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Abstract
We present three novel algorithms based on the forward-backward splitting technique
for the solution of monotone inclusion problems in real Hilbert spaces. The proposed
algorithms work adaptively in the absence of the Lipschitz constant of the single-
valued operator involved thanks to the fact that there is a non-monotonic step size
criterion used. The weak and strong convergence and the R-linear convergence of the
developed algorithms are investigated under some appropriate assumptions. Finally,
our algorithms are put into practice to address the restoration problem in the signal
and image fields, and they are compared to some pertinent algorithms in the literature.

Keywords Monotone inclusion Inclusion problem Forward-backward method
Projection and contraction method Convergence rate
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1 Introduction

In this paper, we aim to present some accelerated algorithms based on the forward-
backward technique [1, 2] to solve an inclusion problem in the framework of real
Hilbert spaces. The inclusion problem refers to the problem of determining whether
onemathematical object, such as a set or a solution to an equation, is entirely contained
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within another object. Recall that the inclusion problem of the sum of two operators
is described as follows:

find x such that 0 A B x (1.1)

where denotes a real Hilbert space with inner product and induced norm ,
A is a single-valued operator, and B 2 is a multi-valued operator.
The solution set of problem (1.1) is denoted by throughout this paper.

The inclusion problem is a fundamental problem in mathematics, with applications
in various areas including set theory, topology, geometry, and numerical analysis.
Inclusion problems are closely connected to optimization problems, such as split fea-
sibility problems, variational inequalities, and convex minimization problems (see,
e.g., [3, Section 1]). In conclusion, the inclusion problem is a fundamental concept in
mathematics with numerous applications in a variety of fields and continues to be an
active area of research and development. Many numerical methods have been devel-
oped to find solutions of problem (1.1) over the last decade. Our interest in this paper
is in the forward-backward splitting algorithm, which was proposed
by Lions and Mercier [1] and Passty [2]. The method is updated by the following
iterative process:

sn 1 I n B
1 I n A sn s0 n 0 (1.2)

where 1 stands for the inverse of , and I represents the identity
operator, n 0 for all n 0. It can be seen that each step of iteration (1.2) involves
only A as a forward step and B as a backward step. Forward-backward splitting algo-
rithms offer a range of solutions to large-scale optimization projects where structures
that favor decomposition can be exploited. Recently, the forward-backward algorithm
and its variants have been introduced and further developed for applications in sparse
signal recovery [4], image processing [5], and machine learning [6].

In order to weaken the restriction on the weak convergence of iterative scheme (1.2)
(i.e., requiring the inverse of A to be strongly monotone), Tseng [7] proposed a new
iterative procedure known as the forward-backward-forward splitting
algorithm (also known as the Tseng splitting algorithm) for solving
problem (1.1). This solution introduces a new forward step based on iterative (1.2),
described as follows:

tn I n B 1 I n A sn
sn 1 tn n Atn Aun s0 n 0

(1.3)

Both (1.2) and (1.3) have received a great deal of attention from the optimization
community since theywere proposed.Many variants have been introduced by scholars
for solving optimization tasks such as inclusion problems and variational inequalities
(see, e.g., [3, 5, 8–14] and the references therein). We next present some of these
results, which inspire us to develop new efficient algorithms. In 2018, Gibali and
Thong [3] introduced a Mann-type Tseng algorithm to solve problem (1.1), where A
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is Lipschitz continuous and monotone and B is maximally monotone. Their iterative
scheme is demonstrated as Algorithm 1.

Algorithm 1.1
Initialization: Give 1 0 and 0 1 . Let n 0 1 and n a b 0 1 n for some
a 0 b 0. Let limn n 0 and n 1 n . Let s0 and set n 0.
Iterative Steps: Given the iterates sn sn 1, perform the following steps.
Step 1. Compute tn I n B 1 I n A sn . If tn sn then stop and tn . Otherwise, go to
Step 2.
Step 2. Compute sn 1 1 n n sn n tn n Atn Aun . Update n 1 by

n 1
min

un tn
Aun Atn

n if Aun Atn 0

n otherwise.

Set n n 1 and go to Step 1.

The advantage of Algorithm 1 is that it can work adaptively without the prior
information on the Lipschitz constant of the operator A, and strong convergence is
established in real Hilbert spaces by means of the Mann-type method. Subsequently,
Gibali et al. [10] combined the inertial method, the projection and contraction method
[15], and the forward-backward algorithm and proposed a new iterative procedure (see
Algorithm2below) to solvemonotone inclusion problem (1.1). Theweak convergence
of Algorithm 2 is confirmed in the case that A satisfies L-Lipschitz continuity and
monotonicity and B meets maximal monotonicity.

Algorithm 1.2

Initialization: Give 1 2 , n 0 1 , and n a b 0 1
L . Select starting points

s0 s1 and set n 1.
Iterative Steps: Given the iterates sn sn 1, perform the following steps.
Step 1. Compute un sn n sn sn 1 .

Step 2. Compute tn I n B 1 I n A un . If tn un then stop and tn . Otherwise, go to
Step 3.
Step 3. Compute sn 1 un ngn , where

gn un tn n Aun Atn n
un tn gn

gn 2

Set n n 1 and go to Step 1.

It is worth noting that Algorithm 2 also adds an extra forward step making the
convergence condition weaker than that of (1.2). The technique incorporating this
extra forward step is known as the projection and contraction method,
introduced by He [15], and this method is now widely used by researchers, also in this
paper.On the other hand,Algorithm1uses an adaptive non-increasing step size scheme
whileAlgorithm2 employs a fixed step size approach limited by theLipschitz constant,
and the use of these step sizes will affect the convergence speed of the algorithms.
Recently, Thong et al. [11] proposed amodified Tseng algorithm incorporating inertial
extrapolation steps and relaxation effects for finding the solutions to problem (1.1).
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In their algorithm, a non-monotonic step size scheme is used in order to improve the
computational efficiency of Algorithms 1 and 2. More precisely, the iterative solution
method of Thong et al. [11] is presented in Algorithm 1.3.

