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Abstract
Weconsider the problem of constructing a vector-valued linearMarkov process in con-
tinuous time, such that its first coordinate is in good agreement with given samples of
the scalar autocorrelation function of an otherwise unknown stationary Gaussian pro-
cess. This problem has intimate connections to the computation of a passive reduced
model of a deterministic time-invariant linear system from given output data in the
time domain. We construct the stochastic model in two steps. First, we employ the
AAA algorithm to determine a rational function which interpolates the z-transform
of the discrete data on the unit circle and use this function to assign the poles of the
transfer function of the reduced model. Second, we choose the associated residues as
the minimizers of a linear inequality constrained least squares problem which ensures
the positivity of the transfer function’s real part for large frequencies. We apply this
method to compute extended Markov models for stochastic processes obtained from
generalized Langevin dynamics in statistical physics. Numerical examples demon-
strate that the algorithm succeeds in determining passive reduced models and that the
associated Markov processes provide an excellent match of the given data.

Keywords Stochastic realization · Markov model · Model reduction · Passive model
positive real function · AAA algorithm
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1 Introduction

The stochastic realization problem concerns the question whether a given stationary
Gaussian process in continuous time has a realization in terms of a Markov process of

Dedicated to the memory of Claus Schneider

Communicated by: Helge Holden

B Martin Hanke
hanke@math.uni-mainz.de

1 Institut für Mathematik, Johannes Gutenberg-Universität, 55099 Mainz, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-024-10150-7&domain=pdf
http://orcid.org/0000-0001-8620-452X


M. Hanke

higher dimension (cf. Lindquist and Picci [21]). In this paper, we refer to stochastic
modeling, when an approximating Markov process is determined numerically from
given time samples of the autocorrelation function of the stationary process in ques-
tion, independent ofwhether or not a stochastic realization exists. This is also known as
the inverse problem of stationary covariance generation (cf. Kalman [20] and Ander-
son [2]).

Our interest in stochasticmodeling is driven by applications from statistical physics.
Consider, e.g., the classical example of the equilibrium dynamics of a particle in a heat
bath (Zwanzig [29]). Assume that the velocity of the particle is being measured, and
an effective stochastic model for its dynamics is sought. The full Langevin dynamics
of the particle together with the constituents of the heat bath provides a stochastic
realization of this process, but this is not tractable analytically and much too large
and costly to simulate, anyway. Rather, one is interested in a small extended Markov
system with a few handful of auxiliary variables, the simulation of which reproduces
the main features of the particle’s dynamics.

The stochastic realization problemhas strong connections to the theory of determin-
istic time-invariant linear dynamical systems, and the stochastic modeling problem is
related to the corresponding model reduction aspect—without any given information
about the underlying system, be it finite dimensional or not. The major difference
to the common deterministic problem setting is the quality and amount of data: for
applications like the one described above, the number of time samples may be less
than a hundred, and they are noisy.

As will be explained in Sect. 2, the stochastic problem comes with the additional
catch that it is indispensable that the reduced models be passive in the systems theory
terminology. Passivity is a constraint that is easiest to formulate in the frequency
domain; it is difficult to achieve this property in the time domain when the use of the
Laplace transform is prohibited by the quality of the data. Of course, the need for
passive models is also relevant in many deterministic applications, but so far, there is
no available off-the-shelf algorithm which applies to our setting; see Sect. 2 for a brief
review of the pertinent literature.

In this paper, we restrict ourselves to scalar problems and present a method which
accounts for passivity, but nevertheless operates in the time domain; this way, we are
able to control the quality of our approximation of the original process. The method
is fairly simple to implement and requires only a small number of linear systems
to be solved. It employs in a first step the AAA algorithm for rational interpolation
by Nakatsukasa et al. [22] to determine the eigenvalues of a reduced system matrix,
followed by a constrained linear approximation to settle the remaining free parameters
in a second step. The (in)equality constraints make sure that passivity is achieved for
high frequencies, which is the troublesome frequency regime in our applications. As
we demonstrate by numerical exampleswith data from a statistical physics application,
our algorithm is feasible for the treatment of significantly larger data sets than could
be handled previously.

The outline of the paper is as follows. In Sect. 2, we specify the stochastic model-
ing problem that we consider and draw the connections to linear systems theory. In
Sect. 3, we recall the link between the exponential approximation problem and ratio-
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Stochastic modeling of stationary...

nal approximation methods, before we review in Sect. 4 the AAA algorithm and its
potential use for model reduction purposes. On these grounds, we develop in Sect. 5
the algorithm that we propose to compute approximations of the given autocorrelation
function, which have all the requirements that are needed to construct a corresponding
Markov model. Numerical examples are presented in Sect. 6. To be self contained, we
show in Sects. 7 and 8 how to set up the extended Markov system: Although the mate-
rial in these two sections is mostly general folklore, some of the details are difficult
to extract from the literature and the presentation is adapted to our needs. Finally, in
an appendix, we discuss the consistency of the constrained approximation problem
which is considered in Sect. 5.

2 The stochastic modeling problem

For t ∈ R and s ≥ max{0,−t}, let

y(t) = E
[
Y (s + t)Y (s)

]
, t ∈ R ,

be the autocorrelation function of a real-valued centered stationary Gaussian process
Y = Y (t), t ≥ 0, with positive variance, and assume that we are given 2n (possibly
noisy) samples

yν ≈ y(ντ) , ν = 0, 1, . . . , 2n − 1 ,

of y on some equidistant time grid with spacing τ > 0. The stochastic model of Y
that we want to construct is formulated in terms of an Ornstein-Uhlenbeck equation

d

[
X
Z

]
= A

[
X
Z

]
dt + g dW (2.1)

with a stablematrix A ∈ R
m×m and a scalar BrownianmotionW acting in the direction

g ∈ R
m . The goal is to choose A and g in such a way that the scalar component X of

the stationary solution of (2.1) approximates the original process Y in the sense that

E
[
X(s + ντ)X(s)

] ≈ yν , ν = 0, . . . , 2n − 1 . (2.2)

Them−1 components of Z ∈ R
m−1 are auxiliary (dummy) variables for this purpose

and of little interest in practice.
We remark that there is no loss of generality in restricting the attention to a scalar

Brownian motion in (2.1). This is a consequence of the Positive Real Lemma (see
Sect. 8), as the process Y is itself a scalar one.

We refer to Pavliotis [23] for a general reference concerning the stochastic differen-
tial equation (2.1), its stationary solution, and stationary processes in general. We will
make use of the fact that the covariance matrix � ∈ R

m×m of the stationary solution
of (2.1) is determined by the Lyapunov equation

A� + �AT = −ggT , (2.3)
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and that the autocorrelation function of X is given by

E
[
X(s + t)X(s)

] = eT1 e
|t |A�e1 , t ∈ R , (2.4)

cf. [23, Section 3.7]. Here and throughout, we denote by e1 the first Cartesian basis
vector in the (real or complex) Euclidean space, the dimension of which is determined
by the context. Likewise, we write I for the associated identity matrix.

