Z) = ‖wn ∗ (∇ J (An ∗ u))‖l p(Z) ≤ ‖∇ J (An ∗ u)‖l p(Z)‖wn‖l1(Z)

= (2N )J‖∇ J (An ∗ u)‖l p(Z),

from which we proved the lower bound in (3.3).
We now prove (3.4). Let 1 ≤ p′ ≤ ∞ such that 1

p + 1
p′ = 1. Noting

[b̃(1)]n ũ(1) = B̃n(1)ũ(1) = B̃n ∗ u(1) =
NMn−1∑

k=1−NMn

[Bn ∗ u](k)

and using the Hölder’s inequality, we have

|b̃(1)|n |ũ(1)| ≤
NMn−1∑

k=1−NMn

|[Bn ∗ u](k)| ≤
⎛

⎝
NMn−1∑

k=1−NMn

|[Bn ∗ u](k)|p
⎞

⎠
1/p ⎛

⎝
NMn−1∑

k=1−NMn

1

⎞

⎠
1/p′

= ‖Bn ∗ u‖l p(Z)(2NMn − 1)1/p
′ ≤ ‖Bn ∗ u‖l p(Z)(2NMn)1/p

′
.
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Because ũ(1) = ∑
k∈Z u(k) �= 0, we deduce from the above identity that

|b̃(1)| ≤
(
lim inf
n→∞ ‖Bn ∗ u‖1/nlp(Z)

) (
lim
n→∞(2NMn)

1
np′

)
= M1/p′

lim inf
n→∞ ‖Bn ∗ u‖1/nlp(Z)

,

from which we have (3.4) due to 1/p′ = 1 − 1/p and b̃(1) = M−J ã(1).
For j = 0, . . . , J , we define V j := {∇ jv : v ∈ l0(Z)} and define b j ∈ l0(Z) by

b̃ j (z) = (1+z+· · ·+zM−1)J− j b̃(z). Note that ã(z) = (1+z+· · ·+zM−1) j b̃ j (z) for
all j = 0, . . . , J . In particular, b0 = a and bJ = b. Note that the symbol of a ∗ (∇ jv)

is

(1 − z) j ã(z)ṽ(z) = (1 − zM) j b̃ j (z)ṽ(z) =
j∑

k=0

j !
k!( j − k)! (−1)k zMk b̃ j (z)ṽ(z).

Therefore, by the definition of Ta,M,γ in (3.1), we have

Ta,M,γ (∇ jv)=M[a ∗ (∇ jv)](γ +M·)=
j∑

k=0

j !
k!( j−k)! (−1)kM[b j ∗ v](γ +M(·− k))

=
j∑

k=0

j !
k!( j − k)! (−1)k[Tb j ,M,γ v](· − k) = ∇ j (Tb j ,M,γ v).

That is, we proved

Ta,M,γ (∇ jv) = ∇ j (Tb j ,M,γ ), ∀ v ∈ l0(Z) and j = 0, . . . , J . (3.8)

We conclude from (3.8) that Ta,M,γV j ⊆ V j and spec(Ta,M,γ |V j ) = spec(Tb j ,M,γ ) for
all j = 0, . . . , J .

For j = 0, . . . , J −1, due to sr(a,M) ≥ J , note that b j must have at lease one sum
rule, i.e.,

∑
k∈Z b j (γ +Mk) = 1

M

∑
k∈Z b j (k) = M−1− j ã(1) for all γ ∈ Z. Therefore,

∑

k∈Z
[Tb j ,M,γ δ](k) = M

∑

k∈Z
[b j ∗ δ](γ + Mk) = M

∑

k∈Z
b j (γ + Mk) = M− j ã(1),

from which we obtain Tb j ,M,γ δ − M− j ã(1)δ = ∇w for some w ∈ l0(Z). Hence, we
deduce from (3.8) that

Ta,M,γ (∇ jδ) − M− j ã(1)∇ jδ = ∇ j (Tb j ,M,γ δ) − M− j ã(1)∇ jδ

= ∇ j
(
Tb j ,M,γ δ − M− j ã(1)δ

)
= ∇ j∇w = ∇ j+1w ∈ V j+1.

This proves Ta,M,γ (∇ jδ) − M− j ã(1)∇ jδ ∈ V j+1 for all j = 0, . . . , J − 1. Note
that V j/V j+1 is a one-dimensional space and is spanned by ∇ jδ. Consequently, we
conclude that spec(Ta,M,γ |V j /V j+1) = {M− j ã(1)} for all j = 0, . . . , J − 1. Since we
proved spec(Ta,M,γ |VJ ) = spec(TbJ ,M,γ ) and bJ = b, we conclude that (3.5) holds. ��
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We now prove the major auxiliary result on the special eigenvalues of the shifted
transition operators Ta,M,γ , which plays a key role in the proof of Theorem 1.