Algorithm 1.3
Initialization: Give 1 0, 0 1 , 0 1 , and 0 1

2 . Let n be a nonnegative real
numbers sequence such that n 1 n . Select starting points s0 s1 and set n 1.
Iterative Steps: Given the iterates sn sn 1, perform the following steps.
Step 1. Compute un sn sn sn 1 .

Step 2. Compute tn I n B 1 I n A un . If tn un then stop and tn . Otherwise, go to
Step 3.
Step 3. Compute sn 1 1 sn tn n Atn Aun . Update n 1 by

n 1
min

un tn
Aun Atn

n n if Aun Atn 0

n n otherwise.

Set n n 1 and go to Step 1.

The weak convergence and R-linear convergence of Algorithm 3 are established
under the condition that the parameters and operators satisfy some suitable conditions.

Inspired and motivated by the results above, we introduce in this paper three new
iterative algorithms based on the projection and contraction technique to solve mono-
tone inclusion problem (1.1). Our contributions are listed below.

(i) The inertial method and the relaxation method are utilized in our algorithms
to accelerate the convergence speed of the algorithms. In addition, a different
relaxation technique is used than in Algorithm 3. Indeed, we compute sn 1 in
Algorithm 4 using the information of un instead of sn . This modification can also
improve the computational speed of the algorithms (see the numerical experi-
ments in Sect. 5).

(ii) To weaken the convergence conditions of our algorithms, we use the projection
and contraction technique instead of theTseng algorithm.Numerical experiments
in this paper demonstrate that our algorithms converge faster than Tseng-type
algorithms [3, 11].

(iii) A more general non-monotonic step size criterion (cf. (3.3)) is adopted and
designed to overcome the difficulty when the Lipschitz constant of the operator
is unknown, i.e., our algorithms can work adaptively.

(iv) Theweak and strong convergence of the proposed algorithms in the framework of
real Hilbert spaces is proved under somemild conditions.Moreover, we establish
the R-linear convergence of Algorithms 4 and 5 in the case that operator B
satisfies strong monotonicity.

(v) The proposed algorithms are applied to signal processing problems and image
denoising problems and demonstrate good computational performance.

The remainder of the paper is organized as follows. In the next section, some
basic definitions and lemmas are provided for the purpose of the subsequent con-
vergence analysis. In Sect. 3, we present three forward-backward algorithms with
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non-monotonic adaptive step sizes and inertial effects to solve the monotone inclusion
problem (1.1) and analyze their convergence. In Sect. 4, the R-linear convergence of
the suggested Algorithms 4 and 5 is established under the condition that the multi-
valued operator B satisfies strong monotonicity. In Sect. 5, we apply the proposed
algorithms to the signal recovery problem and image processing problem and com-
pare themwith some related ones. Finally, we conclude the paper with a brief summary
in Sect. 6.

2 Preliminaries

In this section, we state some basic concepts and lemmas for subsequent use. Let be
a nonempty, closed, and convex subset of real Hilbert space . The strong and weak
convergence of sn n 1 converges to x (as n ) is denoted by sn x and sn x ,
respectively. The following two relations will be used several times in the proofs in
Sect. 3.

(i) x 1 y 2 x 2 1 y 2 1 x y 2 x y
0 1 .

(ii) x y 2 x 2 2 y x y x y .

Definition 2.1 Let A denote a single-valued operator and B 2 a
multi-valued operator.

(i) The operator A is said to be L-Lipschitz continuous with L 0 if

Ax Ay L x y x y

(ii) The operator A is said to be monotone if

Ax Ay x y 0 x y

(iii) The operator B is said to be monotone if

u x y 0 x y u Bx By

(iv) The operator B is said to be -strongly monotone if there exists a number
0 such that

u x y x y 2 x y u Bx By

(v) The operator B is said to be B H 2H is called maximal monotone, if
it is monotone and if for any x u , u x y 0 for every
y Graph B (the graph of operator B ) implies that u Bx .

Definition 2.2 For all x , there exists a unique nearest point in , denoted by
P x , such that

x P x x y y

where P is the metric projection of onto .
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Remark 2.1 Let be a nonempty, convex, and closed subset of . The projection
P x of a point x onto is characterized by (see, e.g., [16, p. 535, Eq. (29.1)])

x P x y P x 0 x y (2.1)

Let J B denote the resolvent operator of the multi-valued operator

B 2 , defined as

J B x I B 1 x x 0

where I stands for the identity operator on .

Let B 2 be maximal monotone and let 0. Then, Dom J B

and J B is firmly nonexpansive (see [16, Corollary 23.11]).

Lemma 2.1 ([13]) Let A be an operator on and B 2 be
a maximal monotone operator. Define T I B 1 I A 0. Then,
Fix T A B 1 0 , where Fix T represents the fixed point set of T .

Lemma 2.2 ([17]) Let A be Lipschitz continuous and monotone and B
2 be maximal monotone. Then, A B is maximal monotone.

The following Lemmas 2.3–2.5 are used to prove the weak convergence of our
Algorithms 4 and 5.

Lemma 2.3 ([18]) Let n , n , and n be nonnegative sequences such that

n 1 n n n n 1 n n 1

If there exists a real number with0 n 1 for all n and n 1 n ,
then the following hold:

(i) n 1 n n 1 , where t max t 0 ;
(ii) there exists 0 such that limn n .

Lemma 2.4 ([19]) Let sn be a sequence in and be a nonempty set of . If the
following two conditions hold: (i) for every x , limn sn x exists; (ii) every
sequential weak cluster point of sn is in . Then, sn converges weakly to a point
in .

Lemma 2.5 Let sn be a nonnegative sequence and p be a fixed point. Let 0 1 ,
0 , and 0 . Denote by

n sn p 2 sn 1 p 2 sn sn 1
2

If the following inequality holds

n 1 n sn sn 1
2 n 1

then n 1 sn sn 1
2 .
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Proof Based on the assumptions, it is easy to see that n 1 n 0 n 1. Hence,
the sequence n is non-increasing. From the definition of n (noting that 0),
one has

n sn p 2 sn 1 p 2

This yields that

sn p 2 sn 1 p 2
n

sn 1 p 2
1

n s0 p 2
1

n 1 1

n s0 p 2 1

1

(2.2)

By the definition of n 1, we find that

n 1 sn 1 p 2 sn p 2 sn 1 sn
2

sn p 2
(2.3)

Combining (2.2) and (2.3), we observe that

n 1 sn p 2 n 1 s0 p 2 1

1

According to assumption n 1 n sn sn 1
2 and noting that 0 1 ,

one has

k

n 1

sn sn 1
2

1 k 1
k 1 s0 p 2 1

1

s0 p 2 1

1

This implies that

n 1

sn sn 1
2

This completes the proof of the lemma.