In view of our goal (2.2), we exclude systems (2.1), for which the variance of the
component X of its stationary solution happens to be zero. We may further assume
without loss of generality that the corresponding components X and Z are uncorrelated,
for this can always be achieved by a coordinate transformation, i.e., by representing
the auxiliary variables in a different basis. Then,

� = σ 2
[
1 0
0 �0

]
(2.5)

for some σ 2 > 0 and some Hermitian positive semidefinite matrix �0 ∈
R

(m−1)×(m−1), and (2.4) simplifies to

E
[
X(s + t)X(s)

] = σ 2 eT1 e
|t |Ae1 =: ϕ(t) , t ∈ R . (2.6)

The autocorrelation function of any second-order stationary stochastic process is a
function of positive type (cf., e.g., [23, Section 1.2]), and hence, the Fourier transform

ϕ̂(ξ) =
∫ ∞

−∞
e−iξ tϕ(t) dt = 2σ 2 Re eT1 (iξ I − A)−1e1 (2.7)

of ϕ is nonnegative for every ξ ∈ R by Bochner’s theorem. Vice versa, if ϕ̂ is a
nonnegative function, then there is a vector g ∈ R

m , such that the stochastic differential
equation (2.1) has a stationary solution which satisfies (2.6); see Sect. 8 for details.

If the approximation X ≈ Y were exact, i.e., if ϕ = y, then y is seen to be the
output of the deterministic dynamical system

ẋ(t) = Ax + σ 2e1u ,

y(t) = eT1 x ,
(2.8)

with homogeneous initial data, where u = u(t) is a delta distribution at t = 0. In
control theory, u represents the control (or the input) of the system. Associated with
(2.8) is the so-called transfer function

κ(ζ ) = σ 2 eT1 (ζ I − A)−1e1 , ζ ∈ C . (2.9)

In view of (2.7) and Bochner’s theorem, we observe that κ has a nonnegative real
part on the imaginary axis, and since A is stable, κ is analytic in C

+, the open right
complex half plane. Such functions are termed positive real, and when κ is positive
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real, the system (2.8) is called passive. We can thus rephrase our stochastic modeling
problem as the task to construct a passive deterministic system such that the output is
in good agreement with the given samples yν .

In contrast to control theory, however, we have no control on u; the input is nec-
essarily given by a delta distribution. Since this particular input is not localized in
frequency space, it prohibits, for example, the use of an algorithm suggested by Cher-
ifi et al. [10] for finding a passive model that is compatible with given time-domain
data. Other works which deal with the construction of passive reduced models, e.g.,
[9, 16, 25], have proposed fixes of preliminary non-passive models by modifying
their coefficients to shift negative values of ϕ̂ which are present in finite frequency
bands; these algorithms, however, are neither guaranteed to succeed nor can they treat
negative values of ϕ̂ in unbounded frequency bands. Unfortunately, the latter is the
main cause of difficulties in our application, as we will work out in more detail in
Sect. 5. This also rules out a method by Fazzi et al. [13], which requires such a fix in
a preliminary step.

Other papers, e.g., [11, 14, 15], have suggested nonlinear optimization to modify
the system coefficients in order to find nearby systems which satisfy the so-called
Lur’e equations (see (8.3) below) that can be used to characterize passivity. Those
methods have subtle convergence issues and are quite complicated to formulate, and
their impact on the data fit in the time domain is not transparent. The algorithm which
we propose here is much easier to implement, and a mean square approximation (2.2)
of the given data is its primary objective.

3 The exponential approximation problem

We will stipulate the assumption that the matrix A in (2.1) is diagonalizable (we will
briefly elaborate on this assumption in Remark 4.1). Then, the right-hand side of (2.6)
is a so-called Prony series, i.e., a real-valued linear combination1

ϕ(t) =
m∑

j=1

α j e
tλ j for t ≥ 0 (3.1)

of complex exponentials with some appropriate weights α j ∈ C, j = 1, . . . ,m. This
function decays exponentially because the λ j are the eigenvalues of A, and since A is
stable, those belong to C−, the open left complex half plane.

To achieve the goal (2.2), we want to determine a Prony series ϕ which satisfies

ϕ(ντ) ≈ yν , ν = 0, . . . , 2n − 1 , (3.2)

in amean square sense. To this end, we need to select an appropriate numberm of terms
in (3.1) and choose corresponding exponents λ j and weights α j , j = 1, . . . ,m. This
is a long-standing delicate numerical problem (cf., e.g., Varah [27]), because (i) it is

1 Here, we adopt the terminology “Prony series,” which is commonly used in applications, despite the fact
that the sum (3.1) consists of only finitely many terms.
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nonlinear in the parameters λ j , and (i i) the outcome is very sensitive to perturbations
in the data. In particular, as the exponents have negative real parts, the given data yν
carry less and less additional information, the higher the value of ν. One can therefore
expect the necessary number m of terms in (3.1) to drive the error in (3.2) below a
given tolerance to be considerably smaller than n; note, however, that for m ≥ n, it is
generically possible to realize (3.2) with equality, as there are 2n equations to satisfy
and 2m parameters to choose.

We emphasize that we do not claim or attempt to resolve a presumably valid
Prony series representation of the true autocorrelation function, which is a highly ill-
conditioned problem. For our purposes, it is sufficient to approximate the data by some
Prony series representation, which is a less ambitious and much better-conditioned
problem.

A common way to approach the exponential approximation problem (3.2) is via
the generating function (or z-transform)

f (z) =
∞∑

ν=0

yνz
−ν−1 (3.3)

of the data. Stipulating the verymild restriction that the samples (yν)ν∈N are absolutely
summable, this function f is analytic in the exterior of the unit disk and extends
continuously to the unit circle. Imagine that (3.2) holds with equality. Then, the series
can be rewritten as

f (z) =
∞∑

ν=0

m∑

j=1

α j e
ντλ j z−ν−1 =

m∑

j=1

α j

z

∞∑

ν=0

(eτλ j /z)ν =
m∑

j=1

α j

z − z j

with
z j = eτλ j , j = 1, . . . ,m .

These z j lie inside the unit disk (and are nonzero), and hence, the domain of
convergence of the generating function extends to the exterior of some disk of radius
ρ < 1 around the origin. It coincides with a rational function in the complex plane
with a zero at infinity and m poles in the points z j . And vice versa, if f is a rational
function with m distinct first-order poles z j �= 0 in the unit disk and corresponding
residues α j , and if f is vanishing at infinity, then the associated Prony series ϕ of (3.1)
with

λ j = 1

τ
log z j (3.4)

interpolates the coefficients yν of the Laurent series (3.3) at all grid points tν = ντ ,
ν ∈ N0.

We mention that the choice of the complex logarithm in (3.4) has no impact on
the values of the Prony series at the grid points, as is obvious from (3.1). However,
depending on which branch of the logarithm has been selected, the function ϕ may
oscillate in between the grid points. Assuming that the sampling rate τ has been
chosen small enough to capture all relevant frequencies of the target function y, the
appropriate branch to choose in (3.4) is the one with imaginary parts in (−π, π).
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Further, if some pole z j happens to be negative, then this pole should be mapped
onto two complex conjugate exponents λ±

j = (log |z j | ± iπ)/τ , with α±
j = α j/2 as

corresponding weights, to obtain a real-valued approximation (3.1); we emphasize
that the special case of negative poles within the unit disk calls for further attention at
a later stage of the algorithm (see Remark 5.2 below).

4 The AAA algorithm

As has been worked out in the previous section, the task (3.2) can be recast as a
problem of approximating the generating function f of (3.3) by a rational one, which
vanishes at infinity, and then choosing ϕ to be the Prony series associated with this
rational approximation. For example, one can compute the Padé approximation of f
of order (m − 1,m) at infinity; the associated Prony series then interpolates the given
data yν , ν = 0, . . . , 2n − 1. The resulting algorithm is the classical Prony method for
exponential interpolation (cf., e.g., Weiss and McDonough [28] or Plonka et al. [24]).
This is the route thatwe have followed in [8]. The resulting algorithmworks reasonably
well for 20 or so data points, but for larger or noisy data sets, the resulting Prony series
often fails to be of positive type.2 Then, there is no associated Markov system (2.1)
which satisfies (2.6). We briefly mention that Bai and Freund [5] have suggested an
ad hoc modification of their Padé approximation scheme to obtain a Prony series of
positive type, but they apply the Padé scheme in the frequency domain, and it is not
clear how to make use of their idea when working in the domain of the z-transform,
where the matrix A in the transfer function (2.9) is the matrix logarithm of the one
used in [5].

