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Abstract
We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional
functions having only low-dimensional variable interactions. Compactly supported
periodic Chui-Wang wavelets are used for the tensorized hyperbolic wavelet basis on
the torus. With a variable transformation, we are able to transform the approximation
rates and fast algorithms from the torus to other domains. We perform and analyze
scattered data approximation for smooth but arbitrary density functions by using a
least squares method. The corresponding system matrix is sparse due to the compact
support of the wavelets, which leads to a significant acceleration of the matrix vector
multiplication. For non-periodic functions, we propose a new extension method. A
proper choice of the extension parameter together with the piecewise polynomial
Chui-Wang wavelets extends the functions appropriately. In every case, we are able to
bound the approximation error with high probability. Additionally, if the function has
a low effective dimension (i.e., only interactions of a few variables), we qualitatively
determine the variable interactions and omit ANOVA terms with low variance in a
second step in order to decrease the approximation error. This allows us to suggest
an adapted model for the approximation. Numerical results show the efficiency of the
proposed method.
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1 Introduction

The distribution of data points is a key component in machine learning. In many appli-
cations, a target variable has to be predicted from given high-dimensional samples.
We want to reconstruct an underlying function f to give an interpretable approxima-
tion algorithm, which allows a prediction of the target variable for new samples. We
consider the domains d d 0 1 d and also tensor products of these cases.
We consider the setting of reconstructing a d-dimensional function f from
discrete samples on the set of nodes y1 yM , which are distributed to the
continuous density . One main aim is to also deal with an unknown
density. Besides the natural question of finding a good approximation for f , we want
to consider the question of interpretability, i.e., analyzing the importance of the input
variables and variable interactions of the function.

Motivation
The starting point of our considerations is the question of whether it is possible to
transform the good approximation results and the related fast algorithms for periodic
functions on the torus d to the domain . To investigate the scattered data problem
on the torus, we are engaged with the sample set , the corresponding function values
f f x x , and we constructed a recovery operator SI in [26]. This operator
computes a best least squares fit

SI f
k I

ak k (1.1)

in the finite-dimensional subspace spanned by semi-orthogonalwavelets k
d

with indices in the hyperbolic cross type set I . Assuming i.i.d. uniformly samples
d , we showed in [26, Corollary 3.22.]: Letm be the order of vanishingmoments of the

wavelets and the sample size have logarithmic oversampling, i.e., r I log I .
For 1 2 s m, there is a constant C r d s 0 such that for fixed Besov norm
f Bs

2
d 1

f SI f L2
d C r d s

log d 1 s 1 2 s

s
1 2 r

(see Appendix 1 for the definition of the Besov space). Also, in [31], uniformly
i.i.d. samples on the torus in combination with different basis functions perform well,
and there are possibilities for dealing with the curse of dimensionality. The results
in [26] for the periodic case serve as a basis for this paper. In many practical applica-
tions, we have to take the data set as it is and have no uniform samples available. For
that reason, we study here the case where the given sample points are sam-
pled from an arbitrary (but possibly unknown) density y . In Fig. 1, we illustrate
some random two-dimensional samples with respect to . We can not guarantee good
approximation rates and stability if we would use these samples directly.

To this end, we investigate transformations R of the given samples. The main result
of this paper is the transformed approximation operator SI f . Besides the interesting
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results for d d , we use a new extension technique for the non-periodic case
0 1 d . Furthermore, we present a detailed error analysis.

The approach
Our main approach is to transform given samples to the d-dimensional torus
d by R , using the idea of inverse transform sampling: Let F be the cumu-

lative distribution function of a distribution and 0 1 . Then, the random
variable F 1 is distributed according to the distribution . Based on this, we
give possibilities for constructing a transformation in (3.2), which transforms the
samples d to d on the torus. In Fig. 1, we show an illustration of what
our constructed transformation R does with the samples. In order to investigate the
scattered data problem on , we then use the recovery operator SI from (1.1) on the
torus. This operator minimizes the 2-loss function

y

f R 1 y SI f R 1 y
2

by using an iterative LSQR algorithm. To transform the approximation back, we have
to apply the transformation R. We give some explicit densities and the corresponding
transformations in Example 4.3 for d and in Example 4.11 for 0 1 d .