The Lemma 2.6 listed below is essential for the strong convergence analysis of the
proposed Algorithm 6.

Lemma 2.6 ([20]) Let sn be a nonnegative sequence, n be a sequence of real
numbers, and n 0 1 be a sequence such that n 1 n . Assume that

sn 1 1 n sn n n n 1
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If lim sup
k

nk 0 for every subsequence snk of sn satisfying lim inf
k

snk 1 snk

0, then limn sn 0.

3 Weak and strong convergence

In this section, we provide three modified forward-backward algorithms for solving
monotone inclusion problem (1.1). These iterative schemes are inspired by the pro-
jection and contraction algorithm, the inertial method, the relaxation method, and the
forward-backward algorithm. The first two algorithms yield weak convergence results
in real Hilbert spaces, while the third achieves strong convergence results. Now, we
assume that Algorithm 4 satisfies the following Conditions (C1)–(C3).

(C1) The solution set of inclusion problem (1.1) is nonempty, i.e., A
B 1 0 .

(C2) A is L-Lipschitz continuous and monotone, and B 2 is
maximally monotone.

(C3) Let 1 0, 0 1 , 0 1 , 0 1 , and 0 2 . Choose n

1 such that n 1 n 1 , and n 0 such that n 1 n

. Let the parameters and satisfy the following condition:

1
1 1 0 (3.1)

Remark 3.1 By solving equation (3.1), we can obtain an upper bound for the parameter
as

1 4 1 1

2 1

That is, the range of is 0 when the parameter 0 1 is fixed. The
variation between and is demonstrated in Fig. 1.

Now, we are in a position to introduce the suggested Algorithm 4.
The following lemmas are crucial for the convergence analysis of Algorithm 4.

Lemma 3.1 ([22]) Suppose that Condition (C3) holds. Then, the sequence n gen-
erated by (3.3) is well defined and limn n exists.

Lemma 3.2 If tn un or gn 0 in Algorithm 4, then tn .

Proof From the definition of gn and (3.3), one has

gn un tn n Aun Atn

1 n

n 1
un tn

(3.4)

It can be easily proved that gn 1 n

n 1
un tn . Hence,

1 n

n 1
un tn gn 1 n

n 1
un tn (3.5)
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Fig. 1 The relationship between parameters and

From (3.5), one can check that un tn if and only if gn 0. Therefore, if un tn
or gn 0, then tn according to Step 2 and Lemma 2.1.

Algorithm 3.1
Initialization: Give 1 0, 0 1 , 0 1 , 0 1 , and 0 2 . Choose and satisfy
(3.1). Let n and n meet Condition (C3). Select initial points s0 s1 and set n 1.
Iterative Steps: Given the iterates sn sn 1, perform the following steps.
Step 1. Compute un sn sn sn 1
Step 2. Compute

tn I n B
1 I n A un

If tn un then stop and tn . Otherwise, go to Step 3.
Step 3. Compute qn un ngn where

gn un tn n Aun Atn n
un tn gn

gn 2 (3.2)

Step 4. Compute
sn 1 1 sn qn

Update

n 1
min

un tn
Aun Atn

n n n if Aun Atn 0

n n n otherwise.
(3.3)

Set n n 1 and go to Step 1.
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Lemma 3.3 ([13]) Let un and tn be two sequences generated by Algorithm 4. If the
subsequence unk of un converges weakly to some p and limn un tn
0, then p .

Lemma 3.4 Let un , tn , and qn be three sequences formed by Algorithm 4. Then,

qn p 2 un p 2 2
qn un

2 p (3.6)

and

un tn
2

1 n

n 1

2

1 n

n 1

2 un qn
2 (3.7)

Proof It follows from the definition of qn that

qn p 2 un ngn p 2

un p 2 2 n un p gn
2 2

n gn
2

(3.8)

By the definition of gn , one obtains

un p gn un tn gn tn p gn
un tn gn tn p un tn n Aun Atn

(3.9)

According to the definition of tn , one has I n A un I n B tn . Since B is
maximal monotone, there exists n Btn satisfying I n A un tn n n . This
implies that

n
1

n un tn n Aun (3.10)

We have that A B is maximal monotone by means of Lemma 2.2. From Atn
n A B tn and 0 A B p, we obtain

Atn n tn p 0 (3.11)

Combining (3.10) and (3.11), we deduce that

un tn n Aun Atn tn p 0 (3.12)

By using (3.8), (3.9), (3.12), and the definitions of n and qn , we have

qn p 2 un p 2 2 n un tn gn
2 2

n gn
2

un p 2 2 2
n gn

2 2 2
n gn

2

un p 2 2
ngn

2

un p 2 2
qn un

2
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It follows from (3.3) that

Aun Atn
n 1

un tn n 1

which combining with the definition of n yields that

n gn
2 gn un tn un tn

2
n Aun Atn un tn

1 n

n 1
un tn

2 (3.13)

Combining (3.5) and (3.13), one sees that

2
n gn

2 1 n

n 1

2 un tn 4

gn 2

1 n

n 1

2

1 n

n 1

2 un tn
2

This together with the definition of qn yields that

qn un
2 2 2

n gn
2 2

1 n

n 1

2

1 n

n 1

2 un tn
2

Thus, we obtain

un tn
2

1 n

n 1

2

1 n

n 1

2 un qn
2

The proof is completed.

Theorem 3.1 Let sn be any sequence generated by Algorithm 4 and Conditions
(C1)–(C3) hold. Then, sn converges weakly to an p .

