
Advances in Computational Mathematics (2024) 50:85
https://doi.org/10.1007/s10444-024-10167-y

Online identification and control of PDEs via reinforcement
learning methods

Alessandro Alla 1 · Agnese Pacifico 2 ·Michele Palladino 3 · Andrea Pesare 4

Received: 1 November 2023 / Accepted: 19 June 2024 / Published online: 1 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
We focus on the control of unknown partial differential equations (PDEs). The sys-
tem dynamics is unknown, but we assume we are able to observe its evolution for a
given control input, as typical in a reinforcement learning framework. We propose an
algorithm based on the idea to control and identify on the fly the unknown system con-
figuration. In this work, the control is based on the state-dependent Riccati approach,
whereas the identification of the model on Bayesian linear regression. At each iter-
ation, based on the observed data, we obtain an estimate of the a-priori unknown
parameter configuration of the PDE and then we compute the control of the corre-
spondent model. We show by numerical evidence the convergence of the method for
infinite horizon control problems.

Keywords Reinforcement learning · System identification · Stabilization of PDEs ·
State-dependent Riccati equations · Bayesian linear regression ·
Numerical approximation

Mathematics Subject Classification (2010) 65Mxx · 93B30 · 49Mxx

1 Introduction

Reinforcement Learning (RL) is one of the main Machine Learning paradigms,
together with supervised and unsupervised Learning. In RL, an agent interacts with

Communicated by: Stefan Volkwein

Andrea Pesare is an Independent Researcher by the time this manuscript is processed for publication.

A. Alla and A. Pacifico are members of the INdAM-GNCS activity group. A. Alla is part of INdAM -
GNCS Project “Metodi numerici innovativi per equazioni di Hamilton-Jacobi”
(CUP_E53C23001670001). The work of A.A. was carried out within the “Data-driven discovery and
control of multi-scale interacting artificial agent systems,” and received funding from the European Union
Next-GenerationEU -National Recov-ery and Resilience Plan (NRRP) - MISSION 4 COMPONENT 2,
INVES-TIMENT 1.1 Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse
Nazionale (PRIN) - Project Code P2022JC95T, CUP H53D23008920001. The work of M. Palladino is
partially funded by the University of L’Aquila Starting Project Grant “Optimal Control and Applications,”
and by INdAM-GNAMPA project, n. CUP_E53C22001930001.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-024-10167-y&domain=pdf
http://orcid.org/0000-0003-1832-1649

A. Alla et al.

an unknown environment, aiming at an action-selection strategy to optimize a sys-
tem’s performance. Generally speaking, one can consider two main RL philosophies.
The first one, called model-based, usually concerns the reconstruction of a model
from the data trying to mimic the unknown environment. That model is then used
to plan and compute a suboptimal policy. The second RL philosophy, called model-
free, employs a direct approximation of the value function and/or a policy based on a
dynamic programming like algorithm without using a model to simulate the unknown
environment. Model-free methods include the famous Monte Carlo methods [39],
Temporal-Difference Learning [36, 38] and Q-Learning [41] and more recent ones
[18, 24, 26, 37]. An overview of the two RL approaches can be found in [39].

Since the philosophy of this work is to connect model-based RL problems and opti-
mal control, wewill first recall some classical approaches to optimal control problems.
Specifically, we are interested in feedback control to obtain a state-dependent optimal
control which is a valuable property as it makes the control system stable with respect
to random disturbances. Dynamic Programming (DP, [5, 15]) considers a family of
optimal control problems with different initial conditions and states and looks at the
relationship between these problems.Themain ingredient is the value function, defined
as the minimum of the cost functional which is the solution of the Bellman equation:
a nonlinear partial differential equation (PDE) of the Hamilton-Jacobi type. Once the
value function has been obtained, it provides optimal feedback control. Although the
DP approach is preferable from a theoretical point of view as it provides sufficient
conditions and synthesis of optimal feedback control, it has always been challenging
to apply it to real problems since it is very expensive from a computational point of
view. It suffers from the so-called “curse of dimensionality” (an expression coined by
Bellman himself [6]), which means that the computational cost necessary to solve the
Bellman equation grows exponentially with respect to the system dimension. This led
to the development of suboptimal solution methods to the Bellman equation, known as
approximate dynamic programming [10], that could mitigate the curse of dimension-
ality. Later, we started calling these methods Reinforcement Learning [9, 40]. Optimal
control and RL are strongly connected, as they deal with similar problems; in fact, both
can be regarded as sequential decision problems, in which one has to make decisions
in sequence, trying to optimize not only the immediate rewards but also the future,
delayed ones. Recently, in [29, 30], it has been proposed a unified framework for all
the families of sequential decision problems including OC and RL. More precisely,
RL deals with control problems in which the system’s dynamics is uncertain.

In this paper, we want to control an unknown nonlinear dynamics following a RL
strategy. We will adopt an online strategy as explained below. We suppose that the
system is described by a parametric PDE, whose parameters are unknown. We also
assume to have a library which includes all possible terms of the PDE, so that a
function of the library enters into the model if the corresponding parameter is not
zero. Those parameters are the ones we need to discover to achieve our goal. The
chosen library, in this work, will contain several models which are very well studied
in the mathematical physics community. Furthermore, although the system dynamics
is unknown, we assume it is always possible to observe the true evolution of the
system for a given control input. The possibility to observe the unknown system is a

123

85 Page 2 of 25

Online identification and control...

typical assumption in Reinforcement Learning where an agent takes action based on
his observation. This will allow us to update the parameter estimate.

To achieve our goal, we propose the following workflow: “control–observe–
estimate.” To set the method into perspectives, we begin with an initial parameter
estimate that allows to compute the control for such configuration. Note that the con-
trol is computed for a problem that uses a parameter estimate and might be far from
the true optimal control. Then, by applying that control, we observe the true system
configuration by its trajectories. Thus, to update the parameter estimate, we set a linear
system based on the observed trajectories which will be solved via Bayesian Linear
Regression methods (see, e.g., [32, 33]). We iterate this procedure till the end of the
chosen time horizon.Wewill also discuss a heuristic stopping criterion for the parame-
ter estimation. As mentioned, this is an online approach since we update the parameter
estimate every iteration. A first approach driven by the same workflow proposed here
has been introduced in [28] for linear low-dimensional problems and quadratic cost
functionals. Here, we extend to generic nonlinear control problems with a keen focus
on the control of PDEs. The dimension of the discretized problem increases also the
challenges of the problem. Our approach to the control of the PDE is based on the
discretization by finite differences that reduces the problem to a large system of ordi-
nary differential equations. In the paper, we also show numerically how the computed
control stabilizes the PDE for smaller spatial discretization leading to the control of
the continuous PDE.

Let us now comment on how, we solve the control problems. As already men-
tioned at the beginning of this section, control in feedback form is usually obtained
by the solution of dynamic programming equations [5] or by Nonlinear Model Pre-
dictive Control (NMPC, [17]). An alternative, which combines elements from both
dynamic programming and NMPC, is the state-dependent Riccati equation (SDRE)
approach (see, e.g., [4, 14]). The SDREmethod originates from the dynamic program-
ming associated to infinite horizon optimal stabilization. It circumvents its solution
by reformulating the feedback synthesis as the sequential solution of state-dependent
Algebraic Riccati Equations (ARE), which are updated online along a trajectory. The
SDRE feedback is implemented similarly as in NMPC, but the online solution of an
optimization problem is replaced by a nonlinear matrix equation. Later, in [8], theo-
retical conditions for the stabilization of the problem have been studied. In [1], it has
been shown an efficient method employing SDRE for large scale problems.

For the sake of completeness, we also recall that system identification of nonlinear
dynamics is a very active andmodern research area with a vast literature. Although our
identification is strictly linked to a control problem, we briefly recall some literature.
Clearly, Physics Informed Neural Networks (PINNs) deserve to be mentioned due to
their innovative, accurate and efficient way to discover partial differential equations
using neural networks and information from system in the definition of the loss func-
tion. We refer to, e.g., [20, 31] for a complete description of the method. It is worth
to mention also methods based on variants of sparse optimization techniques such as
Sparse Identification of Nonlinear Dynamics (SINDy) for ODEs [12] and for PDEs
[34, 35]. SINDy was also applied for the identification of controlled problems (see,
e.g., [19]). The authors used an external source as input to identify the system and then

123

Page 3 of 25 85

A. Alla et al.

apply NMPC to control the identified model. There, the authors used the workflow:
identify first, control later which is different from the strategy presented in the current
work. Similar ideas to our work were also presented later in [27]. Other strategies
dedicated on control and system identification can be found in, e.g., [22] for PDEs and
in, e.g., [25] for ODEs. Recently, a study on the control of an unknown problem with
MPC has been introduced in [13]. There, the systemwas identified using the Extended
Dynamic Mode Decomposition, i.e., a surrogate linear model in contrast to our work
where we directly identify the nonlinear model.