Our procedure coincides with transforming the function f to the function f R 1,
which is a function on the torus. In approximation theory, it is known that the error
decay gains from the smoothness of the function.We will introduce weighted function
spaces of mixed Sobolev smoothness Hm

mix in Definition 4.6 and even for non-
periodic functions in Definition 4.10. For the more general function class of mixed
Besov spaces, we also introduce in Definition 4.9 weighted spaces Bs

2 on .
All our function space definitions rely on the definition of the periodic spaces. The
relevant facts about Sobolev and Besov spaces of mixed smoothness on d have been
collected in the Appendix 1.

Sincewe take the position that we can only learn the functionwherewe have sample
points, our aim is to find an approximation to the function f , which minimizes the L2-
error with respect to the density . Indeed, it shows that for functions in the defined
weighted function spaces Hm

mix or Bs
2 , we receive in Theorem 5.1

the same approximation rates for the L2 -error as in the periodic setting, i.e., we

Fig. 1 Transformation of the samples in the two-dimensional case
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provide that for 1 2 s m, r 1 and logarithmic oversampling r I log I ,
there is a constant C r d s 0 such that for fixed f Bs

2
1

f SXn f R 1 R L2 C r d s
log d 1 s 1 2 s

s
1 2 r

Wavelets have many applications in signal processing. Most commonly, they are
used in compression, edge detection, noise reduction, and other signal enhancements.
The broad practicality of wavelets is mainly due to the localization properties of
wavelets in time and frequency, so that many signals can be sparsely represented.
Hence, the hyperbolic wavelet regression is a reasonable choice for our purposes.

The approximation of non-periodic functions is more challenging than the periodic
setting because of the boundary behavior. For wavelet approximation, one possibility
is to construct boundary wavelets (see [11, 21]).We avoid these complicated construc-
tions by extending the function, similar to Fourier extension [3, 5, 20]. Especially, the
Chui-Wang wavelets provide an opportunity for letting the approximation extend the
function itself, so that we do not have to construct the extension explicitly. We suggest
to choose the transformation with a fixed but small parameter

R y 1
y

0
t dt 1

2

More details are described in Sect. 5.1. Our new extensionmethodwith a properly cho-
sen extension parameter relies on the compact support of the Chui-Wang wavelets.
With this approach, it is possible in Corollary 5.7 to end with nearly the same approx-
imation rate as in the periodic setting.

In some applications, we usually do not know the underlying density , and we
only get the samples . Therefore, we first estimate the underlying density by ˚ and
construct the slightly different transformation R̊ in Sect. 6. Using an approximation
operator on d is also in this case the core idea. Naturally, the approximation error
depends on the quality of the density estimation. But in Theorem 6.1, we state that
we expect similar approximation results as in the case where we know the density in
advance. Numerical experiments confirm this result.

For dealing with the curse of dimensionality, we introduce the analysis of variance
(ANOVA) decomposition (see [6, 18, 27], [29, Section 3.1.6]), which decomposes the
d-variate function into 2d ANOVA terms fu, i.e.,

f y
u 1 d

fu yu

Each term corresponding to u only depends on variables yi , where i u. The number
of these variables is called order of the ANOVA term. However, in practical appli-
cations with high-dimensional functions, often, only the ANOVA terms of low order
play a role in order to describe the function well (see [6, 12, 25, 32, 43]). For a rigorous
mathematical treatment of this observation, we work with functions of low effective
dimension, which allow for a truncation of the hyperbolic wavelet regression. The
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starting point of our work is [26], where the usage of the ANOVA decomposition was
also beneficial to approximate periodic high-dimensional functions.

Mathematical modelling of complex systems often requires sensitivity analysis to
determine how an output variable of interest is influenced by individual or subsets of
input variables. A global sensitivity analysis constitutes the study of how the output
uncertainty from a mathematical model is divvied up into distinct sources of input
variation in the model. We transform the classical sensitivity analysis from the torus
to a weighted function space. The transformation helps to tune the hyperbolic wavelet
regression. Our main suggestion is Algorithm 1, which gives a tool for approximating
high-dimensional functions fromgiven arbitrary distributed samples from independent
input variables. Furthermore, it is possible to interpret the results, since we get a
knowledge about which input variables and variable interactions play a role and which
do not.