Proof It follows from Lemma 3.4 that

qn p 2 un p 2 n 1 (3.14)

Using (3.14) and the definition of sn 1, we have

sn 1 p 2 1 sn p qn p 2

1 sn p 2 qn p 2 1 qn sn
2

1 sn p 2 un p 2 1 qn sn
2

(3.15)

By the definition of sn 1, one sees that qn sn
1 sn 1 sn . This together

with (3.15) implies that

sn 1 p 2 1 sn p 2 un p 2 1
1 sn 1 sn

2 (3.16)
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Using the definition of un , one has

un p 2 sn sn sn 1 p 2

1 sn p sn 1 p 2

1 sn p 2 sn 1 p 2 1 sn sn 1
2

(3.17)
Substituting (3.17) into (3.16), we deduce that

sn 1 p 2 1 sn p 2 1 sn p 2 sn 1 p 2

1 sn sn 1
2 1

1 sn 1 sn
2

1 sn p 2 sn 1 p 2 1 sn sn 1
2

1
1 sn 1 sn

2

(3.18)
This follows that

sn 1 p 2 sn p 2 1
1 sn 1 sn

2

sn p 2 sn 1 p 2 1
1 sn sn 1

2

1
1 1 sn sn 1

2

(3.19)

Denote by

n sn p 2 sn 1 p 2 1
1 sn sn 1

2

It follows from (3.19) that

n 1 n
1

1 1 sn sn 1
2 (3.20)

By using (3.1), one sees that 0 1 , 1 1 0, and 1 1 1
0. Combining (3.20) and Lemma 2.5, we have

n 1

sn sn 1
2 (3.21)

From (3.18), we have

sn 1 p 2 sn p 2 sn p 2 sn 1 p 2

1 sn sn 1
2

(3.22)
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Combining (3.21), (3.22), and Lemma 2.3, we arrive at

lim
n

sn p 2 l (3.23)

This implies that the sequence sn is bounded and thus the sequences un and tn
are also bounded. Moreover, by (3.21), one can see that

lim
n

sn 1 sn 0

Hence, we have limn qn sn limn
1 sn 1 sn 0, and

lim
n

sn un lim
n

sn sn 1 0 (3.24)

So limn qn un 0. This together with (3.7) yields that

lim
n

un tn 0 (3.25)

Since sn is bounded, there exists a subsequence snk of sn and z such
that snk z. It follows from (3.24) that unk z. Combining (3.25) and Lemma 3.3, we
obtain z . This together with (3.23) and Lemma 2.4 infers that the sequence sn
converges weakly to p .

Notice that step 4 in the suggested Algorithm 4 does not use the information of un
when computing sn 1. Next, we present an improved version of Algorithm 4 in which
we use un instead of sn in the relaxation step of the new algorithm. Indeed, our second
iterative scheme is shown in Algorithm 5 below.

Algorithm 3.2
Initialization: Given 1 0, 0 1 , 0 1 , 0 1 , and 0 2 . Choose , , and such
that (3.26) holds. Let n and n meet Condition (C3). Select initial points s0 s1 and set n 1.
Iterative Steps: Given the iterates sn sn 1, perform the following steps.
Step 1. Compute

un sn sn sn 1

Step 2. Compute
tn I n B

1 I n A un

If tn un then stop and tn . Otherwise, go to Step 3.
Step 3. Compute

qn un ngn

where gn and n are defined in (3.2).
Step 4. Compute

sn 1 1 un qn

Update n 1 by (3.3).
Set n n 1 and go to Step 1.

Before starting the convergence analysis of Algorithm 5, we need the following
condition to hold.
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(C4) Let 1 0, 0 1 , 0 1 , 0 1 , and 0 2 . Choose n

1 such that n 1 n 1 , and n 0 such that n 1 n

. Choose the parameters , , and such that

2
1 2 1 0 (3.26)

Remark 3.2 By solving (3.26), we can easily derive the lower bound of as

1

2 1 2

That is, when 0 2 and 0 1 are fixed, we can choose 1 . To better
describe the relationship between , , and , we draw the variation of when and
are fixed in Fig. 2.

We are now in a position to prove the weak convergence of Algorithm 5.

Theorem 3.2 Assume that sn is generated by Algorithm 5 and that Conditions (C1),
(C2), and (C4) hold. Then, sn converges weakly to an element p in the .

Proof From the definition of sn 1, one has

sn 1 p 2 1 un p qn p 2

1 un p 2 qn p 2
(3.27)

Combining (3.6) and (3.27), we have

sn 1 p 2 un p 2 2
qn un

2 p (3.28)

Fig. 2 The relationship between parameters , , and
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By sn 1 1 un qn (noting that 0 1 ), one sees that

qn un
1

sn 1 un sn 1 un (3.29)

Substituting (3.29) into (3.28), we obtain

sn 1 p 2 un p 2 2
sn 1 un

2 (3.30)

It follows from the definition of un that

sn 1 un
2 sn 1 sn sn sn 1

2

sn 1 sn
2 2 sn sn 1

2 2 sn 1 sn sn sn 1

sn 1 sn
2 2 sn sn 1

2 2 sn 1 sn sn sn 1

1 sn 1 sn
2 2 sn sn 1

2

(3.31)
Substituting (3.17) and (3.31) into (3.30), we obtain

sn 1 p 2 1 sn p 2 sn 1 p 2 1 sn sn 1
2

2
1 sn 1 sn

2 2 sn sn 1
2

(3.32)
This implies that

sn 1 p 2 sn p 2 1
2 2 sn 1 sn

2

sn p 2 sn 1 p 2 1
2 2 sn sn 1

2

2
1 1

2 2 sn 1 sn
2

(3.33)
Let

n sn p 2 sn 1 p 2 1
2 2 sn sn 1

2

and
2

1 1
2 2

From (3.33), we reduce to

n 1 n sn 1 sn
2 (3.34)
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Since 0 1 , 0 1 , and 0 1 , we find that

1
2 2 0

Note that 0 by means of equation (3.26). Combining (3.34) and Lemma 2.5, we
arrive at n 1 sn 1 sn 2 . Thus, we have limn sn 1 sn 0. From
the definition of un , one has

sn 1 un
2 sn 1 sn

2 2 sn sn 1
2 2 sn 1 sn sn sn 1

Therefore, we obtain
lim
n

sn 1 un 0 (3.35)

From (3.32), one can check that

sn 1 p 2 sn p 2 sn p 2 sn 1 p 2

1
2 2 sn sn 1

2
(3.36)

Using n 1 sn sn 1
2 , (3.36), and Lemma 2.3, we have limn

sn p 2 l. Combining (3.7), (3.29), and (3.35), we infer that limn tn un
0. By the definition of un , one sees that limn un sn limn sn sn 1
0. The sequence sn converges weakly to an element of by using a similar statement
of Theorem 3.1.

