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Abstract
We develop a sparse spectral method for a class of fractional differential equations,
posed on R, in one dimension. These equations may include sqrt-Laplacian, Hilbert,
derivative, and identity terms. The numerical method utilizes a basis consisting of
weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert
transforms. The former functions are supported on [−1, 1] whereas the latter have
global support. The global approximation space may contain different affine transfor-
mations of the basis, mapping [−1, 1] to other intervals. Remarkably, not only are the
induced linear systems sparse, but the operator decouples across the different affine
transformations. Hence, the solve reduces to solving K independent sparse linear sys-
tems of size O(n) × O(n), with O(n) nonzero entries, where K is the number of
different intervals and n is the highest polynomial degree contained in the sum space.
This results in an O(n) complexity solve. Applications to fractional heat and wave
equations are considered.
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1 Introduction

In this work, we develop a spectral method, detailed in Algorithm 1, to solve equations
of the form

Lλ,μ,η[u] := (λI + μH + η
d

dx
+ (−�)1/2)[u] = f , (1)
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in one dimension where λ,μ, η ∈ R are known constants,H is the Hilbert transform
and (−�)1/2 is the sqrt-Laplacian, as defined in the next section. The domain is the
whole real line R. We seek a solution such that:

lim|x |→∞ u(x) = 0. (2)

Although in this work, we only consider the sqrt-Laplacian (−�)1/2, the method
may generalize to fractional rational powers (−�)s , s ∈ (0, 1) ∩ Q. This would be
achieved via weighted Jacobi polynomials and their fractional Laplacian analogues
[1, Tab. 5, Row 1∗] combined with the techniques developed by Hale and Olver [2]
for fractional derivatives of a rational power of Riemann–Liouville and Caputo types.
These techniques may further extend to two and three-dimensional problems via the
formulae found in [1, Tab. 7].

Equations of the form (1) arise in several contexts. Hilbert transforms occur in equa-
tions modelling interfacial turbulence of surface-tension driven Stokes flow [3]. The
Hilbert transform is particularly useful in analyzing and processing signals, especially
in the context of understanding their instantaneous frequency and phase relationships.
By taking the derivative of the phase of the analytic signal with respect to time, one can
obtain the instantaneous frequency, providing insight into how the frequency of the sig-
nal changes over time. The Hilbert transform has also been used in the Benjamin–Ono
equation [4] as well as in the context of Riemann–Hilbert problems [5]. The sqrt-
Laplacian (−�)1/2 is an operator that represents nonlocal or long-range interactions
in a physical system. Examples include

• anomalous diffusion and random walks: unlike the classical Laplacian, the sqrt-
Laplacian can capture more complex diffusion behaviour often characterized by
power-law scaling and naturally arises as the continuous limit of discrete long
jump random walks, cf. [6, Sec. 2.1.4], [7, Ch. 1] and [8].

• nonlocal potential energy: the sqrt-Laplacian has appeared in the kinetic energy
term of a Hamiltonian in the context of quantum mechanics where it models a
nonlocal contribution to the kinetic energy of a particle [9, 10].

When λ = η = μ = 0 and λ = 1, η = μ = 0, we recover the fractional Poisson
and fractional (positive-definite) Helmholtz equations, respectively. Such equations
have found many uses [11–15]. In particular the fractional Helmholtz equation arises
after a backward Euler time discretization of the fractional heat equation

∂t u(x, t) + (−�)1/2[u](x, t) = f (x, t). (3)

In this case, the constantλ = (�t)−1 is the inverse of the time step size andμ = η = 0.
It also arises in power law absorption [16] or during the Newton linearization for non-
local Burgers-type equations [17, 18], which have applications for quasi-geostrophic
equations [19], or fractional porous medium flow [20].

Our approach is to approximate the function u with a space of functions consisting
of weighted Chebyshev polynomials of the second kind and their Hilbert transforms,
the span of which we refer to as a sum space: it is a direct sum of the span of two bases.
This approach is inspired by a similar method utilized by Hale and Olver for fractional
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integral and differential equations [2]. As the Hilbert transform is an anti-involution,
H[H[u]] = −u, the operator (λI +H) maps the sum space to itself and the operator
representation of (λI+H) is sparse. Thismethod naturally extends to combinations of
affine transformations of the sum space where the Hilbert transform decouples across
the affine transformations. By constructing a dual sum space that contains the range of
the derivative of the sum space, we exploit a relationship between the sqrt-Laplacian,
derivative and Hilbert transform (see (13)) to solve (1).

There exist many methods for tackling problems involving fractional Laplacian
terms. Finite element methods (FEM) are popular, for instance see [6, 21] and the
references therein. Typically during the construction of FEM, the boundary must be
bounded. This implies that special care must be taken for the imposed boundary con-
ditions as the different definitions of the fractional Laplacian are no longer equivalent.
Moreover, the solutions themselves are often heavy-tailed, i.e., they decay at the rate of
a Cauchy distribution rather than a Gaussian (see Sect. 7.4) [22, Sec. 2]. Hence, FEM
naïvely applied to a (large) truncation of an unbounded domain will likely exhibit
numerical artefacts due to the nonlocal nature of the operators [23, Sec. 9].

Spectral methods for tackling Helmholtz-like problems posed on R
d can also be

found in the literature [24–29]. For a summary see [23]. Mao and Shen [27] devel-
oped a Hermite spectral method to solve the fractional Helmholtz problem (λ > 0,
η = μ = 0) on unbounded domains, d ∈ {1, 2}, for an arbitrary fractional Laplacian
(−�)s , s ∈ (0, 1). Each solve relied on four discrete Hermite transforms. They also
developed a Galerkin method where the stiffness matrix entries can be computed by
explicit integrals, however, the stiffness matrix is dense. Li et al. [29] also develop
a spectral-Galerkin method based on Hermite polynomials and their stiffness matrix
is also dense. They are also able to define a truncated fractional Laplacian. Tang et
al. [25] developed a Hermite collocation method where they derived explicit recur-
rence relationships for the entries in the stiffness matrix. They applied their method
for d ∈ {1, 2} as well as to nonlinear problems. Similarly, as they use a collocation
method, their linear systems are dense. Then, Tang et al. [26] extended their col-
location method to modified mapped Gegenbauer functions which are better suited
to approximating solutions with algebraic decay rates. Sheng et al. [28] note that
for dimensions two or more, the previous methods can become expensive. Sheng et
al. developed aChebyshev spectral Galerkinmethod for the fractional positive-definite
Helmholtz equation on an unbounded domain using the Dunford–Taylor formulation
of the fractional Laplacian [30, Th. 4.1]. They construct so-called mapped Chebyshev
functions defined on R. Their method works for arbitrary s ∈ (0, 1) and they consid-
ered one, two, and three-dimensional problems. The initialization of their algorithm
requires the solution of an eigenvalue problem with worst case complexity O(n3) in
one dimension. However, they remark this can be improved toO(n2) with an optimal
solver. Each solve requires an FFT and the complexity of the solve is O(n(log n)d),
where d is the dimension. Recently, in one dimension, a series of specialized algo-
rithms were developed by de la Hoz and coworkers that utilize a so-called L cot(s)
transformation to convert the unbounded domain to a bounded one [31–34]. They con-
verge at a spectral rate when there is sufficient smoothness in the problem, accurately
capture behaviour of the solution as |x | → ∞, and may be applied to nonlinear prob-
lems. The main disadvantages are the heavy reliance on the choice of L for accuracy
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(although heuristics exist), the evaluation of infinite sums or expensive evaluations
of 2F1 functions (which may require higher precision than double precision), and the
ill-conditioning of the matrices that represent the action of the fractional Laplacian
which introduces numerical error when the truncation degree is large. Out of the four
papers mentioned, [34] is a specialized algorithm for s = 1/2 and accelerates the
computation of the sqrt-Laplacian via an FFT resulting in a fast algorithm. However,
depending on the behaviour of the solution, the algorithm requires different choices
for the setup (for instance the specific choice of the transformation to the bounded
domain) which induces some subtleties in the implementation. We emphasize their
algorithms are effective, however, we believe our spectral method is better suited for
certain classes of nonsmooth right-hand sides (see Sect. 7.3), solutions with singular-
ities that naturally arise in the case of the sqrt-Laplacian, and is better conditioned.
We prove that the linear system to compute the solution may be preconditioned with
a diagonal preconditioner such that the condition number isO(1), independent of the
truncation degree and the number of discretization intervals. Moreover, the expan-
sion of the right-hand side relies on the use of frames for which an ε-truncated SVD
factorization has been proven to mitigate the perceived ill-conditioning (see Sect. 5).

We reiterate some advantages of our method. We can handle the terms d
dx and H

as well as (−�)1/2 and I, the former of which are not included in the aforementioned
works.Moreover, the ability to containmultiple affine transformations of the reference
sum space allows one to better handle regions of discontinuity in the data resulting in
better approximations. The resulting linear systems are banded and sparse. Each solve
is divided into independent well-conditioned solves, that can be computed in parallel,
involving only the functions contained in the same affine transformed sum space. This
results in quick solve times. Moreover, there exists a diagonal preconditioner such
that the preconditioned linear system has an O(1) condition number, independent of
the truncation degree or interval choice. The evaluation of the solution requires the
integral of four independent special functions per differently scaled sum space, and if
all sum spaces have the same scaling (i.e., they are just translations), we require only
four integrals in total. The special functions are not dependent on the right-hand side
of (1), however, they are dependent on λ, μ, and η.

Given that the different affine transformed sum spaces have overlapping support,
the fact that the operator decouples across the sum spaces seems implausible at first
glance. Theremust be communication between the sum spaces for continuity purposes.
The communication occurs during the expansion of the right-hand side: a process
that cannot be decoupled across different affine transformed sum spaces. Hence, the
computational expense shifts from the solve of the equation to an interpolation of a
known function [35, 36].

Remark 1.1 As the sum spaces centred at multiple intervals are combined together
to form the overall approximation space, it is tempting to call this a spectral element
method.We avoid using the terminology “element” as itmay be confusing. The support
of a sum space function centred at an interval is not necessarily contained within the
interval. In fact the support of the approximation space is always R. Moreover, the
expansion of the right-hand side is slightly more difficult than a typical finite/spectral
element method as the sum space functions centred at different intervals all interact.
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However, we emphasize that the operator Lλ,μ,η decouples across sum space functions
centred at different intervals. Hence, given an expansion of the right-hand side, the
solve complexity only increases linearly with the number of intervals used and the
solve over different intervals can be done in parallel.

The paper is structured as follows. In Sect. 2, we rigorously define the problem we
are solving and prove relationships between the sqrt-Laplacian, the Hilbert transform,
and the derivative operator. In Sect. 3, we introduce the approximation space of our
spectralmethodwhichwecall the “sumspace.”Weprove the regularity of the functions
contained in the sum space and derive the action of the fractional operator Lμ,λ,η

on the functions. In Sect. 4, we outline the algorithm in Algorithm 1 and discuss
implementation details in Sect. 5. We analyze the conditioning of the solve in Sect. 5.3
and prove the existence of a diagonal preconditioner that induces a condition number
independent of the truncation degree and number of intervals. In Sect. 6, we prove a
convergence result for the spectral method and consider various examples in Sect. 7
which include the fractional heat equation and a fractional wave propagation problem.
In Sect. 8, we give our conclusions. In the appendices, we explain how to utilize the
FFT to approximate the continuous inverse Fourier transforms of the four special
functions, required for the evaluation of the solution, and also discuss special cases
for the parameters λ, μ, and η.

2 Mathematical setup

Let Ws,p(R) denote the (possibly fractional) Sobolev space [37, 38] and Hs(R) :=
Ws,2(R). We denote the Lebesgue space by Ls(R), s > 0. We seek a solution u ∈
H1/2(R) for (1). Moreover, if η �= 0, then we require the stronger assumption that
u ∈ H1(R). We note that H1(R) ⊂ H1/2(R) which follows from the (Fourier)
definition of H1(R) [37, Sec. 7.62] and a small extension to [38, Prop. 3.6]. Similarly,
the right-hand side f must have sufficient regularity so that (1) is well-posed. Let
H−s(R) denote the dual of Hs(R), then we require f ∈ H−1/2(R).