Theorem 7 Let M ∈ N\{1} be a dilation factor and a ∈ l0(Z) be a finitely supported
mask satisfying

∑
k∈Z a(k) = 1. Then

sr(a,M) ≥ sm p(a,M) ∀ 1 ≤ p ≤ ∞. (3.9)

If sm p(a,M) > 1
p + m with m ∈ N0 for some 1 ≤ p ≤ ∞, then |λ| < M−m for all

λ ∈ spec(Ta,M,γ ) but λ /∈ {1,M−1, . . . ,M−m}, and each M− j for j = 0, . . . ,m must
be a simple eigenvalue of the transition operator Ta,M,γ in (3.1) acting on l0(Z) for
all γ ∈ Z.

Proof Let J := sr(a,M). Write ã(z) = (1 + z + · · · + zM−1)J b̃(z) for a unique
sequence b ∈ l0(Z). By (3.6) in Lemma 6 and ã(1) = 1, we deduce from the definition
of smp(a,M) in (1.10) that

M
1
p−J ≤ lim sup

n→∞
‖Sn

b,Mδ‖1/nlp(Z) = lim sup
n→∞

‖∇ JSn
a,Mδ‖1/nlp(Z) = M

1
p −smp(a,M)

, (3.10)

from which we must have smp(a,M) ≤ J = sr(a,M). This proves (3.9).
We now prove the claims under the assumption smp(a,M) > 1

p + m. Using the
identity (3.5) which links the eigenvalues of Ta,M,γ with those of Tb,M,γ , the key
ingredient of the proof here is to show that the assumption sm p(a,M) > 1

p + m will

force other non-special eigenvalues of Ta,M,γ to have modulus less thanM−m . Define
Bn as in (3.2). We shall use induction to prove that

T n
b,M,γ v = Mn[Bn ∗ v](γ + Mγ + · · · + Mn−1γ + Mn ·), n ∈ N, v ∈ l0(Z).

(3.11)

By the definition of Tb,M,γ in (3.1), it is easy to see that (3.11) holds with n = 1
due to B1 = b. Suppose that the claim holds for n − 1 with n ≥ 2. By the induction
hypothesis, we have

T n
b,M,γ v = Tb,M,γ [T n−1

b,M,γ v] = Mn−1Tb,M,γ [(Bn−1 ∗ v)(γ + Mγ + · · · + Mn−2γ + Mn−1·)]
= Mn

∑

k∈Z
b(k)(Bn−1 ∗ v)(γ + Mγ + · · ·Mn−2γ + Mn−1(γ + M · −k))

= Mn
∑

k∈Z

∑

j∈Z
b(k)Bn−1( j)v(γ + Mγ + · · · + Mn−1γ + Mn · −(Mn−1k + j)).

Therefore, using the above identity and the definition of Sb,M in (1.4), we have

T n
b,M,γ v = Mn

∑

j∈Z

∑

k∈Z
b(k)Bn−1( j − Mn−1k)v(γ + Mγ + · · · + Mn−1γ + Mn · − j)

= M
∑

j∈Z
[SBn−1,Mn−1b]( j)v(γ + Mγ + · · · + Mn−1γ + Mn · − j)
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= Mn
∑

j∈Z
Bn( j)v(γ + Mγ + · · · + Mn−1γ + Mn · − j)

= Mn[Bn ∗ v](γ + Mγ + · · · + Mn−1γ + Mn ·),

where we used the fact that SBn−1,Mn−1b = Mn−1Bn . This proves (3.11) by induction
on n ∈ N.

Suppose Tb,M,γ v = λv for some λ ∈ C\{0} and v ∈ l0(Z)\{0}. Then we deduce
from (3.11) that

λnv = T n
b,M,γ v = Mn[Bn ∗ v](γ + Mγ + · · · + Mn−1γ + Mn ·).

Consequently, we have

|λ|n‖v‖l p(Z) ≤ Mn‖Bn ∗ v‖l p(Z) ≤ Mn‖Bn‖l p(Z)‖v‖l1(Z).