One main advantage of our transformation approach is that we can deal with dif-
ferent domains in every variable direction. In applications, it is often the case that we
have a mixture of periodic, non-periodic, and real-valued input variables on the larger
domain . Our proposed Algorithm 1 is also applicable in these cases. Furthermore,
we can use information of the densities, i.e., we handle every input variable separately,
which enables a strategy to use density information where it is available. For a typical
example, see Sect. 7.2.

Related work and other approaches
We will heavily use the results of [26], which gives approximation bounds and fast
algorithms for the periodic setting on d . In this paper, we want to generalize this
to a more general (tensor product) domain . Clearly, the main idea is the inverse
transform sampling. But beyond that, we study function spaces on , which provide
enough smoothness of the transformed function to fulfill the assumptions for the
periodic approximation. Further, new important aspects in this paper are the extension
of non-periodic functions, similar to Fourier extension and the idea of combining
density estimation and the transformation.

Anice introductionwith a detailed descriptionof the challenges in high-dimensional
approximation is given in the book [1]. The change of variables was successfully used
in many applications.

In [22], the authors construct a least squares approximationmethod for the recovery
of functions from a reproducing kernel Hilbert space on d . The key is to
construct the orthonormal basis k

N
k 1 in L2 , which is in general not accessible

for arbitrary or unknown densities . Also, the considerations [8, 9] are based on the
knowledge of the basis k .With our approach, we construct the concatenated functions

k y k I
per
k R y k I

which form a semi-orthogonal basis in L2 . It is also possible to use other basis
functions on d instead of the wavelet functions, but in any case, the benefit is that we
have the basis in L2 available, even for a very general class of density functions.
Furthermore, we are able to transform the fast algorithms from d to the domain . A
recent improvement was done in [13], where the authors used a weighted least squares
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algorithm with weights related to the Christoffel function and reduced the sampling
budget by canceling the logarithmic factor. But they also assume that an orthogonal
basis is known. Furthermore, in contrast to this literature, we give in Theorem 5.1
and Corollary 5.7 a concentration inequality for the approximation error based on the
probabilistic Bernstein inequality in comparison to estimating the expected value.

For the examples of the Chebyshev density, which is a special case of our
examples, [22, Section 10.3], [13] propose the Chebyshev polynomials k y
cos k arccos y as basis in L2 1 1 d where the inner function coincides with
our transformation. The case that the samples are normally distributed was considered
in [33]. This approach coincides with our transformation. In Sect. 4.2, we give more
details about the connection of our weighted function spaces to those in the literature.
We study the case of fixed given samples . In contrast to that, the task of choosing
sampling points was solved successfully in [28] transforming rank-1 lattices from the
torus to d or the cube 0 1 d .

Outline
This paper is organized as follows. In Sect. 2, we recall an approximation operator for
periodic functions, which is based on the hyperbolic wavelet regression and the well-
known ANOVA decomposition of a function on the d-dimensional torus. Section3
describes the main idea of our approach, namely how we construct a transformation
R. Section4 is dedicated to the introduction of weighted function spaces. We study the
spaces of mixed dominating Sobolev regularity in Sect. 4.1, mixed dominating Besov
regularity in Sect. 4.3, and end with defining similar spaces for non-periodic functions
in Sect. 4.4.
We study in this paper two settings: First, in Sect. 5, we assume that the underlying
density is known. There, we show in Theorems 5.1 and Corollary 5.7 that we transfer
the approximation rates from the torus to our setting on . Second, we investigate in
Sect. 6 the setting where we are given only the samples and no density function .
Also, in this case, we are able to transfer the approximation results (see Theorem 6.1).
Finally, Sect. 7 is dedicated to the presentation of Algorithm 1, which gives an inter-
pretable high-dimensional approximation. Our theoretical results are supplemented
by some numerical experiments in Sect. 7.2 that demonstrate the practical efficacy of
our algorithm.

