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Abstract
Consider the scattering of a time-harmonic acoustic incident wave by a bounded, pen-
etrable and isotropic elastic solid, which is immersed in a homogeneous compressible
air/fluid. By the Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary
condition is introduced and the model is formulated as a boundary value problem
of acoustic-elastic interaction. Based on a duality argument technique, an a posteriori
error estimate is derived for the finite elementmethodwith the truncatedDtN boundary
operator. The a posteriori error estimate consists of the finite element approximation
error and the truncation error of the DtN boundary operator, where the latter decays
exponentially with respect to the truncation parameter. An adaptive finite element
algorithm is proposed for solving the acoustic-elastic interaction problem, where the
truncation parameter is determined through the truncation error and the mesh ele-
ments for local refinements are chosen through the finite element discretization error.
Numerical experiments are presented to demonstrate the effectiveness of the proposed
method.
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1 Introduction

Direct and inverse scattering play important roles in science and engineering field
[6, 9, 34, 54]. In the present paper, we consider the scattering of the time-harmonic
acoustic wave by a bounded, penetrable and isotropic elastic solid, where the elastic
obstacle is immersed in a homogeneous and compressible air/fluid. Due to the interac-
tion between the air/fluid and the solid, an elastic wave is excited inside the solid and
the acoustic incident wave is scattered in the air/fluid. Such a scattering phenomenon
leads to an acoustic-elastic interaction problem. The acoustic-elastic interaction prob-
lems have received great attention due to their significant applications in geophysics
and seismology [32, 33]. These problems have been examined mathematically by
using either variational method [4, 27] or boundary integral equation method [35, 46,
51]. Many computational approaches have also been developed to numerically solve
these problems, such as boundary element method [25, 48] and coupling of finite and
boundary element methods [24].

Since the acoustic-elastic interaction problem is imposed in an open domain, the
unbounded physical domain needs to be truncated into a bounded computational
domain to apply the numerical methods, such as the finite difference method, the finite
element method and so on. Besides, an appropriate boundary condition is required on
the boundary of the truncated domain to avoid artificial wave reflection. Such a bound-
ary condition is called the transparent boundary condition (TBC) or non-reflecting
boundary condition, which is an important and active subject in the research area of
wave propagation [13, 22, 26, 28–30]. Since a perfectly matched layer (PML) tech-
nique was proposed by Berenger to solve the time-dependent Maxwell equations [14],
the research on the PML has undergone a great development due to its effectiveness
and simplicity. Various constructions of PML have been proposed for various scatter-
ing problems about the acoustic, elastic and electromagnetic wave propagation [10,
15, 17, 21, 31, 38–40]. The basic idea of the PML technique is to surround the domain
of interest by a layer of finite thickness fictitious medium that attenuates the waves
coming from inside of the computational domain. When the waves reach the outer
boundary of the PML region, their values are so small that the homogeneous Dirichlet
boundary conditions can be imposed.

The a posteriori error estimates are computable quantities measuring the errors
between discrete problems and original problems, which are also essential to design
the adaptive finite element algorithms. Based on the a posteriori error estimates, the
adaptive finite element methods have the ability of error control and asymptotically
optimal approximation property [3]. Because of these advantages, the adaptive finite
element methods have become a class of effective numerical methods for solving
differential equations, especially for those whose solutions have singularity or mul-
tiscale phenomena. Combined with the PML technique, an efficient adaptive finite
element method was developed in [19] for solving the two-dimensional diffraction
grating problems. It was shown that the a posteriori error estimate consists of the finite
element discretization error and the PML truncation error, where the latter decays
exponentially with respect to the PML parameters such as the thickness of the layer
and the medium properties. Due to the superior numerical performance, the adaptive
finite element PMLmethod was quickly extended to solve many other scattering prob-
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lems [7, 17, 18, 20, 39]. Based on the a posteriori error analysis, the adaptive finite
element PML method provides an effective numerical strategy to solve various wave
propagation problems imposed in unbounded domains.