Using (3.10) and noting Bn = M−nSn
b,Mδ, we conclude that

|λ| = lim
n→∞ |λ|‖v‖1/nlp(Z)

≤ M lim sup
n→∞

‖Bn‖1/nlp(Z)
= lim sup

n→∞
‖Sn

b,Mδ‖1/nlp(Z)
= M

1
p −smp(a,M)

< M−m ,

where we used our assumption smp(a,M) > 1
p +m in the last inequality. This proves

that any nonzero eigenvalue in spec(Tb,M,γ )must be less thanM−m . Now all the claims
follow directly from (3.5) of Lemma 6 and our assumption ã(1) = 1. ��

Before proving Theorem 1, for a convergent subdivision scheme, we first show
that the special limit function ηδ for the particular initial data v = δ must be the
M-refinable function φ. Indeed, since a ∈ l0(Z), the mask a must support inside
[−N , N ] for some N ∈ N and therefore, the function ηδ must be supported inside
[− N

M−1 ,
N

M−1 ] ⊆ [−N , N ]. Then for any x := M−n0k0 with n0 ∈ N and k0 ∈ Z,
noting that x = M−n(Mn−n0k0) with Mn−n0k0 ∈ Z for all n ≥ n0, we directly derive
from (1.6) and the definition of Sa,M in (1.4) that

ηδ(x) = lim
n→∞[Sn+n0

a,M δ](Mn−n0k0) = M
N∑

k=−N

a(k) lim
n→∞[Sn+n0−1

a,M δ](Mn−n0k0 − Mk)

= M
∑

k∈Z
a(k)ηδ(Mx − k).

Since {M−n0k0 : n0 ∈ N, k0 ∈ Z} is dense in R and ηδ is continuous, the function ηδ

must satisfy (1.1), i.e., η̂δ(Mξ) = ã(e−iξ )η̂δ(ξ). By
∑

k∈Z a(k) = 1, we observe that∑
k∈Z[Sn

a,Mδ](k) = Mn for all n ∈ N. Now using a Riemann sum for the continuous
function ηδ , we deduce from (1.6) that

∫

R

ηδ(x)dx = lim
n→∞M−n

Mn N∑

k=−Mn N

ηδ(M
−nk) = lim

n→∞M−n
∑

k∈Z
[Sn

a,Mδ](k) = 1.
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That is, η̂δ(0) = 1. Hence, the function ηδ must agree with theM-refinable function φ

with mask a. For 0 < τ ≤ 1 and a function f ∈ L p(R), we say that f belongs to the
Lipschitz space Lip(τ, L p(R)) if there exists a positive constantC such that ‖ f − f (·−
t)‖L p(R) ≤ C‖t‖τ for all t ∈ R. For convenience, we define Lip(0, L p(R)) := L p(R).
The L p smoothness of a function f ∈ L p(R) is measured by its L p critical exponent
sm p( f ) defined by

sm p( f ) := sup{m + τ : 0 ≤ τ < 1 and f (m) ∈ Lip(τ, L p(R)),m ∈ N0}. (3.12)

For a compactly supported distribution f , we say that the integer shifts of f are
stable if span{ f̂ (ξ + 2πk) : k ∈ Z} = C for every ξ ∈ R. For the M-refinable
function φ with mask a ∈ l0(Z), by [9, Theorem 3.3] and [10, Theorem 4.3], we have
sm p(φ) ≥ smp(a,M); In addition, sm p(φ) = sm p(a,M) if the integer shifts of φ are
stable.

Next, we discuss how the subdivision operator Sa,M reproduces polynomials. For
any mask a ∈ l0(Z), it is known in [10, (2.20)] (also see [13, Theorem 3.4]) that for
J := sr(a,M),

Sa,Mp =
∑

k∈Z
p(M−1(· − k))a(k)=

∞∑

j=0

(−M−1) jp( j)(M−1·)
j !

∑

k∈Z
k ja(k), p∈�J−1.

(3.13)

We prove it here for the convenience of the reader. Using the Taylor expansion of
p ∈ �J−1, we have

p(k)=p(M−1x−M−1(x−Mk))=
∞∑

j=0

p( j)(M−1x)

j ! (−M−1(x−Mk)) j =
∞∑

j=0

(−M−1) jp( j)(M−1x)

j ! (x−Mk) j .

By the definition of Sa,M in (1.4), using (1.9) for sum rules and the above identity, for
p ∈ �J−1 and x ∈ Z, we have

[Sa,Mp](x) = M
∑

k∈Z
p(k)a(x − Mk) = M

∞∑

j=0

(−M−1) jp( j)(M−1x)

j !
∑

k∈Z
(x − Mk) j a(x − Mk)

=
∞∑

j=0

(−M−1) jp( j)(M−1x)

j !
∑

k∈Z
k j a(k) =

∑

k∈Z

⎛

⎝
∞∑

j=0

(−M−1k) jp( j)(M−1x)

j !

⎞

⎠ a(k),

which proves (3.13) by noting
∑∞

j=0
1
j !p

( j)(M−1x)(−M−1k) j = p(M−1(x − k)).
We are now ready to prove Theorem 1.

Proof of Theorem 1 (1)�⇒(2). For v ∈ l(Z), we define fv(x) := ∑
k∈Z v(k)φ(x −k).

