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Abstract
We present a method for computing nearly singular integrals that occur when single or
double layer surface integrals, for harmonic potentials or Stokes flow, are evaluated at
points nearby. Such values could be needed in solving an integral equation when one
surface is close to another or to obtain values at grid points. We replace the singular
kernel with a regularized version having a length parameter δ in order to control
discretization error. Analysis near the singularity leads to an expression for the error
due to regularization which has terms with unknown coefficients multiplying known
quantities. By computing the integral with three choices of δ, we can solve for an
extrapolated value that has regularization error reduced to O(δ5), uniformly for target
points on or near the surface. In examples with δ/h constant and moderate resolution,
we observe total error about O(h5) close to the surface. For convergence as h → 0,
we can choose δ proportional to hq with q < 1 to ensure the discretization error is
dominated by the regularization error. With q = 4/5, we find errors about O(h4). For
harmonic potentials, we extend the approach to a version with O(δ7) regularization;
it typically has smaller errors, but the order of accuracy is less predictable.
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1 Introduction

The evaluation of singular or nearly singular surface integrals, on or near the surface,
requires special care. Here, we are concerned with single and double layer integrals
for harmonic potentials or for Stokes flow. One of several possible approaches is to
regularize the singular kernel in order to control the discretization error. A natural
choice is to replace the 1/r singularity in the single layer potential with erf(r/δ)/r ,
where erf is the error function and δ is a numerical parameter setting the length scale of
the regularization. This replacement introduces an additional error due to smoothing.
For the singular case, evaluating at points on the surface, we can modify the choice of
regularization so that the new error is O(δ5) (see [3, 6, 30]). The nearly singular case,
evaluation at points near the surface, could be needed, e.g., when surfaces are close
together or to find values at grid points.

For this case, in the previous work, we used analysis near the singularity to derive
correctionswhich leave a remaining error of O(δ3). It does not seempractical to extend
the corrections to a higher order. In the present work, we show by local analysis that
the simpler regularization can be used with extrapolation, rather than corrections, to
improve the error to O(δ5) in the nearly singular case. For y on or near the surface, at
signed distance b, if S is the single layer potential with some density function and Sδ

is the regularized integral, we show that

Sδ(y) = S(y) + C1δ I0(b/δ) + C2δ
3 I2(b/δ) + O(δ5) (1)

uniformly for y as δ → 0, where I0 and I2 are certain integrals, known explicitly, and
C1, C2 are coefficients which depend on y, b, the surface, and the density function.
We can regard S, C1, and C2 as unknowns at one point y. Our strategy is to calculate
the regularized integrals Sδ for three different choices of δ and then solve for S,
within O(δ5), from the system of three equations. We treat the double layer potential
in a similar way, as well as the single and double layer integrals for Stokes flow.
We comment on the Helmholtz equation. For the harmonic potentials, we extend the
approach to a method with O(δ7) regularization error; it requires four choices of δ

rather than three.
To compute the integrals, we use a quadrature rule for surface integrals forwhich the

quadrature points are points where the surface intersects lines in a three-dimensional
grid and the weights are determined by the normal vector to the surface. It is high-
order accurate for smooth integrands; for the nearly singular integrals, the accuracy
depends on δ. The regularization enables us to make the integrand smooth enough
to discretize without special treatment near the singularity. Other quadrature methods
could be used if desired. The total error consists of the regularization error and the error
due to discretization. The discretization error is low order as h → 0 if δ/h is fixed,
where h is the grid spacing, but it rapidly improves as δ/h increases; this is explained in
Sect. 4. In our experiments with δ/h constant, we typically observe errors about O(h5)
near the surface with a moderate resolution, i.e., h not too small, indicating that the
regularization error is dominant. However, this trend cannot continue as h → 0. For
rapid convergence as h → 0, we need to increase δ/h to ensure that the discretization
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Extrapolated regularization of nearly singular integrals on surfaces

error is dominated by the regularization error. To do this, we choose δ proportional
to hq , e.g., with q = 4/5, resulting in an error about O(h4). To test the uniform
convergence, we measure errors at grid points varying from 0 to h in distance from
the surface. With the fifth-order regularization, we see the predicted orders, while for
the seventh-order method, we typically see smaller errors but the order in h is less
predictable, presumably because of discretization error.

Considerable work has been devoted to the computation of singular integrals such
as layer potentials. Only a portion of this work has concerned nearly singular integrals
on surfaces. Often, values close to the surface are obtained by extrapolating from
values further away [35], sometimes as part of the quadrature by expansion (QBX) or
hedgehogmethods [1, 15, 16, 19, 28]. In [29], sources are placed on the opposite side of
the surface to produce a kernel-independent method. With the singularity subtraction
technique [12], a most singular part is evaluated analytically leaving a more regular
remainder. In [21], for the nearly singular axisymmetric case, the error in computing
the most singular part provides a correction. In [22], an approximation to the density
function is used to reduce the singularity. Regularization has been used extensively to
model Stokes flow in biology [8, 9] (see also [30]). Richardson extrapolation has been
used for Stokes flow [10].

With Ewald splitting [2, 13, 14, 25, 26], the kernel is written as a localized singular
part plus a smooth part so that the two parts can be computed by different methods.
Regularization as used here could be thought of as a limit case which reduces the
singular part so that it becomes a correction, as in [3, 6, 30] or treated as an error in
the present case. Integrals for the heat equation were treated in this way in [11], with
the history treated as a smooth part. There is an analogy between the present method
and QBX. In the latter, the value at a specified point near the boundary is extrapolated
from values at points further away along a normal line; increasing the distance is a
kind of smoothing, analogous to the regularization here. However, the two techniques
for making the integral smoother are different in practice.

While the choice of numerical method depends on context, the present approach
is simple and direct. The work required is similar to that for a surface integral with
smooth integrand, except that three (or four) related integrals must be computed rather
than one. No special gridding or separate treatment of the singularity is needed. The
surface must be moderately smooth, without corners or edges. Geometric information
about the surface is not needed other than normal vectors; further geometrywas needed
for the corrections of [3, 6, 30] and in some other methods. It would be enough for the
surface to be known through values of a level set function at grid points nearby. For
efficiency, fast summation methods suitable for regularized kernels [27, 31, 34] could
be used. The approach here is general enough that it should apply to other singular
kernels; however, a limitation is discussed at the end of the next section.