The outline of the paper is the following. In Section 2, we recall the basics of
Baysian Linear Regression as a building block when adapting our parameter estimate.
In Section 3, we briefly explain the state-dependent Riccati equation. In Section 4,
we provide all the details of the method proposed in this paper. Later, numerical
experiments to support our algorithm are presented in Section 5. Finally, conclusions
are driven in Section 6.

2 Bayesian linear regression

Bayesian Linear Regression (BLR, [32, 33]), is a probabilistic method for solving the
classical linear regression (LR, [16]) problem. In LR, we consider data in the form of
input–output pairs

D = {(xi , yi)}i=1,...,d

and we suppose that the output variable yi ∈ R can be expressed approximately as a
linear function of the input variable xi ∈ R

n , i.e.,

yi ≈ xTi θ, for i = 1, . . . , d. (1)

We look for a parameter θ ∈ R
n such that (1) is satisfied. The (ordinary) least squares

(LS) approach chooses θ by minimizing the sum of squared residuals

E(θ) =
d∑

i=1

∣∣∣yi − xTi θ

∣∣∣
2
. (2)

The LS solution can be computed analytically and is given by

θLS = (XT X)−1XT Y , (3)

where we collected all the observed inputs in a matrix X ∈ R
d×n and all the observed

outputs in a vector Y ∈ R
d :

X =

⎛

⎜⎜⎜⎝

xT1
xT2
...

xTd

⎞

⎟⎟⎟⎠ , Y =

⎛

⎜⎜⎜⎝

y1
y2
...

yd

⎞

⎟⎟⎟⎠ . (4)

123

85 Page 4 of 25

Online identification and control...

In BLR, instead, we assume that the deviation of the data from the linear model can
be described by a Gaussian noise εi ∼ N (0, σ 2):

yi = xTi θ + εi , (5)

where θ ∈ R
n is an unknown parameter to be determined and σ > 0. We will

assume that the value of σ is known, thoughmore general formulations applyBayesian
inference on σ as well. Equation (5) corresponds to fix a conditional distribution of
the random variable y given the value of x and θ ,

p(y|x, θ) ∼ N (xT θ, σ 2). (6)

This is what in Bayesian inference is called the likelihood function. If we assume that
the d observations are independent, the global likelihood function can be written as

p(Y |X , θ) =
d∏

i=1

p(yi |xi , θ) ∼ N (Xθ, σ 2 Id), (7)

where X ,Y have been defined in (4), and Id denotes the d-dimensional identitymatrix.
The available information on the parameter θ is included in the model through the

definition of a prior distribution, which we assume to be Gaussian with initial mean
m0 ∈ R

n and covariance matrix �0 ∈ R
n×n :

θ ∼ N (m0, �0). (8)

Bayesian formulas allow to compute the posterior distribution of the parameter θ ,
which is again a Gaussian distribution [11, 33]

p(θ |X , Y) = p(θ)p(Y |X , θ)∫
Rn p(θ ′)p(Y |X , θ ′)dθ ′ ∼ N (m, �), (9)

where

�−1 = 1

σ 2 X
T X + �−1

0 and m = �

(
1

σ 2 X
T Y + �−1

0 m0

)
. (10)

From the posterior distribution one can extract a point estimate of the parameter θ ,
that is the posterior mean

θ̄BLR = �

(
1

σ 2 X
T Y + �−1

0 m0

)

=
(

1

σ 2 X
T X + �−1

0

)−1 (
1

σ 2 X
T Y + �−1

0 m0

)
.

(11)

However, the advantage of BLR is that it provides a quantification of the uncertainty of
this estimate. Finally, we remark that the estimate θ̄BLR converges to the LS solution
(3), when the noise variance σ goes to 0.

123

Page 5 of 25 85

A. Alla et al.

3 Control of nonlinear problem via state-dependent riccati equation

In this section, we recall one possible approach to control nonlinear differential equa-
tions. We consider the following infinite horizon optimal control problem:

min
u(·)∈U

J (u(·)) :=
∞∫

0

(
‖x(t)‖2Q + ‖u(t)‖2R

)
dt (12)

subject to the nonlinear dynamical constraint

ẋ(t) = A(x(t))x(t) + B(x(t))u(t), t ∈ (0,∞),

x(0) = x0,
(13)

where x(t) : [0,∞] → R
d denotes the state of the system, A(x) : Rd → R

d×d ,
the control signal u(·) belongs to U := L∞(R+;Rm) and B(x) : Rd → R

d×m . The
running cost is given by ‖x‖2Q := x	Qx with Q ∈ R

d×d , Q
 0, and ‖u‖2R = u	Ru
with R ∈ R

m×m, R
 0. This formulation corresponds to the asymptotic stabilization
of nonlinear dynamics toward the origin.

We can synthesize a suboptimal feedback lawby following, e.g., an approach known
as the state-dependent Riccati equation (SDRE). We refer to, e.g., [4, 14] for more
details on the topic.

The SDRE approach is based on the idea that infinite horizon optimal feedback
control for systems of the form (13) is linked to a state-dependent algebraic Riccati
equation (ARE):

A	(x)�(x) + �(x)A(x) − �(x)B(x)R−1B	(x)�(x) + Q = 0. (14)

We note that equation (14) is an ARE that changes every iteration, in fact it depends
on the current state x . This makes the difference with respect to the standard LQR1

problem where the ARE is constant and it is solved just once. SDREmight be thought
as an MPC algorithm (see, e.g., [17]) where the inner optimization problem is solved
by (14).

When equation (14) admits a solution, it leads to a state-dependent Riccati operator
�(x), from where we obtain a nonlinear feedback law given by

u(x) := −R−1B	(x)�(x)x . (15)

We will refer to the feedback gain matrix as K (x) := R−1B	(x)�(x). It is impor-
tant to observe that the ARE (14) admits an analytical solution in a limited number of
cases and the obtained control is only suboptimal. More general approaches follow-
ing, e.g., the dynamic programming approach [7] might be used. This goes beyond the
scope of this work; however, one can easily replace, throughout the paper, the SDRE
approach with a different (feedback) control method.

1 LQR deals with the constant matrices A(x(t)) = A, B(x(t)) = B in (13).

123

85 Page 6 of 25

Online identification and control...

In [4], it is shown that the SDRE method provides asymptotic stability if A(·) is
C1 for ‖x‖ ≤ δ and some δ > 0, B(·) is continuous and the pair (A(x), B(x)) is
stabilizable for every x in a non-empty neighborhood of the origin. Thus, the closed-
loop dynamics generated by the feedback law (15) are locally asymptotically stable.
The SDRE algorithm proposed in [4] is summarized below.

Algorithm 1 SDRE method
Require: {t0, t1, . . .}, model (13), R and Q,
1: for i = 0, 1, . . . do
2: Compute �(x(ti)) from (14)
3: Set K (x(ti)) := R−1B	(x(ti))�(x(ti))
4: Set u(t) := −K (x(ti))x(t), for t ∈ [ti , ti+1]
5: Integrate the system dynamics with u(t) := −K (x(ti))x(t) to obtain x(ti+1)

6: end for

Assuming the stabilization hypothesis above, the main bottleneck in the implemen-
tation of Algorithm 1 is the high rate of calls to an ARE solver for (14). We refer to [1]
for efficient methods related to large scale problems. In this work, we will deal with
small scale problems and thus solve the AREs with the Matlab function icare.