I denotes the identity operator and (−�)1/2 denotes the fractional sqrt-Laplacian.
Its definition is somewhat subtle depending on the domain and range considered. Let
S denote the space of Schwartz functions. For any s ∈ (0, 1), we define (−�)s : S →
L2(R) as [38, Sec. 3]:

(−�)su(x) := cs −
∫
R

u(x) − u(y)

|x − y|1+2s dy, for a.e. x ∈ R, cs := 4s�(1/2 + s)

π1/2|�(−s)| . (4)

Here −
∫
R

· denotes the Cauchy principal value integral [39, Ch. 2.4] and �(·) denotes
the Gamma function. For any u ∈ Hs(R) it can be shown that (−�)s/2u ∈ L2(R)

[38, Prop. 3.6] where (−�)s/2 is defined as in (4) for s ∈ (0, 1). This also holds for
s = 1 by a small extension. Thus, we consider the weak form reformulation of the
fractional Laplacian (−�)s : Hs(R) → H−s(R):

〈(−�)su, v〉H−s (R),Hs (R) = 〈(−�)s/2u, (−�)s/2v〉L2(R) for all v ∈ Hs(R). (5)
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The right-hand side of (5) is often referred to as the quadratic form of the fractional
Laplacian. The quadratic form is best suited to prove existence of solutions. Suppose
λ > 0 and η ∈ R. Then, the following equation has a weak solution u∗ ∈ H1/2(R)

(see Theorem 2.2),

λ〈u, v〉L2(R) + η〈Hu, v〉L2(R)

+ 〈(−�)1/4u, (−�)1/4v〉L2(R) = 〈 f , v〉H−1/2(R),H1/2(R).
(6)

By definition of H1/2(R) we have that u∗ ∈ L2(R). Moreover, if f ∈ L2(R) (and
thus (−�)1/2u∗ ∈ L2(R)) then the weak solution u∗ also satisfies [40, Th. 1.1]

(λI + ηH + (−�)1/2)u∗ = f a.e. in R. (7)

The fractional Laplacian can also be defined via the Fourier transform. In this
work, we use the following conventions for the Fourier transform and its inverse,
F : L1(R) → C(R):

F[ f ](ω) =
∫
R

f (x)e−iωxdx, F−1[F](x) = 1

2π

∫
R

F(ω)eiωxdω. (8)

The Fourier transform is an automorphism for the spaceS,F : S → S [41, Cor. 9.1.8].
By duality, the Fourier transform (and its inverse) may be defined for the space of
tempered distributions, F : S∗ → S∗, where the space of tempered solutions S∗ is
the dual space of S [41, Sec. 9.3]. As the space of Schwartz functions is dense in
L p(R), for p ∈ [1,∞), the Fourier transform may be extended to all f ∈ L p(R).
However, the Fourier transform may only be a tempered distribution for p > 2.
The Hausdorff–Young inequality implies that, for p ∈ [1, 2], F : L p(R) → Lq(R)

where 1/p + 1/q = 1 [42, Ch. 2.3]. In general, the Fourier transform of a function
f ∈ L p(R)\L1(R), p ∈ (1,∞), cannot be computed via the formula in (8) [41,
Sec. 9.2].

If both u, (−�)su ∈ L p(R) for some p ∈ [1,∞), then the operator (−�)s may
be equivalently interpreted as a Fourier multiplier, i.e., the following equation holds
in the sense of distributions [40, Th. 1.1]:

F[(−�)s[u]](ω) = |ω|2sF[u](ω). (9)

If p ∈ [1, 2], then (9) holds a.e. in R [40, Th. 1.1].
H : L p(R) → L p(R), p ∈ (1,∞), denotes the Hilbert transform which is a

bounded linear operator. It can be defined via the following convolution:

H[u](x) := 1

π
−
∫
R

u(y)

x − y
dy for a.e. x ∈ R. (10)

Equivalently, the Hilbert transform can be seen as a Fourier multiplier such that [43,
Sec. 2.2]

F[H[u]](ω) = −i sgn(ω)F[u](ω), (11)
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where sgn(·) denotes the sign function. A useful property of the Hilbert transform is
that it is anti-self adjoint [44, Th. 102].

Lemma 2.1 (Anti-self adjointness of the Hilbert transform) The Hilbert transform
is anti-self adjoint, i.e., for u ∈ L p(R), v ∈ Lq(R) such that 1 < p, q < ∞,
1/p + 1/q = 1,

〈H[u], v〉L p(R),Lq (R) = −〈u,H[v]〉L p(R),Lq (R). (12)

The Hilbert transform has found uses in aerofoil theory, crack formation, elasticity,
and potential theory [39]. Of particular interest here is the connection with the sqrt-
Laplacian.

Theorem 2.1 Consider any u ∈ L2(R) such that (−�)1/2u ∈ S∗. Then, the following
equation holds in the sense of distributions:

d

dx
H[u] = (−�)1/2[u]. (13)

Proof For any u ∈ L2(R), (−�)1/2u is defined as follows: for any φ ∈ S [40],
∫
R

(−�)1/2[u]φ dx =
∫
R

u(−�)1/2[φ] dx, (14)

where (−�)1/2[φ] is understood via (4). Similarly,
∫
R

d

dx
H[u]φ dx = −

∫
R

H[u] d

dx
φ dx =

∫
R

uH d

dx
φ dx, (15)

where the first equality is the definition of the distributional derivative and the second
holds by Lemma 2.1 since u, d

dx φ ∈ L2(R). It remains to show that (−�)1/2φ =
H d

dx φ for any φ ∈ S. This follows by comparing Fourier coefficients.
Since φ ∈ S then φ ∈ L2(R) and by the singular operator definition of

(−�)1/2, (−�)1/2φ ∈ L2(R). Hence, by a result of Kwasnicki [40, Th. 1.1],
F[(−�)1/2φ](ω) = |ω|F[φ](ω) for a.e. ω ∈ R. Moreover, since φ ∈ S, then d

dx φ ∈
L2(R) which implies that H[ d

dx φ] ∈ L2(R) and, therefore, F[H[ d
dx φ]] ∈ L2(R). In

particular,

F[H[ d

dx
φ]](ω) = −i sgn(ω)F[ d

dx
φ](ω) = |ω|F[φ](ω) for a.e. ω ∈ R. (16)

For f ∈ L2(R), the same u∗ that solves (6) also satisfies

u∗(x) = F−1[(λ − i η sgn(ω) + |ω|)−1F[ f ](ω)](x), (17)

whenever the right-hand side of (17) is well-defined (which is not automatic). For the
case where λ < 0, η = 0, there may exist standing wave solutions to the homogeneous
equation ( f = 0). These standing waves do not decay and thus do not live in H1/2(R).
However, the Fourier transform definition does not automatically select the solution
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that lives in H1/2(R). Thus, a solution that satisfies (17) might not satisfy (5). In
Appendix 3, we encounter an example where f ∈ L1(R)\L2(R) (and thus F[ f ] is
well-defined) such that (17) has a solution and the solution does not live in H1/2(R),
and thus cannot be a solution of (5).

Theorem 2.2 (Existence) Suppose that μ ∈ R, η = 0, λ > 0, and f ∈ H−1/2(R).
Then, there exists a unique weak solution u∗ ∈ H1/2(R) that satisfies (6).

Proof The result follows by utilizing the anti-self adjointness and continuity ofH (see
Lemma 2.1 and [45]) as well as an application of the Lax–Milgram theorem (see [27,
Sec. 2.2]).

3 Sum space

The goal of this section is to define the four families of functions found in Fig. 1. The
first row in Fig. 1 form the primal set of functions that we approximate our solution
with. The action of (−�)1/2 maps the top left and right families to the bottom left
and right families of functions, respectively. The map induces a diagonal matrix. By
contrast, we construct the identity map from the top left family to the bottom right, and
from the top right to the bottom left. These identity mappings only have two diagonals
in their induced matrices that are non-zero entries. Throughout this work, we use the
convention N := {1, 2, 3, . . . } and N0 := {0, 1, 2, 3, . . . }.
Remark 3.1 We note that there does not exist an identity operator from top left to
bottom left and top right to bottom right. This is precisely whywe require both families
in the top and bottom rows, rather than just one. By combining the first row of families
of functions and the bottom row of families of functions, we can find the sparse map
induced by λI + (−�)1/2. The operators H and d

dx are treated similarly.

Consider the sum space:

S := span({T̃n,Wn : n ∈ N0}), (18)

whereWn(x) = (1−x2)1/2+ Un(x),Un are Chebyshev polynomials of the second kind,

and (1 − x2)1/2+ = 0 if |x | ≥ 1. Recall that [46, Sec. 18.3], Un(x) are orthogonal to

the weight (1 − x2)1/2+ , in the domain (−1, 1), and

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x) −Un−1(x), n ∈ N. (19)

Fig. 1 The domain and range of the operators (−�)1/2 and I for our approximating spaces
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Hence, Wn(x) are weighted Chebyshev polynomials of the second kind extended to
R by zero. Moreover,

T̃n(x) :=
{
Tn(x) for |x | ≤ 1,

(x − sgn(x)
√
x2 − 1)n for |x | > 1,

(20)

where Tn(x) are Chebyshev polynomials of the first kind. Recall that [46, Sec. 18.3]
Tn(x) are orthogonal to the weight (1 − x2)−1/2

+ in (−1, 1) and

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x), n ∈ N. (21)

We call T̃n(x) extended Chebyshev functions of the first kind. Under the change of
variables, x = cos θ , for |x | ≤ 1, the sum space is equivalent to the Fourier series
on the half-period 0 ≤ θ ≤ π . Thus, expanding a function f (x) in this space is
equivalent to the Fourier extension problem [47–49]. We emphasize that we must take
the span of both families of functions; otherwise, we are unable to construct a sparse
representation of the fractional operator in (1).

The extended Chebyshev functions T̃n satisfy the same recurrence relationship as
Tn .

Proposition 3.1 (Recurrence relation) For all x ∈ R, n ∈ N,

2x T̃n(x) = T̃n+1(x) + T̃n−1(x). (22)

Proof The case where |x | ≤ 1 is the three-term recurrence for Chebyshev polynomials
of the first kind. For |x | > 1, the result follows byutilizing the substitution x = cosh(y)
if x > 1 and x = − cosh(y) if x < −1 into (22).

The following result is a key observation for the construction of the spectralmethod.
The result can be found in [5, Cor. 5.7].

Proposition 3.2 (Hilbert transform) For x ∈ R, n ∈ N0, we have that

H[Wn](x) = T̃n+1(x). (23)

Moreover, for a function u ∈ L p(R), p ∈ (1,∞), the Hilbert transform is an anti-
involution, i.e.,H2[u] = −u. Hence,

H[T̃n+1](x) = −Wn(x). (24)

Remark 3.2 Here T̃0(x) = 1 for all x ∈ R. It can be shown that H[T̃0](x) = 0.
Therefore, H2[T̃0](x) = 0. This is not a contradiction as T̃0 /∈ L p(R) for any p ∈
[1,∞).

Lemma 3.1 Wn ∈ Ls(R) ∩ W 1,p(R) for n ≥ 0, s ∈ [1,∞], p ∈ [1, 2), and T̃n ∈
Ls(R) ∩ W 1,p(R) for n ≥ 1, s ∈ (1,∞), p ∈ (1, 2).
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Proof SinceWn(x) are essentially bounded and supported on [−1, 1], it follows imme-
diately that Wn ∈ L p(R) for all n ≥ 0, p ∈ [1,∞]. A direct check reveals that
Wn ∈ W 1,p(R) for p ∈ [1, 2). Moreover, for any function f ∈ Ls(R), s ∈ (1,∞),
we have that [45]

‖H f ‖Ls (R) ≤ C‖ f ‖Ls (R), (25)

for a constant C that only depends on s. Hence, for n ≥ 1,

‖T̃n‖Ls (R) = ‖HWn−1‖Ls (R) ≤ C‖Wn−1‖Ls (R) < ∞. (26)

As d
dx and H commute for any function in W 1,q(R), q ∈ (1,∞) [43, Th. 3.2], we

have that H d
dx T̃n(x) = d

dx Wn−1(x) a.e. Thus, for any p ∈ (1, 2), n ≥ 1,

‖ d

dx
T̃n‖L p(R) = ‖H d

dx
Wn−1‖L p(R) ≤ C‖ d

dx
Wn−1‖L p(R) < ∞. (27)

Therefore, T̃n ∈ Ls(R) ∩ W 1,p(R) for n ≥ 1, s ∈ (1,∞), p ∈ (1, 2).