An alternativeway of computing rational approximations of the generating function
can be based on the AAA algorithm.3 To this end, one can adapt a suggestion by
Derevianko et al. [12] and first evaluate the available 2n leading terms of (3.3) on an
equidistant angular grid on the unit circle, e.g., by using a fast Fourier transform of
order 2n of the samples {yν}. This gives data

fν ≈ f (ων) , ν = 0, . . . , 2n − 1 , where ω = eiπ/n . (4.1)

The AAA algorithm now proceeds by choosing an appropriate index set N k ⊂
{0, . . . , 2n − 1} associated with mk of these grid points on the unit circle, defines
a corresponding parameterized rational interpolant rk of order (mk − 1,mk − 1) in
barycentric form,

rk(z) =
∑

ν∈Nk

wν fν
z − ων

/ ∑

ν∈Nk

wν

z − ων
, (4.2)

2 By some abuse of denomination, we refer to a Prony series of positive type, if the Fourier transform of
its even extension to all of R is of positive type.
3 Spoken “triple-A-algorithm”; the acronym stands for adaptive Antoulas–Anderson (algorithm).
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and optimizes the mk free complex parameters wν to approximate the remaining data
pairs (4.1) by solving the linear least squares problem

minimize
∑

μ/∈Nk

∣∣
∣∣
∑

ν∈Nk

wν( fμ − fν)

ωμ − ων

∣∣
∣∣

2

(4.3)

among all coefficientswν with
∑

ν∈Nk
|wν |2 = 1. It follows from (4.3) that any vector

w ∈ C
mk with minimizing weights is a singular vector associated with the smallest

singular value of the so-called (rectangular) Loewner matrix

L =
[

fμ − fν
ωμ − ων

]

μ,ν

∈ C
(2n−mk )×mk .

We like to mention in passing that Claus Schneider has contributed in an early
paper [26] to the use of the barycentric representation for rational interpolation, and
refer to [22] for a detailed historical account of the ideas behind the AAA algorithm.

TheAAAalgorithm is a greedy iterative scheme, i.e., in each iteration k = 1, 2, . . . ,
the set of interpolation points is extended until the overall match (4.3) is below a given
tolerance. Presuming that the final rational function has only first-order poles z j �= 0
within the unit disk, these poles and their residues yield as before an associated Prony
series ϕ which satisfies (3.2).

In order to ensure the rational approximation to be real, i.e., that rk(z) ∈ R for
z ∈ R, we initializeN1 = {0, n} with the indices ν in (4.1) corresponding to z = ±1,
and in each iteration, we extend the index set Nk by the two indices ν and 2n − ν of
one complex conjugate pair of grid points, hencemk = 2k. Then, it can be shown that
in each iteration, we obtain a real rational interpolant (4.2) which minimizes (4.3),
provided we choose the weight vector w ∈ C

mk appropriately. To be specific, assume
that {ων}ν∈Nk is any set of minimizing parameters for (4.3) computed by a singular
value decomposition of the correspondingLoewnermatrix.Assume further that ν, ν′ ∈
Nk correspond to two complex conjugate grid points of the grid (4.1). Then, it is not
too difficult to see by reordering the summation in (4.3) that the minimal value of
(4.3) is also attained if the weight wν is replaced by wν′ , and wν′ by wν , respectively.
Accordingly, the vectorw′, which contains all these exchangedweights for all complex
conjugate pairs of grid points inNk , must also be a singular vector of the sameLoewner
matrix associated with the same singular value, and this implies that (w + w′)/‖w +
w′‖2 is yet another vector in this singular subspace; the entries of this latter vector,
however, are complex conjugates, when the corresponding data points are, and hence,
the associated rational function (4.2) is real.

Remark 4.1 Earlier, we have made the assumption that the system matrix A of (2.1)
be a diagonalizable matrix. If this fails to be true, then some of the coefficients of
the associated autocorrelation function ϕ may be polynomials α j (t) instead of being
constant. This in turn implies that the corresponding generating function f has poles
of higher order. And vice versa, if the rational approximation (computed by whatever
means) has poles of degree two or more, then this calls for a system matrix A with
nontrivial Jordan blocks. 
�
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Although the AAA algorithm performs well in approximating the generating func-
tion, there is no clear interpretation of the sense in which the associated Prony series
will approximate the data in (3.2), nor is there any guarantee that this Prony series will
be a function of positive type. As we have emphasized before, the latter is mandatory
to obtain the desired Markov model (2.1).

5 The new algorithm for the stochastic modeling problem

Recall that it is our objective to approximate the given data by a Prony series in a mean
square sense, subject to the constraint that this function be of positive type, i.e., that
its Fourier transform is nonnegative. The major difficulty in achieving this goal stems
from the fact that there is no characterization (nor understanding) of the nonlinear
manifold of data which correspond to the Prony series of positive type.

Starting from the assumption that the Fourier transform of a good Prony series
approximation ϕ provides a reasonable fit of the Fourier transform of the true autocor-
relation function y, negative values of the former are more likely to occur near zeros
(which have even order, when they are present) or small positive values of the latter.
The only zero of ŷ, which is known beforehand, is at infinity, because y ∈ L1(R) in
our application. Further zeros at finite frequencies may exist, but are hardly expected
to occur in practice. We therefore have to make sure that ϕ̂(ξ) is positive for |ξ | large.

Another motivation for focusing our attention on large frequencies is that spurious
oscillations in the data due to noise will mostly affect high-frequency components of
ϕ.

We therefore relax the aforementioned goal in two ways:

(i) We pre-assign the number m and the exponents λ j , j = 1, . . . ,m, of the expo-
nentials to be used in (3.1).

(ii) We optimize the remaining free coefficients α j , j = 1, . . . ,m, so as to minimize
themean squarefit (3.2), subject to theweaker constraint that theFourier transform
of the Prony series is positive near infinity.

These goals are realized in two independent steps of our algorithm. Concerning
item (i), we apply in a first step the variant of the AAA method described in the pre-
vious section. We take the poles z j of the resulting rational approximation (which are
symmetric with respect to the real axis), ignore the associated residuals—because the
final weights of the Prony series ϕ are subject to item (i i)—and choose the exponents
λ j of ϕ via (3.4). As has been mentioned in Remark 4.1, higher-order poles z j lead
to non-diagonalizable coefficient matrices A in (2.1); although it is very unlikely that
this case will ever show up in numerical computations, we simply ignore the order
of the poles for item (i). We further remark that some poles may fail to lie in the
open unit disk. Those are called spurious poles, because they typically come with very
tiny residuals and have a small impact on the quality of the approximation, so we can
simply eliminate them. The same is true for a possible pole at z = 0. In fact, in our
numerical implementation, we eliminate all poles whose residues are negligible rela-
tive to y0. For the moment, we also make the assumption that none of the remaining
poles is negative (see Remark 5.2 below). It is, of course, possible to replace the AAA
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scheme in this first step of the algorithmwith any other popular rational approximation
method.