4 Identification and control of unknown nonlinear dynamics

The system we want to identify and control is taken from (13) and reads

ẋ(t) =
n∑

j=1

μ j A j (x(t))x(t) + B(x(t))u(t), t ∈ (0,∞),

x(0) = x0,

(16)

with the matrix function A(x) in (13) given by A(x) = ∑n
j=1 μ j A j (x) and A j (x) :

R
d → R

d×d for j = 1, . . . , n. The functions A j (x) may be thought as a library with
terms that have to be selected by the coefficientsμ j ’s. Note that this sum is not unique
and that we can include extra basis functions by simply setting the correspondingμ j ’s
to be zero. Throughout this work, we will assume that the terms A j (x)’s and B(x) are
known. Thus, the system (16) is fully identified by the knowledge of the coefficient
μ = (μ1, . . . , μn) ∈ R

n which is considered unknown in the present work.
We assume that there exists a true systemconfigurationμ∗ ∈ R

n which is not known
but observable through the dynamics (16) setting μ = μ∗. In other words, we assume
that the dynamics generated by this true model configuration μ∗ is always observable
as a black box, i.e., if we choose a control we can compute the solution of (16) with
the true parameter without knowing μ∗ explicitly. This is a typical assumption in the
Reinforcement Learning setting, where an agent can take actions and observe how the
environment responds to them.
The cost functional we want to minimize is adapted from (12) and reads

min
u(·)∈U

J (u(·), μ∗)) :=
∞∫

0

(∥∥x(t;μ∗)
∥∥2
Q + ‖u(t)‖2R

)
dt, (17)

123

Page 7 of 25 85

A. Alla et al.

where the dependence on μ∗ stresses that trajectories x are observed from the true
system configuration for a given input.

This addresses the problem of system identification together with the control of
(16). Indeed, we consider two unknowns: (i) the parameter configuration μ which is
required to converge to μ∗ and (ii) the control u(t). The computation of the control
will be done using Algorithm 1 which clearly depends on the parameter configuration.
For an estimated parameter μ̃ ∈ R

n such that μ̃ = μ∗, the control will be denoted by
u(t; μ̃) to stress the dependence on the particular parameter configuration μ̃ in (16).
Instead, the observed trajectory will be denoted by x(t; u(t; μ̃), μ∗). This notation
considers a trajectory computed with the control u(t; μ̃) plugged into the true system
configuration. Furthermore, if we want to represent the solution at the discrete time
ti , we will identify xi (u(ti ; μ̃), μ∗) = x(ti ; u(ti ; μ̃), μ∗).

Remark 1 (Notation) Let us briefly summarize the notations valid throughout the
whole paper for the parameter configuration: μ is a generic parameter, μ∗ is the
true system configuration, and μ̃ is an estimated system configuration.

4.1 Themethod

Let us now explain how we identify the system. We remind that our goal is to steer
to the origin of a partially unknown nonlinear system. We also aim at discovering
the system on the fly through real-time observation of the trajectories. The workflow
of our proposed method goes under the paradigm “control first and identify later” as
follows:

1. Pick a parameter configuration,
2. Compute the corresponding control,
3. Observe the trajectories,
4. Update the parameter configuration based on the observations,
5. Go to the second item.

Weuse aBayesianLinearRegression algorithm to estimate the systemconfiguration
μ∗ from the observed trajectory data, as described in Section 2.Wewill nowprovide all
the details of the proposed method which is summarized at the end of this subsection
by Algorithm 2.

Initial configuration To begin with, we provide an initial estimate2 μ̃0 ∈ R
n for the

true system configuration μ∗. To give an example, in the numerical tests, we will set
(μ̃0)k = 1 for k = 1, . . . n, but if prior information about μ∗ is available, it can be
used to choose a proper μ̃0. Note that μ̃0 will act as m0 in the prior distribution (8) of
the BLR algorithm. We also need to choose an initial covariance matrix �0 ∈ R

n×n .
We observed heuristically that �0 = cIn , where In is the n × n identity matrix and
c > 0 is large enough, works well in general.

Computation of the control At time ti , we compute an approximate solution for
the Algebraic Riccati Equation (14) corresponding to the current parameter estimate

2 The notation μ̃0 refers to the parameter estimate at time t0. Thiswill become clearer later in this subsection.

123

85 Page 8 of 25

Online identification and control...

μ̃i . Then, we can set the feedback gain matrix K (x(ti); μ̃i) and the feedback control
u(t; μ̃i).

Observationof the trajectoriesAt each iteration,we apply a constant controlu(t; μ̃i)

with t ∈ [ti , ti+1] and observe the trajectory at time ti+1, which will be either the
actual trajectory, if we are dealing with a real physical system, or a simulated one,
if we are simulating the physical system with some numerical methods. Thus, for a
given configuration estimate μ̃i and its control input u(ti ; μ̃i) computed following
Algorithm 1, we will observe the trajectory xi+1(u(ti ; μ̃i);μ∗).

The observation of the true trajectory has to be thought as a black box that provides
the solution, or approximate solution, of the original controlled problem for a given
control. The black box takes the control and the initial state as input and provides the
trajectories as output. The observation of only one trajectory is due to the fact that we
aim at discovering and controlling on the fly while updating the parameter estimate
at each time instance. In RL, such methods are referred to as online, in contrast with
offline methods where an agent can use multiple offline observations of the system to
build a control.

Update of the parameter estimate We now provide the crucial part of the method,
that is how we update the parameter estimate using a Bayesian Linear Regression. To
apply BLR and obtain a problem in the form (1), we have to discretize the system (16).
We provide, without loss of generality, an example through an implicit Euler scheme
to discretize (16). Thus, the discretization of (16), using, e.g., an implicit Euler method
and the correspondent feedback gain matrix Ki := K (x(ti)) (see Section 3), reads

xi+1 − xi

�t
≈

n∑

j=1

μ̃i
j A j (x

i+1)xi+1 − Bi K i xi+1, i = 0, 1, . . . (18)

where we have dropped the dependence on the control for x and we recall that xi is
the short notation for xi (u(ti , μ̃i−1), μ∗), whereas Bi = B(x(ti)).3 In our numerical
simulations, we deal with the control explicitly, that is why we use Ki in (18) and we
consider the control constant in each interval [ti , ti+i]. We employ an implicit scheme
due to numerical stability and our application to PDEs later in Section 5.

Once we plug the true, observed trajectory in equation (18), i.e., xi and xi+1, we
obtain a linear system of equations that the true system configuration μ∗

j solves, at

least up to a certain approximation error. We use it to update our estimate μ̃i of the
system configuration. Starting from equation (18), we can write

xi+1 − xi

�t
+ Bi K i xi+1 ≈

n∑

j=1

μ̃i
j A j (x

i+1)xi+1.

Thus, we obtain d equations for the n coefficients μ̃i
j as in (1), which we can write in

a more compact form
Y i ≈ Xi μ̃i , (19)

3 We remark that in all our simulations the matrix B is constant.

123

Page 9 of 25 85

A. Alla et al.

where μ̃i ∈ R
n, Xi := [A1(xi+1)xi+1, . . . An(xi+1)xi+1] ∈ R

d×n and Y i :=
xi+1−xi

�t +Bi K i xi+1 ∈ R
d . The notation μ̃i stresses the fact that, at each time iteration,

we look for a parameter configuration that may differ on time. This problem fits into
the structure presented in Section 2, and the solution for μ̃i is given by (11).

Algorithm Our proposed idea is finally summarized in Algorithm 2 below.

Algorithm 2 Online identification and control
Require: {t0, t1, . . .}, model {A j (x)}nj=1, B, R, Q, μ̃0, �0
1: for i = 0, 1, . . . do
2: Solve (14) and obtain �(x(ti); μ̃i)

3: Set K (x(ti); μ̃i) := R−1B	(x(ti))�(x(ti); μ̃i)

4: Set u(ti ; μ̃i) := −K (x(ti); μ̃i)x(t)
5: Apply the control u(ti ; μ̃i) and observe the trajectories xi+1(u(ti ; μ̃i), μ∗)

6: Compute μ̃i+1 as in (11) from (19)
7: end for

Remark 2 There might be cases in Algorithm 2 where the ARE does not provide a
solution and this will depend on the parameter estimate. In those cases, we fix the
feedback gain equal to the zero vector and we go to the next step. This is equivalent
to addressing the uncontrolled problem within that specific time window. However,
in our simulations, we did not observe this behavior after the first iteration (where we
decided to set u ≡ 0).