Consider the expansion, for x ∈ R,

u(x) = ũ0T̃0(x) +
∞∑
n=1

[ũn T̃n(x) + unWn−1(x)], (28)

where {ũn}, {un} ⊂ R are constants. Then, a calculation shows that, for x ∈ R,

(λI + μH)[u](x) = λũ0T̃0(x) +
∞∑
n=1

[(λũn + μun)T̃n(x) + (λun − μũn)Wn−1(x)],
(29)

i.e., the (λI + μH) operator maps the expansion to itself. Consider the equation
(λI + μH)[u] = f . If one has an expansion for the right-hand side term, f , in the
sum space, then it is possible to quickly compute the corresponding solution, u, via
(29).

Remark 3.3 We note that the Hilbert transform relationship (23) also holds for scaled
and shifted Chebyshev polynomials. This provides the bedrock for the decoupling of
the Hilbert transform problem across affine transformed sum spaces.

We note that the sum space is a so-called frame for x ∈ [−1, 1] [35].
Definition 3.1 Consider a Hilbert space H . An indexed family of functions {φn} ∈ H
is called a frame for H if there exist constants 0 < c ≤ C < ∞ such that

c‖ f ‖2H ≤
∑
n

|〈 f , φn〉H |2 ≤ C‖ f ‖2H for all f ∈ H . (30)
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Definition 3.2 (Weighted Lebesgue space) Let w : [a, b] → [c,∞), c > 0, be a
measurable function. Then, the weighted Lebesgue space L p

w(a, b) is equipped with
the norm ‖ f ‖L p

w(a,b) := (
∫ b
a | f |pw dx)1/p. If p = 2, then L2

w(a, b) is a Hilbert space

equipped with the inner product ( f , g)L2
w(a,b) := ∫ b

a f gw dx .

The following proposition is equivalent to a similar result by Huybrechs [49,
Cor. 3.2] concerning a frame for Fourier extensions, as our space restricted to [−1, 1]
is equivalent to the Fourier basis functions restricted to [−1, 1].
Proposition 3.3 (Frame) Let w(x) := (1 − x2)−1/2

+ . Then, the sum space S, for
x ∈ (−1, 1), is a frame on the weighted Lebesgue space L2

w(−1, 1).

Proof The families of Chebyshev polynomials Tn(x) and Un(x) are orthogonal with
respect to theweights (1−x2)−1/2

+ and (1−x2)1/2+ , respectively on L2(−1, 1). Consider
any f ∈ L2

w(−1, 1). By noting T̃n(x) = Tn(x) for x ∈ [−1, 1] and two applications
of Parseval’s identity, we see that

∞∑
n=0

[
|〈 f , T̃n〉L2

w(−1,1)|2 + |〈 f ,Wn〉L2
w(−1,1)|2

]

=
∞∑
n=0

[
|〈 f , wTn〉L2(−1,1)|2 + |〈 f w,Wn〉L2(−1,1)|2

]

= ‖ f ‖2L2
w(−1,1) + ‖ f w‖2

L2
1/w(−1,1)

= 2‖ f ‖2L2
w(−1,1).

(31)

Thus, the lower and upper bound constants in (30) are c = C = 2.

Remark 3.4 Suppose that the support of a function is contained in the union of user-
chosen intervals. Then, the function can be represented to arbitrary precision by the
frame induced by taking the union of all the sum space functions centred on all the
affine transformed sum spaces (see Sect. 4.3 and Theorem 6.1).

3.1 Dual sum space

In order to exploit the relationship (13), we require the action of the derivative on the
sum space. Let Vn(x) := (1 − x2)−1/2

+ Tn(x), x ∈ R, denote the weighted Chebyshev

polynomial of the first kind of order n extended toR by zero. Define, (1−x2)−1/2
+ = 0

if |x | ≥ 1. Consider the following functions:

Ũ−2(x) :=
{
0 |x | ≤ 1,

− |x |√
x2−1

|x | > 1,
Ũ−1(x) :=

{
0 |x | ≤ 1,

− sgn(x)√
x2−1

|x | > 1.
(32)

Furthermore, for x ∈ R, we define

Ũ0(x) := T̃0(x) + Ũ−2(x), (33)
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and, for n ∈ N, we recursively define the extended Chebyshev functions of the second
kind as follows:

Ũn(x) := 2T̃n(x) + Ũn−2(x). (34)

The dual sum space is given by

S∗ := span({Ũm, Vn : m ∈ N0 ∪ {−2,−1}, n ∈ N0}). (35)

Remark 3.5 Note that the functions in the dual sum space S∗ do not live in H1/2(R).
However, it is not the solution that is expanded in the dual sum space but rather the
right-hand side which is only required to live in H−1/2(R).

The weighted Chebyshev polynomials and extended Chebyshev functions have
been centred on the interval [−1, 1].
Definition 3.3 (Affine transformation) Consider an interval I = [a, b] ⊂ R, a < b
and the affine transformation y = 2/(b − a)(x − (a + b)/2). We define the affine
transformed extended and weighted Chebyshev functions and polynomials, centred at
I , as T̃ I

n (x) = T̃n(y), Ũ I
n (x) = Ũn(y), W I

n (x) = Wn(y), and V I
n (x) = Vn(y).

We note that W I
n (x) and V I

n (x) are supported on the interval I , whereas T̃ I
n (x) and

Ũ I
n (x) have global support extending beyond I .
In the following proposition, we show some relationships between the sum space

and the dual sum space.

Proposition 3.4 (Equality and derivatives) Consider the interval I = [a, b] ⊂ R,
a < b. Then, for any n ∈ N, x ∈ R\{a, b},

d

dx
T̃ I
n (x) = 2n

b − a
Ũ I
n−1(x), (36)

and, for n ∈ N0,
d

dx
W I

n (x) = −2(n + 1)

b − a
V I
n+1(x). (37)

Moreover, for any x ∈ R,

W I
n (x) = 1

2
[V I

n (x) − V I
n+2(x)]. (38)

Proof All three identities (36)–(38) follow from classical identities between Cheby-
shev polynomials of the first and second kinds, their recurrence relationships, and an
induction argument. We prove the first identity (36) and note that the other two are
found in the literature [46, Sec. 18.9.10 & 18.9.22].

We consider (36) and initially examine the case where I = [−1, 1]. Consider the
region x ∈ [−1, 1]. From the definition of Ũn(x), for n ≥ 0, in (33) and (34), and a
classical identity between Chebyshev polynomials of the first and seconds kinds [46,
Sec. 18.9.9], it can be shown that

Ũn(x) = Un(x), n ∈ N0, for x ∈ [−1, 1], (39)
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where Un(x) are the Chebyshev polynomials of the second kind. Hence, another
classical identity [46, Sec. 18.9.21] reveals that

d

dx
T̃n(x) = nŨn−1(x) for x ∈ (−1, 1). (40)

Consider |x | > 1. By a direct calculation, we see that

d

dx
T̃1(x) = Ũ0(x) and

d

dx
T̃2(x) = 2Ũ1(x). (41)

Moreover, another direct calculation shows that, for |x | > 1 and n ≥ 2,

d

dx
T̃n(x) = −sgn(x)

n(x − sgn(x)
√
x2 − 1)n√

x2 − 1
. (42)

Suppose that (36) holds up to and including T̃n−1(x). Now,

nŨn−1(x) = 2nT̃n−1(x) + nŨn−3(x) = 2nT̃n−1(x) + n

n − 2

d

dx
T̃n−2(x), (43)

where the first equality follows by definition of Ũn(x) and the second equality follows
from the induction argument. Substituting in the explicit definitions of T̃n−1(x) and
d
dx T̃n−2(x), |x | > 1, we find that the right-hand side of (43) is equal to (40). Hence,
(36) holds for all n ∈ N, x ∈ R\{−1, 1}, when I = [−1, 1], by induction. It follows
by applying the chain rule that (36) holds for arbitrary I = [a, b].
Proposition 3.5 (Sqrt-Laplacian) Consider the interval I = [a, b] ⊂ R, a < b. Then,
for any n ∈ N, x ∈ R\{a, b},

(−�)1/2[T̃ I
n ](x) = 2n

b − a
V I
n (x), (44)

and, for n ∈ N0, x ∈ R\{a, b},

(−�)1/2[W I
n ](x) = 2(n + 1)

b − a
Ũ I
n (x). (45)

Proof ByLemma3.1, T̃n,Wm ∈ L2(R)∩W 1,s(R), s ∈ (1, 2), n ≥ 1,m ≥ 0. Thus, the
conditions of Theorem 2.1 hold and (−�)1/2[T̃n] = d

dxH[T̃n] and (−�)1/2[Wm] =
d
dxH[Wm] in the sense of distributions. The result then follows by applying Proposi-
tions 3.2 and 3.4.

Corollary 3.1 (Hilbert transforms of V I
n and Ũ I

n ) Consider the interval I = [a, b] ⊂ R,
a < b. Then, for n ≥ 0,

H[Ũ I
n ](x) = V I

n+1(x) and H[V I
n+1](x) = −Ũ I

n (x). (46)
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Proof We note that

H[Ũ I
n ] = H d

dx

[
b − a

2(n + 1)
T̃ I
n+1

]
= − d

dx

b − a

2(n + 1)
W I

n = V I
n+1, (47)

where the first and third equalities follow from Proposition 3.4 and the second equality
holds as T̃n+1 ∈ W 1,p(R) for any p ∈ (1, 2) [43, Th. 3.2]. The second result follows
as H is an anti-involution.

Corollary 3.2 (Regularity of (−�)1/2T̃ I
n and (−�)1/2W I

n ) Consider the interval I =
[a, b] ⊂ R, a < b. Then, (−�)1/2T̃ I

n , (−�)1/2W I
m ∈ L p(R) for any p ∈ (1, 2),

n ∈ N, m ∈ N0.

Proof A direct check reveals that V I
m(x) ∈ L p(R) for any p ∈ [1, 2), m ∈ N0.

Hence, by Proposition 3.5, (−�)1/2T̃ I
m ∈ L p(R) for any p ∈ (1, 2). Moreover, for

any p ∈ (1, 2),

‖(−�)1/2W I
n ‖L p(R) = 2(n + 1)

b − a
‖Ũ I

n ‖L p(R)

= 2(n + 1)

b − a
‖HV I

n+1‖L p(R) ≤ 2C(n + 1)

b − a
‖V I

n+1‖L p(R) < ∞.

(48)

The Hilbert space H1/2(R) is equipped with the inner-product

〈u, v〉H1/2(R) := 〈u, v〉L2(R) + 〈(−�)1/4u, (−�)1/4v〉L2(R). (49)

The following proposition shows that T̃n(x) and Wn have partial orthogonality with
respect to the H1/2(R) inner product.

Proposition 3.6 (Partial orthogonality in H1/2(R)) T̃n, Wm, n ∈ N, m ∈ N0 satisfy

〈(−�)1/4T̃ j , (−�)1/4T̃l〉L2(R) = lδ jl , 〈(−�)1/4Wj , (−�)1/4Wl〉L2(R) = (l+1)δ jl ,
(50)

where δ jl is the Kronecker delta.

Proof We note that

〈(−�)1/4T̃ j , (−�)1/4T̃l〉L2(R) = 〈T̃ j , (−�)1/2T̃l〉L2(R) = l〈T̃ j , Vl〉L2(R)

= l〈Tj , Vl〉L2(−1,1) = lδ jl .
(51)

Similarly,

〈(−�)1/4Wj , (−�)1/4Wl〉L2(R) = 〈Wj , (−�)1/2Wl〉L2(R) = (l + 1)〈Wj , Ũl〉L2(R)

= (l + 1)〈Wj ,Ul〉L2(−1,1) = (l + 1)δ jl .
(52)
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4 Spectral method

The goal of this section is to define the various functions, vectors, and matrices that
appear in the spectral method described in Algorithm 1.

Algorithm 1 Spectral method for solving (1)
Input:Values for λ,μ and η, the right-hand side f , the number of intervals K , a tuple of truncation degrees
n = (n1, n2, . . . , nK ), and a tuple of intervals I = (I1, I2, . . . , IK ).

Output: The coefficient vector uI,+n such that u(x) ≈ SI,+n (x)uI,+n .

Solve for uI,+n :

1: EXPAND.Via an ε-truncated SVD factorization, solve the least squares problemmin
f I,∗n

‖Gf I,∗n −b‖2 ,

such that f (x) ≈ SI,∗n (x)f I,∗n (cf. Section 5.1).

2: ASSEMBLE. Assemble the matrix LI,+n , cf. (66), (88), and (89).

3: SOLVE. Solve the linear system LI,+n uI,+n = f I,∗n .