As far as item (i i) is concerned, the positivity of ϕ̂ near infinity can be checked
with a finite number of linear constraints on the coefficients α j , which simplifies their
optimization. In fact, a straightforward computation shows that

ϕ̂(ξ) = −2
m∑

j=1

α jλ j

λ2j + ξ2
, (5.1)

and expanding the right-hand side for large frequencies ξ , we obtain

ϕ̂(ξ) = 2
∞∑

k=0

βk ξ
−2k−2 (5.2)

for |ξ | > max |λ j |, with

βk = (−1)k+1
m∑

j=1

α jλ
2k+1
j , k ∈ N0 . (5.3)

It follows that ϕ̂(ξ) ≥ 0 for all sufficiently large frequencies ξ , if and only if the
leading term of (5.2) is positive near infinity, i.e., if condition

βk∗ > 0 and βk = 0 for all 0 ≤ k < k∗ (5.4)

holds true for some k∗ ∈ N0. As mentioned before, these are finitely many linear
constraints on the searched for coefficients α j .

Thus, to realize item (i i), we specify the weights α j via the linear least squares
problem

minimize
2n−1∑

ν=0

∣∣
∣yν −

m∑

j=1

α j e
ντλ j

∣∣
∣
2

⎫
⎬

⎭

subject to the (in)equality constraints (5.4) . (5.5)

The solution of this problem constitutes the second step of our algorithm. Note that
the quadratic objective function

ψ(a) =
2n−1∑

ν=0

∣∣
∣yν −

m∑

j=1

α j e
ντλ j

∣∣
∣
2
, a = [α1, . . . , αm]T ∈ C

m , (5.6)

of (5.5) is strictly convex as long as we restrict ourselves to m ≤ 2n; compare,
for example, [24]. Since the constraints also define a convex set Q of admissible
parameters, problem (5.5) has a unique minimizer, provided that the constraints are
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consistent. The same argument as in the previous section can be used to show that
the minimizing weights come in complex conjugate pairs, so that the corresponding
Prony series is real-valued.

The solution of (5.5) can be found by implementing a loop over the number k∗ =
0, 1, 2, . . . of active constraints in (5.4). We initialize k∗ = 0 and consider first the
unconstrained least squares problem

minimize ψ(a) (5.7)

for the given exponents λ j ∈ C
−, j = 1, . . . ,m. If the solution a† ∈ C

m of (5.7)
satisfies β0 = β0(a†) > 0, then we have found the unique solution of problem (5.5).
Otherwise, the solution vector a of (5.5) must satisfy the additional equality constraint

β0(a) = −
m∑

j=1

α jλ j = 0 . (5.8)

We thus let k∗ = 1 in this case and minimize ψ(a) subject to the equality con-
straint (5.8). This problem has a unique solution, which we denote again by a† ∈ C

m

for simplicity; it can be determined by using the constraint to eliminate one of the free
variables and then solving a single linear system of (normal) equations for the remain-
ing ones; compare, e.g., Björck [7, Section 5.1] for stable numerical implementations.
If the corresponding value of β1 = β1(a†) > 0, then the parameter vector a† is the
unique solution of (5.5); if not, we again increase k∗ by one, i.e., add another active
constraint via (5.4), repeat the optimization process anew, and so on.

This loop over k∗ terminates whenever the solution of (5.5) has been found or when
the set of constraints becomes inconsistent, i.e., when β0 = β1 = · · · = βk∗−1 = 0
implies that βk = 0 for all k ≥ k∗. Due to the Vandermonde-type structure of the
constraints, this happens exactly when k∗ = m, i.e., when the number of active con-
straints has reached the number of free parameters. If this happens, then the algorithm
has failed.

Such a failure indicates that the Prony series approximation (3.1) does not have
enough degrees of freedom or that the data are too noisy. To account for the former,
one can enforce a smaller tolerance for (4.3) in the AAA algorithm in view of item (i)
above, because this will typically givemore poles, i.e., more terms for theAnsatz (3.1).
To cope with too much noise in the data, one option is to use a larger grid spacing τ

or to come up with some individual sophisticated treatment to reduce the noise in the
data.

We also emphasize that even when (5.5) has a solution, this is no guarantee that the
resulting Prony series is of positive type, for the Fourier transformmay still be negative
in some bounded frequency bands. It remains an aspect of future research how to best
proceed in such a situation. One could, for example, take up the approach suggested
in [11], which keeps the pole structure determined in step (i) of our algorithm, and
uses convex optimization based on the Lur’e equations (see (8.3) below) to achieve a
passive system.
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Remark 5.1 Depending on the application, it may be appropriate to append addi-
tional constraints to (5.5). For example, in many situations, the variance y(0) of the
underlying stationary process Y can be measured more accurately than the other auto-
correlations or may be known beforehand from theoretical considerations. In this case,
it may be reasonable to enforce the approximation ϕ ≈ y to be exact at the origin, i.e.,
by adding the constraint

ϕ(0) =
m∑

j=1

α j = y0 . (5.9)

In other applications, for example, the one in Sect. 6, it may be known a priori that
the true autocorrelation function is differentiable, in which case y′(0)must vanish due
to the symmetry of y. In this case, one may wish to add the constraint

ϕ ′(0) =
m∑

j=1

α jλ j = 0 , (5.10)

which means that β0 = 0 (compare (5.3)). Accordingly, (5.4) can only hold for some
k∗ ≥ 1, and in this case, we initialize k∗ = 1 when executing the loop of our algorithm
for the constrained least squares problem for the first time.

We will show in the appendix that the inhomogeneous constraint (5.9) and the
equality constraints in (5.5) are consistent as long as k∗ < m. 
�
Remark 5.2 So far, we have excluded the case that the rational approximation deter-
mined by the AAA algorithm has negative poles. Now, let us assume that some pole
z j happens to be negative. Then, the corresponding two exponents

λ±
j = μ j ± i

π

τ
, μ j = 1

τ
log |z j | ,

differ by 2iπ/τ , and the exponentials eντλ±
j in (5.5) are indistinguishable. Accordingly,

the objective function ψ of (5.6) is convex, but not strictly convex. If (5.9) is the only
equality constraint in (5.5), then there is an infinite family of Prony series which solves
(5.5): If ϕ is one of them, then

ϕ(t) + γ eμ j t sin(π t/τ) , t ≥ 0 ,

with γ ∈ R, |γ | small, are further ones. By tuning γ , one can change ϕ′(0) to any
value one might like—provided the positivity of ϕ̂ is not being violated. Which of
them is “best” (and in what sense), however, is not clear.

In our implementation, we enforce this derivative to be zero in this case, i.e., we
add the constraint (5.10). If the rational function has only one negative pole, then this
heals the problem: the objective ψ is strictly convex over the set Q of admissible
parameters defined by (5.4) with k∗ ≥ 1. If the rational function has � ∈ N negative
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poles, then a similar fix is possibly by constraining k∗ ≥ � in (5.4); see Theorem A.4
in the appendix. 
�

6 Numerical example: motion of a colloid within a fluid

For our numerical results, we focus on applications where the underlying stationary
process Y : R → R satisfies a generalized Langevin equation

m Y ′(t) = −m
∫ t

−∞
γ (t − τ)Y (τ ) dτ + F(t) , (6.1)

with an even integral kernel γ ∈ L1(R) of positive type. This sort of equation is used,
for example, in statistical physics as a coarse-grained model for the velocity Y of a
macroparticle, a colloid say, dispersed in a fluid, where the so-called memory friction
γ represents the interactions of the macroparticle with the constituents of the fluid.
In (6.1), m is the mass of the macroparticle and the external forcing F is a random
process, whose autocorrelation function is given by

E
[
F(s + t)F(s)

] = m

β
γ (t) , t ∈ R ,

for a system in thermodynamical equilibrium, where β > 0 is the inverse temperature
(cf., e.g., Jung and Schmid [19]). Moreover, Y is a Gaussian process whenever the
random forcing is.