Remark 3 Theoretical convergence of the parameter μ̃i to the true parameter μ∗ for
i → +∞ is not guaranteed and goes beyond the scope of this paper. We decided
to keep this study for follow-up work. However, in the numerical tests in Section 5,
we observed numerical convergence of the method. The identification of the system
configuration can be stopped if, for a certain ī > 0, we obtain ‖μ̃ī − μ̃ī−1‖∞ < tolμ
with tolμ > 0 being the desired threshold. Note this criteria is only heuristic and that
Algorithm 2, as it is, does not need the parameter convergence. The primary goal is to
stabilize an unknown control system at 0.

4.2 Application to PDEs

Our ultimate goal is the application of Algorithm 2 to identify and control nonlinear
PDEs given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yt (t, ξ) =
n∑

j=1

μ j Fj (y(t, ξ), yξ (t, ξ), yξξ (t, ξ), yξξξ (t, ξ), . . .) + BT (ξ)u(t),

t ∈ [0,+∞), ξ ∈ (a, b),

y(0, ξ) = y0(ξ), ξ ∈ [a, b],
y(t, a) = 0, y(t, b) = 0, t ∈ [0,+∞).

(20)
where y : [0,∞] × R → R, μ j ∈ R, u(t) : [0,∞) → R

m and B(ξ) : [a, b] → R
m .

Without loss of generality, we set zero Dirichlet boundary conditions. We assume that

123

85 Page 10 of 25

Online identification and control...

the model is given by the sum of simple monomial basis functions Fj of y and its
derivatives. Similarly to (16), the functions Fj ’s may be thought as a library with terms
that has to be selected by the coefficients μ j ’s. Note that this sum is not unique and
that we can include extra basis functions by simply setting the corresponding μ j ’s to
be zero.

The numerical discretization of (20), by, e.g., finite differences method [23], pro-
vides a system in the form (16), where each component of x ∈ R

d corresponds
to the grid points, say xi (t) ≈ y(t, ξi) for i = 1, . . . , d and A j (x(t))x(t) ≈ Fj ,
where Fj ∈ R

d denotes the basis function evaluated at all the grid points such
that (Fj)i = Fj (y(t, ξi), yξ (t, ξi), yξξ (t, ξi), yξξξ (t, ξi), . . .). In Section 5, we will
explain in detail how to obtain each term A j (x). We note that the matrices A j (x) take
into account the boundary conditions.

The continuous cost functional we want to minimize is

J (u;μ∗) =
∫ ∞

0

(
‖y(t, ·;μ∗)‖2L2(a,b) + ‖u(t)‖2R

)
dt (21)

with R defined after equation (13) and we stress the dependence of the trajectory y
on the true system configuration. The discretization of (21) corresponds to the choice
Q = �ξ Id in (12) with �ξ > 0 being the spatial step size and Id the d × d identity
matrix.

5 Numerical experiments

In this section, we will show our numerical examples to validate the proposed method.
To set the section into perspective, we provide the continuous PDE model studied
which reads:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yt (t, ξ) = μ1yξξ (t, ξ) + μ2yξ (t, ξ) + μ3y(t, ξ)

+ μ4y
2(t, ξ) + μ5y

3(t, ξ) + μ6y(t, ξ)yξ (t, ξ)

+ μ7yξξξ (t, ξ) + BT u(t) t ∈[0, tend], ξ ∈(a, b),

y(0, ξ) = y0(ξ) ξ ∈ [a, b],
y(t, a) = 0 = y(t, b) t ∈ [0, tend].

(22)
where for numerical reasons, we have to choose a finite horizon with tend > 0 large
enough to simulate the infinite horizonproblemand such that for t > tend the controlled
solution will not change significantly. We remark that, based on the choice of the
parameters, the model (22) includes the control of, e.g., heat equation, advection
equation, diffusion–reaction-convection equation, burgers equation, viscous burgers,
etc. Many of these models have different physical interpretations between them. This
is the reason behind our choice of (22).

In this model, we fix n = 7 libraries and in order to fit into the desired canonical
form (16) we use the finite difference (FD) method (see, e.g., [23]) where the discrete
state x(t) corresponds to the approximation of y(t, ξ) at the grid points.

123

Page 11 of 25 85

A. Alla et al.

The term A(x) will be given by

A(x) = μ1�d + μ2T + μ3 Id + μ4diag(x) + μ5diag(x ◦ x) + μ6 D̃(x) + μ7M

where the symbol ◦ denotes the Hadamard or component-wise product and

• �d ∈ R
d×d is the FD approximation of the Dirichlet Laplacian with �d :=

�ξ−2tridiag([1, −2, 1], d),4

• T ∈ R
d×d is the FD upwind or downwind approximation of the advection term

such that

– if μ2 > 0, T = Tneg = �ξ−1tridiag([−1, 1, 0], d),
– if μ2 < 0, T = Tpos = �ξ−1tridiag([0, −1, 1], d),

• Id ∈ R
d×d is the identity matrix,

• diag(x) ∈ R
d×d is a diagonal matrix with the components of the vector x

• D̃(x) ∈ R
d×d is a matrix such that its i-th row D̃(x)i is

– if (μ6x)i > 0, D̃(x)i = (diag(x)Tneg)i
– if (μ6x)i < 0, D̃(x)i = (diag(x)Tpos)i

where (μ6x)i indicates the i-th element of the vector μ6x and (D̃(x))i indicates
the i-th row of the matrix between parentheses

• M ∈ R
d×d is a FD approximation of the third order derivative: M =

− 1
2�ξ3

pentadiag([1, −2, 0, 2, −1], d)5.

Controlled trajectories are integrated in time using an implicit Euler method (see
(18)), which is accelerated using a Jacobian–Free Newton Krylov method (see, e.g.,
[21]) using 10−5 as the threshold for the stopping criterion of the Newton method and
less than 500 iterations. As mentioned in Remark 3, in our numerical simulations, we
have observed convergence of our estimated configuration to the true one. Therefore,
we have added to Algorithm 2 the stopping criterion with tolμ = 10−5.

We present three numerical test cases with nonlinear PDEs. Those are the PDEs
we can observe. The first test is a nonlinear diffusion–reaction equation, known
as the Allen-Cahn equation (μ∗ =[1, 0, 11, 0, −11, 0, 0]). The second test stud-
ies the viscous Burgers’ equation (μ∗ =[0.01, 0, 0, 0, 0, 1, 0]), and the third one
the so-called Korteweg-de Vries (KdV) model (μ∗ =[0.5, 0, 0, 0, 0, 6, −1]). The
goal of all our tests is the stabilization of the (unknown) dynamics to the origin
by means of the minimization of the cost functional (21), that can be approxi-
mated ‖y(t, ·;μ)‖2

L2(a,b)
� ∑d

i=1 �ξ y(t, ξi ;μ)2 = xT (t)Qx(t) = ‖x(t)‖2Q , where
ξi = a + �ξ i and Q = �ξ Id and with R = 0.01, thus obtaining (17).

In all our tests, we will plot (i) the uncontrolled solution of the true dynamical
system, i.e., the solution of (22) obtained choosing u(t) ≡ 0 and μ = μ∗, (ii) the

4 The notation tridiag([a, b, c],d) stands for a tridiagonal d×d matrix having the constant values b ∈ R

on the main diagonal, a ∈ R on the lower diagonal and c ∈ R on the upper diagonal.
5 The notation pentadiag([a, b, c, e, f],d) stands for a pentadiagonal d × d matrix having the constant
values c ∈ R on the main diagonal, b ∈ R on the lower and e ∈ R on the upper diagonal and a ∈ R on the
second diagonal below and f ∈ R on the second diagonal above the main diagonal.

123

85 Page 12 of 25

Online identification and control...

controlled solution based on the SDRE method where μ∗ is known, and (iii) our
RL solution identified by Algorithm 2 where μ∗ has to be discovered. We will then
compare the optimal control computed by Algorithm 1 and our method Algorithm 2
and the evaluation of the cost functionals. Furthermore, the history of the estimated
coefficients μ̃i over time will be presented. Finally, we will also discuss a numerical
convergence toward the control of the continuous PDE problem. To do that, we will
compute the control for a given spatial discretization �ξ and show that the obtained
control is robust enough to stabilize the same problem with decreasing values of
the spatial discretization. This will show the numerical mesh independence and the
robustness of the proposed method.