Results are described more specifically in Sect. 2. The analysis leading to (1) is
carried out in Sect. 3. In Sect. 4, we discuss the quadrature rule and the discretization
error. In Sect. 5, we present numerical examples which illustrate the behavior of the
method. In Sect. 6, we prove that the system of three equations of the form (1) is
solvable, and Sect. 7 has a brief conclusion. The source code for numerical examples
is available for download (github.com/stlupova/extrapolated-regularization).
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2 Summary of results

For a single layer potential

S(y) =
∫

�

G(x − y) f (x) dS(x) , G(r) = − 1

4π |r| (2)

on a closed surface�, with given density function f , we define the regularized version

Sδ(y) =
∫

�

Gδ(x − y) f (x) dS(x) , Gδ(r) = G(r)s1(|r|/δ) (3)

with

s1(r) = erf(r) = 2√
π

∫ r

0
e−s2 ds (4)

Then Gδ is smooth, with Gδ(0) = −1/(2π3/2δ), and erf(r/δ) → 1 rapidly as r/δ
increases. Typically Sδ −S = O(δ). If y is near the surface, then y = x0 + bn, where
x0 is the closest point on �, n is the outward normal vector at x0, and b is the signed
distance. From a series expansion for x near x0 and b near 0, we show in Sect. 3 that

S(y) + C1δ I0(λ) + C2δ
3 I2(λ) = Sδ(y) + O(δ5) (5)

uniformly for y near the surface, where λ = b/δ; C1, C2 are unknown coefficients;
and I0 and I2 are integrals occurring in the derivation that are found to be

I0(λ) = e−λ2/
√

π − |λ|erfc|λ| (6)

I2(λ) = 2

3

(
(
1

2
− λ2)e−λ2/

√
π + |λ|3erfc|λ|

)
(7)

Here, erfc = 1 − erf. To obtain an accurate value of S, we calculate the regularized
integrals Sδ for three different choices of δ, with the same grid size h, resulting in
a system of three equations with three unknowns. We can then solve for the exact
integral S within error δ5. We typically choose δi = ρi h with ρi = 2, 3, 4 or 3, 4, 5.

To improve the conditioning, we write three versions of (5) in terms of ρ rather
than δ,

S(y) + c1ρi I0(λi ) + c2ρ
3
i I2(λi ) = Sδi (y) + O(δ5i ) , i = 1, 2, 3 (8)

with λi = b/δi . It is important that c1, c2 do not depend on δ or λ. We solve this 3× 3
system for S. The i th row is [1 ρi I0(λi ) ρ3

i I2(λi )]; the entries depend only on λi as
well as ρi . The value obtained for S has the form

S(y) =
3∑

i=1

ai Sδi (y) (9)
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For each λ, a1 + a2 + a3 = 1. At λ = 0, a1 = 14/3, a2 = −16/3, a3 = 5/3 provided
ρi = 2, 3, 4. As λ increases, the coefficients approach (1, 0, 0), allowing a gradual
transition to the region far enough from � to omit the regularization. It is not obvious
that the system (8) is solvable, i.e., that the matrix is invertible. In Sect. 6, we prove
the solvability for any distinct choices of the ρi . To ensure the smoothing error is
dominant as h → 0, we may choose δ = ρhq with q < 1, rather than q = 1, to obtain
convergence O(h5q) (see Sect. 4).

For the double layer potential

D(y) =
∫

�

∂G(x − y)
∂n(x)

g(x) dS(x) (10)

the treatment is similar after a subtraction. Using Green’s identities, we rewrite (10)
as

D(y) =
∫

�

∂G(x − y)
∂n(x)

[g(x) − g(x0)] dS(x) + χ(y)g(x0) (11)

where again x0 is the closest point on � and χ = 1 for y inside, χ = 0 for y outside,
andχ = 1

2 on�. To regularize we replace∇G with the gradient of the smooth function
Gδ , obtaining

∇Gδ(r) = ∇G(r)s2(|r|/δ) = r
4π |r|3 s2(|r|/δ) (12)

with
s2(r) = erf(r) − (2/

√
π)re−r2 (13)

Thus,

Dδ(y) =
∫

�

r · n(x)
4π |r|3 s2(|r|/δ)[g(x) − g(x0)] dS(x) + χ(y)g(x0) , r = x − y (14)

The expansion for Dδ − D near x0 is somewhat different but coincidentally leads
to the same relation as in (8) with S and Sδ replaced byD andDδ . Thus, we can solve
for D to O(δ5) in the same way as for S.

There is a straightforward extension to a method with O(δ7) regularization error.
In equation (5), there is now an additional term C3δ

5 I4. There are four unknowns, so
that four choices of δ are needed. Otherwise, this version is similar to the original one.
On the other hand, we could use only two choices of δ, omitting the δ3 term in (5),
obtaining a version with error O(δ3).

The special case of evaluation at points y on the surface is important because it
is used to solve integral equations for problems such as the Dirichlet or Neumann
problem for harmonic functions. We could use the procedure described with b = 0
and λ = 0. However, in this case, we can modify the regularization to obtain O(δ5)

error more directly [3, 6]. For the single layer integral, in place of (3), we use

Gδ(r) = − s	
1(|r|/δ)
4π |r| , s	

1(r) = erf(r) + 2

3
√

π
(5r − 2r3)e−r2 (15)
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For the double layer, we use (14) with χ = 1
2 and (13) replaced by

s	
2(r) = erf(r) − 2√

π

(
r − 2r3

3

)
e−r2 (16)

We typically use δ = 3h with these formulas for evaluation on the surface [6, 30].
They were derived by imposing conditions to eliminate the leading error [3], and the
error can be checked using the analysis in the next section. Formulas with O(δ7) error
could be produced with the same approach.