Because φ(sa + k) = δ(k) for all k ∈ Z, we have v( j) = fv(sa + j) for all j ∈
Z. Hence, if fv = 0, then we must have v( j) = 0 for all j ∈ Z. Therefore, the
integer shifts of φ are linearly independent and hence stable. Because φ ∈ C m(R),
we conclude from [10, Theorem 4.3 or Corollary 5.1] that sm∞(a,M) > m. Define a
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sequence w ∈ l0(Z) by

w(k) := φ(Mms sa + k), k ∈ Z. (3.14)

Note that φ is Mn-refinable with the mask An for every n ∈ N by (2.8). Then for all
k ∈ Z,

[Ams ∗w](Mms k)=
∑

j∈Z
Ams ( j)w(Mms k− j)=

∑

j∈Z
Ams ( j)φ(Mms (sa+k)− j)=M−ms φ(sa+k)=M−ms δ(k),

which proves (1.13), and

[Ans ∗ w](Mms (Mns − 1)sa + Mns k) =
∑

j∈Z
Ans ( j)w(Mms (Mns − 1)sa + Mns k − j)

=
∑

j∈Z
Ans ( j)φ(Mns (Mms sa + k) − j)

= M−nsφ(Mms sa + k) = M−nsw(k),

which proves (1.14). This proves (1)�⇒(2).
(2)�⇒(1). Because sm∞(a,M) > m, by [10, Theorem 4.3 or Corollary 5.1], we

have φ ∈ C m(R), which is also obtained from sm∞(φ) ≥ sm∞(a,M). Define

v(k) := φ(Mms sa + k), k ∈ Z.

Since φ is Mn-refinable with the mask An for every n ∈ N, by the same argument as
in the proof of (1)�⇒(2), we have

[Ams ∗v](Mms k) =
∑

j∈Z
Ams ( j)v(Mms k− j) =

∑

j∈Z
Ams ( j)φ(Mms (sa+k)− j) = M−msφ(sa+k)

and

[Ans ∗v](Mms (Mns −1)sa +Mns k) =
∑

j∈Z
Ans ( j)φ(Mns (Mms sa +k)− j)=M−ns φ(Mms sa +k)=M−ns v(k).

That is, we proved

[Ams ∗ v](Mms k) = M−msφ(sa + k) and [Ans ∗ v](Mms (Mns − 1)sa + Mns k) = M−ns v(k).
(3.15)

Using the definition of a shifted transition operator Ta,M,γ in (3.1), the second
identity in (3.15) can be equivalently expressed as TAns ,Mns ,γ v = v with γ :=
Mms (Mns − 1)sa ∈ Z. That is, v ∈ l0(Z) is an eigenvector of TAns ,Mns ,γ corre-
sponding to the eigenvalue 1. Similarly, the identity in (1.14) can be equivalently
expressed as TAns ,Mns ,γ w = w. Note that w cannot be the trivial zero sequence due
to (1.13). Also it is easy to deduce from the definition of sm∞(a,M) in (1.10) that
sm∞(Ans ,M

ns ) = sm∞(a,M) > m ≥ 0. By sm∞(Ans ,M
ns ) > 0 and Theorem 7
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with a and M being replaced by Ans and Mns , respectively, we conclude that 1 must
be a simple eigenvalue of TAns ,Mns ,γ and hence, we conclude that v = cw for some
constant c. Now by (1.14) and the first identity in (3.15), we have

M−msφ(sa + k) = [Ams ∗ v](Mms k) = c[Ams ∗ w](Mms k) = cM−ms δ(k)

for all k ∈ Z. Hence, φ(sa + k) = cδ(k) for all k ∈ Z. By Theorem 7, we have
sr(a,M) ≥ sm∞(a,M) > m ≥ 0 and hence, (2.18) must hold with J = 1 by the
proof of Proposition 3. Hence, we conclude from (2.18) that 1 = ∑

k∈Z φ(sa + k) =∑
k∈Z cδ(k) = c. This proves (2)�⇒(1).
(3)�⇒(1). Because the subdivision scheme is convergent, we already explained

that ηδ must be the M-refinable function φ with the mask a. By [18, Theorem 2.1]
or [10, Theorem 4.3], we must have sm∞(a,M) > m and hence φ must belong to
C m(R). Taking v = δ in (1.11), (1.3) follows directly from (1.11). Hence, φ must be
an sa-interpolating M-refinable function. This proves (3)�⇒(1).

(1)�⇒(3). We proved (1)�⇒(2) and hence, we have sm∞(a,M) > m. By [18,
Theorem 2.1], the M-subdivision scheme with mask a is C m-convergent and hence,
we already proved that ηδ = φ and ηv = ∑

k∈Z v(k)φ(· − k). The identity (1.11)
follows trivially from (1.3). This proves (1)�⇒(3).