2 Preliminaries

Let us introduce the general setting and notation. Let f be a function
on a d-dimensional domain . Given are the function values f f y y at
random points with M . These samples are i.i.d. according to the density

, i.e., y d y 1. We will assume in this paper that y 0, since
we otherwise omit parts of where the density is equal to zero. Furthermore, we
assume that the density is continuous, sufficiently smooth, and integrable. We aim to
approximate the function f .
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Notation
Let us introduce the weighted L p-norm,

f L p

f y p y d y
1 p

if p

sup
y

f y if p

In the casewhere the density is the uniformdistribution,we use the usual notations
f L2 and f L . We focus on the case p 2, since in this case, we have the

scalar product

f g f y g y y d y

The multi-dimensional Fourier coefficients on the torus are defined by

ck f
d
f x e 2 i k x dx (2.1)

This allows to write every function f L2
d as a Fourier series

f x
k d

ck f e2 i k x

In this paper, we denote by d the set 1 d . We work with a transformation
idea, so we will always denote the d-dimensional input variable of the function f
in by y and the transformed values by x d . The subset vector is denoted by
yu yi i u for a subset u d . The complement of those subsets is always with
respect to d , i.e., uc d u. For an index set u d , we define the order u as
the number of elements in u.
We will study the cases where

dą

i 1
i i 0 1 for all i d

Note that a general interval a b with b a can be transferred to the unit interval
via y y a

b a . Similar to the vector notation, also, a subset of the domain directions
is denoted by u i u i for u d .

2.1 Hyperbolic wavelet regression on the torus

In this section, we introduce an approximation operator for periodic functions. For a
more detailed description, see [26].We introduce the notation j k x 2 j 2 2 j x
k , for j 0 k and a wavelet function . We use the periodization

per
j k x j k x
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where per
1 0 x denotes the scalar function as well as the tensorization

per
j k x

d

i 1

per
ji ki

xi

where j ji d
i 1 ji 1 0 2 and k ki d

i 1 are multi-indices k j .
Hence, we define the sets

j

dą

i 1

0 1 2 ji 1 if ji 0

0 if ji 1

Furthermore, we introduce the parameter n, which always denotes the maximal
level of the used wavelets, i.e., n j d j 1 j 1 n . For notation
shortening, we introduce the index set

In j k j n k j

To construct an approximation operator which takes given samples , we solve the
overdetermined system Aa f , where

A per
j k x x j k In

M N (2.2)

is the hyperbolic wavelet matrix with M N . We will always denote the number of
parameters, i.e., the number of columns of our wavelet matrix by N with N In
and the number of samples by M . A detailed connection between the maximal
wavelet level n and the number of wavelet functions N can be found in [26, Lemma
3.11].We compute the coefficients a by a A A 1 A f Wewill do this iteratively
by minimizing the norm Aa f 2. This gives us the wavelet coefficients of an
approximation Sn f to f , i.e.,

Sn f
j n k j

a j k
per
j k (2.3)

A further analysis of this operator canbe found in [26,Corollary 3.22]. The estimates
there are valid for general wavelets, which are compactly supported, i.e.,

supp 0 2m 1

have vanishing moments of order m, i.e.,

x x dx 0 0 m 1

and the periodized wavelets form a Riesz-Basis for every index j with

m

2 j 1

k 0

d j k
2

2 j 1

k 0

d j k
per
j k x

2

L2

m

2 j 1

k 0

d j k
2 (2.4)
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Because of this semi-orthogonality, we have to use the dual basis per
j k , such that

every function f L2
d can be decomposed as

f
j 1 k j

f per
j k

per
j k (2.5)

Furthermore, this decomposition gives us a connection between the wavelet coef-
ficients,

f per
j k

k j

f per
j k

per
j k

per
j k

In [26], we also introduced and analyzed the projection operator onto the wavelet
space,

Pn f
j n k j

f per
j k

per
j k (2.6)

The following estimates are a short summary of the results from [26] for periodic
functions. For the definition of the function spaces, see Appendix 1.

f Pn f L2
d 2 mnn d 1 2 f Hm

mix
d (2.7)

f Pn f L d 2 n m 1 2 n d 1 f Hm
mix

d (2.8)

f Sn f 2
L2

d 2 2nmnd 1 f 2
Hm
mix

d 1 2M r (2.9)

f Sn f 2
L2

d 2 2nsnd 1 f 2
Bs
2

d 1 2M r 1
2 s m

(2.10)

where the last result holds for some r 1 if we have M rN log N and uniformly
i.i.d. samples . We will focus our numerical experiments on Chui-Wang-wavelets,
where wewill always denote bym the order of the wavelets, which denotes the number
of vanishing moments of the wavelets.

2.2 The ANOVA decomposition

The curse of dimensionality comes into play whenever one deals with high-
dimensional functions. The aim of sensitivity analysis is to describe the structure
of multivariate periodic functions f and to analyze the influence of each variable. A
frequently used concept is the following [6, 18, 27].