The numerical implementation of (6.1) is involved and expensive, and therefore,
approximate Markov models (2.1) are often sought for simulations of the coarse-
grained system. Typically, autocorrelation data of Y are used to find such Markov
approximations. Different techniques have been proposed for this in the literature (cf.,
e.g., [8], and the references given there). Most of these work well for a handful of
auxiliary variables only and a corresponding limited number of data points. As will
be demonstrated below, the new algorithm of Sect. 5 can handle much larger data sets,
while the size of the resulting Markov models remains manageable.

For the generalized Langevin equation (6.1), it is not difficult to see that the autocor-
relation function y of the stationary process Y satisfies the delay differential equation

y′(t) = −
∫ t

0
γ (t − τ)y(τ ) dτ , y(0) = 1

βm
(6.2)

(cf., e.g., [17]). Note that the variance 1/(βm) of the process corresponds to the
average kinetic energy of a particle of mass m in thermodynamical equilibrium, and
for physical consistency, it suggests itself to prescribe ϕ(0) to be exactly this value.
Further, it follows readily from (6.2) that y1(t) → 0 as t → 0, and hence, the even
autocorrelation function y is differentiable with y1(0) = 0. We therefore include the
two additional constraints (5.9) and (5.10) of Remark 5.1 in our algorithm for the
determination of the weights α j of the Prony series (3.1).
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The data for the numerical examples have been borrowed fromour previouswork [8,
18], where more details about the physical setting and the particular application can
be found, as well as the technical details concerning the generation of these data.
For the detection of spurious poles of the rational approximations in the first step
of our algorithm, we have used a tolerance of 10−3 for the absolute values of the
residues of the poles, relative to the value of y0. The precise value of this tolerance
is not too important. In our experiments, a smaller number did not necessarily lead
to a significantly better fit of the objective function (5.6) in the second step of the
algorithm, but definitely resulted in higher dimensional models (2.1).

Example 6.1 As a first test case, we consider the autocorrelation function from [18]
shown as a black solid line in the left panel of Fig. 1. We assume that we are given
2n = 50 samples of this autocorrelation function with grid spacing τ = 0.05. These
data points correspond to the black circles in the plot on the left-hand side.

For this example, the Padé approximation which is computed in the Prony method
mentioned in Sect. 3 has 25 poles, and if the associated Prony series is of positive type,
then the corresponding Markov system has 24 auxiliary variables. Of course, some of
these poles may have negligible residues.With a relative tolerance of 10−3 for the data
fit (4.3), the AAA algorithm determines a rational approximation of the generating
function with only five poles. The optimization of the corresponding weights α j of
the Prony series succeeds in the very first execution of the loop (with counter k∗ = 1)
to find the global solution of (5.5). One can check that the Fourier transform of the
associated Prony series has no real zeros, so this Prony series approximation of the
autocorrelation function is of positive type.

With the smaller tolerance 0.5 · 10−3 for (4.3), the resulting AAA approximation
has seven poles. This time, the optimization of the corresponding weights requires
more than one execution of the loop, because β1 turns out to be negative initially. The
loop terminates for k∗ = 2 with the global solution of (5.5). Again, the resulting Prony
series is of positive type. To give an impression about the impact of the constraints,
we list in Table 1 how the values of the objective function (5.6) increase with k∗ in this
example. As can be seen, the value of the objective increases by a factor of three from

0 0.5 1 1.5 2 2.5
    0

0.002

0.004

0.006

0.008

0.010

0.012

 

 

acf
50 points, 5 terms
50 points, 7 terms
20 points, 5 terms
20 points, 7 terms

0 0.5 1 1.5 2 2.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 1 Autocorrelation function (acf) of Examples 6.1 and 6.2 and its Prony series approximations (left
panel) with five and seven terms for 2n = 50 (τ = 0.05) and 2n = 20 (τ = 0.06) data points, respectively.
The panel on the right shows the corresponding relative errors, i.e., the graphs of (y − ϕ)/y
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Table 1 Values of the objective
function (5.6) in Example 6.1
with tolerance 0.5 · 10−3 and
increasing number of constraints

k∗ ψ(a†)

0 0.00059

1 0.00113

2 0.00179

For comparison: With tolerance 10−3, the final value of the objective
function is 0.00638

k∗ = 0 up to k∗ = 2, but it has to be emphasized that for k∗ < 2, the Prony series fail
to be of positive type.

The graphs of the two approximations are displayed as dashed lines in Fig. 1. In the
panel on the left, they can hardly be distinguished from the given autocorrelation func-
tion. Note that they correspond to autocorrelation functions of the first component X of
a Markov system (2.1) with four, respectively six, auxiliary variables only. The panel
on the right of Fig. 1 reveals that the autocorrelation function of the approximation
with four auxiliary variables is somewhat less accurate (compare Table 1).

We mention that with even smaller tolerances for (4.3), the AAA approximations
develop spurious poles and the final mean square fit does not improve any further. 
�
Example 6.2 To compare the outcome of the new method with the numerical results
in [8, Section 3.2], we also consider the corresponding smaller data set with 2n = 20
samples and slightly larger grid spacing τ = 0.06 of the same autocorrelation function.
Again, for a relative tolerance of 10−3, the rational function computed with the AAA
algorithm has m = 5 poles, but this time, one of these poles is negative and leads to
two associated terms of the Prony series (see Remark 5.2). Since we restrict ourselves
to k∗ ≥ 1 anyway, the constrained least squares problem (5.5) has a unique solution;
compare Remark 5.2 again. As in Example 6.1, this solution is indeed obtained for
k∗ = 1.When the tolerance for (4.3) is 10−4, the associated rational function has seven
poles. Again, one of these poles is negative, and the optimal weights are obtained for
k∗ = 1.

As in Example 6.1, both Prony series can be checked to be of positive type; their
graphs are included in Fig. 1 as dotted lines. Note that they use other interpolation
data than the approximations in Example 6.1, with samples restricted to t ≤ 1.2. In
fact, as can be seen from the plot on the right, the quality of the approximations of the
corresponding Prony series deteriorates for larger times.

Since both rational approximations have one negative pole, the corresponding two
Markov systemshaveone auxiliary variablemore than the ones ofExample 6.1, namely
five and seven, respectively. To compare the results with the ones of [8], we point out
that the autocorrelation function constructed in [8] with the Prony type algorithm is
of similar quality, but requires nine auxiliary variables. 
�

Example 6.3 For a third example, we consider an autocorrelation function from a
different generalized Langevin equation for a similar physical problem. This example
is taken from [8, Section 3.3], where it is termed “medium noise setting”; as the name
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suggests, the corresponding data are somewhat noisy. With the same grid spacing
τ = 0.06 as in Example 6.2, the method of [8] failed to produce an approximation
of positive type when the first 2n = 50 data points were used, and also for 2n = 48
data points. It was successful for 2n = 46 data points, though, but despite the m = 13
terms of the approximating Prony series, the fit of the autocorrelation function was
not too good in that case, either; compare the middle panel of Fig. 6 in [8].

With our new method and each of the three data sets, the default tolerance of
10−3 for the fit (4.3) of the AAA algorithm is sufficient to obtain Markov models for
which the autocorrelation functions in question are in good agreement with the given
data. The graphs of two of them, namely the ones for 2n = 46 and 2n = 50 data
points, are displayed in Fig. 2, together with the underlying autocorrelation function
(black line) and the data samples (black circles). The associated Prony series have five
terms (2n = 46) and nine terms (2n = 50), respectively; in both cases, the rational
approximations had two further poles, which were decided to be spurious. The two
Prony series approximate the data equally well, both in terms of the mean square and
absolute error. The fact that more poles are necessary for 50 data points may reflect
the aforementioned difficulties of the Prony method for that situation.