To conclude this section, we introduce a strongly convergent relaxed forward-
backward algorithm for solving monotone inclusion problems in real Hilbert spaces.
More precisely, the iterative scheme is shown in Algorithm 6.

Theorem 3.3 Assume that Conditions (C1), (C2), and (C5) hold and sn is generated
byAlgorithm 6. Then, sn converges strongly to an element p , where p P 0 .

C5 Let n and n 0 1 be two positive sequences satisfy the following
condition:

lim
n

n 0
n 1

n and lim
n

n

n
0 (3.38)

Proof Combining (3.6) and (3.27), we have

sn 1 p 2 un p 2 2
qn un

2 p (3.39)
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Algorithm 3.3
Initialization: Given 1 0, 0, 0 1 , 0 1 , and 0 2 . Let n and n 0 1
satisfy (3.38). Let n and n meet Condition (C3). Select initial points s0 s1 and set n 1.
Iterative Steps: Given the iterates sn sn 1, perform the following steps.
Step 1. Compute

un 1 n sn n sn sn 1

where

n
min n

sn sn 1
if sn sn 1

otherwise

(3.37)

Step 2. Compute
tn I n B

1 I n A un

If tn un then stop and tn . Otherwise, go to Step 3.
Step 3. Compute

qn un ngn

where gn and n are defined in (3.2).
Step 4. Compute

sn 1 1 un qn

Update n 1 by (3.3).
Set n n 1 and go to Step 1.

By the definition of un , one has

un p 1 n sn n sn sn 1 p

1 n sn p 1 n n sn sn 1 n p

1 n sn p 1 n n sn sn 1 n p

1 n sn p n 1 n
n

n
sn sn 1 p

(3.40)

Using (3.37) and (3.38), one sees that

lim
n

n

n
sn sn 1 lim

n

n

n
0

This follows that limn 1 n
n
n

sn sn 1 p p . Hence, there

exists a positive constant M such that

1 n
n

n
sn sn 1 p M n 1 (3.41)

It implies form (3.40) and (3.41) that

un p 1 n sn p nM (3.42)
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Thanks to 0 1 and 0 2 , by using (3.39), one obtains

sn 1 p un p n 1 (3.43)

Combining (3.42) and (3.43), we deduce that

sn 1 p 1 n sn p nM

max sn p M max s1 p M

This yields that the sequence sn is bounded. So un , qn , and tn are also bounded.
From (3.42) (noting that n 0 1 ), one infers that

un p 2 1 n
2 sn p 2 2 n 1 n M sn p 2

n M
2

sn p 2
nM1

(3.44)

where M1 max 2 1 n M sn p nM2 n . Substituting (3.44)
into (3.39), we conclude that

2
qn un

2 sn p 2 sn 1 p 2
nM1 (3.45)

Using (3.43) and the definition of un , we have

sn 1 p 2 un p 2

1 n sn p 1 n n sn sn 1 n p
2

1 n sn p 1 n n sn sn 1
2 2 n p un p

1 n
2 sn p 2 2 1 n n sn p sn sn 1

2
n sn sn 1

2

2 n p un sn 1 2 n p sn 1 p

This yields that

sn 1 p 2

1 n sn p 2
n 2 1 n sn p

n

n
sn sn 1

n sn sn 1
n

n
sn sn 1 2 p un sn 1 2 p p sn 1

(3.46)
Next, we show that sn p 2 converges to zero. To prove this, we need to rely

on Lemma 2.6.We now assume that snk p is a subsequence of sn p such
that

lim inf
k

snk 1 p snk p 0
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Then,

lim inf
k

snk 1 p
2

snk p
2

lim inf
k

snk 1 p snk p snk 1 p snk p 0

This together with (3.38) and (3.45) yields

lim sup
k

2
qnk unk

2 lim sup
k

snk p
2

snk 1 p
2

nk M1

lim sup
k

snk p
2

snk 1 p
2 lim sup

k
nk M1

lim inf
k

snk 1 p
2

snk p
2

0

which means that
lim
k

qnk unk 0

This combining with (3.7) implies that

lim
k

tnk unk 0 (3.47)

By the definition of sn 1, one sees that

lim
k

snk 1 unk lim
k

qnk unk 0 (3.48)

Using the definition of un , one has

snk unk 1 nk nk snk snk 1 nk snk

nk 1 nk
nk

nk
snk snk 1 snk

Thus, we have
lim
k

snk unk 0 (3.49)

Combining (3.48) and (3.49), we deduce that

lim
k

snk 1 snk 0 (3.50)

Since snk is bounded, there exists a subsequence snk j of snk such that snk j
converges weakly to z as j . By means of (3.49), one obtains unk z . This
combining with (3.47) and Lemma 3.3 implies that z . By using (2.1) and the
definition of p P 0 , we find that

lim sup
k

p p snk lim
j

p p snk j p p z 0 (3.51)
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It follows from (3.50) and (3.51) that

lim sup
k

p p snk 1 0

This together with (3.46), (3.48), limn
n
n

sn sn 1 0, and Lemma 2.6 yields
that limn sn p 0. That is sn p as n .

4 R-linear convergence

In this section, our goal is to establish the R-linear convergence of Algorithm 4 and
Algorithm 5 under the condition that the multi-valued operator B 2 satisfies
strong monotonicity. First, we recall the definition of R-linear convergence.

Definition 4.1 ([21]) A sequence sn in is said toconverge R-linearly to p
with rate 0 1 if there exists a constant c 0 such that sn p c n n .