The equations of Stokes flow represent the motion of incompressible fluid in the
limit of zero Reynolds number (e.g., see [24]). In the simplest form, they are


u − ∇ p = 0 , ∇ · u = 0 (17)

where u is the fluid velocity and p is the pressure. The primary fundamental solutions
for the velocity are the Stokeslet and stresslet,

Si j (y, x) = δi j

|y − x| + (yi − xi )(y j − x j )

|y − x|3 (18a)

Ti jk(y, x) = −6(yi − xi )(y j − x j )(yk − xk)

|y − x|5 (18b)

where δi j is the Kronecker delta and i, j, k = 1, 2, 3. They are the kernels for the
single and double layer integrals

ui (y) = 1

8π

∫
�

Si j (y, x) f j (x)dS(x) (19a)

vi (y) = 1

8π

∫
�

Ti jk(y, x)q j (x)nk(x)dS(x) (19b)

where f j and q j are components of vector quantities f and q on the surface and nk is
a component of the normal vector n. A subtraction can be used in both cases (e.g., see
[24], Sect. 6.4). With x0 as before, we rewrite (19a) as

ui (y) = 1

8π

∫
�

Si j (y, x)[ f j (x) − fk(x0)nk(x0)n j (x)] dS(x) (20)

The subtracted form of (19b) is

vi (y) = 1

8π

∫
�

Ti jk(y, x)[q j (x) − q j (x0)]nk(x)dS(x) + χ(y)qi (x0) (21)

To compute (20), we replace Si j with the regularized version

Sδ
i j (y, x) = δi j

r
s1(r/δ) + (yi − xi )(y j − x j )

r3
s2(r/δ) , r = |y − x| (22)

123

61 Page 6 of 27



Extrapolated regularization of nearly singular integrals on surfaces

with s1 and s2 as in (4),(13), resulting in a smooth kernel.
For the Stokes double layer integral, we need to rewrite the kernel so that it will be

compatible with the analysis of Sect. 3 (see the last paragraph of this section for further
discussion). For y near the surface, we have y = x0+bn0 with x0 ∈ � and n0 = n(x0).
In Ti jk we substitute yi − xi = bni − x̂i where ni and x̂i are the i th components of n0
and x̂ = x − x0 and similarly for j and k. The product (yi − xi )(y j − x j )(yk − xk)
becomes a sum. We need to avoid terms in the kernel such as b3/r5 or b2xi/r5, with
r = |y − x|. To do this we replace b2/r2 with 1 − (r2 − b2)/r2 to introduce factors
in the numerator which vanish at x0. We obtain

Ti jk = T (1)
i jk + T (2)

i jk = −6

(
t (1)i jk

r3
+ t (2)i jk − (r2 − b2)t (1)i jk

r5

)
(23)

where
t (1)i jk = bnin j nk − (x̂i n j nk + ni x̂ j nk + nin j x̂k) (24)

t (2)i jk = b(x̂i x̂ j nk + x̂i n j x̂k + ni x̂ j x̂k) − x̂i x̂ j x̂k (25)

and we substitute r2 − b2 = |x̂|2 − 2bx̂ ·n0. We compute (21) with Ti jk replaced with
the regularized version of (23)

T δ
i jk = T (1)

i jk s2(r/δ) + T (2)
i jk s3(r/δ) (26)

where

s3(r) = erf(r) − 2√
π

(
2

3
r3 + r

)
e−r2 (27)

For both Stokes integrals, calculated in the manner described, we find in Sect. 3 that
the error has a form equivalent to (8), and we extrapolate with three choices of δ as
before. Again, for the special case of evaluation on the surface, we can obtain an O(δ5)

regularization directly. Formulas were given in [30], and an improved formula for the
stresslet case was given in [5].

A strategy similar to that for the Laplacian could be used for single or double layer
integrals for the Helmholtz equation, 
u + k2u = 0, which describes waves of a
definite frequency. The usual fundamental solution is G = −eikr/4πr . We could
regularize the most singular part, −1/4πr or −(1 − k2r2/2)/4πr or − cos kr/4πr ,
multiplying by erf(r/δ), and extrapolate as for the Laplacian. We would not modify
the remaining part of G. For the double layer potential, we need to use a subtraction
again. We could do this using a plane wave and Green’s third identity (e.g., see [20]
Thm. 3.1.1) as has been done before (e.g., see [23]). We choose a vector k so that
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|k| = k and, for convenience, k · n(x0) = 0. With x0 and χ(y) as in (11), we rewrite
the double layer potential as

∫
∂G(x − y)

∂n(x)
g(x) dS(x) =

∫
∂G(x − y)

∂n(x)

[
g(x) − eik·(x−x0)g(x0)

]
dS(x)

+ g(x0)
∫

ik · n(x)G(x − y) eik·(x−x0) dS(x) + χ(y)eik·(y−x0)g(x0) (28)

If we regularize only the 1/r term, we could instead use (11) for that part alone.
It appears this methodwould not be successful if applied directly to the double layer

potential or the Stokeslet integral without the subtraction. There would be a term in
the integrand proportional to 1/r3. The equation (5) for the regularization error would
then have an additional term which, to first approximation, does not change as δ is
varied. As a result, the extrapolated value of the integral becomes unstable as b → 0,
i.e., the coefficients in the linear combination replacing (9) become large as b → 0.
A similar consideration motivates the expression for Ti jk above. For other kernels,
general techniques to reduce the singularity could be used if necessary, e.g., [22].

3 Local analysis near the singularity

We derive an expansion for the error due to regularizing a singular integral, when
evaluated at a point y near the surface �. The error is uniform with respect to y. The
expression obtained leads to the formula (5) and the extrapolation strategy used here.
The first few terms of the expansion were used in [3, 6, 30] to find corrections to
O(δ3).

We begin with the single layer potential (2). The error ε is the difference between
(3) and (2). Given y near �, we assume for convenience that the closest point on � is
x = 0. Then y = bn0, where n0 is the outward normal at x = 0 and b is the signed
distance from the surface. We choose coordinates α = (α1, α2) on � near x = 0 so
that x(0) = 0, the metric tensor gi j = δi j at α = 0, and the second derivatives xi j
are normal at α = 0; e.g., if the tangent plane at x = 0 is {x3 = 0}, we could use
(α1, α2) = (x1, x2). Since the error in the integral is negligible for x away from 0, we
can assume the density f is zero outside this coordinate patch, regard it as a function
of α, and write the regularization error as

ε =
∫

[Gδ(x(α) − y) − G(x − y)] f (α) dS(α) (29)

Then,

ε = 1

4π

∫
erfc(r/δ)

r
f (α) dS(α) , r = |x(α) − y| (30)

We can expand x near 0 as

x(α) = T1(0)α1 + T2(0)α2 +
∑

2≤|ν|≤4

cνα
νDνx(0) + O(|α|5) (31)
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Here, Ti = ∂x/∂αi , the tangent vector at x(α), and we use multi-index notation:
ν = (ν1, ν2), αν = α

ν1
1 α

ν2
2 , Dν is mixed partial derivative of order (ν1, ν2), and

|ν| = ν1 + ν2. We will use the notation cν for generic constants whose value will not
be needed. We first get an expression for r2. We start with

|x(α)|2 = α2
1 + α2

2 +
∑

|ν|=4,5

cνα
ν + O(|α|6) (32)

There is no termwith |ν| = 3 since thefirst- and second-order terms inx are orthogonal.
Also,

x(α) · n0 =
∑

2≤ν≤4

c′
να

ν + O(|α|5) (33)