The approximation shown in Fig. 2 for 2n = 48 grid points has been obtained for
the slightly smaller tolerance 0.5 · 10−3 for (4.3). Its data fit is about a factor of two
better than for the other two models. In this case, the AAA rational approximation had
13 poles, four of which were considered spurious, while two poles in the exterior of
the unit disk just barely failed the criterion of being spurious poles. One may suspect
that poles outside the unit circle may be more common when the data are noisy. Of
course, these two poles had to be eliminated to make the algorithm work, much to the
success of the corresponding approximation, which thus had seven terms, eventually.

The plot on the right-hand side of Fig. 2 zooms into a detail of the left-hand plot,
in which the noise in the autocorrelation data is striking. Take note that the given data
samples correspond to times t < 3. As can be seen from this plot, the Prony series
approximations provide a smoother and more reliable extrapolation of these data to
times t > 3 as the measured values of the autocorrelation function do. This is probably
due to the fact that the corresponding functions are of positive type, i.e., are “more
physical.” 
�
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Fig. 2 Autocorrelation function (acf) of Example 6.3 and corresponding Prony series; right-hand panel
shows a detail
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These examples show very well that the newmethod has a great potential to provide
excellent Prony series approximations of positive type. It is also fascinating to see the
approximation power of the parameterized Prony series, despite the fact that there is
only a handful of free parameters to optimize. In other words, the AAA algorithm does
a very good job in selecting appropriate sets of exponents for their parameterizations.

7 Computation of the systemmatrix

Once the Prony series ϕ of (3.1) has been computed, the next step is to set up an
associated system matrix A which satisfies the second equation in (2.6).

We want this matrix to be real because the simulation of the Markov system (2.1)
should give real paths. To this end, we define the real Jordan canonical matrix

J =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

λ1
. . .

λr
Re λr+1 Im λr+1

−Im λr+1 Re λr+1
. . .

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(7.1)

associated with the exponents λ j ∈ C
− of (3.1). In (7.1), the negative exponents

λ1, . . . , λr make up the leading part of the diagonal, and two-by-two rotation matrices
followon the remaining part of this block diagonalmatrix, one for each pair of complex
conjugate exponents, like λr+1 and λr+2 = λr+1. Next, we introduce the two (real)
m-dimensional vectors

v =
⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ and w =

⎡

⎢
⎣

w1
...

wm

⎤

⎥
⎦

with entries
v j = 1 and w j = α j

for the indices j = 1, . . . , r corresponding to the real exponents, and

vr+1 = 1 , vr+2 = 0 and wr+1 = 2Re αr+1 , wr+2 = −2 Im αr+1 ,

and so on, for the complex conjugate ones. Then, one readily checks that

vT e|t |Jw = ϕ(t) , t ∈ R . (7.2)

In particular, for t = 0, this gives

vTw = ϕ(0) = σ 2
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by virtue of (2.6).
Now, one can construct a nonsingular matrix V ∈ R

m×m which satisfies

Vw = σ 2e1 and V−T v = e1 . (7.3)

(See, for example, Bai and Freund [4, Lemma 1] for an explicit construction.)
With the help of (7.2) and (7.3), we thus arrive at the representation (2.6), namely

ϕ(t) = σ 2 vT V−1Ve|t |J V−1e1 = σ 2(V−T v)T e|t |V JV−1
e1 = σ 2 eT1 e

|t |Ae1

with the stable matrix
A = V JV−1 .

8 Determination of the driving noise direction

The final step of our construction of the Markov system (2.1) consists in finding the
direction g ∈ R

m of the driving Brownian motion, so that the autocorrelation function
of the stationary solution of (2.1) satisfies (2.6). For the ease of presentation, we will
make the stronger assumption that the computed Prony series ϕ is of strict positive
type, i.e., that

ϕ̂(ξ) > 0 for all ξ ∈ R ; (8.1)

we refer to Anderson and Vongpanitlerd [3] for a treatment of the general case. We
further assume that the coefficients α j of (3.1) are all different from zero and that ϕ

can be written in the form (2.6) for some (stable) matrix A ∈ R
m×m , e.g., by choosing

A as in Sect. 7.
Then, in the systems theory terminology, the representation (2.9) of κ is a minimal

realization of this transfer function. From (8.1) and (2.7), it follows that κ is analytic
in a neighborhood of the closed right half complex plane with

Re κ(iξ) > 0 for all ξ ∈ R . (8.2)

Given these properties, the Positive Real Lemma states that the singular Lur’e
equations

A� + �AT = −ggT , �e1 = σ 2e1 , (8.3)

have a solution—consisting of a symmetric positive definite matrix � ∈ R
m×m and a

vector g ∈ R
m (cf. [3]). If the driving force of the Ornstein-Uhlenbeck equation (2.1)

operates in the direction g, then � is the covariance matrix of its stationary solution
(compare (2.3)); the second equation in (8.3) implies that � can be written in the
form (2.5), and hence, the autocorrelation function of the stationary solution satisfies
(2.6) as desired.

Note that we not only need g if we want to simulate the process X , but also � for
the initial value [

X(0)
Z(0)

]
∼ N (0, �) (8.4)
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of the stationary solution of (2.1). To compute� and g, i.e., to solve the singular Lur’e
equations numerically, we reduce them to a set of Lur’e equations of lower dimension
(cf. Anderson [1]). Since this is an essential step of our algorithm, we provide some
more details, as those are rarely found in the pertinent literature. We represent A in
the block form

A =
[−a0 cT0−b0 A0

]
(8.5)

with appropriate A0 ∈ R
(m−1)×(m−1), b0, c0 ∈ R

m−1, and a0 ∈ R. It follows from
(2.6) that

a0 = −eT1 Ae1 = − 1

σ 2 lim
t→0+

ϕ(t) − ϕ(0)

t
≥ 0 ,

because functions of positive type attain their maximum at the origin.
Inserting (8.5) and (2.5) into (8.3), we see that the driving force vector g has to

have the form

g = σ

[√
2a0
g0

]
, (8.6)

where g0 ∈ R
m−1 and �0 ∈ R

(m−1)×(m−1) satisfy the system of equations

A0�0 + �0A
T
0 = −g0g

T
0 , b0 − �0c0 = √

2a0 g0 . (8.7)

This is the general form of the Lur’e equations, with the singular case corresponding
to a0 = 0. Again, the Positive Real Lemma states that there is a vector g0 and a
symmetric positive definite matrix �0, which solve (8.7), if A0 is stable and the
associated transfer function

κ0(ζ ) = a0 + cT0 (ζ I − A0)
−1b0 , ζ ∈ C , (8.8)

is positive real.
Note that ζ + κ0(ζ ) is the Schur complement of ζ I − A0 in ζ I − A, i.e., the

reciprocal of ζ + κ0(ζ ) is the (1, 1)-element of the inverse of ζ I − A,

κ0(ζ ) = 1

eT1 (ζ I − A)−1e1
− ζ = σ 2

κ(ζ )
− ζ , (8.9)

where we have used (2.9) for the final step. Since κ is analytic in C \C−, its real part
is harmonic, and it follows from (8.2) and the maximum principle that it is positive in
the closed right half plane. This implies that (i) κ0 is analytic in C \ C

−, and (i i) its
real part also satisfies (8.2). Accordingly, κ0 is, indeed, positive real.