We now prove (1.17). Since J = sr(a,M), we conclude from (2.15) and (3.13)
that

Sa,Mp =
∞∑

j=0

(−M−1) jp( j)(M−1·)
j ! m j

a =
∞∑

j=0

1

j !p
( j)(M−1·)(−M−1ma)

j

= p(M−1(· − ma)) = p(M−1(sa + ·) − sa),

where we used sa = ma
M−1 and hence −M−1ma = M−1sa − sa . Now by induction we

have

Sn
a,Mp = Sa,M[p(M1−n(· + sa) − sa)] = p(M1−n(M−1(· + sa) − sa + sa) − sa)

= p(M−n(· + sa) − sa).

This proves (1.17). ��
Let φ be the M-refinable function with a mask a ∈ l0(Z), i.e., φ̂(ξ) :=∏∞
j=1 ã(e

−iM− j ξ ). Under the condition sm∞(a,M) > 0, the function φ is continuous.
Note that sa ∈ R satisfies (1.12) if and only if sa ∈ DM, where DM := ∪∞

ms=0 ∪∞
ns=1

[M−ms (Mns − 1)−1
Z] is dense in R. It is easy to observe that ∪∞

m=0[M−m
Z] ⊆ DM

and ∪∞
n=1[(Mn − 1)−1

Z] ⊆ DM. For every sa ∈ DM, we now discuss how to exactly
compute φ(sa) through (3.15) within finite steps. Because sm∞(a,M) > 0, as we
already know in the proof of Theorem 1, TAns ,Mns ,γ with γ := Mms (Mns − 1)sa ∈ Z

has a simple eigenvalue 1, and the second identity in (3.15) is equivalent to saying that
v ∈ l0(Z) is an eigenvector of TAns ,Mns ,γ corresponding to the eigenvalue 1. Now the
value φ(sa) can be exactly computed within finite steps as follows:
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(S1) Compute the unique eigenvector v ∈ l0(Z) such that TAns ,Mns ,γ v = v and∑
k∈Z v(k) = 1.

(S2) Then φ(sa) = Mms [Ams ∗ v](0).
For any sa /∈ DM, the set [0, 1) ∩ (∪∞

j=1[M j sa + Z]) must be infinite and it is unlikely
that φ(sa) can be computed within finite steps through the refinement equation using
only the mask a ∈ l0(Z).

4 Proof of Theorem 2 on quasi-stationary subdivision schemes

In this section we shall first prove Theorem 2. Then we shall discuss how to com-
bine Theorems 1 and 2 for rns-step interpolatory r -mask quasi-stationary subdivision
schemes.

Proof of Theorem 2 The key ingredient of the proof is to show that sr(a�,M) > m
for all � = 1, . . . , r play the critical role for proving the convergence of r -mask
quasi-stationary subdivision schemes. Since all involved masks a1, . . . , ar have finite
supports, we observe that (1.19) holds for every K > 0 and v ∈ l(Z) if and only if
it holds for K = ∞ and v ∈ l0(Z). Hence, for simplicity of presentation, we shall
assume v ∈ l0(Z) and use K = ∞ in (1.19).

Sufficiency. Because sm∞(a,Mr ) > m, we conclude from [18, Theorem 2.1]
that the Mr -subdivision scheme with mask a is C m-convergent and its Mr -refinable
functionφ belongs toC m(R). Hence, for every initial sequence v ∈ l0(Z), we conclude
that

lim
n→∞ sup

k∈Z

∣∣∣M j(rn+�)[∇ jSa�,M · · ·Sa1,M(Sar ,M · · ·Sa1,M)nv](k) − η( j)
v (M−rn−�k)

∣∣∣ = 0

(4.1)

holds for � = 0 and � = r , where we used the convention that Sa�,M · · ·Sa1,M is the
identity mapping for � = 0. To prove (4.1) for all � = 1, . . . , r , we have to prove (4.1)
for every � ∈ {1, . . . , r − 1}. Note that Sar ,M · · ·Sa1,M = Sa,Mr . By the assumption in
(1.21), for j = 0, . . . ,m, there exists a unique finitely supported sequence b j ∈ l0(Z)

such that

ã1(zM
�−1

) · · · ã�(z) = (1 + z + · · · + zM
�−1) j b̃ j (z) (4.2)

and sr(b j ,M�) ≥ m+1− j ≥ 1. Noting that∇ jSa�,M · · ·Sa1,M = Sb j ,M�∇ j , to prove
(4.1), we have to prove the following equivalent form of (4.1): For � ∈ {1, . . . , r − 1}
and j = 0, . . . ,m,

lim
n→∞ sup

k∈Z

∣∣∣M j(rn+�)[Sb j ,M�∇ jSn
a,Mr v](k) − η( j)

v (M−rn−�k)
∣∣∣ = 0. (4.3)
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From the following identity