We now replace Condition (C2) in Sect. 3 with the following Condition (C2) .

(C2) The operator A is L-Lipschitz continuous andmonotone and operator
B 2 is -strongly monotone.

The following Theorem 4.1 demonstrates that Algorithm 4 can obtain R-linear
convergence provided that the parameters satisfy certain conditions.

Theorem 4.1 Let sn be any sequence generated by Algorithm 4 and Conditions (C1),
(C2) , and (C3) hold. Let 0 1

2 . Choose , , and such that

min
2 2

2

1 2

1 2

1

1 2 L 1
(4.1)

Then, sn converges to an element p with an R-linear rate.

Proof It follows from tn I n B 1 I n A un that I n A un
I n B tn . This implies that

1
n un tn n Aun Btn (4.2)

Since 0 A B p, one has Ap Bp. This combining with (4.2) and the fact
that B is strongly monotone with constant produces

un tn n Aun n Ap tn p n tn p 2

From the monotonicity of A, we have

un tn n Aun Atn tn p n tn p 2
n Atn Ap tn p

n tn p 2

(4.3)

123

59 Page 20 of 35



On relaxed inertial projection and contraction algorithms...

Using the definition of n , (3.4), and (3.13), one obtains

un tn gn
gn 2

un tn
gn

1

1 n

n 1

and

un tn gn
gn 2

1 n

n 1
un tn 2

gn 2

1 n

n 1

1 n

n 1

2 (4.4)

Combining (3.7), (3.8), (3.9), (4.3), and (4.4), we find that

qn p 2 un p 2 2
qn un

2 2 n n tn p 2

un p 2 2 1 n

n 1

2

1 n

n 1

2 un tn
2

2 n

1 n

n 1

1 n

n 1

2 tn p 2

Let min
2 2

2

1 2

1 2

1

1 2 L
. Note that

1

2
. From Lemma 3.1,

we have

lim
n

2 1 n

n 1

2

1 n

n 1

2 2 2 1 2

1 2 2

and

lim
n

n

1 n

n 1

1 n

n 1

2

1

1 2 min 1
L

1

1 2 L

Therefore, there exists N such that

2 1 n

n 1

2

1 n

n 1

2 2 n

1 n

n 1

1 n

n 1

2 2 n N

123

Page 21 of 35 59



B. Tan and X. Qin

Thus,
qn p 2 un p 2 2 un tn

2 2 tn p 2

un p 2 un p 2

1 un p 2 n N

This together with the definition of sn 1 yields that

sn 1 p 2 1 sn p qn p 2

1 sn p 2 qn p 2 1 sn qn
2

1 sn p 2 qn p 2 1
sn 1 sn

2

1 sn p 2 1 un p 2 1
sn 1 sn

2 n N

By the definition of un , we also have

un p 2 1 sn p sn 1 p 2

1 sn p 2 sn 1 p 2 1 sn sn 1
2

Therefore, we obtain

sn 1 p 2 1 sn p 2 1
sn 1 sn

2

1 1 sn p 2 sn 1 p 2 1 sn sn 1
2

1 1 1 1

1

sn p 2 1 sn 1 p 2

1 1

2

sn sn 1
2 1

sn 1 sn
2

1 sn p 2
2 sn sn 1

2 1
sn 1 sn

2 n N

Thanks to 0 1
2 , it implies 1 1. Thus, we have

sn 1 p 2 sn 1 sn
2 sn 1 p 2 1

sn 1 sn
2

1 sn p 2
2 sn sn 1

2 n N

This follows that

sn 1 p 2 sn 1 sn
2

1 sn p 2 2

1
sn sn 1

2 n N
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By (4.1), one sees that 1 1 0 1 , which further yields that 1 0 1
and 2

1
0 1 . Hence, we have

sn 1 p 2 sn 1 sn
2

1 sn p 2 sn sn 1
2 n N

Let an sn p 2 sn sn 1
2. It follows that

sn 1 p 2 an 1 1an
n N 1
1 aN

1 N
1 aN

n
1

This implies that the sequence sn converges R-linearly to p.

Before starting to prove the R-linear convergence of Algorithm 5, we need the
following lemma.

Lemma 4.1 Let sn be formed by Algorithm 5 and let p . Assume that 1 2
and 2 1 1 . Then, for all 0 1 , there exists N and ,

such that 0 1 and

sn 1 p 2 un p 2 sn 1 un
2 n N (4.5)

Proof Using (3.27) and the similar proof to that in Theorem 4.1, one has

sn 1 p 2 un p 2 2
qn un

2 2 n n tn p 2 p

(4.6)
From the definition of n , sn 1, and qn , one sees that

sn 1 un qn un n gn un tn (4.7)

Combining (3.7), (4.6), and (4.7), one finds that

sn 1 p 2

un p 2 2 1 n

n 1

2

1 n

n 1

2

n

un tn
2 2 n n tn p 2

un p 2
n tn un

2
n 1 tn un

2

2 n n tn p 2

un p 2
n tn un

2 n 1
2 2 sn 1 un

2

2 n n tn p 2 where 0 1
(4.8)
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By using (4.4) and (4.8), one obtains

sn 1 p 2 un p 2
n tn un

2 n 1
2 2 sn 1 un

2

2 n

1 n

n 1

1 n

n 1

2 tn p 2
(4.9)

Let min
2

1

1 2 , where limn n and

limn n . Note that 0 1 and 0 1 . Then, we observe that

lim
n

n 2

lim
n

n 1
2 2

1
2 2

lim
n

n

1 n

n 1

1 n

n 1

2

1

1 2

Thus, there exists N such that

n 2 n

1 n

n 1

1 n

n 1

2 n N

Let 1 and
1
2 2 . Since 0 1 , 1 2 , and 2 1 1 ,

one has 0 1 and 0 1 . In view of (4.9), one concludes that

sn 1 p 2 un p 2 2 tn un
2 sn 1 un

2 2 tn p 2

un p 2 sn 1 un
2 2 tn un

2 tn p 2

un p 2 sn 1 un
2 un p 2

un p 2 sn 1 un
2 n N

This completes the proof.

Using the technique in [23], we obtain the following result.