Then,

r2 = |x(α) − bn0|2 = |α|2 + b2 +
∑

|ν|=4,5

cνα
ν + b

∑
2≤|ν|≤4

c′
να

ν + O(|α|6 + |b||α|5)
(34)

We assume� is smooth, so that the error terms are uniformwith respect to the location.
We will make a change of variables α = (α1, α2) → ξ = (ξ1, ξ2) defined by

|ξ |2 + b2 = r2 , ξ/|ξ | = α/|α| (35)

This allows us to write the error as

ε = 1

4π

∫
erfc(

√|ξ |2 + b2/δ)√|ξ |2 + b2
w(ξ, b) dξ (36)

where

w(ξ, b) = f (α)

∣∣∣∣∂α

∂ξ

∣∣∣∣ |T1 × T2| (37)

The expression (36)will enable us to expand the error in the formwe need. An estimate
of (36), bounding w by a constant, shows that ε decays faster than e−b2/δ2 and so is
negligible for |b| larger than O(δ). Thus, we can regard |b| as being at most O(δ).

The mapping ξ = ξ(α) is close to the identity, but it is not smooth at α = 0, so that
we cannot write w directly in a power series in (ξ, b). We will see that w is a sum of
terms of the form bmξν/|ξ |2p with |ν| ≥ 2p, and such a term makes a contribution to
the error ε of order δm+|ν|−2p+1. For this purpose, we need a qualitative understanding
of the inverse of the mapping α 	→ ξ . Thinking of polar coordinates in (35), we do not
change the angle but we make a change along each ray depending on the angle. Thus,
it is enough to consider the inverse of the mapping |α| 	→ |ξ |. We will do this using
the Lagrange Inversion Theorem [17, 32]; the theorem is usually stated for analytic
functions, but for CN functions, it can be applied to the Taylor polynomial.
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We start by rewriting (34) as

|ξ |2/|α|2 = 1 +
∑

|ν|=4,5

cνα
ν/|α|2 + b

∑
2≤|ν|≤4

c′
να

ν/|α|2 + O(|(α, b)|4) (38)

Here, O(|(α, b)|4) means O(|α|4 + b4). With u = α/|α| = ξ/|ξ |, we can substitute
αν = uν |α||ν| in (38). We then regard (38) as a power series in |α| in which the
coefficients depend on b and u. We will say that such a series is of type A if the
coefficient of the nth power is a polynomial in b and u with terms uν such that |ν| − n
is even. Then, (38) is of type A.Multiplication of series preserves type A; thus, powers
of |ξ |2/|α|2 have series of type A.We note that the kth term in a product series depends
only on the first k terms in the factors. Using the power series for (1 + x)−1/2, we
can write a similar expression for |α|/|ξ | with terms as in (38) and their products.
This series is also of type A; the same is true for powers of |α|/|ξ |. We now apply
the Lagrange theorem to the function F(|α|) = |ξ |. According to the theorem, F−1

has a series in |ξ |, with remainder, such that the coefficient of |ξ |n is proportional to
the coefficient of |α|n−1 in the series for (|α|/F(|α|))n = (|α|/|ξ |)n . This quantity has
factors uν with |ν| − (n − 1) even. We now divide this expression for F−1(|ξ |) = |α|
by |ξ | so that the earlier parity is restored. We have shown that |α|/|ξ | has a series in
|ξ | which is type A. Finally, we rewrite uν |ξ |n as ξν |ξ |n−|ν|, and in summary, we have
shown that |α|

|ξ | =
∑

cmν pb
m ξν

|ξ |2p + O(|(ξ, b)|4) (39)

where m ≥ 0, |ν| ≥ 2p, and m + |ν| − 2p ≤ 3. With α j = (|α|/|ξ |)ξ j we get a
similar expression for α as a function of ξ .

The function f (α) and the factor |T1 × T2| in w have series in α which can be
converted to ξ . The Jacobian is

∣∣∣∣∂α

∂ξ

∣∣∣∣ = μ2 + μξ
∂μ

∂|ξ | , μ = |α|
|ξ | (40)

It has terms of the same type as those in |α|/|ξ |. The Jacobian has leading term 1 and
is bounded but not smooth as ξ → 0. We conclude that w has the expression

w(ξ, b) =
∑

cmν pb
m ξν

|ξ |2p + R(ξ, b) (41)

where m ≥ 0, |ν| ≥ 2p, m + |ν| − 2p ≤ 3, and R(ξ, b) = O(|(ξ, b)|4).
To find the contribution εmν p to the error (36) from a term in (41) with a particu-

lar (m, ν, p), we will integrate in polar coordinates. The angular integral is zero by
symmetry unless ν1 and ν2 are both even. Let n = |ν| − 2p, the degree of ξ . With
the restriction m + n ≤ 3, the possible nonzero terms have n = 0 and 0 ≤ m ≤ 3 or
n = 2 with m = 0, 1. To carry out the integration, we rescale variables to ξ = δζ ,
b = δλ, and write ζ in polar coordinates. With s = |ζ |, we obtain

εmν p = cmν pb
mδn+1 In(λ) = cmν pλ

mδm+n+1 In(λ) (42)
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where

In(λ) =
∫ ∞

0

erfc(
√
s2 + λ2)√

s2 + λ2
sn+1 ds (43)

In a similar way, we see that the remainder R leads to an error which is O(δ5). In
summary, we can express the error as

ε = δ p0(b)I0(λ) + δ3 p2(b)I2(λ) + O(δ5) (44)

where p0 and p2 are polynomials in b with deg p0 = 3, deg p2 = 1. They depend
only on the surface and b, not δ or λ. For fixed b and h, they are unknown coefficients.
To normalize the equation, we set δ = ρh and rewrite it as

ε = c1ρ I0(λ) + c2ρ
3 I2(λ) + O(δ5) (45)

This conclusion is equivalent to (8), which we use with three choices of δ to solve for
the single layer potential within O(δ5).