The RL assumption relies on the observability of the dynamics with the true system
configuration μ∗. This should be thought of as a black box where the true model can
be computed (or approximated). In this work, since we do not know the exact solution,
we will use two different numerical approaches to obtain the observed trajectories: (i)
we use the same scheme, e.g., backward Euler method, used in (18) but with the true
parameter μ∗ and (ii) an explicit Runge Kutta scheme for stiff problems.

For the sake of completeness, we provide some more numerical details on the two
schemes. Again, we stress that those details are not critical to the algorithm, but they
are only needed for the numerical simulations. Indeed, one could use any method or
even a “real” black box.6 These two methods will have different way to approach the
feedback control. Indeed, the first approach is “implicit” in the control term Kx , so
will be called “implicit approach” or “implicit algorithm” in the following; in this case,
we will have the feedback control in the form Ki xi+1, mainly for stability reasons.
The second scheme is explicit and the feedback control will be Ki xi . In the paper, the
latter approach has been implemented using theMatlab function ode15s. We remark
that the second approach could be used in a real application, replacing the result of the
ode15s function with an observation of the system evolution, and will be called the

“black box algorithm.” Note that in this case, we have7, e.g., Y i = xi+1−xi
�t + BK i xi

in (19).
We remark that in both cases, say the use of the implicit algorithm or the use

of the ”black box”, we added noise to the data used for regression. After com-
puting the control u(ti) and the trajectory x(ti+1), we obtained the matrix X =
[A1(x(ti+1))x(ti+1), . . . , An(x(ti+1))x(ti+1)] ∈ R

d×n . To each column of X , we
added a vector of independent Gaussian random variables, each with mean 0 and stan-
dard deviation given by 0.01 times the mean of the absolute values of the components
in the column itself as follows:

Xi, j ← Xi, j + N
(
0,

(0.01
d

d∑

k=1

|Xk, j |
)2)

.

This will be referred to as 1% relative noise in the following and has been used in
every numerical test, in order to simulate noise on data from real applications. The

6 By the term “real” black box, we intend something that takes an input and provides the trajectories without
knowing how they are computed.
7 Note that B is constant in this section.

123

Page 13 of 25 85

A. Alla et al.

noise can be also interpreted as a variation on the observed system that adds negligible
terms not in the library.

Finally, we note that in all the tests the prior distribution on the parameter μ was
initialized as described in Section 4.1, i.e., we started with a normal distribution with
mean μ̃0 = [1, 1, 1, 1, 1, 1, 1]T and covariance matrix �0 = cI7 with c = 1000
for test 2 and 3 and c = 200000 for test 1. In general, c > 0 must be chosen large
enough to guarantee flexibility to the model. Indeed, the smaller it is, the closer the
final approximation of μ will tend to be to the chosen initial prior distribution.

The tests presented in this paper were performed on aDELLLatitude 7200, Intel(R)
Core(TM) i5-8265U CPU 1.60GHz, using Matlab.

5.1 Test 1: Allen-Cahn

Our first test is inspired by the example in [3] where it is shown that anMPC approach,
for a short prediction horizon, does not stabilize the following equation:

⎧
⎪⎨

⎪⎩

yt (t, ξ) = yξξ (t, ξ) + 11(y(t, ξ) − y3(t, ξ)) + u(t), t ∈(0, 0.5], ξ ∈(0, 1)

y(0, ξ) = 0.2 sin(πξ) ξ ∈ (0, 1),

y(t, 0) = 0, y(t, 1) = 0, t ∈ [0, 0.5].

This model is known as the Allen-Cahn equation, or Chaffee-Infante equation. Note
that for this example a small horizon with tend = 0.5 is enough to simulate the infinite
horizon problem since the control problem will be stabilized before as it is shown in
Fig. 1. Here, we use the same settings of [3], i.e., �ξ = 0.01 = �t and we obtain
its discrete version as described in (16) where the B vector is given by a vector of
ones. The dimension of the discrete problem is d = 101. The only difference with
respect to [3] is that we introduce the control as a time-dependent function instead
of dealing with a control as a function of time and space. The parameter used in the
observable trajectories are μ∗

1 = 1, μ∗
3 = 11, μ∗

5 = −11 in (22) subject to the cost
functional recalled in Section 5. In the left panel of Fig. 1, we show the solution to
the uncontrolled problem whereas in the middle panel, the trajectory is computed
using Algorithm 1. Both simulations have been computed knowing the true system
configuration. It is clear that the solution is stabilized. We remark that the SDRE
method is able to stabilize the problem with an infinite prediction horizon for the
linearized problem, whereas the method in [3] uses a finite prediction horizon, that
is required to be of size at least 11�t , for the nonlinear equation. Clearly, our inner

Fig. 1 Test 1: Allen-Cahn, �ξ = 0.01, �t = 0.01, 1% relative noise

123

85 Page 14 of 25

Online identification and control...

minimization problem is different from the approach proposed in [3] but nevertheless,
it is interesting to see its stabilization through SDRE.

Finally, in the right panel of Fig. 1, we show the solution of Algorithm 2. It is clear
that with our method we can also stabilize the problem and identify the correct model
as shown in Table 1.

In Table 1, we show the results of Algorithm 2 concerning the parameter configura-
tion μ̃ estimated.We can see that the reconstructed values (second row of the table) are
very close to the desired configuration considering the discretization�ξ = 0.01 = �t
and the noise added at each iteration.

In Fig. 2, we compare the control of the SDRE algorithm and the RL-based one.
One can see that at the beginning the RL control starts from 0 because we decided not
to act at the first iteration since we do not have information at that stage. Then, we can
see that, slowly, the RL control tends to the SDRE one which is our reference control.
In the middle plot of Fig. 2, we show the evaluation of the cost functional. One can see
that the RL algorithm is very close to the SDRE method and, as expected, the SDRE
cost functional provides lower values. This is clear since our method starts without
any knowledge of the model which is learnt on the fly. Finally, for completeness, in the
right panel of Fig. 2, we show the convergence history of the parameter configurations.
In this example, until the end of the chosen time interval, the algorithm never stops
updating the distribution. It would stop at t = 0.58 (after 58 iterations) if a longer
time interval was considered.

5.2 Test 2: viscous burgers

The equation we study in this test is the viscous Burgers problem which reads:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yt (t, ξ) = 0.01yξξ (t, ξ) + y(t, ξ)yξ (t, ξ)

+ B(ξ)T u(t), t ∈ [0, 2], ξ ∈ (−1.5, 1.5),

y(0, ξ) = sin(πξ)χ[0,1](ξ) ξ ∈ (−1.5, 1.5),

y(t,−1.5) = 0 = y(t, 1.5), t ∈ [0, 2].
(23)

with B(ξ)T = (
χ[0.25,0.5](ξ), χ[0.75,1](ξ)

)
. The true system configuration is given by

μ∗
1 = 0.01 and μ∗

6 = 1 in (22). We note that in this example u(t) ∈ R
2, and we set in

(17) Q = �ξ Id , R = 0.01. The discretization of (23) is donewith�ξ = 0.025 = �t .
This discretization leads to a problem of dimension d = 121. In Table 2, one can find
the true coefficients versus the reconstructed ones at the last iteration using Algorithm
2. We can see that our algorithm matches the desired configuration considering the
order of the finite discretization used.

The three trajectories are compared in Fig. 3. One can see a clear difference between
the uncontrolled solution (left panel) and the other two plots. Moreover, the controlled
trajectories show a similar behavior.