Theorem 4.2 Let sn be any sequence generated by Algorithm 5 and Conditions (C1),
(C2) , and (C4) hold. Let 0 1 , 0 1 , 1 2 , and 2 1 1 such
that

0
2

(4.10)
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where and are defined in Lemma 4.1. Then, sn converges to an element p
with an R-linear rate.

Proof By using the definition of un , we have

un p 2 1 sn p sn 1 p 2

1 sn p 2 sn 1 p 2 1 sn sn 1
2

and

sn 1 un
2 sn 1 sn sn sn 1

2

sn 1 sn
2 2 sn sn 1

2 2 sn 1 sn sn sn 1

sn 1 sn
2 2 sn sn 1

2 sn 1 sn
2 sn sn 1

2

1 sn 1 sn
2 1 sn sn 1

2

Combining these inequalities with (4.5), we obtain

sn 1 p 2 1 sn p 2 sn 1 p 2 1 sn sn 1
2

1 sn 1 sn
2 1 sn sn 1

2 n N

This is equivalent to

sn 1 p 2 sn p 2 1 sn 1 sn
2

sn p 2 sn 1 p 2 1 sn sn 1
2

1 1 1 sn sn 1
2 n N

Set
n sn p 2 sn 1 p 2 1 sn sn 1

2

Since 0 1 , one finds that

n 1 sn 1 p 2 sn p 2 1 sn 1 sn
2

n 1 1 1 sn sn 1
2 n N

From 0 1 and (4.10), we have

1 1 1 1 2 0

This implies that
n 1 n n N

Now, we show that n 0 for all n N . From (4.10), we have

2 2
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which further yields that
1

2
0

Using the definition of n , we have

n 1 1 sn p 2 1 sn p 2 sn sn 1
2 sn 1 p 2

1 1 sn p 2 1

2
sn 1 p 2

1 1 sn p 2 0

Hence,
n 1 n

n N 1
N

That is

sn p 2 N

1 1 N
n

This implies that sn converges R-linearly to p, as desired.

Remark 4.1 We have the following comments regarding the R-linear convergence
analysis of the proposed algorithms.

(i) We do not include the R-linear convergence results of Algorithm 6 in this sec-
tion. The key reason behind this limitation lies in the specific characteristics and
adjustments made in Algorithm 6 to ensure strong convergence. While these
adjustments may enhance the algorithm’s ability to converge to the solution,
they may also introduce complexities or trade-offs that hinder the attainment of
R-linear convergence.

(ii) Our R-linear convergence results were obtained under specific step size choices,
which may appear more restrictive. We acknowledge the importance of step size
selection in iterative optimization algorithms and assure that our choices were
made after thorough analysis to ensure convergence and effectiveness.

(iii) We made stricter assumptions on the parameters to obtain R-linear convergence
results for Algorithms 4 and 5. The stronger correlation between parameters
emerged from rigorous convergence analysis and imposed tighter constraints to
provide robust theoretical guarantees. This was done to strike a balance between
computational efficiency and convergence performance.

5 Numerical experiments

In this section, we provide the application of the proposed algorithms to signal and
image recovery problems to demonstrate their computational efficiency and advan-
tages. All programs were performed in MATLAB 2018a on a personal computer with
RAM 8.00 GB.

Example 5.1 (Signal Recovery Problem) The signal recovery problem involves
reconstructing an original signal from its degraded or partial form that occurs fre-
quently in image processing, audio processing, and communication systems. Let
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x N with k (k N , i.e., x is sparse) non-zero elements be the original signal,
C M N be a bounded linear operator, and be the noise data during transmission.
The noise signal y M is assumed to be obtained by the following variation:

y Cx (5.1)

Figure3 visually shows the matrix structure expression of the model (5.1). The
signal recovery process can be represented as a mapping from the degraded signal to
the recovered signal, aiming to reduce the discrepancy between the two signals. This
can be formulated mathematically as an optimization problem, where the objective is
to minimize the difference between the degraded and recovered signals and the opti-
mization variables are the parameters of the recovery algorithm. That is, we can solve
the model (5.1) by formulating the following unconstrained optimization problem:

min
x N

1

2
y Cx 2 subject to x 1 t (5.2)

where t is a positive constant. Note that the problem (5.2) described above can be
regarded as a special case of the monotone inclusion problem (1.1) (see [13, Section
4.3] for more details).

We use the proposed Algorithms 4, 5 and 6 as well as the ones in the literature [3,
10, 11] to solve the problem (5.2). The parameters of the proposed algorithms and the
compared ones are set as follows.

– Set 1 1, 0 5, 1 5, n 1 1
n 1 2 , and n

1
n 1 for the proposed

Algorithms 4, 5 and 6. Choose 0 2 and 0 7 for our Algorithm 6. Select
0 15 and 0 9 for our Algorithm 5. Take 0 5, 0 9, n

1
100 n 1 ,

and n
1

n 1 2 for our Algorithm 6.

– Pick 1 1, 0 5, n
1

n 1 , and n 0 5 1 n for GT Algorithm 1 [3]. Set

n 0 2, 1 5, and n
0 3
L (where L C 2) for GTV Algorithm 1 [10]. Take

1 1, 0 5, 0 2, 0 4, and n
1

n 1 for TCPDL Algorithm 1 [11].

Fig. 3 Geometric interpretation of model (5.1)
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In our numerical experiments, the clean signal x N contains k (k N ) ran-
domly created 1 spikes. The matrix C M N is produced using a standard normal
distribution with zero mean and unit variance, and the rows are then orthonormal-
ized. Let be the white Gaussian noise with variance 10 4. Then, the observation
y is generated by (5.1). With the starting signals s0 s1 0, the recovery pro-
cedure begins and terminates after 100 iterations. We use the mean squared error
MSE 1 N x x 2 (x is an estimated signal of x) to measure the restoration
accuracy of all algorithms. In our first test, we set M 512, N 1024, and k 100.
The original signal and the noisy signal are shown in Fig. 4. The recovery results using
the proposed algorithms are presented in Fig. 5. The variation ofMSEwith the number
of iterations for all algorithms is illustrated in Fig. 6.