As an alternative to the adaptive finite element PML method, the adaptive finite
element DtN method (DtN-FEM) has also been proposed to solve the obstacle scat-
tering problems [8, 11, 12, 36, 37, 45], the diffraction grating problems [5, 41, 43,
49, 53], and the open cavity scattering problem [52], where the transparent boundary
conditions are used to truncate the unbounded domain. In this new approach, the layer
of artificial medium is no longer needed to enclose the domain of interest, which is dif-
ferent from the PMLmethod. Since the transparent boundary conditions are exact, the
artificial boundary can be chosen to closely surround the domain of interest, which can
significantly reduce the size of the computational domain. These transparent bound-
ary conditions are based on nonlocal DtN operators and are given as infinite Fourier
series. In practical computation, the infinite series needs to be truncated into a sum of
finite number of terms by choosing an appropriate truncation parameter N . For theo-
retical analysis, the a posteriori error analysis technique of the adaptive finite element
PML method cannot be applied directly to the adaptive finite element DtN method.
To overcome such a difficulty, a new duality argument has been developed in [49] to
obtain the a posteriori error estimate of the DtN-FEM. Comparably, the a posteriori
error estimates consist of the finite element discretization error and the DtN truncation
error, where the latter decays exponentially with respect to the truncation parameter
N . The numerical experiments also demonstrate that the adaptive DtN-FEM method
is as effective as the adaptive finite element PML method [37, 49].

In this paper, we present an adaptive DtN-FEM and carry out its mathematical anal-
ysis for the acoustic-elastic interaction problem. The contribution is twofold: (1) give
a complete a posteriori error estimate; (2) develop an effective adaptive finite element
algorithm. This paper extends the work from the acoustic obstacle scattering problem
[37] to the acoustic-elastic interaction problem. It is worthy to mention that the exten-
sion is nontrivial. For such an acoustic-elastic interaction problem, we need to impose
the kinematic and kinetic interface conditions on the fluid-solid interface to ensure
the continuity of the velocity normal component and the traction, respectively. Due to
the coupling of different physical fields and the complex transmission conditions, the
original model problem and the associated variational problem of the acoustic-elastic
interaction are much more complicated than those problems with single wave field.
In the analysis of the a posteriori error, we need to estimate two line integral terms
defined on the fluid-solid interface, which is different from the previous work about
the single medium scattering. We give the corresponding error indicators of acoustic
and elastic waves in different regions, which can reflect the distribution andmagnitude
of the errors of different physical fields in the computation.

The outline of this paper is as follows. In Sect. 2, we introduce the model of the
acoustic-elastic interaction problem and its weak formulation by using the transparent
boundary condition. The finite element discretization with truncated DtN operator is
presented in Sect. 3, while the a posteriori error estimate is derived in Sect. 4 by using
the duality argument method. In Sect. 5, we discuss the numerical implementation of
our adaptive algorithm and present some numerical experiments to demonstrate the
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effectiveness of the proposed method. Eventually, the paper is concluded with some
general remarks and directions for future research in Sect. 6.

For brevity, we use the notation a b to imply that a Cb, where the positive
constant C is independent of the truncation parameter of the DtN operator and the
mesh size of the triangulation.

2 Model problem

Let s
2 be a bounded domain with a Lipschitz boundary , and e

2
s

be the unbounded connected exterior region. The domain s is occupied by a linear
and isotropic elastic solid determined through the Lamé constants and ( 0
and 0) , and its mass density 0. The domain e is filled with a
homogeneous, compressible, and inviscid air/fluid with a constant density f 0.
Let BR x 2 x R and BR x 2 x R be the balls with
radius R and R , respectively, where R R 0. Assume that R is large enough
such that s BR BR . The model geometry of the acoustic-elastic interaction is
shown in Fig. 1. Denote by n n1 n2 the unit normal vector to dircted into e.

Let the elastic solid be impinged by a time-harmonic soundwave pi , which satisfies
the two-dimensional Helmholtz equation

pi 2 pi 0 in e

where c is the wavenumber, 0 is the angular frequency, and c is the speed
of sound in the air/fluid. The total acoustic wave field pt also satisfies the Helmholtz

Fig. 1 A two-dimensional schematic of the problem geometry for the acoustic-elastic interaction
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equation
pt 2 pt 0 in e

The total field pt consists of the incident field pi and the scattered field ps , i.e.,

pt pi ps in e

where ps is required to satisfy the Sommerfeld radiation condition

lim
r

r r p
s i ps 0 r x

When the acoustic wave hits the surface of the penetrable elastic obstacle, it excites
an elastic wave inside the obstacle. The elastic wave satisfies the two-dimensional
Navier equation

u 2u 0 in s

where , and u u1 u2 is the displacement of the elastic
wave. To ensure the continuity of the normal component of the velocity, the kinematic
interface condition is imposed on the fluid-solid interface

n p
t

f
2u n on (1)