[M j(rn+�)Sb j ,M�∇ jSn
a,Mr v](k) − η( j)

v (M−rn−�k)

= M j�
[
Sb j ,M�

(
M jrn[∇ jSn

a,Mr v](·) − η( j)
v (M−rn ·)

)]
(k)

+ M j�
[
Sb j ,M� (η

( j)
v (M−rn ·))

]
(k) − η( j)

v (M−rn−�k),

we conclude that

sup
k∈Z

∣∣∣M j(rn+�)[Sb j ,M�∇ jSn
a,Mr v](k) − η( j)

v (M−rn−�k)
∣∣∣ ≤ I1 + I2 (4.4)

with
I1 := sup

k∈Z

∣∣∣M j�
[
Sb j ,M�

(
M jrn[∇ jSn

a,Mr v](·) − η( j)
v (M−rn ·)

)]
(k)

∣∣∣

and
I2 := sup

k∈Z

∣∣∣M j�[Sb j ,M� (η
( j)
v (M−rn ·))](k) − η( j)

v (M−rn−�k)]
∣∣∣ .

Using the fact that ‖Sb j ,M�w‖l∞(Z) ≤ M�‖b j‖l1(Z)‖w‖l∞(Z), we conclude that

I1 ≤ M( j+1)�‖b j‖l1(Z)

∥∥∥M jrn[∇ jSn
a,Mr v](·) − η( j)

v (Mrn ·)
∥∥∥
l∞(Z)

,

which goes to 0 as n → ∞ by the proved fact that (4.1) holds with � = 0 and
Sar ,M · · ·Sa1,M = Sa,Mr .

Note that b j ∈ l0(Z) is finitely supported and by sr(b j ,M�) ≥ m + 1 − j ≥ 1,
b j must have at least order one sum rules with respect to M�, that is,

∑
γ∈Z b j (k +

M�γ ) = M−�
∑

γ∈Z b j (γ ) = M−( j+1)� for all k ∈ Z, due to (4.2) and our assumption∑
γ∈Z aq(γ ) = 1 for all q = 1, . . . , r . Consequently,

M j�
[
Sb j ,M� (η

( j)
v (M−rn ·))

]
(k) − η( j)

v (M−rn−�k)

= M( j+1)�
∑

γ∈Z∩[M−�k−M−� fsupp(b j )]
b j (k − M�γ )

[
η( j)

v (M−rnγ ) − η( j)
v (M−rnM−�k)

]
.

Take N ∈ N such that fsupp(b j ) ⊆ [−N , N ]. Then for all γ ∈ Z ∩ [M−�k −
M−� fsupp(b j )], we have

|M−rnγ − M−rnM−�k| ≤ M−rn|γ − M−�k| ≤ M−rn−�N .

Note that η( j)
v is a compactly supported uniformly continuous function on R because

v ∈ l0(Z) and φ has compact support. Therefore, we conclude from the above inequal-
ities that

|I2| ≤ M( j+1)�‖b j‖l1(Z) sup
|x−y|≤M−rn−�N

|η( j)
v (x) − η( j)

v (y)|,

which goes to 0 as n → ∞. This proves (4.3). Hence, (1.19) must hold.

123



Interpolating refinable functions... Page 45 of 49    98 

Necessity. Suppose that (1.19) holds. In particular, (1.19) holds with n being
replaced by rn. Hence, the Mr -subdivision scheme with mask a must be C m-
convergent. By [18, Theorem 2.1], we conclude that sm∞(a,Mr ) > m. This
proves the first part of (1.21). Moreover, by the discussion immediately above
the proof of Theorem 1, we conclude that the function ηv in (1.19) must satisfy
ηv = ∑

k∈Z v(k)φ(· − k). In particular, we have ηδ = φ in (1.19). Now we use
the proof by contradiction to prove sr(a�,M) > m for all � = 1, . . . , r . Suppose not.
Then j := sr(a�,M) ≤ m for some � = 1, . . . , r . Since j = sr(a�,M), we can write

ã�(z) = (1 + z + · · · + zM−1) j b̃�(z)

for some b� ∈ l0(Z) such that sr(b�,M) = 0. By (1.19) with v = δ, using ∇ jSa�,M =
Sb�,M∇ j , we have

lim
n→∞ sup

k∈Z

∣∣∣M j(rn+�)
[
Sb�,M∇ jSa�−1,M · · ·Sa1,MSn

a,Mr δ
]
(k) − φ( j)(M−rn−�k)

∣∣∣ = 0.