For the double layer potential, in view of (14) and (11), we can write the error from
regularizing as

ε = 1

4π

∫
φ(r/δ)

(x(α) − y) · n(α)

r3
(g(α) − g(0)) dS(α) (46)

where
φ(r) = −erfc(r) − (2/

√
π)re−r2 (47)

and after changing from α to ξ ,

ε = 1

4π

∫
φ(

√|ξ |2 + b2/δ)

(|ξ |2 + b2)3/2
w(ξ, b) dξ (48)

where now

w(ξ, b) = [(x − y) · n][g(α) − g(0)]
∣∣∣∣∂α

∂ξ

∣∣∣∣ |T1 × T2| (49)

We find
(x − y) · n = −b + O(|(ξ, b)|2) (50)

and note g(α) − g(0) = O(|ξ |). Thus, each term in w now has at least two additional
factors. We expand w as in (41) but now include terms with m + n ≤ 5, where again
n = |ν| − 2p. The term (m, ν, p) now contributes an error of order δm+n−1, rather
than δm+n+1 as before. From the last remark, each nonzero term must have m ≥ 1
and n ≥ 1 or m = 0 and n ≥ 3. By symmetry, a term that contributes a nonzero error
must have m ≥ 1 and n ≥ 2 or m = 0 and n ≥ 4. The possible terms with m + n ≤ 5
are (m, 2) withm = 1, 2, 3 and (m, 4) withm = 0, 1. Rescaling the integrals, we find

ε = δ p0(b)J0(λ) + δ3 p2(b)J2(λ) + O(δ5) (51)
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with deg p0 = 3, deg p2 = 1, and

Jn(λ) =
∫ ∞

0

φ(
√
s2 + λ2)

(s2 + λ2)3/2
sn+3 ds (52)

In fact
J0 = −2I0 , J2 = −4I2 (53)

so that (51) is equivalent to (44), and we can solve for the double layer as in (8).
The expansions can be carried further in the same manner. For the single layer

integral, we can refine the error expression (44) to

ε = δ p0(b)I0(λ) + δ3 p2(b)I2(λ) + δ5 p4(b)I4(λ) + O(δ7) (54)

For the double layer, (51) is replaced by

ε = δ p0(b)J0(λ) + δ3 p2(b)J2(λ) + δ5 p4(b)J4(λ) + O(δ7) (55)

Each of these expressions leads to a system of four equations in four unknowns, using
four different choices of δ. In fact, J4 = −6I4, so that again we may use the same
equations for both cases.

For the Stokes single layer integral, calculated in the form (20), (22), the first
term is equivalent to the single layer potential (2). The second term resembles the
double layer (10). We note the integrand has a factor f̃(x) · (y − x) with f̃(x) =
f(x)−(f(x0) ·n(x0))n(x). Thus, f̃ ·n = 0 at x = x0, and since y−x = bn(x0)+O(ξ),
the numerator of the integrand is O(ξ). The discussion above for the double layer now
applies to this second term, leading to the same expression for the error.

For the Stokes double layer integral, with the subtraction (21) and the kernel rewrit-
ten as in (26), the first term is again like the harmonic double layer. For the second
term, regularized with s3, the numerator in the expansion will have terms O(ξ3) or
higher. By symmetry, the terms that contribute nonzero error have O(ξ4) or higher.
We get an expansion for the error in the second term in the form

ε = δ p0(b)K0(λ) + δ3 p2(b)K2(λ) + O(δ5) (56)

with

Kn(λ) =
∫ ∞

0

φ3(
√
s2 + λ2)

(s2 + λ2)5/2
sn+5 ds (57)

and φ3 = 1− s3. We find that K0 = (8/3)I0 and K2 = 8I2, so that once again we can
use (8) for extrapolation.

4 Surface quadrature and the discretization error

We use a quadrature rule for surface integrals introduced in [33] and used in [3, 6, 30].
We cover the surface with a three-dimensional grid with spacing h. The quadrature
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points have the form x = (ih, jh, x3), i.e., points on the surface � whose projections
on the (x1, x2) plane are grid points, and similarly for the other two directions. We
only use points for which the component of the normal vector in the distinguished
direction is no smaller than cos θ for a chosen angle θ . In our case, we take θ = 70o.
The weights are determined by a partition of unity ψ1, ψ2, ψ3 on the unit sphere; it is
applied to the normal vector at each point. We define three sets of quadrature points
�1, �2, �3 as

�3 = {x = (ih, jh, x3) ∈ � : |n3(x)| ≥ cos θ} (58)

where n3 means the third component of the normal vector, and similarly for �1, �2.
The quadrature points of the set �3 are shown for two ellipsoids in Fig. 1. To construct
the partition of unity, we start with the bump function

b(r) = exp(ar2/(r2 − 1)) , |r | < 1 ; b(r) = 0 , |r | ≥ 1 (59)

Here, a is a parameter. For a unit vector n = (n1, n2, n3), we define

βi (n) = b(cos−1 |ni |)/θ) , ψi (n) = βi (n)/

⎛
⎝ 3∑

j=1

β j (n)

⎞
⎠ (60)

The quadrature rule for a surface integral with integrand f is

∫
�

f (x) dS(x) ≈
3∑

i=1

∑
x∈�i

f (x)wi (x) , wi (x) = ψi (n(x))
|ni (x)| h2 (61)

It has high-order accuracy as allowed by the smoothness of the surface and the inte-
grand. The weights cut off the sum in each plane, and each sum has the character of
the trapezoidal rule without boundary (see [33]).

Fig. 1 The rotated (1,.8,.6) ellipsoid (left) and the (1,.5,.5) spheroid (right)
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In earlier work, we chose the parameter a to be 1. Here, we use a = 2. We have
found from error estimates in [4], discussed below, as well as numerical experiments,
that the discretization error is controlled better with this choice.We do not recommend
using a > 2 because of increased derivatives.

The full error in this method consists of the regularization error plus the discretiza-
tion error; symbolically,

∑
δ − ∫ = (∫

δ
− ∫ ) + (∑

δ − ∫
δ

)
(62)

For either the single layer potential (2) or the double layer (11), the discretization error
arbitrarily close to � can be written as

c1h + C2h
2 exp(−c0δ

2/h2) + O(δ5) , c1 = c1(b/δ, δ/h) (63)

which at first appears inaccurate. Formulas for the first termwere given in [3, 6], based
on approximating the surface locally as a plane. They can be used as corrections.
Estimates for these formulas were given in [4]. With the parameter choices here, in
particular with δ/h ≥ 2, it was shown that

c(S)
1 ≤ 2.1 · 10−7 max | f | , c(D)

1 ≤ 8.3 · 10−7 max |∇g| (64)

for the single and double layer, respectively, and they decrease rapidly as δ/h increases.
Here,∇gmeans the tangential gradient. Theh2 term in (63) evidently decreases rapidly
as δ/h increases, as does c1. With θ = 70o, c0 ≈ 1.15 (see [6], Sect. 3.4). However,
C2 depends on the surface and integrand and could be large.With moderate resolution,
we expect that the discretization error is controlled by the regularization. If desired
the formulas for c1h in [6] could be used as corrections with the present method;
they are infinite series, but only the first few terms are significant. To ensure that the
regularization error dominates the discretization error for small h, we can choose δ

proportional to hq , with q < 1, so that δ/h increases as h → 0.