A more detailed comparison between Algorithm 1 and Algorithm 2 is shown in
Fig. 4. Indeed, in the left plot, we show the two controls obtained from each algorithm
that are very close to each other for both components. The evaluation of cost functional
is shown in the middle plot of Fig. 4 and one can see that, again as expected, the value

123

Page 15 of 25 85

A. Alla et al.

Table 1 Test 1: Reconstruced parameter configuration for Allen-Cahn with �ξ = 0.01, �t = 0.01, 1%
relative noise

True μ∗ 1 0 11 0 −11 0 0

Estimated μ̃ 0.9992 −0.0017 11.0008 −0.0653 −10.8232 0.0431 0

The values reported in this table are taken at time t = 0.5

0 0.1 0.2 0.3 0.4 0.5
time

-1.5

-1

-0.5

0

co
nt

ro
l

control RL
control

0 0.1 0.2 0.3 0.4 0.5

time

0

0.005

0.01

0.015

0.02

cu
m

ul
at

iv
e

co
st

uncontrolled
controlled
RL

0 0.1 0.2 0.3 0.4
Time

10-5

10-3

10-1

101

E
rr

or
 o

n
pa

ra
m

et
er

s

1 2 3 4 5 6 7

Fig. 2 Test 1: Allen-Cahn, �ξ = 0.01, �t = 0.01, 1% relative noise. On the left, the comparison between
the control found using knowledge of the true μ and the control found by the RL algorithm is shown. In
the middle, the cumulative cost. On the right, the error on the parameter estimation at each time

Table 2 Test 2. Reconstructed parameter configuration for viscous Burger with �ξ = 0.025, �t = 0.025,
1% relative noise

True μ∗ 0.01 0 0 0 0 1 0

Estimated μ̃ 0.0096 0 −0.0008 0.002 −0.001 0.9999 0

The values reported in this table are taken at time t = 0.625

Fig. 3 Test 2: Viscous Burgers, �ξ = 0.025, �t = 0.025, 1% relative noise

0 0.5 1 1.5 2

time

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

co
nt

ro
l

u
1
 RL

u
1

u
2
 RL

u
2

0 0.5 1 1.5 2

time

0

0.2

0.4

0.6

0.8

cu
m

ul
at

iv
e

co
st

uncontrolled
controlled
RL

0 0.2 0.4 0.6
Time

10-6

10-4

10-2

100

E
rr

or
 o

n
pa

ra
m

et
er

s

1 2 3 4 5 6 7

Fig. 4 Test 2: Viscous Burgers, �ξ = 0.025, �t = 0.025, 1% relative noise. The first plot shows the
comparison between each of the two components of the control found using knowledge of the true μ and
the control found by the RL algorithm. The other plots show the cumulative cost and the error on the
parameter estimation at each time until the update stop

123

85 Page 16 of 25

Online identification and control...

of the RL-based method is slightly larger to the SDRE method. Finally, in the right
plot, we show the error in the convergence of the parameter configuration. The method
stops updating the configuration estimate at time t = 0.625 (i.e., after 25 iterations
out of 80).

Results with a black box. For this test case, we also show the results obtained using a
real black box. At each iteration ti we first solved the Riccati equation, thus obtaining
Ki , then we found the control u = Ki xi and finally, we let the system evolve, thus
obtaining xi+1. For the evolution, we used the Matlab function ode15s at each
iteration. Table 3 shows the final approximations of the parameters. We can see that
the term μ̃5, which was close to the correct value 0 using an implicit scheme in Table 2,
appears in the reconstruction with a value of 0.1762 in this case. Nevertheless, the
algorithm is still able to provide a stabilizing control which is very close to the one
obtained using the implicit scheme, as shown in Fig. 5.

We then tested our algorithm using different libraries, i.e., considering only some
Fj ’s. In Table 4, we report the results when not considering the 5th term y3(t, x),
whose parameter μ5 is the extra term appearing when working with the whole library.
It is then clear that our method works accurately. Furthermore, we report in Table 5
the results when considering only the terms that belong to the problem; again, our
algorithm was able to approximate them well.

The reason why the algorithm is not able to approximate μ5 might be that the
components of the solution vector x all tend to zero with the applied control, so the
components of x3 (each element of x raised to the power of 3), which is the term that
must be multiplied by μ5, tend to 0 very rapidly. This is also justified by the error in
the infinity norm we computed in Table 6. There, we have computed the difference
between the controlled solution and our RL solutions using the full library in the
first column, the library without the μ5−term in the second column, and the library
with only the correct terms in the last column. One can see that there is no difference
in using the libraries chosen. Indeed, the computed controls appear to be the same
and our method is always able to stabilize the problem even in the case of the full
library (see Table 3). This further validates our method, which is able to stabilize the
problem even if the discovered model does not match perfectly with the true system
configuration. The reason is that even if a configuration μ̃ doesn’t match exactly the
true configuration μ∗, by construction it solves the linear system (18) and so it well
approximates the system dynamics, at least along the controlled trajectory.

Finally, for the sake of completeness, we show more details in Fig. 5 on the results,
obtained with a black box, where the whole library was used. The top left panel shows
the solution and the top right panel shows the error on parameters. In the bottom left
panel, we show a comparison between the control found with the black box and the
control computed by the algorithm that uses the implicit formula. The last plot shows

Table 3 Test 2: Viscous Burgers, �ξ = 0.025, �t = 0.025, 1% relative noise

True μ∗ 0.01 0 0 0 0 1 0

Estimated μ̃ 0.0096 −0.0002 0.0008 0.0004 0.1762 1.021 0

Results with a black box, all parameters considered. The values reported in this table are taken at time
t = 2. The stopping criterion was never matched

123

Page 17 of 25 85

A. Alla et al.

0 0.5 1 1.5
Time

10-8

10-6

10-4

10-2

100

E
rr

or
 o

n
pa

ra
m

et
er

s

1 2 3 4 5 6 7

0 0.5 1 1.5 2

time

-5

-4

-3

-2

-1

0

1

co
nt

ro
l

u
1
 RL black box

u
1
 RL

u
2
 RL black box

u
2
 RL

0 0.5 1 1.5 2

time

0

0.05

0.1

0.15

0.2

cu
m

ul
at

iv
e

co
st

RL
controlled
RL black box

Fig. 5 Test 2: Viscous Burgers, �ξ = 0.025, �t = 0.025, 1% relative noise. Results with a black box, all
parameters considered

Table 4 Test 2: �ξ = 0.025, �t = 0.025, 1% relative noise

True μ∗ 0.01 0 0 0 – 1 0

Estimated μ̃ 0.0101 −0.0003 0.0007 0.0116 – 1.0199 0

Results with a black box, μ5 not considered. The values reported in this table are taken at time t = 2

Table 5 Test 2, �ξ = 0.025, �t = 0.025, 1% relative noise

True μ∗ 0.01 – – – – – 1

Estimated μ̃ 0.0099 – – – – – 1.0564

Results with a black box, only μ1 and μ6 considered. The values reported in this table are taken at time
t = 0.35

Table 6 Difference between the controlled approximation yc with Algorithm 1 for the known problem, the
RL approximation yRL and the RL with a black box yRL−bb

full library No μ5 Only μ1, μ6

‖yRL − yRL−bb‖∞ 0.054254 0.054254 0.054254

‖yc − yRL−bb‖∞ 0.113177 0.113177 0.113177

‖yc − yRL‖∞ 0.111801 0.111801 0.111801

In the first column the error is computed using the results with a full library, in the second excluding the
term μ5 and in the third using the library only contains the terms μ1 and μ6. The error shown in this table
has to be understood in space-time domain

123

85 Page 18 of 25

Online identification and control...

Table 7 Test 3: Reconstructed parameter configuration for Korteweg-de Vries, �ξ = 0.1, �t = 0.025,
1% relative noise

True μ∗ 0.5 0 0 0 0 6 −1

Estimated μ̃ 0.4931 0.0012 0.0004 0.001 −0.0016 5.9943 −0.9999

The values reported in this table are taken at time t = 1.275

a comparison between the costs of the controlled solution and the two RL solutions
(implicit and black box). Note that, even if the model parameters found with the black
box algorithm are less accurate than the ones found with the implicit one, the cost of
the applied control is very similar.

5.2.1 Test 3: Korteweg-de Vries

In the third model, we study the well-known Korteweg-de Vries (KdV) equation, with
an additional diffusion term, which reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yt (t, ξ) = 1

2
yξξ (t, ξ) + 6y(t, ξ)yξ (t, ξ) − yξξξ (t, ξ)

+ χ[1,4](ξ)u(t), t ∈ [0, 2], ξ ∈ (−10, 7),

y(0, ξ) = χ[0,6](ξ)

(
cos

(π

3
(ξ − 3)

)
+ 1

)
ξ ∈ (−10, 7),

y(t, −10) = 0, y(t, 7) = 0, t ∈ [0, 2].