Finally, we did all algorithms for solving the signal recovery problem (5.1) in diff-
erent dimensions and with different sparsity. Their results are shown in Table 1 and
Fig. 7. Notice that we do not present the test results for GT Algorithm 1 [3] in Table 1
because it performs poorly (see the variation ofMSE for GTAlgorithm 1 [3] in Fig. 7).

Remark 5.1 From Figs. 4, 5, 6, and 7 and Table 1, it can be seen that the proposed
Algorithms 4, 5 and 6 can solve the signal processing problem as shown in model
(5.1) very well. In addition, the presented algorithms converge faster than the methods
in the literature [3, 10, 11] and their performance is robust (i.e., it is independent of
the size of the dimensionality and sparsity). In conclusion, the algorithms presented in
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Fig. 4 Original signal and noise signal generated by model (5.1)
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Fig. 5 The original signal and the signal recovered by our algorithms

this paper are efficient and useful. On the other hand, although the computational time
of the proposed algorithms is not always the minimum (as indicated in Table 1), the
difference in time between our proposed algorithms and the comparison algorithms
is negligible in most cases. This illustrates that our proposed algorithms can achieve
higher precision within the same number of iterations, despite the minimal differ-
ence in computational time compared to the comparison algorithms. Essentially, our
algorithms demonstrate comparable complexity to the comparison algorithms while
offering improved accuracy.

Example 5.2 (Image Restoration Problem) The image restoration problem can be
represented as the following model:

Cx b v (5.3)

0 10 20 30 40 50 60 70 80 90 100
Number of iterations

10-4

10-3

10-2

10-1

M
SE

Our Alg. 3.1
Our Alg. 3.2
Our Alg. 3.3
GT Alg. 1
GTV Alg. 1
TCPDL Alg. 1

Fig. 6 The variation of MSE with the number of iterations for all algorithms at M 512 N 1024 k
100
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Fig. 7 The variation of MSE with the number of iterations for all algorithms in two cases

where C is a convolution matrix of size m k, x is the original image data in k , b is
the degraded image data in m , and v is the noise vector in m . The problem (5.3) can
be represented as a constrained optimization model, and the objective is to minimize
f x Cx b 2 subject to x . This model can be transformed into the split
feasibility problem by defining as a box in k and as either b if v 0 (no noise
added), or as a set y m y b v for small enough 0.

In this experiment, we selected three grayscale images with a size of 515 512 as
the test subjects. In this case, the range of is from 0 to 1. The test images undergo
two stages of degradation: first, a 9 9 Gaussian blur with a standard deviation of 2
is applied, followed by addition of a zero-mean Gaussian white noise with a standard
deviation of 10 4. Next, we use the same algorithms and keep the same parameters
as in Example 5.1 to solve problem (5.3). The signal-to-noise ratio (SNR) in decibels
and the structural similarity index (SSIM) are used to measure the quality of the
reconstructed image compared to the original image. The SNR is defined as

SNR 20 log10
x

x x

where x is an original image and x is a restored image. The calculation of SSIM
directly calls the function “ssimval=ssim(x,x)” in MATLAB. A higher SNR

Original image Degraded image Restored image

Fig. 8 The original Cameraman image, the degraded image, and the image recovered by our Algorithm 4

123

Page 31 of 35 59



B. Tan and X. Qin

Original image Degraded image Restored image

Fig. 9 The original Lena image, the degraded image, and the image recovered by our Algorithm 5

Original image Degraded image Restored image

Fig. 10 The original Mandril image, the degraded image, and the image recovered by our Algorithm 6
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Fig. 11 The variation of SNR for all algorithms with three images
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Fig. 12 The variation of SSIM for all algorithms with three images
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Table 2 Numerical results for all algorithms under different images

Algorithms Cameraman Lena Mandril
SNR SSIM SNR SSIM SNR SSIM

Our Alg. 3.1 28.9115 0.9518 27.2279 0.8989 21.9129 0.8364

Our Alg. 3.2 29.1107 0.9535 27.3386 0.9005 22.0787 0.8431

Our Alg. 3.3 28.9218 0.9519 27.2621 0.8994 21.8878 0.8353

GT Alg. 1 [3] 25.4751 0.9263 25.0525 0.8753 19.9984 0.7446

GTV Alg. 1 [10] 27.2681 0.9357 26.3045 0.8842 20.7651 0.7804

TCPDL Alg. [11] 27.6678 0.9399 26.5029 0.8875 21.0635 0.7966

value indicates better reconstruction quality, while a SSIM value closer to 1 means
that the restored image is more similar to the original image. The initial points for all
algorithms are s0 s1 b, and the iteration stops after 200 iterations. Figures8, 9, and
10 show the original three test images, the degraded images, and the images restored
by our algorithms, respectively. The variation of SNR and SSIM with the number of
iterations for all algorithms under the three test images is plotted in Figs. 11 and 12,
respectively. Finally, the SNR and SSIM values of all algorithms after executing 200
iterations for the three test images are presented in Table 2.

Remark 5.2 It can be intuitively seen from Figs. 8, 9, and 10 that the three algorithms
proposed in this paper can effectively solve the image denoising problem. On the other
hand, our three algorithms have higher SNR and SSIM values than the comparison
algorithms in references [3, 10, 11] (refer to Figs. 11 and 12 and Table 2), whichmeans
that our algorithms have higher computational efficiency in processing such problems
when appropriate parameters are selected.

6 Conclusions

In this paper, we propose three new algorithms for solving the monotone inclusion
problems. These approaches are obtained based on the inertial method, the forward-
backward algorithm, the projection and contraction algorithm, and the relaxation
method. In the framework of real Hilbert spaces, the weak convergence of the pro-
posed Algorithms 4 and 5 and the strong convergence of the suggested Algorithm 6
are established under the condition that the parameters and operators satisfy some
suitable conditions. Furthermore, the R-linear convergence rates of the proposed
Algorithms 4 and 5 are also proved in the case where the multi-valued operator meets
strong monotonicity. Finally, we apply the proposed algorithms to signal process-
ing problems and image recovery problems. The results of this paper improved and
extended many relevant algorithms in this field.
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