5 Numerical examples

We present examples computing single and double layer integrals at grid points within
O(h) of a surface, for harmonic potentials and for Stokes flow. The points are selected
from the three-dimensional gridwith spacing hwhich determines the quadrature points
on the surface, as described in Sect. 4. With the fifth-order regularization, the results
are in general agreement with the theoretical predictions. With moderate resolution
and δ/h constant, the errors are about O(h5). With δ proportional to h4/5, the error is
about O(h4). For the harmonic potentials, we also test the seventh-order method; the
errors are typically smaller, but the order of accuracy is less predictable. It is likely
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that the discretization error is relatively more significant with the smaller errors of the
seventh-order case. We report maximum errors and L2 errors, defined as

‖e‖L2 =
(∑

y

|e(y)|2/N
)1/2

(65)

where e(y) is the error at y and N is the number of points. We present absolute errors;
for comparison, we give approximate norms of the exact solution.

Harmonic Potentials.We begin with known solutions on the unit sphere. We test
the single and double layer separately. We compute the integrals at grid points first
within distance h and then on shells at increasing distance. In the latter case, we
also find values computed without regularization. We then compute known harmonic
functions on three other surfaces which combine single and double layers.

The single and double layer potentials, (2) and (10), are harmonic inside and outside
the surface �. They are characterized by the jump conditions

[S(x)] = 0 , [∂S(x)/∂n] = f (x) (66)

[D(x)] = −g(x) , [∂D(x)/∂n] = 0 (67)

where [·] means the value outside � minus the value inside.
For the unit sphere, we use the spherical harmonic function

f (x) = 1.75(x1 − 2x2)(7.5x
2
3 − 1.5) , |x| = 1 (68)

for both the single and double layer integrals. The functions

u−(y) = r3 f (y/r) , u+(y) = r−4 f (y/r) , r = |y| (69)

are both harmonic. We define S(y) by (2) and D(y) by (10) with g = f . They are
determined by the jump conditions,

S(y) = −(1/7)u−(y) , |y| < 1 ; S(y) = −(1/7)u+(y) , |y| > 1 (70)

D(y) = (4/7)u−(y) , |y| < 1 ; D(y) = −(3/7)u+(y) , |y| > 1 (71)

We present errors for the single and double layer potentials at grid points at various
distances from the sphere. We begin with the single layer. We compute the integral
as in (3) and extrapolate as in (8). Near the sphere the maximum of |S| is about 1.15
and the L2 norm is about .50. Figure2, left, shows the L2 and maximum errors for
grid points within distance h of the sphere, using fifth- or seventh-order extrapolation.
For the fifth order, we take δ/h = 2, 3, 4 as previously described, and for the seventh
order, we take δ/h = 2, 3, 4, 5. The expected order of accuracy is evident in the fifth-
order case; the seventh-order method has somewhat smaller errors but does not have a
discernible order of accuracy, probably because the discretization error is significant.
In subsequent figures, we display the errors at nearby grid points at distance between
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Fig. 2 Errors for the single layer potential on the unit sphere, (left) at grid points within distance h, computed
with the fifth- and seventh-order regularization, and (right) evaluated at distance between h and 2h, without
regularization and with the fifth- and seventh-order methods

mh and (m + 1)h from the sphere, both inside and outside, for m = 1, 2, 3. We
compute the integral with no regularization as well as the fifth- and seventh-order
methods. Figure2, right, shows errors for m = 1 and Fig. 3 for m = 2 and 3. The
values without regularization in Fig. 2 appear to be about O(h) accurate. The fifth-

1/128 1/64 1/32
h

10-11

10-10

10-9

10-8

10-7

10-6

er
ro

r

no reg L2 err

5th order L2 err

7th order L2 err

O(h)

O(h5)

O(h7)

1/128 1/64 1/32
h

10-11

10-10

10-9

10-8

10-7

10-6

er
ro

r

no reg L2 err

5th order L2 err

7th order L2 err

O(h)

O(h5)

O(h7)

Fig. 3 L2 errors in the single layer potential on the unit sphere, evaluated at distance between 2h and 3h
(left) or 3h and 4h (right)
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Fig. 4 Errors for the double layer potential on the unit sphere, (left) at grid points within distance h,
computed with the fifth- and seventh-order regularization, and (right) evaluated at distance between h and
2h, without regularization and with the fifth- and seventh-order methods

order method again has the expected order of accuracy at least form = 1 but becomes
less steady with distance. The errors become smaller overall as the distance increases.
Beyond 4h, the error without regularization is quite small, suggesting that we can
discontinue the regularization for points at least 4h from the surface.
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Fig. 5 L2 errors in the double layer potential on the unit sphere, evaluated at distance between 2h and 3h
(left) or 3h and 4h (right)
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In Figs. 4 and 5, we present results of the same type for the double layer potential,
computed as in (14). They are similar in behavior to those for the single layer. The
maximum of |D| is about 4.6 and ‖D‖L2 ≈ 1.8.

For the remaining tests on other surfaces, we use a procedure as in [6] which allows
us to have known solutionswith an arbitrary surface�. This provides a test of the single
and double layer combined, rather than separately. We choose harmonic functions u+
outside and u− inside. We set f = −[u] and g = [∂u/∂n], the jumps across � as
above. Then, assuming u+ decays at infinity, u(y) = S(y) + D(y) on both sides,
where S and D are defined in (2) and (10). We choose

u−(y) = (sin y1 + sin y2) exp y3 , u+(y) = 0 (72)

In these tests, we again use δ/h = 2, 3, 4 with the fifth-order method and δ/h =
2, 3, 4, 5 with the seventh order. We also choose δ proportional to h4/5 with the fifth-
order method and h4/7 with the seventh-order method, so that the predicted order
of error is O(h4). We choose constants so that δ agrees with the earlier choice at
1/h = 64.