Thus, it is a special case of (22) when μ∗
1 = 0.5, μ∗

6 = 6, μ∗
7 = −1. Note that

in this test there is a third derivative in the equation. The boundary conditions are of
Dirichlet type and the relative noise added was 1%. The finite difference discretization
is performed choosing �ξ = 0.1 which leads a problem (13) of dimension d = 171,
and integrated in time with �t = 0.025. The configuration found from our Algorithm
2 can be seen in Table 7. The update of the estimated configuration stopped after
t = 1.275 (i.e., after 51 iterations out of 80). The reconstructedparameter configuration
has a difference of order less than �t with respect to the true configuration. Note that,
from Table 7, we obtained ‖μ∗ − μ̃‖∞ = 0.0069 < �t = 0.025.

Again, as seen in the previous examples, this confirms the accurateness of our
method.

The trajectories are presented in Fig. 6. One can see that the middle and right panels
have a similar behavior whereas the uncontrolled simulation has a completely different
evolution.

Fig. 6 Test 3: Korteweg-de Vries, �ξ = 0.1, �t = 0.025, 1% relative noise

123

Page 19 of 25 85

A. Alla et al.

Finally, we show the computed controls in the left panel of Fig. 7 which, after the
first iterations, follow the same behavior. A more qualitative result is given in the
middle panel of Fig. 7 where we can see the evaluation of cost functional (21). Again
(and as expected) Algorithm 1 performs slightly better than Algorithm 2 but is still
very close. To finalize, the history of the parameter configuration is shown in the right
panel.

5.3 CPU times

In this subsection, we report in Table 8 the CPU times of the tests presented above. We
compare the time needed to compute the uncontrolled, controlled, and RL solutions
for each of the three presented test cases for the implicit scheme.

Since we have random components, the table has been obtained by executing the
algorithm 50 times and then considering the arithmetic mean of the execution times.
Table 8 shows that the time needed to obtain the solution with Algorithm 1 is similar
to the time needed with our proposed method. This is because the number of PDEs
solved is the same, the computation of the Bayesian linear regression is neglectable
since we do not deal with large-scale problems, and in our problem, we have to solve
one ARE less than SDRE since at the first iteration we decide to start with 0 control.
In the third test, our method is slightly faster than SDRE, this also depends on the
number of iterations needed in the Newton method which may be different since we
opt for different control strategies.

To make the comparison fair, we consider the time needed to approximate the PDE
in each method. Theoretically, one could think the black box in our method as an
offline strategy with no cost.

Figure8 shows the execution time needed to conclude each iteration of the solution
(and control) computation for the uncontrolled, controlled, and RL cases. The final
iteration times correspond to the times in Table 8. The uncontrolled case only requires
the solution computation. We can observe that, in the first two tests, at the beginning
the RL algorithm is slightly faster than the controlled one, and this is due to the choice
of using a fixed control at the first iteration. Then, RL algorithm iterations are slightly
slower, sincemore operations are carried out (e.g., Bayesian regression). This behavior
is different for Test 3 as already commented. We also note that the uncontrolled KdV
problem takes more time than the other two examples.

0 0.5 1 1.5 2
time

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

co
nt

ro
l

control RL
control

0 0.5 1 1.5 2

time

0

2

4

6

8

10

cu
m

ul
at

iv
e

co
st

uncontrolled
controlled
RL

0 0.5 1
Time

10-4

10-3

10-2

10-1

100

E
rr

or
 o

n
pa

ra
m

et
er

s

1 2 3 4 5 6 7

Fig. 7 Test 3: Korteweg-de Vries, �ξ = 0.1, �t = 0.025, 1% relative noise. On the left, the comparison
between the control found using knowledge of the true μ and the control found by the RL algorithm is
shown. In the middle the cumulative cost. On the right, the error on the parameter estimation at each time
until the update stop

123

85 Page 20 of 25

Online identification and control...

Table 8 CPU times in seconds of the three presented tests

uncontrolled Algorithm 1 Algorithm 2

Test 1 0.69s 8.7s 10.1s

Test 2 0.87s 19.9s 21.3s

Test 3 12.1s 67.7s 64.2s

The times have been computed as the arithmetic mean of the time required to complete 50 algorithm’s
executions. The runtimes for Algorithm 2 are rather constant with a small standard deviation

0 10 20 30 40 50

iteration

0

2

4

6

8

10

12

cp
u

tim
e

CPU time

uncontrolled
controlled
RL

0 20 40 60 80

iteration

0

5

10

15

20

25

cp
u

tim
e

CPU time

uncontrolled
controlled
RL

0 20 40 60 80

iteration

0

20

40

60

80

cp
u

tim
e

CPU time

uncontrolled
controlled
RL

Fig. 8 Cumulative execution times at each iteration for Test 1 (left), Test 2 (middle), and Test 3 (Right).
Mean times over 50 executions are considered

Fig. 9 Trajectories for Test 1 (left), Test 2(middle), Test 3(right) with spatial discretization �ξ
2 using the

RL control computed with �ξ

Fig. 10 Trajectories for Test 1 (left), Test 2(middle), Test 3(right) with spatial discretization �ξ
4 using the

RL control computed with �ξ

0 0.1 0.2 0.3 0.4 0.5

time

0

0.5

1

1.5

2

2.5

3

co
st

10-3 Cost comparison

d
d /2
d /4

0 0.5 1 1.5 2

time

0

0.05

0.1

0.15

0.2

0.25

co
st

Cost comparison

d
d /2
d /4

0 0.5 1 1.5 2

time

0

0.2

0.4

0.6

0.8

1

1.2

co
st

Cost comparison

d
d /2
d /4

Fig. 11 Comparison of the cost functionals for Test 1 (left), Test 2(middle), Test 3(right)

123

Page 21 of 25 85

A. Alla et al.

5.4 Convergence to the PDE

To conclude, we provide a numerical assessment of the convergence of our method
in a PDE control framework. We consider the examples of the previous sections and
study the convergence of the control for increasing the dimension of the problem
using the same time discretization grid used for each example to study the role of the
mesh toward the control of the PDE. Thus, we have tested the control obtained for a
discretized problem of dimension d (step�ξ) using our Algorithm 2 and plugged into
finer discretizations of the reference PDE of dimension, say 2d (step �ξ/2) and 4d
(step �ξ/4). This has been done because, even if we use the true parameter μ∗ for the
evolution, the obtained dynamics is still an approximation of the PDE evolution, due
to the use of numerical schemes. Finer grids allow us to better investigate the behavior
of the system after the application of the computed control. For all three numerical
examples, we plot the 3D solution generated with the finer grids (Figs. 9 and 10) and
the cost computed accordingly (Fig. 11). We can see that the control found stabilizes
the system also in these cases.

6 Conclusions

We proposed a new algorithm designed to control/stabilize unknown PDEs under
certain assumptions. The strength of the method is the identification of the system
on the fly, where at each iteration we provide a parameter estimate of the unknown
system by Bayesian Linear regression. The update of the parameter configuration
is based on the RL assumption where the user is always able to observe the true
system configuration without its explicit knowledge. Numerical experiments have
shown convergence results that validate our proposed approach. Since, to the best of
the authors’ knowledge, this is the first approach of this kind for nonlinear problems,
we leave several open problems, such as efficient algorithms for higher dimensional
problems and a theoretical study of the convergence for the proposed method. A
preliminary work for two dimensional PDEs combined with model order reduction
has been studied in [2]. Then, it will be interesting to add further unknowns in the
problem, such as, e.g., the B(x) term in the model and the quantity Q in the cost.

Acknowledgements The authors want to express their deep gratitude to Maurizio Falcone. Thanks to him
the authors met up and started to collaborate on this project.

Data availability No data has been used in this paper.

Code availibility TheMATLAB source code for the implementations used to compute the presented results
can be downloaded from https://github.com/alessandroalla/SDRE-RL upon request to the corresponding
author.

Declarations

Conflict of interest The authors declare no competing interests.

123

85 Page 22 of 25

https://github.com/alessandroalla/SDRE-RL

Online identification and control...