Additionally, the following dynamic interface condition is also required to ensure
the continuity of traction

ptn Tu on (2)

where the traction operator T is defined as

Tu 2 nu n u
n2

u2
x

u1
y

n1
u1
y

u2
x

Thus, the acoustic-elastic interaction problem can be formulated as: Given pi , to

find ps C2
e C1

e and u C2
s C1

s
2
such that

ps 2 ps 0 in e

u 2u 0 in s

n p
t

f
2u n on (3)

ptn Tu on

r p
s i ps o r1 2 as r

It follows from [42] that the problem (3) is not always uniquely solvable due to the
occurrence of traction free oscillations for certain geometries and some frequencies
. These special are also named by the Jones frequencies, which are inherent to the

original model. One can obtain the following uniqueness result of the problem (3);
see also [46].
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Lemma 1 If the surface and the material parameters are such that there
are no traction free solutions, the boundary value problem (3) has at most one solution.
Here, the nontrivial u0 is a traction free solution if it satisfies

u0 2u0 0 in s

Tu0 0 on

u0 n 0 on

Since the problem (3) is imposed in an unbounded domain, we introduce the trans-
parent boundary condition to truncate the unbounded domain. For any p L2 BR ,
it admits the Fourier series expansion

p R
n

pn R ein pn R
1

2

2

0
p R e in d

The equivalent L2 BR norm of p is defined as

p L2 BR
2

n

pn R 2
1 2

The trace space Hs BR is defined by

Hs BR p L2 BR p Hs BR

where the Hs BR norm is given as

p Hs BR 2
n

1 n2 s pn R 2
1 2

The dual space of Hs BR is H s BR with respect to the scalar product in
L2 BR defined by

p q BR
BR

pqds

In the exterior domain 2 BR , the solution of theHelmholtz equation can bewritten
as an infinite Fourier series in the polar coordinates, i.e.,

p r
n

H 1
n r

H 1
n R

pn R ein r R (4)

pn R
1

2

2

0
p R e in d
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where H 1
n is the Hankel function of the first kind with order n. Given p

H1 2 BR , introduce the DtN operator T H1 2 BR H 1 2 BR , defined
by

T p R
1

R
n

hn R pn R ein (5)

where

hn z z
H 1
n z

H 1
n z

It follows from (4) and (5) that the transparent boundary condition can be defined as

r p T p on BR

Denote truncated region by a . Assume that a s . By the DtN operator
T , we can reformulate the boundary value problem (3) from the unbounded domain
into the bounded domain as: Given pi , to find ps and u such that

ps 2 ps 0 in a

u 2u 0 in s

n p
t

f
2u n on (6)

ptn Tu on

r p
s T ps on BR

The uniqueness result of the nonlocal boundary value problem (6) is introduced in
Lemma 2.

Lemma 2 (See [50]) If the surface and the material parameter are such
that there are no traction free solutions, the nonlocal boundary value problem (6) has
at most one solution.

To carry out the theoretical analysis, we introduce the space

1 H1
a H1

s
2 U p u p H1

a u H1
s

2

which is endowed with the inner product

U V
s

u v
2

u u v v u v dx

a

p q pq dx

for any U p u and V q v . Here, A B tr AB is the Frobenius inner
product of squarematrices A and B, and u is the displacement gradient tensor, which
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is given by

u
u1
x

u1
y

u2
x

u2
y

Obviously, 1 is a norm on 1 . For convenience, we
introduce the first generalized Betti formula; see also [1].

Lemma 3 Let D 2 be a domain in which the divergence theorem holds. Then, for
any vector fields u C2 D 2 and v C1 D 2, the first generalized Betti formula
holds:

D
u vdx

D
u v dx

D
Tu vds

where

u v 2
u1
x

1

x

u2
y

2

y

u1
y

1

y

u2
x

2

x

u2
y

1

x

u1
x

2

y

u2
x

1

y

u1
y

2

x

u v
2

u u v v

It follows from (6), Green’s formula and Lemma 3 that

0
a

psq 2 psq dx

a

ps q 2 psq dx f
2u nqds

BR

T psqds n p
i qds

and

0
s

u v 2u v dx

s

u v 2u v dx
s

Tu vds

s

u v 2u v dx psn vds pin vds

Let A 1 1 be the sesquilinear form defined by

A U V a1 u v a2 ps q a3 u q a4 ps v b ps q (7)
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where

a1 u v
s

u v 2u v dx

a2 ps q
a

ps q 2 psq dx

a3 u q f
2u nqds

a4 ps v psn vds

b ps q
BR

T psqds

and be the bounded linear functional as

V n p
iq pin vds (8)

Thus, we arrive at an equivalent variational formulation of the acoustic-elastic
interaction problem (6): Given pi , to find U ps u 1 such that

A U V V for all V q v 1 (9)

It follows from [50] that we have the following uniqueness result of the variational
problem (9).

Lemma 4 Let the surface and thematerial parameter be such that there are
no traction free solutions, then the variational equation (9) admits a unique solution.