Evaluate SI,+n (x)uI,+n :
1: INTEGRATE. Compute the 4K continuous inverse Fourier transforms to find the appended sum space

functions as described in Section 4.2. Note that if the intervals are translations (and not scalings), this
reduces to four continuous inverse Fourier transforms as shown in Appendix 2.

2: EVALUATE. Evaluate the sum u(xi ) ≈ SI,+n (xi )u
I,+
n at the grid points xi , i ∈ {1, 2, . . . , M}.

4.1 Operators

For any x ∈ R, we denote the n-th sum space and dual sum space quasimatrices,
centred at an interval I = [a, b] ⊂ R, by

SI
n(x) := (

T̃0(x) W I
0 (x) T̃ I

1 (x) · · · W I
n (x) T̃ I

n+1(x)
)

(53)

SI ,∗
n (x) := (

Ũ I−2(x) V I
0 (x) Ũ I−1(x) · · · V I

n+2(x) Ũ
I
n+1(x)

)
. (54)

Note that SI
n(x) ∈ L∞(R) × H1/2(R)2n+2 and SI ,∗

n (x) ∈ H−1/2(R)2n+7. A quasi-
matrix is a matrix whose “columns” are functions defined on R [50, Lec. 5]. In SI

n(x)
the first column contains the constant function. Thereafter, we block together the
columns W I

k (x) and T̃ I
k+1(x) for k = 0, . . . , n. Similarly in SI ,∗

n (x), the first column

contains Ũ I−2(x). Thereafter, we block together the columns V I
k (x) and Ũ I

k−1(x) for

k = 0, . . . , n + 2. We note that SI ,∗
n (x) has four more columns than SI

n(x). These are
required to represent the identity map between the two sum spaces exactly.

Proposition 4.1 (Quasimatrix operators) Consider the interval I = [a, b] ⊂ R,
a < b. Then, for x ∈ R,

SI
n(x) = SI ,∗

n (x)En, H[SI
n](x) = SI ,∗

n (x)Hn, (55)

and for x ∈ R\{a, b},
d

dx
[SI

n](x) = SI ,∗
n (x)DI

n, and (−�)1/2[SI
n](x) = SI ,∗

n (x)AI
n . (56)
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Let

N =
(−1 0

0 1

)
, M =

(
0 1
1 0

)
, Z =

(
0 0
0 0

)
, 0 =

(
0
0

)
, e2 =

(
0
1

)
. (57)

Then, En,Hn,DI
n,A

I
n ∈ R

(2n+7)×(2n+3) are defined by

En :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0� . . . 0�
0 −N/2

e2 Z
. . .

0 N/2
. . . −N/2

...
. . . Z

0 N/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, DI
n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0� · · · 0�
0 Z
0 2

b−aN
...

. . .

...
2(n+1)
b−a N

0 Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Hn :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0� · · · 0�
0 −M/2

0 Z
. . .

0 M/2
. . . −M/2

...
. . . Z

0 M/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, AI
n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0� · · · 0�
0 Z
0 2

b−aM
...

. . .

...
2(n+1)
b−a M

0 Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(58)

Proof The result follows from Propositions 3.2, 3.4 and 3.5.

Proposition 4.2 (Jacobi matrix) Consider the interval I = [a, b] ⊂ R, a < b. Let
SI∞ denote the quasimatrix of the entire sum space, i.e., SI

n with n = ∞. Moreover,
let S◦,I∞ denote SI∞ but with the first column (T̃0) removed. For any x ∈ R, let y =
2/(b − a)(x − (a + b)/2). Then,

yS◦,I∞ (x) = SI∞(x)J where J :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 0
0 0 1/2

0 0 0
. . .

1/2 0 0
0 1/2 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (59)

Proof The Jacobi matrix of Wn is the same as the Jacobi matrix forUn . The entries of
the columns associated with T̃n follow from Proposition 3.1.

Remark 4.1 The matrices En , Hn , DI
n , A

I
n , and J are sparse.
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4.2 Single interval

Wenow collect the final ingredients for the spectral method centred on a single interval
at [−1, 1] to solve (1) for x ∈ R. Consider the expansion of the right-hand side f (x)
in the dual sum space and truncate at degree n,

f (x) ≈ S∗
n(x)f

∗
n, f∗n ∈ R

2n+7. (60)

Consider the matrix Ln := λEn +μHn + ηDI
n +AI

n ∈ R
(2n+7)×(2n+3). We note that Ln

is a linear operator mapping from the sum space Sn(x) to the dual sum space S∗
n(x).

However, Ln ∈ R
(2n+7)×(2n+3) is a rectangular matrix and the linear system

Lnun = f∗n, un ∈ R
2n+3, (61)

to find the coefficients of u(x) in the truncated sum space is overdetermined. We wish
to construct a method where the expansion of u(x) is determined exactly, i.e., we
want to avoid a least squares solution for un . Let S◦

n(x) denote the sum space Sn(x)
without the first block, i.e., we drop the first function T̃0(x).We construct the following
appended sum space

S+
n (x) := (

T̃0(x) v0(x) ũ−1(x) v1(x) ũ0(x) S◦
n(x)

)
, (62)

where S+
n ∈ L∞(R) × H1/2(R)2n+6. Here, the functions vn(x) and ũn(x) satisfy

Lλ,μ,ηũn(x) = Ũn(x), (63)

Lλ,μ,ηvn(x) = Vn(x). (64)

Let L◦
n ∈ R

(2n+7)×(2n+2) denote the matrix Ln without the first column. By consid-
ering the map induced by Lλ,μ,η from the appended sum space S+

n (x) to the dual sum
space S∗

n(x), we see that the solution of (1) can be approximated by solving

L+
n u

+
n = f∗n, u+

n ∈ R
2n+7, (65)

where L+
n ∈ R

(2n+7)×(2n+7) is the following square matrix:

L+
n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

λ 0 0 0 1 L◦
n

0 0 0 0 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(2n+7)×(2n+7), L◦

n ∈ R
(2n+7)×(2n+2). (66)

L+
n is constructed by pre-appending Ln ∈ R

(2n+7)×(2n+3) with four columns containing
one nonzero entry each and commuting the column associated with T̃0(x) to be first.
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The entries in the new columns have a value of 1 and are in the positions (2, 2), (3, 3),
(4, 4), (5, 5). By solving the linear system (65), we conclude that u(x) ≈ S+

n (x)u+
n .

In order to realize the values of S+
n (x)u+

n , we require approximations for the solutions
in equations (63) and (64). These can be found using a fast Fourier transform (FFT)
[51], specialized quadrature formulas or explicit expressions. We give more details
below.

Remark 4.2 The solutions ũn(x) and vn(x) are not dependent on the right-hand side
f of (1), although they are dependent on the constants λ, μ, and η.

Remark 4.3 The choice of v0(x), ũ−1(x), v1(x) and ũ0(x) as the additional functions
is not the only option. Indeed, if the goal was to improve the conditioning of L+

n , then a
better choice would be ũn+1(x) and vn+2(x) rather than ũ0(x) and v1(x). In this case,
the conditioning of L+

n only grows linearly with n, is robust for large parameter ranges
ofλ,μ and η, and there exists a diagonal preconditioner such that the condition number
is independent of n as described in Sect. 5.3. With the presented choice, the condition-
ing degrades if both μ → 0 and λ → 0. The disadvantage of ũn+1(x) and vn+2(x)
is that if multiple solves are required with different degrees n, then additional work
is required to compute the required additional functions. Furthermore, in numerical
experiments, we observed that the approximate identity mapping from the appended
sum space S+

n (x) to the dual sum space S∗
n(x) is unstable when using ũn+1(x) and

vn+2(x) as the additional functions. Hence, for discretized time-dependent problems
where we are required to map the current solution iterate expanded in the appended
sum space to the expansion in the dual sum space (for the right-hand side), this poses
a distinct issue. The choice of the additional functions is context dependent.

Proposition 4.3 (Fourier transforms of Vn(x)) The weighted Chebyshev polynomials,
Vn(x), n ≥ 0, have the Fourier transforms

F[Vn](ω) = (−i)nπ Jn(ω), (67)

where Jn, n ∈ N0, denote the Bessel functions of the first kind [46, Sec. 10.2].

Proof This is a known result and follows from an application of Parseval’s integral
and recurrence relationships between Bessel functions [52, Ch. 13].

Proposition 4.4 (Fourier transforms of Ũn(x)) The extended Chebyshev functions
Ũ−1(x), Ũ0(x) have the following Fourier transforms,

F[Ũ−1](ω) = iπsgn(ω)J0(ω), F[Ũ0](ω) = π J1(|ω|). (68)

By taking the Fourier transformon both sides in (63) and (64), utilizing Propositions
4.3 and 4.4 as well as (9), (11), and F[ d

dx u](ω) = iωF[u](ω), we observe that

F[ũ−1](ω) = iπ(λ − iμ sgn(ω) + iηω + |ω|)−1|ω|−1ωJ0(ω), (69)

F[ũ0](ω) = π(λ − iμ sgn(ω) + iηω + |ω|)−1 J1(|ω|), (70)

F[vn](ω) = (−i)nπ(λ − iμ sgn(ω) + iηω + |ω|)−1 Jn(ω). (71)
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The continuous inverse Fourier transforms to compute the solutions ũ−1(x), ũ0(x),
v0(x) and v1(x) can be approximated via specialized quadrature rules, an FFT, or
explicit expressions for certain ranges of x . The FFT as an approximation of the con-
tinuous inverse Fourier transform is equivalent to the trapezoid rule applied to the
Fourier transform. Particularly since the integrands are oscillatory, if the trapeziums
are too wide (equivalent to an FFT with too few samples), the approximation of the
continuous inverse Fourier transform is poor, even if the FFT itself is computed to
a high precision. The FFT approximation is discussed in more detail in Appendix 1.
If the trapezoid rule is not sufficiently accurate then we opt to utilize Mathematica’s
NIntegrate which uses quadrature rules that are very robust for oscillatory inte-
grands which (at the time of writing) is the routine that best balanced the speed of the
quadrature with the accuracy obtained, outperforming Julia in-house alternatives for
this purpose. For more details of how to use a Julia wrapper for NIntegrate routine
in this context, we refer the reader to src/mathematica.jl in [53]. Alternatively
one could simply increase the sample size of the FFT or use a more accurate FFT-
accelerated approximation of the continuous inverse Fourier transform such as those
described in [54].

We do not have exact expressions for the Fourier transforms of Ũn(x) for n ≥ 1.
However, this can be overcome by first applying a Hilbert transform to the equations
in (63) to obtain, for n ≥ −1,

(
λH − μI + η(−�)1/2 − d

dx

)
[ũn](x) = H[Ũn](x) = Vn+1(x). (72)

By taking the Fourier transform of (72), we find that

F[ũn](ω) = (−i)n+1π(−iλ sgn(ω) − μ + η|ω| − iω)−1 Jn+1(ω). (73)

In Appendix 3, we discuss edge cases of (1) and how they are treated in our numer-
ical method. In summary, when λ = μ = 0 and η ∈ R, the additional functions
are no longer required and their associated columns (and related rows) are removed
from (66). In particular the columns associated with T̃0(x), v0(x), ũ−1(x), v1(x), and
ũ0(x), and the rows associated with Ũ−2(x), V0(x), Ũ−1(x), Vn+2(x), and Ũn+1(x)
are removed reducing L+

n from a (2n + 7) × (2n + 7) matrix to a (2n + 2) × (2n + 2)
matrix. The exact mappings are still conserved. When λ = 0 but |μ| > 0 and η ∈ R,
we keep the additional functions, although we advise using the additional functions
vn+2(x) and ũn+1(x) instead of v1(x) and ũ0(x) to alleviate ill-conditioning.

4.3 Multiple intervals

Although the sum space is dense on the interval it is centred on, it is not dense inR and,
therefore, cannot approximate general solutions. By combining intervals together, we
enlarge the subset of density inR. Moreover, in some applications, it can be helpful to
decompose the domain into multiple intervals. This can be in regions where (spatially
varying) coefficients or right-hand sides f have discontinuities best accounted for
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by approximating them with sum spaces centred over two or more intervals. Experi-
mentally, we also found that the tails of a function f outside the intervals were better
approximated when using the combination of sum spaces centred at multiple intervals.
Examples of low-order multiple-interval sum space functions are given in Fig. 2.

In this section, we will discuss how to combine sum spaces centred at multiple
intervals together.Wewill show that the operatorLμ,λ,η decouples across the different
affine transformed sum spaces and this results in a linear system with a block diagonal
matrix. Hence, each block can be solved separately resulting in a highly parallelizable
method.