Our first surface with this procedure is a rotated ellipsoid shown in Fig. 1, left,

z21
a2

+ z22
b2

+ z23
c2

= 1 (73)
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Fig. 6 Errors for the single and double layers on a rotated ellipsoid at grid points within distance h, with
the fifth-order and seventh-order methods, δ proportional to h (left). Errors for the rotated ellipsoid, at grid
points within distance h in the first octant, fifth- and seventh-order methods with δ chosen to correspond to
O(h4) accuracy (right)
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Fig. 7 The Cassini oval surface and the four-atom molecular surface

where a = 1, b = .8, c = .6 and z = Mx, where M is the orthogonal matrix

M = (1/
√
6) [√2 0 − 2; √

2
√
3 1; √

2 − √
3 1]. (74)

We present results in Fig. 6. In Fig. 6, left, we evaluate at all grid points within distance
h with both regularizations. Figure6, right, has values at points y within distance h in
the first octant, i.e., those with y1, y2, y3 ≥ 0. The accuracy of the fifth-order version
is close to the prediction; the seventh-order version has smaller errors in Fig. 6, right,
and perhaps approximates the predicted order O(h4) but not clearly so. For the left
figure, the L2 norm of the exact solution is about .5 and the maximum is about 1.7.
For the right figure, within the first octant, they are about .76 and 1.4.

The next example is a surface obtained by revolving a Cassini oval about the x3
axis,

(x21 + x22 + x23 + a2)2 − 4a2(x21 + x22 ) = b4 (75)

with a = .65 and b = .7. The final surface represents a molecule with four atoms,

4∑
i=1

exp(−|x − xk |2/r2) = c (76)

with r = .5, c = .6, and xk given by

(
√
3/3, 0,−√

6/12) , (−√
3/6,±.5,−√

6/12) , (0, 0,
√
6/4) (77)

These surfaces are shown in Fig. 7.
We compute the solution for grid points in the first octant as before for the ellipsoid,

with δ related to h in the same way. We present errors with fifth- or seventh-order
regularization, with δ proportional to h or fractional. The results, reported in Figs. 8
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Fig. 8 Errors for the Cassini oval surface, at grid points within distance h in the first octant; fifth- and
seventh-order method with δ proportional to h or corresponding to O(h4) accuracy

and 9, are generally similar to those for the rotated ellipsoid. For both surfaces, we see
roughly the predicted orders of accuracy in the fifth-order case. For seventh order, the
errors are smaller, but the accuracy in the fractional case is somewhat less than fourth
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Fig. 9 Errors for the molecular surface, at grid points within distance h in the first octant; fifth- and seventh-
order method with δ proportional to h or corresponding to O(h4) accuracy
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order in h. For the Cassini surface, the L2 norm for the exact values is about .78 and
the maximum is about 1.45. For the molecular surface, they are about .57 and 1.0.

Stokesflow.Wepresent examples of three types. First,we calculate the velocity near
a translating spheroid in Stokes flow, given as a single layer integral. We then compute
a standard identity for the double layer integral. Finally, we compute a velocity that
combines single and double layer integrals on an arbitrary surface, as in the examples
above with harmonic potentials. We have increased ρ to (3, 4, 5) to make the order of
accuracy more evident, even though errors are typically smaller with (2, 3, 4). In each
case, we report errors at grid points within distance h of the surface.

In our first example, we compare the single layer or Stokeslet integral with an exact
solution. We compute the Stokes flow around a prolate spheroid

x21 + 4x22 + 4x23 = 1 (78)

with semi-axes 1, .5, .5, shown in Fig. 1, right, and translating with velocity (1, 0, 0).
The fluid velocity is determined by the integral (19a) from the surface traction f .
Formulas for the solution are given in [7, 18, 30]. The surface traction is

f(x) = ( f1(x), 0, 0) , f1(x) = F0√
1 − 3x21/4

where F0 is a constant. We compute the fluid velocity u as in (20) and (22) and
extrapolate as before.Results are presented inFig. 10. The exact solution hasmaximum
amplitude 1 and L2 norm about 1.

Next, we test the double layer integral (19b) using the identity (2.3.19) from [24]

1

8π
ε jlm

∫
�

xmTi jk(x0, x)nk(x)dS(x) = χ(x0)εilmx0,m (79)

Fig. 10 Errors for the Stokes
single layer on a prolate
spheroid, at grid points within
distance h outside the spheroid
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where χ = 1, 1/2, 0 when x0 is inside, on, and outside the boundary. We set l = 1 and
define q j (x) = ε j1mxm = (0,−x3, x2). We compute the integral according to (21),
(23), and (26) and extrapolate. We report errors for a sphere and for the spheroid (78)
in Fig. 11. For the sphere, the maximum value is 1 and the L2 norm is about .57. For
the spheroid, the maximum is ≈ .5 and the L2 norm is ≈ .3.

In order to test integrals on general surfaces we again use a formula combining the
single and double layer integrals. If u is the velocity of Stokes flow outside and inside
a surface �, with suitable decay at infinity, then

ui (y) = − 1

8π

∫
�

Si j (y, x)[ f ] j (x)dS(x) − 1

8π

∫
�

Ti jk(y, x)[u] j (x)nk(x)dS(x)

(80)
Here, [ f ] = f + − f − is the jump in surface force, outside minus inside, and [u] is
the jump in velocity. The surface force is the normal stress, f ± = σ± ·n, where n the
outward normal. The jump conditions are derived, e.g., in [24]. As a test problem, we
take the inside velocity to be the Stokeslet due to a point force singularity of strength
b = (4π, 0, 0), placed at y0 = (2, 0, 0). The velocity is

u−
i (y) = 1

8π
Si j b j = 1

8π

(δi j

r
+ ŷi ŷ j

r3

)
b j (81)

and the stress tensor is

σ−
ik (y) = 1

8π
Ti jkb j = −6

8π

ŷi ŷ j ŷk
r5

b j (82)

1/128 1/64 1/32 1/16
h

10-8

10-7

10-6

10-5

10-4

10-3

er
ro

r

 = ch4/5  max err

 = ch4/5  L2 err
 = ch   max err

 = ch   L2 err

O(h4)

O(h5)

1/256 1/128 1/64 1/32
h

10-8

10-7

10-6

10-5

10-4

10-3

er
ro

r

 = ch4/5  max err

 = ch4/5  L2 err
 = ch   max err

 = ch   L2 err

O(h4)

O(h5)

Fig. 11 Error for the Stokes double layer on the unit sphere, at grid points within distance h on either side
of the sphere (left). Errors for the Stokes double layer on a prolate spheroid, at grid points within distance
h on either side of the spheroid (right)
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Fig. 12 Errors for the Stokes single and double layers on the unit sphere, at grid points within distance h on
either side of the sphere (left). Errors for the Stokes single and double layers on an ellipsoid, at grid points
within distance h on either side of the ellipsoid (right)

where ŷ = y − y0, r = |ŷ|. We choose the outside velocity and stress to be zero. We
compute the two integrals in the same manner as above. We present results for three
surfaces: the unit sphere, Fig. 12, left; an ellipsoid with semi-axes 1, .8, .6, Fig. 12,
right; and the molecular surface (76), Fig. 13. For the first two surfaces, the errors are
at all grid points within h, but for the molecular surface, the points are in the first
octant only. For the sphere or ellipsoid, the maximum velocity magnitude is ≈ 1 and
the L2 norms are ≈ .35 and .37, respectively. For the molecular surface, they are ≈ .9
and ≈ .4.