(4.5)

Now we can decompose the expression on the left-hand side of (4.5) into

M j(rn+�)
[
Sb�,M∇ jSa�−1,M · · ·Sa1,MSn

a,Mr δ
]
(k) − φ( j)(M−rn−�k) = J1(k) + J2(k)

(4.6)

with

J1(k) := M j
[
Sb�,M

([
M j(rn+�−1)∇ jSa�−1,M · · ·Sa1,MSn

a,Mr δ
]
(·) − φ( j)(M−rn−�+1·)

)]
(k)

and
J2(k) := M j [Sb�,M(φ( j)(M−rn−�+1·))](k) − φ( j)(M−rn−�k).

Because (1.19) holds, we particularly have

lim
n→∞ sup

k∈Z
|M j(n+�−1)[∇ jSa�−1,M · · ·Sa1,MSn

a,Mr δ](k) − φ( j)(M−rn−�+1k)| = 0.

Hence, using the above identity and the same argument for I1, we obtain limn→∞
supk∈Z |J1(k)| = 0. Consequently, we conclude from (4.5) and (4.6) that

lim
n→∞ sup

k∈Z
|J2(k)| = 0. (4.7)

Because sr(b�,M) = 0, by (1.9), there must exist k̃ ∈ Z such that c := ∑
γ∈Z b(k̃ +

Mγ ) �= 1
M

∑
γ∈Z b�(γ ) = M− j−1. That is,M j+1c �= 1. Then for every k ∈ [k̃ +MZ],
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we have

J2(k) =
(
M j+1

∑

γ∈Z
b�(k − Mγ )φ( j)(M−rn−�+1γ )

)
− φ( j)(M−rn−�k)

= M j+1
∑

γ∈Z∩[M−1k−M−1 fsupp(b�)]
b�(k − Mγ )

[
φ( j)(M−rn−�+1γ ) − φ( j)(M−rn−�k)

]

+ (M j+1c − 1)φ( j)(M−rn−�k).

Take N ∈ N such that fsupp(b�) ⊆ [−N , N ]. Then for all γ ∈ Z ∩ [M−1k −
M−1 fsupp(b�)], as we discussed before, we have

|M−rn−�+1γ − M−rn−�k| = M−rn−�+1|γ − M−1k| ≤ M−rn−�N .

Hence, for every k ∈ [k̃ + MZ], we have

sup
k∈[k̃+MZ]

∣∣∣
∑

γ∈Z∩[M−1k−M−1 fsupp(b�)]
b�(k − Mγ )

[
φ( j)(M−rn−�+1γ ) − φ( j)(M−rn−�k)

] ∣∣∣

≤ ‖b�‖l1(Z) sup
|x−y|≤M−rn−�N

|φ( j)(x) − φ( j)(y)|,

which goes to 0 by the uniform continuity of the compactly supported continuous
function φ( j). From the above inequality, we now conclude from (4.7) andM j+1c �= 1
that

lim
n→∞ sup

k∈[k̃+MZ]
|φ( j)(M−rn−�k)| = 0. (4.8)

Take x := M−n0k0 with n0 ∈ N0 and k0 ∈ Z. Then x = M−rn−�Mk1 with k1 :=
Mrn+�−1−n0k0 ∈ Z for all n ≥ (1+n0−�)/r . Consequently, for all n ≥ (1+n0−�)/r ,
we have

|φ( j)(x)|=|φ( j)(M−rn−�Mk1)| ≤ |φ( j)(M−rn−�Mk1)−φ( j)(M−rn−�(k̃ + Mk1))|+|φ( j)(M−rn−�(k̃ + Mk1))|
≤ sup

|y−z|≤M−rn−� |k̃|
|φ( j)(y) − φ( j)(z)| + sup

k∈[k̃+MZ]
|φ( j)(M−rn−�k)|,

which goes to zero as n → ∞ by using (4.8) and the uniform continuity of
the compactly supported continuous function φ( j). Hence, φ( j)(x) = 0, that is,
φ( j)(M−n0k0) = 0 for all n0 ∈ N0 and k0 ∈ Z. Since {M−n0k0 : n0 ∈ N0, k0 ∈ Z} is
dense in R, we conclude that φ( j)(x) = 0 for all x ∈ R, which implies that φ must be
a polynomial of degree less than j . However, φ is compactly supported, which forces
φ to be identically zero, a contradiction to φ̂(0) = 1. Consequently, we must have
sr(a�,M) > m for all � = 1, . . . , r . This proves (1.21). ��

We make some remarks here about Theorem 2. Generalizing refinable functions,
we can define compactly supported functions φ1, . . . , φr through a chain of nested
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refinement equations as follows:

φ̂�(Mξ) = ã�(e
−iξ )φ̂�+1(ξ), � = 1, . . . , r − 1 and φ̂r (Mξ) = ãr (e−iξ )φ̂1(ξ)

under the normalization condition φ̂1(0) = · · · = φ̂r (0) = 1. Then we must have

φ̂1(Mr ξ) = ã1(e−iMr−1ξ )φ̂2(Mr−1ξ) = ã1(e−iMr−1ξ ) · · · ãr−1(e
−iMξ )ãr (e−iξ )φ̂1(ξ) = ã(e−iξ )φ̂1(ξ).