We fix the closed and bounded intervals Ik = [ak, bk], k = 1, . . . , K , whichmay be
connected but not overlap (except at a point). Consider a truncation of the expansion
of a function, g(x), x ∈ R, in the appended multiple-interval sum space:

g(x) ≈ c̃0T̃0(x)

+
K∑

k=1

(
c
v
Ik
0

v
Ik
0 (x) + c

ũ
Ik−1
ũ Ik−1(x) + c

v
Ik
1

v
Ik
1 (x) + c

ũ
Ik
0
ũ Ik
0 (x)

+
nk∑
j=1

[c̃ Ikj T̃ Ik
j (x) + cIkj W

Ik
j−1(x)]

⎞
⎠ .

(74)

Let S◦,Ik ,+
nk (x) ∈ H1/2(R)2nk+6 denote the appended sum space centred on the interval

Ik not including the constant term T̃ Ik
0 (x). Let n = (n1, . . . , nK ), N = ∑K

k=1 nk , and
I = (I1, . . . , IK ). Then, in quasimatrix notation, (74) can be rewritten as g(x) ≈
SI,+
n (x)c I,+n where

SI,+
n (x) = (T̃0(x) | S◦,I1,+

n1 (x)︸ ︷︷ ︸
∈H1/2(R)2n1+6,

| · · · | S◦,IK ,+
nK (x)︸ ︷︷ ︸

∈H1/2(R)2nK +6,

), (75)

S◦,Ik ,+
nk (x) =

(
v
Ik
0 (x) ũ Ik−1(x) v

Ik
1 (x) ũ Ik

0 (x) S◦,Ik
nk (x)

)
, (76)

Fig. 2 Plots of T̃1(x) and W0(x) centred at the three different intervals [−3,−1], [−1, 1] and [1, 3]. We
note that T̃1(x) has global support and those centred on different intervals always overlap. Whereas,W0(x)
has compact support on the interval it is centred on
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S◦,Ik
nk (x) =

(
W Ik

0 (x) T̃ Ik
1 (x) · · · W Ik

nk (x) T̃
Ik
nk+1(x)

)
(77)

cI,+n =
(
c̃0 (c◦,I1,+

n1 )� · · · (c◦,IK ,+
nK )�

)� ∈ R
2N+6K+1, (78)

c◦,Ik ,+
nk =

(
c
v
Ik
0

c
ũ
Ik−1

c
v
Ik
1

c
ũ
Ik
0

(c◦,Ik
nk )�

)� ∈ R
2nk+6, (79)

c◦,Ik
nk =

(
cIk1 c̃ Ik1 · · · cIknk+1 c̃ Iknk+1

)� ∈ R
2nk+2. (80)

Unlike in S+
n (x), the sum spaces centred on each interval are ordered sequentially

in SI,+
n (x) rather than interleaving the Chebyshev polynomials/functions of the same

degree across all the intervals. This is because each block in SI,+
n (x) directly correlates

to a block diagonal in the matrix after discretization, allowing for a clear decoupling
of the problem. We denote the multiple-interval sum space by SI

n which is constructed
as SI,+

n but without the initial four terms v
Ik
0 (x), ũ Ik−1(x), v

Ik
1 (x), ũ Ik

0 (x) at the start of
each block in (76).

Similarly, we define the dual multiple-interval sum space SI,∗
n (x) as

SI,∗
n (x) = (Ũ I1−2(x) | S◦,I1,∗

n1 (x)︸ ︷︷ ︸
H−1/2(R)2n1+6

| · · · | S◦,IK ,∗
nK (x)︸ ︷︷ ︸

H−1/2(R)2nK +6

), (81)

S◦,Ik ,∗
nk (x) =

(
V Ik
0 (x) Ũ Ik−1(x) · · · V Ik

nk+2(x) Ũ
Ik
nk+1(x)

)
, (82)

such that S◦,Ik ,∗
nk (x) ∈ H−1/2(R)2nk+6.

From Proposition 4.1, we note that the operator Lμ,λ,η maps a sum space centred
on an interval I , to the dual sum space centred on the same interval. This observation
leads to the following proposition.

Proposition 4.5 (Multiple-interval quasimatrix operators)

SI
n(x) = SI,∗

n (x)En, H[SI
n](x) = SI,∗

n (x)Hn,

d

dx
[SI

n](x) = SI,∗
n (x)DI

n, and (−�)1/2[SI
n](x) = SI,∗

n (x)AI
n,

(83)

where En,Hn,DI
n,A

I
n ∈ R

(1+2N+6K )×(1+2N+2K ) are the following block diagonal
matrices:

En =

⎛
⎜⎜⎜⎝

En1
E†n2

. . .

E†nK

⎞
⎟⎟⎟⎠ , Hn =

⎛
⎜⎜⎜⎝

Hn1

H†
n2

. . .

H†
nK

⎞
⎟⎟⎟⎠ (84)
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DI
n =

⎛
⎜⎜⎜⎜⎝

DI1
n1

DI2,†
n2

. . .

DIK ,†
nK

⎞
⎟⎟⎟⎟⎠ , AI

n =

⎛
⎜⎜⎜⎜⎝

AI1
n1

AI2,†
n2

. . .

AIK ,†
nK

⎞
⎟⎟⎟⎟⎠ , (85)

where the matrices E†nk ,H
†
nk ,D

Ik ,†
nk , and AIk ,†

nk , k = 2, . . . , K, are the matrices

Enk ,Hnk ,D
Ik
nk , and AIk

nk , respectively, as defined in Proposition 4.1, but with the first
row and column removed.

Consider the truncated expansion of the right-hand side f in the dual multiple-
interval sum space, f (x) ≈ SI,∗

n f∗n. As in the single interval case, the matrix LIn =
λEn + μHn + ηDI

n + AI
n is rectangular and the linear system to find the coefficients,

un, of u(x) in the multiple-interval sum space,

LInun = f∗n, LIn ∈ R
(1+2N+6K )×(1+2N+2K ) (86)

is overdetermined. This issue is overcome by appending four extra columns to LIn per
interval. LIn has the block diagonal structure:

LIn =

⎛
⎜⎜⎜⎜⎝

LI1n1
LI2,†n2

. . .

LIK ,†
nK

⎞
⎟⎟⎟⎟⎠ , (87)

where each block has four more rows than columns. Hence, we define the matrix LI,+n
as

LI,+n :=

⎛
⎜⎜⎜⎜⎝

LI1,+n1

LI2,†,+n2
. . .

LIK ,†,+
nK

⎞
⎟⎟⎟⎟⎠ , (88)

where, for k = 2, . . . , K ,

LI1,+n1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

λ 0 0 0 1 LI1,◦n1
0 0 0 0 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, LIk ,†,+nk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0 LIk,†nk
.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (89)

123



A sparse spectral method for... Page 23 of 45 69

where the nonzero entries are placed in the rows corresponding to V Ik
0 , Ũ Ik−1, V

Ik
1 ,

and Ũ Ik
0 , respectively. We reiterate that symbol ◦ denotes the matrix without its first

column and † denotes the matrix without its first column and row. The matrix LI,+ ∈
R

(1+2N+6K )×(1+2N+6K ) is square and we find the coefficients u+
n , in the appended

multiple-interval sumspace, of the solutionu(x) to (1) by solving the following system:

LI,+n u+
n = f∗n. (90)

Since LI,+n is block diagonal, the solve can be reduced to solving K linear systems for
each (much smaller) block, k = 2, . . . , K ,

LI1,+n1 uI1,+
n1 = f I1,∗n1 , LIk ,+nk uIk ,+

nk = f Ik ,∗nk . (91)

Moreover, the linear systems are independent and can be solved in parallel.

5 Implementation notes

5.1 Expansion

As the family of approximating functions is not orthogonal, the expansion of a known
function, f (x), in the sum space or its dual is nontrivial. In particular, the expansion
of a general function need not be unique. For our purposes, we desire an expansion
that approximates our known function to the required tolerance and the coefficients
of the expansion are (relatively) small in magnitude.

Aside from the known function f being an obvious composition of the functions
in SI

n(x), there are two cases to consider:

1. f is compactly supported on the real line and the intervals Ik = [ak, bk], k =
1, . . . , K , are chosen such that either f (x) → 0 or | f (x)| → ∞ as x → ak and
x → bk ;

2. Any function that does not fit under the first case.

In the first case, if f (x) → 0 at the endpoints of the interval Ik for some k ∈
{1, . . . , K }, then it might be well approximated in that interval by an expansion in
W Ik

n (x). Similarly, if f blows up at the interval endpoints it might be well represented
by an expansion in V Ik

n (x). The advantage of only expanding f (x) in W Ik
n (x) and

V Ik
n (x) is that the coefficients of the expansion can be quickly computed to any given

tolerance with an adaptive algorithm based on the discrete cosine transform that takes
O(Kn log n) for n coefficients and K intervals [55, 56]. If we partially expand f (x)
in V Ik

n (x) for some k, but we require the expansion in the dual sum space, we utilize
the identity mappings as defined in Propositions 4.1 and 4.5.

For functions that are not contained in the first case, we turn to the techniques used in
frame theory [35]. Essentially, we find the coefficients of the expansion that optimally
interpolate the values of f (x) (or a linear operator applied to f ) at a set of collocation
points in a least squares sense. Consider the collocation points x = (x1, . . . , xM ). We
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note that the set of collocation points should include points outside the intervals in
order to ensure the tails also match. The least-squares matrix for the dual sum space
is given by:

Gi j = [li [SI,∗
n ]] j , i = 1 . . . , M, j = 1, . . . , 1 + 2N + 6K ), (92)

where {li } are a set of linear operators. Common choices include the identity,
e.g., li [SI,∗

n ] = SI,∗
n (xi ) or linear operators designed to emulate Riemann sums

li [SI,∗
n ] = (xi+1 − xi−1)SI,∗

n (xi ). Similarly, we compute bi = li [ f ] and we solve the
following least-squares problem for the expansion coefficients f∗n:

min
f

‖Gf∗n − b‖2, (93)

so that f (x) ≈ SI,∗
n (x)f∗n. The same technique can be used to find expansions in

SI
n(x). It is well known that the least-squares matrix in (93) is ill-conditioned for

increasing M , K and n. However, we still recover suitable least squares solutions if
we sufficiently oversample the collocation points and an ε-truncated SVD solver is
used, cf. [57, Sec. 5].We refer to the work of Adcock and Huybrechs for further details
[35, 36].

5.2 Approximate identity map from S+
n (x) to S

∗
n(x)

In our method, we find the approximate solution expanded in the appended sum space.
A requirement in some problems is to reuse the computed solution as part of the right-
hand side of the next solve. Hence, after each solve, we must map the appended
sum space expansion of our current iterate to the expansion in the dual sum space.
Propositions 4.1 and4.5 provide identitymappings for the sumspace.Hence, it remains
to map the coefficients of the functions found in the appended sum space that are not
in the sum space.

We outline the approach when utilizing a single interval at [−1, 1] in the solver and
briefly mention the extension to multiple intervals. Given u+

n , the goal is to find the
coefficient vector, u∗

n , such that

u(x) ≈ S+
n (x)u+

n = S∗
n(x)u

∗
n . (94)

The first step is to expand the four functions v0(x), ũ−1(x), v1(x) and ũ0(x) in the
sum space and collect the coefficients in the vectors v0, ũ−1, v1, and ũ0, respectively.
Next, we form the identity mapping from S+

n (x) to Sn(x), denoted Rn , as follows:

Rn :=

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 v0 ũ−1 v1 ũ0 1
...

. . .

0 1

⎞
⎟⎟⎟⎠ ∈ R

(2n+3)×(2n+7). (95)

Essentially, Rn is constructed by assembling the (2n + 3) × (2n + 3) identity matrix
and adding the four coefficient vectors, of the additional functions, in Rn between the
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first and second columns. The approximate identity operator Bn ∈ R
(2n+7)×(2n+7)

such that S+
n (x) ≈ S∗

n(x)Bn is defined as

Bn := EnRn ∈ R
(2n+7)×(2n+7), (96)

where En is the identity operator from Sn(x) to S∗
n(x) as defined in Proposition 4.1.

For multiple intervals, we denote the identity mapping as RI
n ∈R

(1+2N+2K )×(1+2N+6K ),
RI
n : SI,+

n (x) → SI
n(x), where K is the number of intervals and consists of the identity

matrixwith an additional 4K dense columns in the positions of the additional functions
in the appended sum space. As before, we define BI

n := EnRI
n so that SI,+

n (x) ≈
SI,∗
n (x)BI

n.