The general theory in Babuška and Aziz [2] implies that there exists a constant such
that the following inf-sup condition holds

sup
0 V

1

A U V
V 1

U 1 for all U 1 (10)

It follows from (8), (9) and (10) that

U 1 pi
H1

pi
H2

a
(11)

3 Finite element approximation

Denote by h s and h a the regular triangulations of s and a , respectively. Let
h h s h a . To avoid being distracted from themain focus of the a posteriori

error estimate, we assume for simplicity that and BR are polygonals to keep from
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using the isoparametric finite element space and deriving the approximation error of
and BR .
Let Sh H1

a and Sh H1
s

2 be the conforming finite element spaces,
i.e.,

Sh ph C a ph K Pm K for all K h a

Sh uh C s uh K Pm K 2 for all K h s

where m is a positive integer and Pm K denotes the set of all polynomials of degree
no more than m. Let 1

h Sh Sh 1 . The finite element approximation
to the problem (9) reads as follows: Given pi , to find Uh psh uh 1

h such
that

A Uh Vh Vh for all Vh qh vh
1
h (12)

where

A Uh Vh a1 uh vh a2 psh qh a3 uh qh a4 psh vh b psh qh

a1 uh vh
s

uh vh
2uh vh dx

a2 psh qh
a

psh qh
2 pshqh dx

a3 uh qh f
2uh nqhds

a4 psh vh pshn vhds

b psh qh
BR

T pshqhds

Vh n p
iqh pin vhds

In the above equations, the DtN operator T defined in (5) is given by an infinite
series. In fact, it is necessary to truncate the nonlocal operator T by taking finitely
many terms of the expansions so as to attain a feasible algorithm. Given a sufficiently
large N , define the truncated DtN operator TN as

TN p R
1

R
n N

hn R pn R ein (13)

Using the truncated DtN operator, we obtain the truncated finite element approxi-
mation to the problem (9): Given pi , to find UN

h ps N
h uN

h
1
h such that

AN UN
h Vh Vh for all Vh

1
h (14)
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where

AN UN
h Vh a1 uNh vh a2 ps N

h qh a3 uNh qh a4 ps N
h vh bN ps N

h qh

a1 uNh vh
s

uNh vh
2uNh vh dx

a2 ps N
h qh

a
ps N
h qh

2 ps N
h qh dx

a3 uNh qh f
2uNh nqhds

a4 ps N
h vh ps N

h n vhds

bN ps N
h qh

BR
TN ps N

h qhds

For sufficiently large N and sufficiently small h, we present the following result of
uniqueness and existence of solutions to the truncted problem (14); see also [50].

Lemma 5 Let the surface and the material parameter be such that there
are no traction free solutions, then there exists a constant N0 0 such that the truncted
equation (14) admits a unique solution UN

h ps N
h uN

h
1
h for N N0.

We also refer to [50] for error analysis of the problem (14). In this work, we mainly
focus on the a posteriori error estimate and the associated adaptive algorithm.

4 The a posteriori error analysis

For any K h , denote by hK its diameter. Let h denote the set of all edges of K .
For any e h , denote by he its length. For K h a and K h s , denote the
jump residual across the edge of K as Je a and Je,s, respectively.

For any interior edge e which is the common side of K1 K2 h a , define the
jump residual across e as

Je a ps N
h K1 ν1 ps N

h K2 ν2

where ν j is the unit outward normal vector to the boundary of K j j 1 2. For any
boundary edge e BR , define the jump residual

Je a 2 TN ps N
h ps N

h ν

where ν is the unit outward normal to BR . For any boundary edge e , define the
jump residual

Je a 2 n pi ps N
h f

2uN
h n

Je,s 2 pi ps N
h n TuN

h
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For any interior edge e which is the common side of K1 K2 h s , define the jump
residual across e as

Je,s TuN
h K1 TuN

h K2

For K h a and K h s , denote the local error estimators by K a and K s ,
which is defined respectively by

K a hK a p
s N
h L2 K

1

2
e K

he Je a
2
L2 e

1 2

(15)

K s hK suN
h L2 K

1

2
e K

he Je,s 2
L2 e

1 2

(16)

where the residual operator a
2 and s

2.
Denote the error by ζ 1 , where ps ps N

h ζ u uN
h .

Introduce a dual problem to the original scattering problem: Find w
1 such that

A V V for all V q v 1 (17)

where

A V A q v w

and
V q v ζ

It can be verified that is the weak solution to the following boundary value
problem

2 in a

w 2w ζ in s

n w n on

f
2 n Tw on

r T on BR

where the adjoint operator T is defined as

T R
1

R
n

hn R n R ein
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Following the same proof as that for the original scattering problem (9), we may
show that the dual problem (17) has a uniqueweak solution,which satisfies the estimate

1 L2 (18)

The following lemma gives some energy representations of the error and is the
basis for the a posteriori error analysis.