Fig. 13 Errors for the Stokes
single and double layers on the
four-atom molecular surface, at
grid points in the first octant
within distance h on either side
of the molecule
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6 Proof that the three extrapolation equations can be solved

We prove that the system of three equations (1) or (8) can always be solved provided

0 < ρ1 < ρ2 < ρ3 (83)

To do this, we show that the 3 × 3 determinant D whose i th row is

[1 ρi I0(x/ρi ) ρ3
i I2(x/ρi )] (84)

is positive, where x = b/h. For x = 0, the case of evaluation on the surface, we see
directly that

D = (ρ3 − ρ2)(ρ2 − ρ1)(ρ3 − ρ1)(ρ1 + ρ2 + ρ3)/(3π) (85)

In general, we can assume x ≥ 0 since I0 and I2 are even in x . First, we note from (6)
and (7) that

I2(x) = −2

3
x2 I0(x) + 1

3
√

π
e−x2 (86)

Inserting this expression in the last entry of the i th row, we obtain

− 2

3
ρi x

2 I0(x/ρi ) + 1

3
√

π
ρ3
i e

−x2/ρ2
i (87)

The third column is now a sumwhere the first term is a multiple of the second column.
This first part contributes zero, and the determinant becomes

D = 1

3
√

π

∣∣∣∣∣∣∣
1 ρ1 I0(x/ρ1) ρ3

1e
−x2/ρ2

1

1 ρ2 I0(x/ρ2) ρ3
2e

−x2/ρ2
2

1 ρ3 I0(x/ρ3) ρ3
3e

−x2/ρ2
3

∣∣∣∣∣∣∣
(88)

Next, we subtract row 1 from rows 2 and 3, resulting in the 2 × 2 determinant

3
√

πD =
∣∣∣∣∣
ρ2 I0(x/ρ2) − ρ1 I0(x/ρ1) ρ3

2e
−x2/ρ2

2 − ρ3
1e

−x2/ρ2
1

ρ3 I0(x/ρ3) − ρ1 I0(x/ρ1) ρ3
3e

−x2/ρ2
3 − ρ3

1e
−x2/ρ2

1

∣∣∣∣∣ (89)

We can assume that ρ1 = 1, since we could replace arbitrary x with x/ρ1. The new
determinant has the form

A(x, ρ2)B(x, ρ3)−A(x, ρ3)B(x, ρ2)= B(x, ρ2)B(x, ρ3)

(
A(x, ρ2)

B(x, ρ2)
− A(x, ρ3)

B(x, ρ3)

)

(90)
where

A(x, r) = r I0(x/r) − I0(x) , B(x, r) = r3e−x2/r2 − e−x2 (91)

123

61 Page 24 of 27



Extrapolated regularization of nearly singular integrals on surfaces

Clearly, B(x, r) > 0 for r > 1. For r = 1, A ≡ 0 and B ≡ 0 and as r → 1 from
above, A(x, r)/B(x, r) → A′(x, 1)/B ′(x, 1) = 1/

(√
π(2x2 + 3)

)
, as seen from

(93) below. Hereafter, ′ means ∂/∂r . To show D > 0, it suffices, according to (90), to
show that A(x, r)/B(x, r) decreases as r > 1 increases. To verify this, we will show
that (A/B)′ < 0 or equivalently

F(x, r) ≡ ex
2/r2 (

A(x, r)B ′(x, r) − A′(x, r)B(x, r)
)

> 0 , r > 1 (92)

At r = 1, F ≡ 0 since A = B = 0. We find after some cancellation that

ex
2/r2 A′ = 1/

√
π , ex

2/r2B ′ = 2x2 + 3r2 , F ′ = 6r A (93)

Then, A > 0 for r > 1, since A′ > 0 and A(x, 1) = 0. Finally, F ′ = 6r A > 0, and
since F(x, 1) = 0, we conclude that F(x, r) > 0 for r > 1, as claimed in (92).

7 Conclusions and future work

We have developed a simple, self-contained method for computing surface integrals,
such as single or double layer integrals for harmonic functions or for Stokes flow,when
evaluated at points close to the surface, so that these integrals are nearly singular. The
integral kernel is replaced by a regularized form. Themodified integral expressions are
given in Sect. 2. Asymptotic analysis in Sect. 3 provides a formula for the leading error
due to this regularization, uniform for target points near the surface. This formula can
be used with extrapolation to obtain high-order regularization. The high order allows
the modified integrands to be smooth enough so that a conventional quadrature can be
used (see Sect. 4). Numerical tests in Sect. 5 verify the accuracy by evaluating known
solutions at points near the surface.

The tests in this work used direct summation so that errors are measured unam-
biguously. To reduce the high computational cost for large systems, fast summation
methods such as treecodes or fast multipole methods can be used. In the present work,
the integrals are computed for several values of the regularization parameter δ to obtain
the extrapolated value. Since the contribution from δ decays rapidly away from the
near singularity, the evaluation of the integrals for additional δ values might need to
be done only in a certain neighborhood of the target point. This approach will be
investigated in future work.

Surface integrals considered here are nearly singular when values are needed at
grid points near the surface, which was the focus of our tests. The near singularity
also occurs when multiple surfaces are close to each other. One such example was
presented in our earlierworkwith Stokes surface integrals [30],where correctionswere
added to improve the accuracy. The correction formulas are found using asymptotic
analysis somewhat similar to the analysis presented here, and they have complicated
expressions. Furthermore, the corrections improve the accuracy only to O(h3) in the
nearly singular case. The extrapolation method presented here is more accurate and
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much easier to use. We therefore expect the current method to work better in multi-
surface cases.

This method could be used to simulate moving interfaces in Stokes flow. A possible
approach is to represent the surface by a level set function. To move the surface, the
current velocity can be computed at grid points nearby, then the level set function is
updated at these grid points, and finally, the new surface is recovered. The method
developed in this work is well suited to find the velocity at the grid points, and its
simplicity should be an advantage.
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