5.3 Numerical conditioning

Two potential sources of numerical ill-conditioning in Algorithm 1 are:

1. The expansion of the right-hand side f to find a coefficient vector f I,∗n ;
2. Inverting the matrix LI,+n to find uI,+

n .

In Corollary 6.1, we prove that the dual sum space is a frame. Leveraging recent
analysis on frames (which are overdetermined approximation spaces) it is known that
an ε-truncated SVD factorization alleviates the ill-conditioning that one might expect
in solving such a least-squares problem. Hence, the expansion of the right-hand side
is an understood and well-conditioned problem, resolving (1).

For (2), we note that the 2-norm condition number κ(LI,+n ) only grows linearly
with nmax = max(n1, . . . , nK ) and is independent on the number of intervals in the
approximation space K due the block diagonal structure of LI,+n . Moreover, there
exists a diagonal right preconditioner PI

n such that κ(LI,+n (PI
n)

−1) = C where C
is independent of n. This is typical of a coefficient-based spectral method, cf. [58,
Sec. 4.1].

Proposition 5.1 Consider the interval I = [−1, 1], λ = μ = η = 1, and choose the
appended sum space functions ũ−1, ũn+1, v0, and vn+2 as defined in Sect.4.2. Then,

κ(L+
n ) = O(n), (97)

where κ(·) denotes the 2-norm condition number of a matrix. Moreover, consider the
diagonal matrix

Pn =
(
I5
Dn

)
, where Dn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
2
2

. . .

n + 1
n + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(2n+2)×(2n+2), (98)
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and I5 is the 5× 5 identity matrix. Then, there exists a constant C > 0, such that C is
independent of n and

κ(L+
n (Pn)−1) = C . (99)

Proof The result follows by showing that L+
n (Pn)−1 = I + Kn where Kn is a compact

operator and a very similar result is proven in [58, Lem. 4.3].

Remark 5.1 Numerically, we found that C ≈ 3.1 where C is the constant in (99).

A diagonal preconditioner may be constructed for the multiple-interval case as
follows:

Pn =

⎛
⎜⎜⎜⎝

Pn1
P†n2

. . .

P†nK

⎞
⎟⎟⎟⎠ , (100)

where P†n denotes Pn with the first row and column removed. It is a direct corollary of
Proposition 5.1 that there exists aC > 0, independent of n, such that κ(LI,+n (Pn)−1) =
C .

6 Numerical analysis

The goal of this section is to prove that the dual sum space is a frame for the right-
hand side f and, consequently, derive a convergence result for the discretization.
These results motivate the favourable approximation properties that we observe in our
numerical experiments in the next section.

Definition 6.1 (Hilbert space Hs
w(R)) Let Hs

w(R) denote the Hilbert space

Hs
w(R) := {u ∈ L2

w(R) : supp(u) ⊆ supp(w), (−�)s/2u ∈ L2(R)}, (101)

equipped with the inner-product (u, v)Hs
w(R) := (u, v)L2

w(R) + ((−�)s/2u, (−�)s/2

v)L2(R). Here supp denotes the support of a function.

Lemma 6.1 (Orthogonality, Lem. 5.1 in [57]) Letw = (1− x2)−1/2
+ . Then, the family

of extended Chebyshev functions {T̃n}n∈N is orthogonal with respect to the H1/2
w (R)

inner product. This also holds for {Wn}n∈N0 .

Definition 6.2 Let w = (1 − x2)−1/2
+ . Define {T̂n}n∈N and {Ŵn}n∈N0 as the orthonor-

malized families of functions {T̃n}n∈N and {Wn}n∈N0 , respectively, with respect to

the H1/2
w (R)-inner product. Moreover, let V̂n(x) := (−�)1/2T̂n(x), n ∈ N and

Ûn(x) := (−�)1/2Ŵn(x), n ∈ N0.

123



A sparse spectral method for... Page 27 of 45 69

Let Ŝ and Ŝ∗ denote the orthonormalized sum and dual sum spaces:

Ŝ := span({T̂n, Ŵm : n ∈ N,m ∈ N0}), (102)

Ŝ∗ := span({Ũ−2, Ũ−1, V0, Ûn, V̂m : n ∈ N0,m ∈ N}). (103)

Theorem 6.1 (Frame on H1/2
w (R) ∩ C(R)) Let w(x) = (1 − x2)−1/2

+ . Then, the

H1/2
w (R)-orthonormalized sum space Ŝ is a frame on H1/2

w (R) ∩ C(R).

Proof The result follows, line-by-line, from the proof of [57, Th. 5.2].

Corollary 6.1 Let w(x) = (1 − x2)−1/2
+ . Then, the dual space Ŝ∗ is a frame on

(H1/2
w (R) ∩ C(R))∗.

Proof From Theorem 6.1 and an application of Theorem 5.1 in [57], we may deduce
that {V̂n}∞n=1 ∪ {Ûn}∞n=0 is a frame on (H1/2

w (R) ∩ C(R))∗.
It remains to prove the frame bound condition for the remaining dual sum space

functions Ũ−2(x) and Ũ−1(x), andV0(x). The lower bound follows trivially.Moreover,
it may be shown that Ũ−2, Ũ−1, V0 ∈ (H1/2

w (R))∗. Hence, the upper bound also
follows.

Theorem 6.2 Consider the operator Lμ,λ,η whereμ, λ > 0 and η = 0. Let the weight

w(x) = (1 − x2)−1/2
+ . Suppose that f ∈ H∗ = (H1/2

w (R) ∩ C(R))∗. Consider the
degree n. Suppose that an ε-truncated SVD factorization is utilized to discover a
coefficient vector f∗n such that f (x) ≈ Ŝ∗

n(x)f
∗
n and fix L̂+

n u
+
n = f∗n . Here L̂+

n is the
scaled matrix L+

n with respect to the orthonormalized sum space. Then, there exist
constants C, κε

M,n, θ
ε
M,n > 0 such that

‖u − Ŝ+
n u

+
n ‖H1/2(R)

≤ C inf
v∈Rn+7

{
‖ f − Ŝ∗

nv‖H∗ + κε
M,n‖ f − Ŝ∗

nv‖M + εθε
M,n‖v‖2

}
,

(104)

where ‖u‖M := ∑M
i=1 |li [u]|2 and li , i = 1, . . . , M are defined in Sect.5.1.

Proof Note that

‖u − Ŝ+
n u

+
n ‖H1/2(R) = ‖L−1

μ,λ,0Lμ,λ,0(u − Ŝ+
n u

+
n )‖H1/2(R)

= ‖L−1
μ,λ,0( f − Ŝ∗

n L̂
+
n u

+
n )‖H1/2(R)

= ‖L−1
μ,λ,0( f − Ŝ∗

nf
∗
n )‖H1/2(R)

≤ ‖L−1
μ,λ,0‖B(H∗,H1/2(R))‖ f − Ŝ∗

nf
∗
n ‖H∗ .

(105)

Since H∗ ⊂ H−1/2(R), we have that there exists aC > 0 such that ‖L−1
μ,λ,0‖B(H∗,H1/2(R))

≤ C . Corollary 6.1 and an application of Theorem 3.7 in [36] achieves the result.
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Remark 6.1 The constants θε
M,n and κε

M,n are problem and frame dependent. Ideally,
their magnitude isO(1), in which case we are guaranteed to reach an accuracy of ε if
M and n are taken sufficiently large. For a thorough discussion of the constants and
their behaviour, we refer the reader to [36].

A full convergence analysis for λ,μ, η ∈ R, f ∈ H−1/2(R), and sum spaces
consisting of multiple intervals is nontrivial and beyond the scope of this work.

7 Numerical examples

In this section,we provide several numerical examples.During numerical experiments,
we found that approximatingwith a sum space centred at a single intervalwas normally
insufficient for satisfying the condition u(x) → ∞ as |x | → ∞. However, this was
resolved when utilizing a combination of sum spaces centred at multiple intervals. In
particular, we found that five intervals worked well in all examples. Unless the initial
condition or right-hand side are represented exactly by the (dual) sum space, we find
the coefficient vectors via the truncated least-squares matrix as explained in Sect. 5.1.

7.1 Manufactured solutions

In order to test the spectral convergence of our method, our first example is constructed
via themethod ofmanufactured solutions.We fix the exact solution u(x) = e−x2 . Note
that d

dx e
−x2 = −2xe−x2 . Moreover [28, Prop. 4.2],

(−�)1/2u(x) = 2√
π

1F1(1; 1/2;−x2), (106)

where 1F1 denotes the Kummer confluent hypergeometric function [46, Sec. 16.2].
Note that, by appealing to the Maclaurin series expansions of 1F1 and erf, it can
be shown that 2√

π 1F1(1; 1/2;−x2) = 2√
π

+ 2ie−x2 |x |erf(i|x |) where erf(z) :=
2√
π

∫ z
0 e−t2dt . By utilizing the identity

d

dx
[−i erf(i|x |)] = 2√

π |x | xe
x2 , (107)

we deduce that

d

dx

[
− i

x

(
e−x2 |x | erf(i|x |)

)]
= 2 + 2ie−x2 |x |erf(i|x |). (108)

Hence,

H[u](x) = − i

x

(
e−x2 |x | erf(i|x |)

)
. (109)

123



A sparse spectral method for... Page 29 of 45 69

In the first case, we set λ = 1, μ = η = 0:

(I + (−�)1/2)u(x) = e−x2 + 2√
π

1F1(1; 1/2;−x2). (110)

In the second case, we have λ = μ = η = 1:

(I + d

dx
+ H + (−�)1/2)u(x)

= (1 − 2x)e−x2 − i

x

(
e−x2 |x | erf(i|x |)

)
+ 2√

π
1F1(1; 1/2;−x2).

(111)

For this example, we fix five intervals at [−5,−3], [−3,−1], [−1, 1], [1, 3], and
[3, 5]. In the least-squares expansion, we choose 6001 equally spaced points on each
interval as well as 6001 equally spaced points between [−25,−5] and [5, 25]. This
results in 42,001 unique collocation points. We choose the appended sum space
functions v0(x), ũ−1(x), vn+2(x), ũn+1(x) centred on each interval. As discussed
in Remark 4.3 and proven in Proposition 5.1, this improves the conditioning of the
induced linear systems and helps to ensure that the convergence rate is not polluted
by numerical instabilities due to ill-conditioning. The additional functions are com-
puted by approximating the continuous inverse Fourier transforms via Mathematica’s
NIntegrate routine [61]. We evaluate the 1F1(1; 1/2;−x2) function via a param-
eter change 1F1(a, b,−x2) = e−x2

1F1(b − a, b, x2) and then an evaluation of its
Maclaurin series [46, Sec. 13.2.2] as implemented in [62, v. 0.3.10].

In Fig. 3, we provide spy plots of the induced subblocks of L+. We see that the
matrices are sparse and almost banded. A semi-log plot of the convergence for both
cases is depicted in Fig. 4. The error is measured in the l∞-norm as measured on a
1001-point equally spaced grid at [−5, 5], i.e.,

max
x∈{−5,−4.99,··· ,4.99,5} |u(x) − SI

n(x)u|. (112)

Fig. 3 Spy plots of the matrices in the linear systems after discretizing and decoupling (111) interval-wise.
Here λ = η = μ = 1 and we use the additional functions v0, ũ−1, vn+1, ũn+1. The matrices are sparse
and almost banded
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Fig. 4 Error in the numerical solution u(x) as measured by (112) with the right-hand sides (110) and (111)
for increasing truncation degree n. The approximation space contains 10n + 31 functions for each value of
n. The convergence is spectral

When n = 100 on each interval and the right-hand side (111), the least-squares matrix
G ∈ R

42,001×1031 in line 1 of Algorithm 1 was assembled in 8.16 s and the least-
squares solve was computed in 8.66 s, via an ε-truncated SVD factorization to find
f I,∗n ∈ R

1031. The matrix LI,+n was assembled in 0.0944s. The linear system solve
to find uI,+

n took 0.0128s. Note that n = 100 on each interval is excessive since
the convergence is spectral. the error stagnates around 10−14 in Fig. 4a and 10−13 in
Fig. 4b by n = 21 as the error of the approximation of the right-hand side stagnates at
the same magnitude.

Since we are not guaranteed that the sum space is a frame on all R (Theorem 6.1
only guarantees it is a frame on the user-chosen intervals), in Fig. 5, we investigate
the behaviour of the expansion coefficients of the right-hand side. In particular, we
plot the l∞-norm of the coefficient vector f of the right-hand sides (110) and (111)
for increasing truncation degree n. Despite the lack of a strict frame condition, we
achieve bounded coefficients of magnitude O(1) for all values of n.