Lemma 6 Let ps u ps N
h uN

h and w be the solutions to the problems
(9), (14) and (17), respectively. We have

2
L2 A T TN BR T TN BR (19)

2
1 Re A T TN BR Re TN BR

2 1 ζ 2
L2

s

2 1 2
L2

a
Re a3 ζ a4 ζ (20)

A V T TN q BR q qh v vh AN ps N
h uNh q qh v vh

T TN ps q BR V 1 Vh
1
h (21)

Proof Taking V in (17) gives (19). It follows from the definition of the sesquilin-
ear form of A in (7) that

A a1 ζ ζ a2 a3 ζ a4 ζ b

which gives

2
H1 A T BR

2 1 ζ 2
L2

s

2 1 2
L2

a
a3 ζ a4 ζ

Taking the real parts on both sides of the above equation yields (20). It remains to
prove (21).

It follows from (9) and (14) that

A V A ps ps N
h u uN

h q qh v vh A ps ps N
h u uN

h qh vh

A ps u q qh v vh A ps N
h uN

h q qh v vh

A ps ps N
h u uN

h qh vh

q qh v vh AN ps N
h uN

h q qh v vh

AN ps N
h uN

h q qh v vh A ps N
h uN

h q qh v vh

A ps u qh vh A ps N
h uN

h qh vh
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Noting that A ps u qh vh qh vh AN ps N
h uN

h qh vh , we have

A V q qh v vh AN ps N
h uN

h q qh v vh

AN ps N
h uN

h q v A ps N
h uN

h q v

q qh v vh AN ps N
h uN

h q qh v vh

T TN ps N
h q BR

q qh v vh AN ps N
h uN

h q qh v vh

T TN q BR T TN ps q BR

which implies (21).

We introduce the following four lemmas, which are used in the derivation of the
a posterior error. For the sake of brevity, we have omitted the proof and provided the
related literature for interested readers.

Lemma 7 (See [37]) For any p H1
a , we have

p H1 2 BR
p H1

a
p H1 2 BR

p H1
a

Lemma 8 (See [37]) Let p u be the solution to (9). We have

pn R
R

R

n

pn R

Lemma 9 (See [37]) Let w be the solution to the dual problem (17). We
have

T TN BR N 2 2
H1

a

Lemma 10 (See [16]) Suppose that D has a Lipschitz boundary, and that p is a real
number satisfying 1 p . Then, there holds

L p D
1 1 p
L p D

1 p
W 1

p D
W 1

p D

In Lemma 9, it is shown that the truncation error of theDtN operator on the scattered
field decay exponentially with respect to the truncation parameter N . Such a result
implies that N can be small in practice. The following Lemma shows the estimate of
(21).
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Lemma 11 For any V 1 , we have

A V T TN q BR

K h a

2
K a

K h s

2
K s

1 2
R

R

N

pi
H2

a
V 1

Proof Let

J1 q qh v vh AN ps N
h uN

h q qh v vh

J2 T TN ps q BR

where qh vh
1
h . It follows from (21) that

A V T TN q BR J1 J2

By the definition of the sesquilinear form (14), we have

J1
K Mh a

K
ps N
h q qh

2 ps N
h q qh dx

e K
e

n p
i

f
2uN

h n q qh ds
e K BR

e
T N ps N

h q qh ds

K Mh s
K

E uN
h v vh

2uN
h v vh dx

e K
e

pi ps N
h n v vh ds

Using the integration by parts, one can get

J1
K Mh a

K
ps N
h

2 ps N
h q qh dx

e K
e

ps N
h ν q qh ds

e K
e

n p
i

f
2uNh n q qh ds

e K BR
e
TN ps N

h q qh ds

K Mh s
K

uNh
2uNh v vh dx

e K
e
TuNh v vh ds

e K
e

pi ps N
h n v vh ds

K Mh a
K
Ra p

s N
h q qh dx

e K

1

2 e
Je a q qh ds

K Mh s
K
RsuNh v vh dx

e K

1

2 e
Je,s v vh ds
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Let qh a
hq and vh

s
hv, where

a
h and s

h are the Scott-Zhang [47]and
Clément [44] interpolation operators, respectively, with the following interpolation
estimates

q a
hq L2 K hK q L2 K q a

hq L2 e h1 2
e q H1 Ke

v s
hv L2 K hK v L2 K v s

hv L2 e h1 2
e v H1 Ke

Here, K and Ke are the union of all the elements in h s h a , which have
nonempty intersection with the element K and the side e, respectively. It follows from
the Cauchy-Schwarz inequality and the above interpolation estimates that