Hence we must have φ1 = φ, that is, the Mr -refinable function φ with the mask a
in (1.20) of Theorem 2 can be obtained from the functions φ1, . . . , φr satisfying the
chain of nested refinement equations. In fact, this alternative interpretation of φ allows
us to obtain non-traditional wavelets from the r masks a1, . . . , ar in Theorem 2. We
shall address this direction elsewhere.

Finally, we discuss how to combine Theorems 1 and 2 for interpolatory quasi-
stationary subdivision schemes. It is very natural to obtain a mask a in (1.20) of
Theorems 2 using masks {a1, . . . , ar } and then require that the mask a defined
in (1.20) should satisfy the conditions in Theorem 1 for obtaining sa-interpolating
Mr -refinable function φ. This leads to rns-interpolating r -mask quasi-stationary sub-
division schemes as follows:

Corollary 8 Let M ∈ N\{1} be a dilation factor and r ∈ N. Let m ∈ N0 and
a1, . . . , ar ∈ l0(Z) be finitely supported masks with

∑
k∈Z a�(k) = 1 for � = 1, . . . , r .

Define a mask a ∈ l0(Z) as in (1.20) and the Mr -refinable function φ via the Fourier
transform φ̂(ξ) := ∏∞

j=1 ã(e
−iM−r j ξ ) for ξ ∈ R. For a real number sa ∈ R satisfying

the following condition

Mrms (Mrns − 1)sa ∈ Z for some ms ∈ N0 and ns ∈ N,

the Mr -refinable function φ is sa-interpolating and the r-mask quasi-stationary M-
subdivision scheme with masks {a1, . . . , ar } is C m-convergent ∞-step interpolatory
if and only if

(i) sm∞(a,Mr ) > m and sr(a�,M) > m for all � = 1, . . . , r;
(ii) there is a finitely supported sequence w ∈ l0(Z) such that

[Ams ∗ w](Mrms k) = M−rms δ(k) ∀ k ∈ Z, (4.9)

[Ans ∗ w](Mrms (Mrns − 1)sa + Mrns k) = M−rnsw(k), ∀ k ∈ Z, (4.10)

where the finitely supported masks An are defined to be An := M−rnSn
a,Mr δ.

For the particular case ms = 0, the conditions in (4.9) and (4.10) together are
equivalent to

Ans ((M
rns − 1)sa + Mrns k) = M−rns δ(k) ∀ k ∈ Z. (4.11)
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For the particular case ms = 0, the ∞-step interpolatory r-mask quasi-stationaryM-
subdivision scheme with masks {a1, . . . , ar } is rns-step interpolatory with the integer
shift (Mrns − 1)sa, i.e.,

[Sqrns ,r
a1,...,ar ,M

v]((I +Mrns +· · ·+M(q−1)rns )(Mrns −1)sa +Mqrns k) = v(k), ∀ k ∈ Z, q ∈ N, v ∈ l(Z).

Proof Sufficiency. By item (i), (1.21) is satisfied and hence by Theorem 2, the r -mask
quasi-stationary subdivision scheme is C m-convergent and φ ∈ C m(R). By item (ii),
the conditions in item (2) of Theorem 1 are satisfied with M being replaced by Mr .
Consequently, φ must be sa-interpolating and the subdivision scheme must be ∞-
step interpolatory. If ms = 0, then the r -mask quasi-stationary subdivision scheme is
rns-interpolatory.

Necessity. If the Mr -refinable function φ is sa-interpolating and its subdivision
scheme is∞-step interpolatory, we conclude from Theorem 1 that item (ii) must hold.
On the other hand, because the r -mask quasi-stationary M-subdivision scheme with
masks {a1, . . . , ar } isC m-convergent, we conclude from Theorem 2 that item (i) must
hold. ��

5 Conclusions

In this paper, we introduced in Section 1 and characterized in Theorem 1 all ns-step
interpolatoryM-subdivision schemes and their sa-interpolatingM-refinable functions
with ns ∈ N ∪ {∞} and any dilation factor M ∈ N\{1}. Furthermore, inspired
by Theorem 1 and ns-step interpolatory stationary subdivision schemes, we further
introduced in Definition 3 the notion of ns-step interpolatory r -mask quasi-stationary
subdivision schemes with masks {a1, . . . , ar }, and then we characterized their con-
vergence and smoothness properties in Theorem 2. The provided several examples
of such ns-step interpolatory M-subdivision schemes in Section 2 demonstrate their
potential usefulness and advantages in CAGD, numerical PDEs, and wavelet analysis.
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