7.2 Discontinuous right-hand side

This example examines the behaviour of the (dual) sum space approximation of a
problem with discontinuous data. We seek u ∈ H1/2(R) that satisfies

(I + (−�)1/2)u(x) = f (x), where f (x) :=
{
1 |x | < 1,

0 |x | ≥ 1.
(113)

We use a multiple-interval (dual) sum space centred at the intervals [−5,−3],
[−3,−1], [−1, 1], [1, 3], and [3, 5]. In the sum space expansion, we choose 6001
equally spaced points on each interval as well as 6001 equally spaced points
between [−10,−5] and [5, 10]. This results in 42,001 unique collocation points.
As the multiple-interval dual sum space contains functions that are undefined at
x = −5,−3,−1, 1, 3 and 5, we instead choose 6001 equally spaced points in
[a + ε, b − ε], ε = 10−2, where a, b represent the endpoints of each interval as
well as 6001 equally spaced points in [−10 + ε,−5 − ε] and [5 + ε, 10 − ε]. This
results in 42,007 collocation points.
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Fig. 5 The l∞-normof the coefficient vector of the sum space expansion of the right-hand side for increasing
truncation degree n. The approximation space contains 10n + 31 functions for each value of n

We first check the convergence of the approximation of the discontinuous right-
hand side f . We measure the error in the sum space approximation via (112). We
exclude the points x = −5,−3,−1, 1, 3, and 5, when measuring the error in the dual
sum space expansion, i.e., we compute:

max
x∈{−5,−4.99,··· ,4.99,5}\{−5,−3,−1,1,3,5} |u(x) − SI,∗

n (x)u|. (114)

In Fig. 6, we plot the sum space approximated right-hand side as well as the error plot
with increasing truncation degree of both the sum space and dual sum space approxi-
mations. At truncation degree n = 101, the sum space error is of the order O(10−6).
Whereas the dual sum space approximation reaches an error ofO(10−13). Hence, the
best approximation of this particular discontinuous right-hand side is achieved via a
direct dual sum space expansion rather than a sum space expansion coupled with the
identity conversion operator E (as defined in (84)) to re-expand in the dual sum space.

The numerical solution is plotted in Fig. 7 aswell as an approximation of the conver-
gence. The appended sum space functions are v0(x), ũ−1(x), vn+2(x), and ũn+1(x).
Mathematica’sNIntegrate routine is used to compute the necessary inverse Fourier
transforms. As we do not have an explicit solution, we cannot measure the error

Fig. 6 The exact and sum space approximated f (x) as defined in (113) (n = 41) (left) and the l∞-norm
error semi-log plot for the approximation of f (x) for increasing truncation degree n (right). We use the
error measure (112) for the sum space approximation and (114) for the dual sum space approximation. The
approximation space contains 10n + 31 functions for each value of n
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Fig. 7 Numerical approximation of the solution to (113), n = 41 (left). l2-normdifference of the coefficients
of the expansion of the solution, where we fix the right-hand side expansion at degree n f = 11, 15, 21, and
27 (right)

directly. Instead,we truncate the right-hand side expansion at degrees n f = 11, 15, 21,
and 27. We then measure the 2-norm difference in the sum space coefficient vectors
at truncation degree n and n− 2 of the solution for n = n f + 2, n f + 4, . . . , n f + 16.
We observe spectral convergence in the coefficient vectors.

As in the previous example, we investigate the behaviour of the expansion coef-
ficients in both the sum space and dual sum space for increasing degree n in Fig. 8.
The result is interesting; the norm begins large and appears to blow-up, reaching a
magnitude of O(1010) at n = 17 for the sum space expansion and O(106) at n = 13
for the dual sum space expansion. Thereafter, the norm oscillates in the sum space
expansion until n = 41 where afterwards the norm drops at an exponential rate. For
n > 300 the norm has magnitude O(1). In the dual sum space expansion, the norm
quickly decreases for n > 13 and plateaus for n ≥ 71 at a value of magnitude of
O(10−1).

7.3 Nonsmooth right-hand side

Here, we conduct the same investigation as in the previous example except now we
choose the right-hand side

f (x) =
{
arcsin(x) if |x | ≤ 1,

arcsin(1)sgn(x)e1−|x | otherwise.
(115)

Fig. 8 The l∞-norm of the coefficient vectors of the sum space expansion (left) and the dual sum space
expansion (right) of (113) for increasing truncation degree n. The approximation space contains 10n + 31
functions for each value of n
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Fig. 9 The exact and sum space approximated f (x) as defined in (115) (n = 41) (left) and the l∞-
norm error semi-log plot for the approximation of f (x) for increasing truncation degree n (right). The
approximation space contains 10n + 31 functions for each value of n. We use the measure (112) for the
sum space approximation and (114) for the dual sum space approximation

We use the same multiple-interval sum space as in the previous example as well as
the same collocation points for the (dual) sum space expansion.

In Fig. 9, we plot the approximation of f (x) expanded in the sum space at truncation
degree n = 41 together with a plot of the exact right-hand side. Moreover, we plot the
convergence of the expansions of f (x). The error norms are measured with the same
metrics as in the previous example. Both expansions appear to stagnate at an error of
O(10−8). For smaller truncation degree values of n the error in the dual sum space
expansions is smaller, however, at n = 101, the sum space expansion has the smallest
error.

The appended sum space functions are v0(x), ũ−1(x), vn+2(x), and ũn+1(x). Math-
ematica’s NIntegrate routine is used to compute the necessary inverse Fourier
transforms. In Fig. 10, we plot the numerical solution u(x) of (1) (where λ = 1,
μ = η = 0). Again as we do not have an explicit solution, we truncate the right-hand
side expansion at degree n f = 11, 15, 21, and 27. We then measure the 2-norm dif-
ference in the sum space coefficient vectors at truncation degree n and n − 2 of the
solution for n = n f + 2, n f + 4, . . . , n f + 16. We observe spectral convergence in
the coefficient vectors.

As in the previous two examples, we investigate the behaviour of the expansion
coefficients in both the sum space and dual sum space for increasing degree n in Fig. 11.

Fig. 10 Numerical approximation of the solution to the nonsmooth right-hand side problem, n = 41 (left).
l2-norm difference of the coefficients of the expansion of the solution, where we fix the right-hand side
expansion at degree n f = 11, 15, 21, and 27 (right)
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Fig. 11 The l∞-norm of the coefficient vector of the sum space (left) and the dual sum space (right)
expansions of (115) for increasing truncation degree n. The approximation space contains 10n+31 functions
for each value of n

As in the discontinuous right-hand side example, the l∞-norm of the coefficient vector
begins large and appears to blow-up, reaching a magnitude of approximately O(106)
at n = 17 for the sum space expansion and O(105) at n = 13 for the dual sum space
expansion. Thereafter, the norm decreases and for n ≥ 71 plateaus around O(104) in
both expansions. The convergence ratemay be surprising at first glance. The sum space
and the dual sum space contain functions that themselves are nonsmooth. Since the
interval [−1, 1] is included in I , then the nonsmoothness in the sum space functions
aligns with the nonsmoothness in the right-hand side. Hence, the basis functions are
able to approximate the right-hand side at a surprising rate of accuracy.

A stagnation higher than machine precision (in this case at 10−8) is typical for
approximation spaces that are frames and is at least partially explained by Theorem
6.2. Essentially, the choice of ε as the cutoff in an ε-truncated SVD factorization
dictates a minimum error in the expansion of the right-hand side. However, making ε

too small leads to numerical instability. It is possible that with more fine-tuning, we
may be able to improve the accuracy before the stagnation in the error.

7.4 Fractional heat equation

Consider the fractional heat equation, i.e., the following time-dependent fractional
PDE:

∂t u(x, t) + (−�)1/2u(x, t) = 0, u(x, t) → 0 as |x | → ∞. (116)

We pick the following two choices for the initial condition:

u(x, 0) = (x2 + 1)−1, (117)

u(x, 0) = W0(x). (118)

The initial condition (117) coincides with a constant scaling of the fundamental solu-
tion, t(2π(x2 + t2))−1, to the fractional heat equation at t = 1 [22, Sec. 2]. Hence,
(116) with the initial condition (117) has the exact solution:

u(x, t) = 1 + t

x2 + (1 + t)2
. (119)
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We discretize (116) in time with a backward Euler discretization to yield, for k ≥ 0,

λuk+1(x) + (−�)1/2uk+1(x) = λuk(x),

uk+1(x) → 0 as |x | → ∞,
(120)

where u0(x) = (x2 + 1)−1 or W0(x) and λ = (�t)−1 where �t is the time step. By
choosing μ = η = 0, we recover the equation (1) which is discretized in space using
our spectral method. We choose the appended sum space functions v0(x), ũ−1(x),
v1(x), and ũ0(x). We use an FFT (as outlined in Appendix 1) to approximate the
necessary inverse Fourier transforms.

Given the tuple of intervals I and the coefficient vector solution uk at time step
iterate k, we solve the following for the coefficient vector solution uk+1:

(λE + AI )uk+1 = λ(ER)uk . (121)

E and AI are defined in Proposition 4.5 and R is defined in Sect. 5.2. We reiterate that
(λE + AI ) is block diagonal and spy plots are provided in Fig. 12. Hence, after the
right-hand side λ(ER)uk is computed, we decompose the solve into K smaller linear
solves, where K is the number of intervals, as in (91). Our approximate solution is
given by

u(x, k�t) ≈ SI,+
n (x)uk . (122)

Wepick themultiple-interval sumspace centred at the intervals [−5,−3], [−3,−1],
[−1, 1], [1, 3], and [3, 5]. We fix the truncation degree n = 5. The initial condition
(117) is expanded in the sumspace via the least-squaresmatrix as discussed inSect. 5.1.
Weuse 5001 equally spaced points in the interval [−5, 5] and501 equally spaced points
in [−20,−5] and [5, 20] each. This results in 26,001 collocation points. The initial
condition (118) is represented exactly as one of the intervals is [−1, 1], resulting in
zero initial error. We choose a time step of �t = 10−2. Snapshots of the solution at

Fig. 12 Spy plots of the matrices in the linear systems after decomposing (121) block-wise with λ = 100
and using the additional functions v0, ũ−1, v1, ũ0. The matrices are banded and sparse
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Fig. 13 Snapshots of the numerical solutions of the fractional heat equation at t = 0, 0.5, and 1 using the

truncated space SI,+5 (x), �t = 10−2

t = 0, 1/2 and 1 are found in Fig. 13b and contour plots of t against x are given in
Fig. 14.

In Fig. 15,we estimate the errors of our numerical solutions. In Fig. 15a,we compare
our numerical solution with the exact solution (119). An exact solution for the initial
condition (118) is not available. Hence, in Fig. 15b, we compare our approximate
solution with one computed via an approximate inverse Fourier transform at each
time step. By using that F[W0] = π J1(|ω|)/|ω| and an induction argument, one can
show that (120) has the solution

uk+1(x) = F−1
[

π J1(|ω|)
|ω|(1 + λ−1|ω|)k+1

]
. (123)

For each iteration k, we approximate the solution uk(x) with an FFT as outlined in
Appendix 1. For 100 iterations, this took 92.2 s. By contrast, 100 solves of (121) took
0.0162s. The setup took 6.95 s to compute the four FFTs to approximate the solutions
required to construct the appended sum space SI,+

n (x) (as all the intervals have the
same width) and another 1.06 s to compute their expansions in the sum space SI

n(x).
This totals to 8.01 s, approximately an 11 times speedup. We note that the setup is not
tied to the initial condition or knowledge of its Fourier transform. Hence, after one

Fig. 14 Contour plots of the numerical solutions to the fractional heat equation
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Fig. 15 Error as measured by (124) of the numerical solutions to the fractional heat equation for iterate k
as measured against a the exact solution and b the approximate FFT solution

initial setup, the time evolution of any initial condition can be computed in fractions
of a second via the repeated solve of (121). The l∞-norm error is measured on a
1001-point equally spaced grid at [−20, 20], i.e.,

max
x∈{−20,−19.99,··· ,19.99,20} |u(x) − SI

n(x)u|. (124)

Remark 7.1 The choice of time discretization is independent to the spectral method.
In particular, coupling the spectral method to a Runge–Kutta time discretization is no
more difficult than for a standard finite difference of finite element discretization.