J1
K h a

hK a p
s N
h L2 K

q L2 K
e K

1

2
h1 2
e Je a L2 e q H1 Ke

K h s

hK suNh L2 K
v L2 K

e K

1

2
h1 2
e Je,s L2 e v H1 Ke

K h a

hK a p
s N
h L2 K

e K

1

2
he Je a

2
L2 e

1 2

q H1 a

K h s

hK suNh L2 K
e K

1

2
he Je,s 2

L2 e

1 2

v H1 s

Using (15) and (16), we have

J1
K h a

2
K a

1 2

q H1
a

K h s

2
K s

1 2

v H1
s

K h a

2
K a

K h s

2
K s

1 2

V 1

The remain work is to estimate J2. It follows from the definitions of (5) and (13)
that

J2 T TN ps q BR

2

R
n N

hn R psn R qn R

2

R
n N

hn R psn R qn R

123

67 Page 16 of 29



An adaptive finite element DtN method...

Using Lemma 8, one can obtain

J2
n N

2 hn R
R

R

n

psn R qn R

R

R

N

n N

2 hn R psn R qn R

It is shown in [23] that

hn R 1 n2 1 2 n (22)

which together with Lemma 7 yields

J2
R

R

N

n N

2 1 n2 1 2 psn R 2

1 2

n N

2 1 n2 1 2 qn R 2

1 2

R

R

N

ps H1 2 BR
q H1 2 BR

R

R

N

ps H1
a

q H1
a

Using the stability estimate (11), one can get

J2
R

R

N

U 1 V 1

R

R

N

pi
H2

a
V 1

Combining the above estimates yields

J1 J2
K h a

2
K a

K h s

2
K s

1 2

R

R

N

pi
H2 a

V 1

which completes the proof.

We now give the main result.

Theorem 1 Let U and UN
h be the solutions of (9) and (14), respectively. Then, there

exists a positive integer N0 independent of h such that for any N N0, the following
a posteriori error estimate holds

U UN
h 1

K h a

2
K a

K h s

2
K s

1 2
R

R

N

pi
H2

a
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Proof From (13) and (22), it is easy to verify that

Re TN BR 2
n N

Re hn R n
2 0

It follows from the Cauchy-Schwarz inequality and Lemma 10 that for any 0,
there exists a positive constant C independent of N , such that

a3 ζ a4 ζ ) ζ 2
L2

2
L2

ζ 2
L2

2
L2

a

ζ L2
s

ζ H1
s L2

a H1
a

C 2
L2

2
1

It follows from (20) and Lemma 11 that there exist three positive constants C1, C2
and C3 independent of h and N such that

2
1 C1

K h a

2
K a

K h s

2
K s

1 2

R

R

N

pi
H2 a

1

C2 C 2
L2

C3
2

1

By (19), Lemma 9, Lemma 11 and (18), we have

2
L2

C4

K h a

2
K a

K h s

2
K s

1 2

R

R

N

pi
H2 a

L2

C5N
2 2

1

where C4 0 and C5 0 are independent of h and N . Combining the above two
estimates, we have

2
H1 C1 C4 C2 C

K Mh a

2
K a

K Mh s

2
K s

1 2
R

R

N

pi
H2

a
H1

C C2 C5N
2 C3

2
H1

Choose a sufficiently large integer N0 such that C C2 C5N 2 C3
1 2, which completes the proof by taking N N0.
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5 Implementation and numerical examples

In this section, we discuss the algorithmic implementation of the adaptive DtN-FEM
and present three numerical examples to demonstrate the effectiveness of the proposed
method.

5.1 Adaptive algorithm

Based on the a posteriori error estimate from Theorem 1, we use the PDE toolbox of
MATLAB to implement the adaptive algorithmof the linear finite element formulation.
It is shown in Theorem 1 that the a posteriori error estimator consists of two parts: the
finite element discretization error h and the DtN truncation error N , which depends
on the truncation parameter N , where

h

K h a

2
K a

K h s

2
K s

1 2

(23)

N
R

R

N

pi
H2

a
(24)

In the implementation, we choose R , R and N based on (24) to make sure that the
finite element discretization error is not polluted by the DtN truncation error, or more
specifically, N is required to be very small compared to h , for example, N 10 8.
For simplicity, in the following numerical experiments, R is chosen such that the
elastic solid is exactly contained in the circle BR , and N is taken to be the smallest
positive integer such that N 10 8. The algorithm is shown in Algorithm 1 for
the adaptive DtN-FEM to solve the acoustic-elastic interaction problem (9). In our
numerical experiments, we always choose 0 5.