To see that the lower right block A0 of A in (8.5) is stable, we assume to the contrary
thatμ is an eigenvalue of A0, which does not belong toC−. Let xr and xl be associated
with the right and left eigenvectors of A0, respectively. Then, it follows from (8.5) that
neither cT0 xr nor x

∗
l b0 may vanish, for otherwise [0; xr ] or [0; xl ] would be right/left

eigenvectors of A for the same eigenvalue, but this is not possible because A is stable.
Therefore, since neither cT0 xr nor x∗

l b0 vanish, it follows from (8.8) that κ0 has a
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pole at ζ = μ, but this is not possible as we have discussed above. Accordingly, all
eigenvalues of A0 belong to C−. We thus have verified that (8.7) has a solution.

If a0 > 0, then a solution of the Lur’e system (8.7) can be obtained numerically by
first solving the Riccati matrix equation

B0�0 + �0B
T
0 + �0c0c

T
0 �0 + b0b

T
0 = 0

with
B0 = 2a0A0 − b0c

T
0

for �0, and then computing g0 from the second equation in (8.7) (cf. [3]). This is a
well-studied numerical problem (compare, e.g., Bini et al. [6]).

On the other hand, when a0 = 0, i.e., in the case of a singular Lur’e equation (8.7),
then we first note that

σ 2
0 = cT0 b0 > 0 . (8.10)

In fact, it follows from (8.7) that in the singular case

cT0 b0 = cT0 �0c0 ≥ 0 ,

and equality can only occur when �0c0 = 0. But this means that b0 = 0, and then
A is singular according to (8.5), which would contradict the stability of A. Therefore,
(8.10) is valid, and we can choose (as in Sect. 7) a similarity transformation V ∈
R

(m−1)×(m−1) with

Vb0 = σ 2
0 e1 and V−T c0 = e1 ,

so that we can rewrite

κ0(ζ ) = σ 2
0 eT1 (ζ I − V A0V

−1)−1e1 .

Replacing A by (the stable matrix) V A0V−1, we can then proceed as above to reduce
the solution of the singular Lur’e system (8.7) of dimension m − 1 to a Lur’e system
of dimension m − 2, and so forth.

Remark 8.1 Take note that

Re κ(iξ) = −σ 2 eT1 A(A + ξ2 I )−1e1

is an even function of ξ ∈ R, and it has an asymptotic expansion of the form

Re κ(iξ) = σ 2(γk + o(1)
)
ξ−2k , |ξ | → ∞ , (8.11)

for some k ∈ N and some γk �= 0; as usual, we denote by o(1) a term which converges
to zero in the respective limiting process. It thus follows from (8.9) and (2.9) that

Re κ0(iξ) = σ 2 Re κ(iξ)

|κ(iξ)|2 = σ 4
(
γk + o(1)

)
ξ−2k

σ 4
(
1 + o(1)

)
ξ−2

= (
γk + o(1)

)
ξ−2(k−1) .
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Therefore, if k > 1 in (8.11), then we necessarily have a0 = 0 (compare (8.8)), which
means that the reduced Lur’e system (8.7) is also singular and another reduction step
is necessary for its solution.

More precisely, (2.7), (2.9), and (5.2) imply that

Re κ(iξ) = 1

2
ϕ̂(ξ) = (

βk∗ + o(1)
)
ξ−2(k∗+1)

with βk∗ > 0, where k∗ is the parameter occurring in the inequality constraint (5.4).
In view of (8.11), we thus conclude that k∗ + 1 reduction steps are necessary to turn
the singular Lur’e equations (8.3) into a regular Lur’e system. 
�

Appendix. Zeros of polynomials, consistency of constraints, and the
issue of negative poles

This appendix deals with the consistency of the constrained least squares problems
proposed in Sect. 5 in the two special situations encountered in Remarks 5.1 and 5.2.

As in Sect. 5, let a = [α1, . . . , αm]T ∈ C
m be the vector with the free weight

parameters, let βk = βk(a) be defined by (5.3), and let k∗ ∈ N. We will first turn to
Remark 5.1 and prove that the linear equality constraints

βk(a) = 0 , k = 0, 1, . . . , k∗ − 1 , (A.1)

are consistent with the optional inhomogeneous constraint (5.9), as long asm ≥ k∗+1,
i.e., as long as there are at least as many variables as there are equality constraints.

To this end, we need the following auxiliary result on the zeros of certain real
polynomials.

Theorem A.1 Let k ∈ N and

p(z) = π0 + π1z + π3z
3 + . . . + π2k−1z

2k−1 (A.2)

be a real polynomial with π0π2k−1 �= 0. Then, p has at least k − 1 zeros (counting
multiplicities) in C− and in C+, respectively.

Proof Without loss of generality, we may assume that π0 > 0. We define the family
of polynomials

p(z; γ ) = γ + iq(z/i) , (A.3)

where γ ∈ R, and q is a fixed real and odd polynomial of degree 2k − 1. Obviously,
one can rewrite p of (A.2) in this form with γ = π0 and

q(ξ) = π1ξ − π3ξ
3 + . . . + (−1)k+1π2k−1ξ

2k−1 .

Note that for γ �= 0, the polynomial p( ·; γ ) cannot have any zeros on the imaginary
axis, because

Re p(iξ ; γ ) = Re
(
γ + iq(ξ)

) = γ for every ξ ∈ R .
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Consider first the case that q has only simple zeros on the real axis. One of these
zeros is ξ0 = 0; there may be further positive zeros ξ1 < ξ2 < · · · < ξr for some
0 ≤ r < k, and the corresponding negative ones, −ξ1, . . . ,−ξr . Accordingly, the odd
polynomial p( ·; 0) has 2r +1 zeros on the imaginary axis, and k−r −1 zeros in each
of the two half planes C− and C+, respectively. Since the real zeros of q are assumed
to be simple, the graph of ξ �→ q(ξ), ξ ∈ R, changes sign at each of them, i.e., the
local Taylor expansion of q near ξ j has the form

q(ξ) = (
η j + o(1)

)
(ξ − ξ j ) , ξ → ξ j , (A.4)

with
(−1) jη jη0 > 0 , j = −r , . . . , r . (A.5)

Now, we consider the homotopy that turns p( ·; 0) into p( ·;π0) by increasing the
parameter γ from zero to π0. Since the zeros of p( ·; γ ) depend continuously on γ , we
conclude that for small enough γ the k − r − 1 zeros of p( ·; 0) in C− stay in C−, and
the k − r − 1 zeros in C+ stay in C+. Further, for γ sufficiently small, the remaining
zeros z j = z j (γ ), j = −r , . . . , r , of p( ·; γ ) can be found near the purely imaginary
zeros iξ j of p( ·; 0): by virtue of (A.3) and (A.4), they satisfy

0 = γ + (
iη j + o(1)

)( z j
i

− ξ j
) = γ + (

η j + o(1)
)
(z j − iξ j ) ,

which gives

z j (γ ) = iξ j − γ

η j + o(1)
= iξ j − γ

η j

(
1 + o(1)

)
, γ → 0 . (A.6)

From (A.6) and (A.5), we conclude that the sign of

Re z j (γ ) = − γ

η j

(
1 + o(1)

)

depends only on the parity of j (and the sign of η0, of course), i.e., z±1(γ ), z±3(γ ), . . .

and z0(γ ), z±2(γ ), z±4(γ ), . . . move into opposite half planes as γ becomes positive.
Accordingly, for small positive values of γ , at least k − 1 zeros of p( ·; γ ) belong to
C

+ and toC−, respectively. Since p( ·; γ ) is nonzero on the imaginary axis for γ �= 0,
these zeros stay in C

+, resp. C−, for all positive values of γ . We thus have proved
the assertion for any polynomial p of the form (A.3), when the real zeros of q are all
simple.