7.5 Wave propagation

Consider the fractional Hilbert wave equation:

[(−�)1/2 + H + ∂2

∂t2
]u(x, t) = f (x, t). (125)

After a Fourier transform with respect to t , we recover the equation

[(−�)1/2 + H − ω2]û(x, ω) = f̂ (x, ω). (126)

Equation (126) is of the form (1) with λ = −ω2, μ = 1, and η = 0. Thus, the idea
is to solve (126) to find û(x, ω), for a range of values of ω, and then take the inverse
Fourier transform to recover the approximation of the physical solution u(x, t). We
choose the datum

f (x, t) = W4(x)e
−t2 �⇒ f̂ (x, ω) = √

πW4(x)e
−ω2/4. (127)

This corresponds to a forcing term supported on x ∈ [−1, 1] that exponentially decays
in time.
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Fig. 16 Contour plot of the approximation of û(x, ω) (left) and u(x, t) (right) with f (x, t) = W4(x)e−t2

to the fractional Hilbert wave equation

To fix a unique solution, we enforce that lim|x |→∞ û(x, ω) → 0. For this example,
we approximate the additional functions ũ−1(x), ũn+1(x), v0(x) and vn+2(x) via an
FFT (as described in Appendix 1). We pick n = 7 and a uniform distribution of ω in
the range [0, 20] in increments of 1/10. The inverse Fourier transform from û(x, ω) to
u(x, t) is approximated via an FFT. We provide the contour plots of the approximate
solutions of û(x, ω) and u(x, t) in Fig. 16. Even though the right-hand side is even,
there is a drift in the solution u(x, t) caused by the Hilbert transform operator. Note
that the Hilbert transform maps even functions to odd functions and vice versa.

8 Conclusions

In this work, we introduced a sparse spectral method for a one-dimensional fractional
PDE posed on an unbounded domain that may contain the identity, Hilbert, derivative,
and sqrt-Laplacian operators. The method is constructed by forming a sum space of
weighted Chebyshev polynomials of the second kind extended to the whole of R by
zero and their Hilbert transforms. We derive explicit identities for the actions of the
identity, Hilbert, derivative, and sqrt-Laplacian operators which allows us to build our
method. The operator applied to different affine transformations of the sum spaces
decouples during the solve. Hence, the solve can be performed in parallel over each
interval separately. Moreover, the induced matrices are sparse leading to fast sparse
solves. Numerically, we observe spectral convergence when the data is smooth. We
emphasize that the coupling of the different interval sum spaces occurs during the
expansion of the right-hand side.

In future work, we plan to orthogonalize the basis as well as extend the method
to general fractional Laplacians, (−�)s , s ∈ (0, 1) by considering weighted Jacobi
polynomials and their fractional Laplacian analogues [1, Tab. 5]. This will be achieved
by combining the techniques introduced in [57] for expanding the right-hand side
with the methods developed in [2] for the construction of linear systems. Moreover,
by considering Zernike polynomials, the spectral method will be extended to two-
dimensional problems posed on a disk [1, Tab. 7].
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Appendix 1: Approximate inverse Fourier transform via the FFT

The setup of the spectral method requires four inverse Fourier transforms per interval.
Although this can be reduced if the intervals are translations on R and are of the
same size as resulting solutions are simply the equivalent translations. In this section
we describe how to use the FFT to approximate the inverse Fourier transform. The
FFT implements the discrete Fourier transform (DFT) or its inverse (IDFT) with
O(N log N ) complexity where N is the size of the input vector. Consider a vector
u ∈ R

N . We denote the IDFT as F−1
D and define it as (as implemented in ifft of

FFTW.jl):

F−1
D [u] j := 1

N

N∑
n=1

exp

(
i
2π( j − 1)(n − 1)

N

)
un, j = 1, . . . , N . (A1)

Suppose that N is even. Then, we also define the shifted IDFT, F̂−1
D such that the

components of F−1
D [u] are reordered from j = N/2 + 1, . . . , N , 1, . . . , N/2,

F̂−1
D [u] j =

{
F−1

D [u] j+N/2 1 ≤ j ≤ N/2,

F−1
D [u] j−N/2 N/2 + 1 ≤ j ≤ N .

(A2)

This is implemented as iffshift(ifft(u)) in FFTW.jl. Consider the approx-
imation, j = 1, . . . , N :

F−1[u](x j ) ≈ 1

2π

∫ W

−W
u(ω)eiωx j dω ≈ δ

2π

N−1∑
n=0

u(ωn)e
iωn x j . (A3)

Here,we choose the parametersW � 1 and N � 1, N even. The pointsωn := nδ−W ,
n = 0, . . . , N − 1, where δ := 2W/N . Substituting in the definition of ωn , we see
that

δ

2π

N−1∑
n=0

u(ωn)e
iωn x j = δNe−iWx j

2π

[
1

N

N−1∑
n=0

u(ωn)e
2ix jWn/N

]
. (A4)

Define the vector un = u(ωn−1), n = 1, . . . , N . Moreover, we fix x j as

x j := (−N/2 + j − 1)
π

W
, j = 1, . . . , N . (A5)

Then, the right-hand side of (A4) is equal to

δNe−iWx j

2π

[
1

N

N∑
n=1

une2π i( j−1)(n−1)/N e−iπ(n−1)

]
. (A6)
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By noting that e−iπ(n−1) = eiπ(n−1) for n ∈ Z, then for 1 ≤ j ≤ N/2, (A6) is equal
to

δNe−iWx j

2π

[
1

N

N∑
n=1

une2π i( j+N/2−1)(n−1)/N

]
, (A7)

and for N/2 + 1 ≤ j ≤ N , (A6) is equal to

δNe−iWx j

2π

[
1

N

N∑
n=1

une2π i( j−N/2−1)(n−1)/N

]
. (A8)

Hence, by the definition of the shifted IDFT in (A2), we see that, for j, n = 1, . . . , N ,

F−1[u](x j ) ≈ δNe−iWx j

2π
F̂−1

D [u] j , (A9)

where un = u(2W (n − 1)/N − W ), n = 1, . . . , N .

Appendix 2: Approximating the appended sum space functions

With a naïve approach, it would take four integrals per interval to approximate the
additional functions found in the appended sum space. This setup cost may become
prohibitive for a large number of intervals. However, the next proposition reveals that
the additional functions on intervals that are translated (and not scaled) are simply
translations of the additional functions associated to one reference interval.

Proposition B.1 (Translations of the reference interval) Consider the interval I =
[a, b] and its associated reference interval IR = [−(b − a)/2, (b − a)/2]. Then,

v I
0 (x) = v

IR
0 (x − (a + b)/2), ũ I−1(x) = ũ IR−1(x − (a + b)/2),

v I
1 (x) = v

IR
1 (x − (a + b)/2), ũ I

0(x) = ũ IR
0 (x − (a + b)/2).

(B10)

Proof The result follows from the identity F[ f (� + α)](ω) = eiαωF[ f (�)](ω) and a
routine calculation.

The additional functions on the reference interval are approximated with one inte-
gral each.Moreover, all intervals of the samewidthmap to the same reference interval.
Hence, the setup of the method only requires four integrals per interval of different
width. In particular, if all the intervals have the same width, we only require four
integrals in total for the setup, irrespective of the number of intervals used.

Appendix 3: Special cases when � = 0

In this subsection, we discuss the conditioning of L+ for choices of μ and η when
λ = 0. The ill-conditioning is alleviated by removing the rows of L+ associated with
functions that are no longer in the range of L0,μ,ηS+

n .
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C.1 � = � = � = 0

The first special case that we consider is λ = μ = η = 0. Here, (1) reduces to finding
u ∈ H1/2(R) that satisfies

(−�)1/2[u] = f . (C11)

The first issue is that the matrix L+, as constructed in (66), is singular. This is due to
three rows and one columnwhose entries are all zero. The three rows correspond to the
dual sum space functions Ũ−2(x), Ũn+1(x), and Vn+2(x)which do not lie in the range
of (−�)1/2S+

n (x). The column corresponds to the sum space function T̃0(x). Hence,
we remove these rows and column from L+ resulting in an (2n+4)×(2n+6)matrix.
The second issue is that the additional functions computed to form the squarematrix L+
become problematic or redundant. By Proposition 3.5, we have that ũ j (x) = Wj (x),
j ≥ 0 and v j (x) = T̃ j (x), j ≥ 1. Hence, two of the additional functions are already
included in the sum space and correspond to two columns that should be removed. At
first glance, this is advantageous as this reduces L+ to a (2n + 4) × (2n + 4) matrix.
However, computing the remaining additional functions ũ−1(x) and v0(x) poses a
numerical difficulty. Although Ũ−1, V0 ∈ H−1/2(R), since λ = 0, the Lax–Milgram
theorem does not guarantee existence of solutions. Attempting to compute these two
solutions by a forward and inverse Fourier transform fails. Hence, as discussed in
Sect. 1, there exist solutions that satisfy the Fourier multiplier reformulation (17) but
not (6). Ignoring these technical issues and naïvely computing the inverse Fourier
transform via (8) does recover the non-decaying solutions:

ũ−1(x) =
{

− arcsin(x) |x | < 1,

−sgn(x)π/2 |x | ≥ 1,
(C12)

v0(x) =
{
log(2) − γ |x | < 1,

log(2) − γ − arcsinh(
√
x2 − 1) |x | ≥ 1.

(C13)

However, as neither of these tend to zero as |x | → ∞, they cannot live in H1/2(R).
Therefore, we choose to remove the columns associatedwith ũ−1(x) and v0(x) aswell.
Since all the additional functions have been removed, we are only required to consider
the range of (−�)1/2Sn(x). The range does not include Ũ−1(x) and V0(x). Hence,
these functions can be removed from the dual sum space (whilst still preserving the
exact map (−�)1/2 : Sn → S∗

n) and their corresponding rows from L+. In summary,
we remove the columns associated with T̃0(x), v0(x), ũ−1(x), v1(x), and ũ0(x), and
the rows associated with Ũ−2(x), V0(x), Ũ−1(x), Vn+2(x), and Ũn+1(x) reducing L+
from a (2n + 7) × (2n + 7) matrix to a (2n + 2) × (2n + 2) matrix. We emphasize
that the action of (−�)1/2 on Sn(x) is still represented exactly by the reduced L+.

C.2 � = � = 0, |�| > 0

We now consider where λ = μ = 0 but |η| > 0. This corresponds to finding u ∈
H1(R) that satisfies (

η
d

dx
+ (−�)1/2

)
[u] = f .
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This special case is similar to the previous one. Again L+ is singular due to three
rows and a column which contain only zeroes. The rows are associated with the dual
sum space functions Ũ−2(x), Ũn+1(x), and Vn+2(x) which do not lie in the range
of (η d

dx + (−�)1/2)S+
n (x) and the column corresponds to T̃0(x). Hence, we remove

those three rows and column. Moreover, ũ1(x) and v0(x) cannot be computed via
a forward and inverse Fourier transform due to the same issues as in the previous
case. Hence, the columns associated with ũ1(x) and v0(x)must also be removed. This
implies that the rows associated with V0(x) and Ũ−1(x) are now all zero and must also
be removed. Hence, as in the previous case, we remove the columns associated with
T̃0(x), v0(x), ũ−1(x), v1(x), and ũ0(x), and the rows associated with Ũ−2(x), V0(x),
Ũ−1(x), Vn+2(x), and Ũn+1(x) reducing L+ from a (2n + 7) × (2n + 7) matrix to a
(2n + 2) × (2n + 2) matrix. Moreover, the action of ( d

dx + (−�)−1/2) on Sn(x) is
still represented exactly by the reduced L+.

Remark C.1 Since we have removed the additional functions from the appended sum
space, the setup cost is minimal when λ = μ = 0 and η ∈ R as no integrals are
required.

C.3 � = 0, |�| > 0,� ∈ R

The final case to consider is when λ = 0 but μ �= 0. In this case there is only one zero
row and column associated with Ũ−2(x) and T̃0(x), respectively. Removing that row
and column results in an invertible matrix that still represents the mapping exactly.
Moreover, unlike the previous two cases, we recover v0(x), ũ−1(x) ∈ H1/2(R). How-
ever, we note that with increasing n (truncation degree) L+ has two singular values
that quickly decrease to zero which impact the conditioning of L+. If the problem
setup requires high truncation degree n, and small parameter |μ| � 1, then L+ may
become numerically singular. In this case, we suggest using the additional functions
vn+2(x) and ũn+1(x) instead of v1(x) and ũ0(x) as suggested in Remark 4.3. This
results in a well-conditioned L+ irrespective of the choices of n and μ.
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