Algorithm 1 The adaptive DtN-FEM algorithm for the acoustic-elastic interaction
problem.
1: Given the tolerance 0 0 1 ;
2: Fix the computational domain by choosing the radius R;
3: Choose R and N such that N 10 8;
4: Construct an initial triangulation h over and compute error estimators;
5: while h do
6: Refine the mesh h according to the strategy:

if T max
T h

T , then refine the element T h ;

7: Denote the new mesh still by h and solve the discrete problem (14) on the new mesh h ;
8: Compute the corresponding error estimators;
9: end while
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5.2 Numerical examples

We present three numerical examples to demonstrate the effectiveness of the proposed
method. In the first example, the elastic body is a disk, where the corresponding
problem has an analytical solution. In the second and third examples, the elastic bodies
are square and U-shaped objects, respectively.

Example 1 We first introduce a model problem for which analytical solutions are
available for the evaluation of accuracy; see [51]. Consider the scattering of a plane
incident wave pi ei x d with the propagation direction d 1 0 by a disc-shaped
elastic body of radius R0. Denote the shear (or transverse) and the compressional (or
longitudinal) elastic wave numbers by

s

p 2

respectively. Thus, the analytical solutions of (3) can be written as

pi r
n 0

n i
n Jn r cos n

ps r
n 0

AnH
1

n r cos n

u

with

r
n 0

Bn Jn pr cos n

r
n 0

Cn Jn sr sin n

n
1 for n 0

2 for n 0

where An Bn , and Cn are to be determined. It follows from the the transmission
conditions (1) and (2) that

EnXn en
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where Xn An Bn Cn , En Ei j
n , and en e jn i j 1 2 3. Their

elements (identified by the super-script) are

E11
n H 1

n 1 R0
n

R0
H 1
n R0

E12
n

f
2

p
Jn 1 p R0

n

pR0
Jn p R0

E13
n

f
2n

R0
Jn s R0

E21
n 0

E22
n

2 n p

R0
Jn 1 p R0

2 n2 n

R2
0

Jn p R0

E23
n

2 n2 n 2
s R

2
0

R2
0

Jn s R0
2 s

R0
Jn 1 s R0

E31
n H 1

n R0

E32
n

2 n2 n 2
s R

2
0

R2
0

Jn p R0
2 p

R0
Jn 1 p R0

E33
n

2 n s

R0
Jn 1 s R0

2 n2 n

R2
0

Jn s R0

and

e1n n i
n Jn 1 R0

n

R0
Jn R0

e2n 0

e1n n i
n Jn R0

To ensure the accuracy of the analytic solution, we choose the first 21 terms for
computation. We choose the parameters as 1 1 1 1 f

1 R0 1 and R 2. In the implement of our adaptive DtN-FEM algorithm, we take
R 1. It can be observed from Fig. 2 that the choice of the first 21 terms is reliable.

We firstly check the accuracy of the adaptive DtN-FEM. Figure 3 shows the mag-
nitudes of the exact solutions and numerical solutions with 1. One can observe
that the numerical solutions are in a perfect agreement with the exact series solutions.
Figure 4 shows the curves of log h and logeh against log DoFh with 1 2 4,
respectively, where DoFh denotes the number of nodal points of the mesh h . It

proves that the decays of the a priori and a posteriori errors are both DoF 1 2
h .

Example 2 Consider the scattering of the plane wave pi ei x d with the propagation
direction d 1 0 by a square elastic body. Choose the parameters as 1
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Fig. 2 Log-log plot for a priori errors versus the number of items of Fourier series solutions when the mesh
size h 0 0269

Fig. 3 Exact solutions (a,b,c) and numerical solutions (d,e,f) in Example 1
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Fig. 4 Quasi-optimality of the a priori and a posteriori errors

Fig. 5 The magnitudes of the numerical solutions (a,b,c) with 1 in Example 2; the adaptively refined
mesh (d) with 10,569 elements after 10 refinement iterations

Fig. 6 The magnitudes of the numerical solutions (a,b,c) with 2 in Example 2; the adaptively refined
mesh (d) with 14,365 elements after 10 refinement iterations

Fig. 7 The magnitudes of the numerical solutions (a,b,c) with 4 in Example 2; the adaptively refined
mesh (d) with 12,475 elements after 6 refinement iterations
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Fig. 8 Quasi-optimality of the a posteriori error estimates (right) with different in Example 2

Table 1 Comparison of
numerical results using uniform
and adaptive refinements with