References

1. Alla, A., Kalise, D., Simoncini, V.: State-dependent Riccati equation feedback stabilization for non-
linear PDEs. Adv. Comput. Math. 49 (2023). https://doi.org/10.1007/s10444-022-09998-4

2. Alla, A., Pacifico, A.: A pod approach to identify and control PDEs online through state dependent
Riccati equations. Tech. Rep. arXiv:2402.08186 (2024)

3. Altmüller, N., Grüne, L., Worthmann, K.: Receding horizon optimal control for the wave equation.
In: 49th IEEE Conference on Decision and Control (CDC), pp. 3427–3432 (2010). https://doi.org/10.
1109/CDC.2010.5717272

4. Banks, H.T., Lewis, B.M., Tran, H.T.: Nonlinear feedback controllers and compensators: a state-
dependent Riccati equation approach. Comput. Optim. Appl. 37(2), 177–218 (2007)

5. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman
equations. Birkhauser (1997)

6. Bellman, R.: The theory of dynamic programming. Bullet. AmericanMath. Soc. 60(6), 503–515 (1954)
7. Bellman, R.: Adaptive control processes: a guided tour. Princeton University Press, Princeton, N.J.

(1961)
8. Benner, P., Heiland, J.: Exponential stability and stabilization of extended linearizations via continuous

updates of Riccati-based feedback. Int. J. Robust Nonlinear Control 28(4), 1218–1232 (2018). https://
doi.org/10.1002/rnc.3949

9. Bertsekas, D.: Reinforcement and optimal control. Athena Scientific (2019)
10. Bertsekas, D.P.: Approximate dynamic programming (2008)
11. Box, G.E., Tiao, G.C.: Bayesian inference in statistical analysis, vol. 40. John Wiley & Sons (2011)
12. Brunton, S., Proctor, J., Kutz, J.: Discovering governing equations from data by sparse identification of

nonlinear dynamical systems. Proceedings of the National Academy of Sciences of the United States
of America 115, 3932–3937 (2016)

13. Casper, S., Fuertinger, D.H., Kotanko, P., Mechelli, L., Rohleff, J., Volkwein, S.: Data-driven modeling
and control of complex dynamical systems arising in renal anemia therapy. In: Ehrhardt, M., Günther,
M. (eds.) Progress in Industrial Mathematics at ECMI 2021, pp. 155–161. Springer International
Publishing, Cham (2022)

14. Cloutier, J.R.: State-dependent Riccati equation techniques: an overview. In: Proceedings of the 1997
American Control Conference (Cat. No.97CH36041), vol. 2, pp. 932–936 vol.2 (1997)

15. Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton—Jacobi
equations. SIAM (2013)

16. Freedman, D.A.: Statistical models: theory and practice. Cambridge University Press (2009)
17. Grüne, L., Pannek, J.: Nonlinear model predictive control. Communications and Control Engineering

Series. Springer, London (2011). Theory and algorithms
18. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep

reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp.
1861–1870. PMLR (2018)

19. Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predic-
tive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 474(2219), 20180335 (2018). https://doi.org/10.1098/rspa.2018.0335

20. Karniadakis, G., Kevrekidis, I., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine
learning. Nat. Rev. Phys. 3, 686–707 (2021). https://doi.org/10.1038/s42254-021-00314-5

21. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and appli-
cations. J. Comput. Phys. 193(2), 357–397 (2004)

22. Krstic,M., Smyshlyaev,A.:Adaptive control of PDEs. IFACProceedingsVolumes, 9th IFACWorkshop
on Adaptation and Learning in Control and Signal Processing 40(13), 20–31 (2007). https://doi.org/
10.3182/20070829-3-RU-4911.00004

23. LeVeque, R.J.: Finite difference methods for ordinary and partial differential equations. Society for
Industrial andAppliedMathematics (SIAM), Philadelphia, PA (2007). Steady-state and time-dependent
problems. https://doi.org/10.1137/1.9780898717839

24. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous
controlwith deep reinforcement learning. In: 4th InternationalConference onLearningRepresentations
(ICLR) (2016)

123

Page 23 of 25 85

https://doi.org/10.1007/s10444-022-09998-4
http://arxiv.org/abs/2402.08186
https://doi.org/10.1109/CDC.2010.5717272
https://doi.org/10.1109/CDC.2010.5717272
https://doi.org/10.1002/rnc.3949
https://doi.org/10.1002/rnc.3949
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.3182/20070829-3-RU-4911.00004
https://doi.org/10.3182/20070829-3-RU-4911.00004
https://doi.org/10.1137/1.9780898717839

A. Alla et al.

25. Martinsen,A.B., Lekkas,A.M.,Gros, S.: Combining system identificationwith reinforcement learning-
based MPC. IFAC-PapersOnLine 53(2), 8130–8135 (2020). https://doi.org/10.1016/j.ifacol.2020.12.
2294. 21st IFAC World Congress

26. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,M.G., Graves, A., Riedmiller,
M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning.
Nature 518(7540), 529–533 (2015)

27. Zolman,N., Fasel,U.,Kutz, J.N. andBrunton, S.L.: SINDy-RL: interpretable and efficientmodel-based
reinforcement learning. Tech. Rep. (2024). arXiv:2403.09110

28. Pacifico, A., Pesare, A., Falcone, M.: A new algorithm for the LQR problem with partially unknown
dynamics. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing, pp. 322–330. Springer
International Publishing, Cham (2022)

29. Powell, W.B.: Approximate dynamic programming: solving the curses of dimensionality, vol. 703.
John Wiley & Sons (2007)

30. Powell, W.B.: From reinforcement learning to optimal control: a unified framework for sequential
decisions. In: Handbook of Reinforcement Learning and Control, pp. 29–74. Springer (2021)

31. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Computat. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

32. Rasmussen, C., Williams, C.: Gaussian processes for machine learning. Adaptive Computation and
Machine Learning. MIT Press, Cambridge, MA, USA (2006)

33. Rossi, P.E., Allenby, G.M., McCulloch, R.: Bayesian statistics and marketing. John Wiley & Sons
(2012)

34. Rudy, S., Alla, A., Brunton, S.L., Kutz, J.N.: Data-driven identification of parametric partial dif-
ferential equations. SIAM J. Appl. Dynamical Syst. 18(2), 643–660 (2019). https://doi.org/10.1137/
18M1191944

35. Rudy, S., Brunton, S., Proctor, J., Kutz, J.: Data-driven discovery of partial differential equations. Sci.
Adv. 3 (2017)

36. Rummery,G.A.,Niranjan,M.:On-lineQ-learning using connectionist systems, vol. 37. Citeseer (1994)
37. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In:

International conference on machine learning, pp. 1889–1897. PMLR (2015)
38. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44

(1988)
39. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction, vol. 1, first edn. MIT Press, Cam-

bridge, MA (1998)
40. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction, 2nd edn. MIT Press, Cambridge,

MA (2018)
41. Watkins, C., Hellaby, J.C.: Learning from delayed rewards (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

85 Page 24 of 25

https://doi.org/10.1016/j.ifacol.2020.12.2294
https://doi.org/10.1016/j.ifacol.2020.12.2294
http://arxiv.org/abs/2403.09110
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/18M1191944
https://doi.org/10.1137/18M1191944

Online identification and control...

Authors and Affiliations

Alessandro Alla 1 · Agnese Pacifico 2 ·Michele Palladino 3 · Andrea Pesare 4

B Alessandro Alla
alessandro.alla@unive.it

Agnese Pacifico
agnese.pacifico@uniroma1.it

Michele Palladino
michele.palladino@univaq.it

Andrea Pesare
andreapesare1@gmail.com

1 Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca’ Foscari, Venezia, Italy

2 Department of Mathematics, Sapienza University of Rome, Rome, Italy

3 Department of Information Engineering, Computer Science and Mathematics, University of
L’Aquila, L’Aquila, Italy

4 Viale Moliere 51, Rome 00142, Italy

123

Page 25 of 25 85

http://orcid.org/0000-0003-1832-1649

	Online identification and control of PDEs via reinforcement learning methods
	Abstract
	1 Introduction
	2 Bayesian linear regression
	3 Control of nonlinear problem via state-dependent riccati equation
	4 Identification and control of unknown nonlinear dynamics
	4.1 The method
	4.2 Application to PDEs

	5 Numerical experiments
	5.1 Test 1: Allen-Cahn
	5.2 Test 2: viscous burgers
	5.2.1 Test 3: Korteweg-de Vries

	5.3 CPU times
	5.4 Convergence to the PDE

	6 Conclusions
	Acknowledgements
	References