In the case that some real zeros of q happen to have higher multiplicities, we can
construct a sequence (qν) of real and odd polynomials of degree 2k − 1, which have
only simple real zeros, and whose coefficients converge to those of q as ν → ∞. As
we have shown in the first part of this proof, every polynomial

pν(z;π0) = π0 + iqν(z/i)
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has at least k − 1 zeros in C
+ and those converge to zeros of p( ·;π0) as ν → ∞.

Since none of them can come to lie on the imaginary axis, they all stay in C
+. This

shows that p( ·;π0) has at least k − 1 zeros (counting multiplicities) in C
+, and the

same argument applies to C
−. This concludes the proof. 
�

Corollary A.2 Let m > k∗ ≥ 1 and λ1, . . . , λm ∈ C
−. Then, the constraints (A.1) and

(5.9) are consistent.

Proof We rewrite the constraints in matrix form

Ba = y0 e1 , (A.7)

where a = [α1, . . . , αm]T ∈ C
m as before and

B =

⎡

⎢
⎢⎢⎢⎢
⎣

1 1 . . . 1
λ1 λ2 . . . λm
λ31 λ32 . . . λ3m
...

...

λ
2k∗−1
1 λ

2k∗−1
2 . . . λ

2k∗−1
m

⎤

⎥
⎥⎥⎥⎥
⎦

(A.8)

is a complexmatrixwith k∗+1 ≤ m rows andm columns. Accordingly, the constraints
are consistent, if B has full row rank, i.e., if the null space of B∗ is trivial.

Note that we can add and subtract complex conjugate columns of B to transform
B into a real matrix of the same rank. This means that if B should fail to have full row
rank, then there is a nontrivial real vector π = [π0, π1, π3, . . . , π2k∗−1]T ∈ R

k∗+1,
such that BTπ = 0. The latter is the case, if and only if the associated real polynomial
p of degree 2k∗ − 1 of (A.2) is vanishing for z = λ1, . . . , λm . This means that p has
(at least)m roots inC−. We can assume without loss of generality that π2k∗−1 �= 0, for
otherwise we can apply the same argument to the matrix B with the last row omitted
and k∗ reduced by one.

Now, we distinguish two cases. If π0 = 0, then p is odd, and for each zero in C
−,

there is a corresponding one in C+. This would imply that p has 2m ≥ 2k∗ + 2 zeros
(at least). On the other hand, if π0 �= 0, then Theorem A.1 states that p has k∗ − 1
zeros (at least) in C+; accordingly, p has at least k∗ − 1+m ≥ 2k∗ zeros in this case.
Since p has degree 2k∗ − 1, this shows that p must be the zero polynomial in either
case, and hence, all its coefficients are zero, i.e., π = 0. This is a contradiction, which
shows that the null space of B∗ is trivial, and hence, B has full row rank. 
�
Remark A.3 Note thatwe havemade the assumption that y0 = E

[
Y 2

]
> 0. In this case,

the system (A.1) and (5.9) of constraints becomes inconsistent, whenever k∗ ≥ m. To
see this, it remains to establish the inconsistency of the firstm + 1 constraints. We use
the arguments and the notation from the proof of Corollary A.2. For the system of the
first m + 1 constraints, the matrix B of (A.8) has one more row than columns, and its
first m rows have full rank according to Corollary A.2. It follows that the null space
of BT is one-dimensional. Let π ∈ R

m+1 be a nontrivial vector from this null space
and p of (A.2) be the corresponding polynomial of degree 2m − 1. Then, p has m
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zeros λ1, . . . , λm ∈ C
−. Assume now that π0 = 0. Then, p is odd, and hence, it has

m further zeros in C+. This makes 2m zeros, which exceed the degree of p. Hence, if
π0 = 0, then p must be the zero polynomial which gives a contradiction.

Accordingly, B∗π = BTπ = 0, i.e., the null space of B∗ contains a vector π ,
whose first entry is nonzero. But then, the right-hand side of (A.7) cannot belong to
the range space of B, because e1 is not orthogonal to the null space of B∗. This shows
that the system (A.7) is inconsistent, whenever the number of constraints exceeds the
number of free variables. 
�

The final result of this appendix deals with Remark 5.2 and considers the case that
the rational function determined by the AAA algorithm has � ∈ N (distinct) negative
poles.

Theorem A.4 Let Q be the set of parameter vectors a = [α1, . . . , αm]T ∈ C
m which

satisfy (5.4) with the additional constraint that k∗ ≥ �. Then, ψ of (5.6) is strictly
convex over Q.

Proof Without loss of generality let us assume that

λ2 l−1 = μl + i
π

τ
and λ2 l = μl − i

π

τ
, (A.9)

l = 1, . . . , �, are the exponents of the Prony series associated with the negative poles.
Since all poles are assumed to be simple, the (negative) μl are pairwise different.

We rewrite

ψ(a) = ‖b−Ga‖22 with G = [eντλ j ]ν, j ∈ R
2n×m and b = [yν]ν ∈ R

2n .

Then, G has a nontrivial null space, spanned by the vectors e2l − e2l−1, l = 1, . . . , �,
where e j , j = 1, . . . ,m, are the Cartesian basis vectors in C

m . So, if a, a′ ∈ Q are
two solutions of (5.5), then

a − a′ =
�∑

l=1

γl(e2 l − e2 l−1) (A.10)

for certain γl ∈ C. By assumption, both a and a′ satisfy the equality constraints (A.1)
for k = 0, . . . , � − 1, and hence, [γ1, . . . , γ�]T belongs to the null space of

⎡

⎢⎢⎢
⎢
⎣

λ1 − λ1 · · · λ2 l−1 − λ2 l−1

λ31 − λ31 · · · λ32 l−1 − λ32 l−1
...

...

λ2�−1
1 − λ2�−1

1 · · · λ2�−1
2�−1 − λ2�−1

2�−1

⎤

⎥⎥⎥
⎥
⎦

= 2i

⎡

⎢⎢⎢
⎢
⎣

Im λ1 · · · Im λ2�−1

Im λ31 · · · Im λ32�−1
...

...

Im (λ2�−1
1 ) · · · Im (λ2�−1

2�−1)

⎤

⎥⎥⎥
⎥
⎦

.
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Using (A.9), we obtain

Im (λ2k+1
2 l−1) =

(
μ2
l − π2

τ 2

)
Im (λ2k−1

2 l−1) + 2μ
π

τ
Re (λ2k−1

2 l−1) ,

Re (λ2k+1
2 l−1) =

(
μ2
l − π2

τ 2

)
Re (λ2k−1

2 l−1) − 2μ
π

τ
Im (λ2k−1

2 l−1) ,

for every l = 1, . . . , � and every k ≥ 1. It thus follows by induction that there exists
a lower triangular matrix L with nonzero entries on the diagonal such that

⎡

⎢⎢
⎢
⎣

Im λ1 · · · Im λ2�−1

Im λ31 · · · Im λ32�−1
...

...

Im (λ2�−1
1 ) · · · Im (λ2�−1

2�−1)

⎤

⎥⎥
⎥
⎦

= L

⎡

⎢⎢
⎢
⎣

1 · · · 1
μ2
1 · · · μ2

�
...

...

μ
2(�−1)
1 · · · μ

2(�−1)
�

⎤

⎥⎥
⎥
⎦

.

The matrix on the right-hand side is the square Vandermonde matrix of μ2
1, . . . , μ

2
� ,

which is nonsingular because the μ2
l are pairwise different, since all μl are negative.

Therefore, the null space of the matrix on the left-hand side is trivial, and hence, the
coefficients γ1, . . . , γ� are all equal to zero, showing that a = a′ in (A.10). Therefore,
ψ is strictly convex over Q. 
�
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