1 in Example 2

Uniform mesh Adaptive mesh
DoFh h Time (s) DoFh h Time (s)

153 0.8605 0.0125 153 0.8605 0.0125

575 0.5389 0.0593 324 0.4820 0.1254

2229 0.3270 0.6393 730 0.3249 0.4240

8777 0.1949 6.9050 3123 0.1674 5.0985

34833 0.1165 106.1843 8439 0.1038 26.4549

Fig. 9 The magnitudes of the numerical solutions (a,b,c) with 1 in Example 3; the adaptively refined
mesh (d) with 10,123 elements after 10 refinement iterations
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Fig. 10 The magnitudes of the numerical solutions (a,b,c) with 2 in Example 3; the adaptively refined
mesh (d) with 12,349 elements after 10 refinement iterations

1 1 1 f 1 and R 2. The side length of the square elastic solid is
1. In this example, we take R 0 71 in the implement of our adaptive algorithm.
This example does not have an analytical solution and the solution contains singularity
around the corners of the elastic solid.

Figures 5, 6 and 7 plot the magnitudes of the numerical solutions and the associated
adaptive meshes with 1 2 4, respectively. One can observe that the algorithm
does capture the solution feature and adaptively refine the mesh around the corners of
the elastic solid where the solution displays singularity. A comparison of a posteriori
errors using the uniform and adaptive mesh refinements with 1 is presented in
Table 1. It can be observed that the adaptive mesh refinement requires fewer DoFh
and less cputime than the uniform mesh refinement to reach the close accuracy, which
shows the advantage of using the adaptive mesh refinement. Figure 8 shows the curve
of log h versus log DoFh with different wave number 1 2 4. It proves that the

decay of the a posteriori error estimates is DoF 1 2
h .

Example 3 Consider the scattering of the plane wave pi ei x d with the propagation
direction d 1 0 by aU-shaped elastic body,where the elastic body is contained in
x x1 x2 2 1 x1 x2 1 . We set the parameters 1 1

1 1 and f 1. This example also does not have an analytical solution and the
solution contains singularity around the corners of the elastic solid. In this example,
we take R 1 43.

Figures 9, 10 and 11 show the the magnitudes of the numerical solutions and
the corresponding adaptive meshes with fixed R 2 and different 1 2 4,
respectively.Again, the algorithmshows the capability of capturing the solution feature
and adaptively refines the mesh around the corners of the solid. Table 2 shows the

Fig. 11 The magnitudes of the numerical solutions (a,b,c) with 4 in Example 3; the adaptively refined
mesh (d) with 14,308 elements after 6 refinement iterations
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Table 2 Comparison of
numerical results using uniform
and adaptive refinements with

1 in Example 3

Uniform mesh Adaptive mesh
DoFh h Time (s) DoFh h Time (s)

163 19.6748 0.0139 163 19.6748 0.0139

675 4.3768 0.0688 266 3.3893 0.0971

2389 2.2203 0.7352 536 2.1135 0.2572

9417 1.2334 7.7851 1604 1.2323 1.5228

37393 0.7264 203.9922 5092 0.7263 9.0280

numerical results using adaptive and uniform refinements with R 2 and 1.
Again, it shows the advantage of using adaptive mesh refinements. Figure 12 shows
the curve of log h versus log DoFh with the different truncated parameter N and radius

R. The decay of the a posteriori error estimates is still DoF 1 2
h , which proves that

our adaptive DtN-FEM algorithm is robust with respect to the choice of the truncated
parameter N and radius R.

6 Conclusion

In this paper, we present an adaptive finite element DtNmethod for the acoustic-elastic
interaction problem. A new duality argument is developed to obtain the a posteriori
error estimate. It does not only take into account of the finite element discretization
error but also includes the truncation error of the DtN operator. We show that the
truncation error decays exponentially with respect to the truncation parameter. The a
posteriori error estimate for the solution of the discrete problem serves as a basis for
the adaptive finite element approximation. Numerical results show that the proposed
method is accurate and effective. This work provides a viable alternative to the adap-
tive finite element PML method for solving the acoustic-elastic interaction problem.
It also enriches the range of choices available for solving wave propagation prob-

Fig. 12 Quasi-optimality of the a posteriori error estimates with different truncated parameter N (left) and
radius R (right) in Example 3
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lems imposed in unbounded domains. Future work includes extending our analysis to
the adaptive DtN-FEM for solving the three-dimensional acoustic-elastic interaction
problem, where a more complicated TBC needs to be considered. Besides, the imple-
mentation of adaptive algorithm for three-dimensional problems is significantly more
complicated than for two-dimensional problems.
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