Definition 2.1 Let f be in L2
d . For a subset u d , we define the ANOVA

(analysis of variance) terms by

fu xu
d u

f x dxuc
v u

fv xv (2.11)
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The ANOVA decomposition of a function f d is then given by

f x f
d

i 1

f i xi

d

i j 1

f i j xi x j f d x
u d

fu xu

(2.12)

The terms (2.11) are the unique decomposition (2.12), such that they have mean
zero and are pairwise orthogonal. Additionally, the decomposition (2.5) of a function
f L2

d in terms of wavelets can be written in ANOVA terms, i.e.,

fu xu
j k I u

a j k
per
j k x I u j k j uc 1 k j

The same connection holds true for a truncated wavelet decomposition with j 1
n. That means, all hyperbolic indices j k In can be decomposed in a disjoint
union of index sets belonging to one ANOVA term with index u d , i.e.,

In
u d

I un I un j k In j uc 1 (2.13)

This connection is illustrated in Fig. 2 for d 3 and n 3. The crucial property
is that for an index u, the corresponding functions per

j k have to be constant in all
directions i u, i.e., j uc 1. For further details, see [26, Section 4].

To get a notion of the importance of single terms compared to the entire function,
we define the variance of a function by

2 f
d

f x
d
f x dx

2

dx
d

f x 2 dx f 2

The idea of the ANOVA decomposition is to analyze which combinations of the
input variables x j play a role for the approximation of f . The variances of the ANOVA
terms indicate their importance; hence, we do the following. For subsets u d with
u , the global sensitivity indices (GSI) [39] are defined as

S u f
2 fu
2 f

0 1 (2.14)

Fig. 2 Illustration of the ANOVA indices of a three-dimensional function. Every cuboid belongs to one
index j . The size represents the number of translation indices k j , which gives this dyadic structure.
All indices in I3 are decomposed into indices belonging to the ANOVA terms with index u 3
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where the variance of the ANOVA term fu is

2 fu
u

fu xu 2 dxu

since themean of the ANOVA terms is zero. The L2
d -orthogonality of the ANOVA

terms implies that the variance of f x for L2
d -functions f can be decomposed

as
2 f

u d
u

2 fu

This implies

u d
u

S u f 1

The global sensitivity index S u f represents the proportion of the variance of f x
explained by the interaction between the variables indexed by u. These indices can
also be computed using only the wavelet coefficients of a function with the connec-
tion (2.13).

3 Transformations of functions to the torus

In this chapter, we introduce our main approach: the transformation procedure. We
transform a function defined on some domain to the torus, use the well-studied
approximation operator for periodic functions, and transform the result back to a
function defined on . The univariate setting

The basis for our transformation is the cumulative distribution function F
0 1 , which fulfills

d

dy
F y y (3.1)

Subsequently, we identify 0 1 with the torus by the bijectivemapping y y 1
2 .

Similarly to the cumulative distribution function, we define the transformation

R 1
2

1
2 R y

y

1 2

t dt 1
2 if

y

t dt 1
2 if

1
y

0
t dt 1

2 0 1 if 0 1

(3.2)

This transformation R gives us a possibility to transfer the function f to a function
f R 1, which has its domain on the torus. Since we require that the density is
positive, the cumulative distribution function is strictly monotone increasing and has
a well-defined inverse function R 1. In the case of a non-periodic function, we have
to use an extension with parameter , since otherwise the transformed function is
not even continuous. Our transformation R transforms the function f from 0 1 to
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1 2 1 2 , which means we extend the function on the boundary 1 2 1 2

to receive a periodic function f with

f 1 2 1 2
f R 1

We give more details about this extension in Sect. 5.1. The connection between the
functions is illustrated here:

f

R

f R 1 or f

R 1

The transformation R has the property that

d

dy
R y

y if

1 y if 0 1

A variable substitution shows for the important relation

f 2
L2

f y 2 y dy f R 1 x 2 R 1 x R 1 x dx

f R 1 x 2 R 1 x 1
R R 1 x

dx f R 1 x 2 dx f R 1 2
L2

(3.3)

In the case where 0 1 , we have

f 2
L2 0 1

1

0
f y 2 y dy

1

1

1 2

1 2

f R 1 x 2 dx

1

1
f R 1 2

L2 1 2 1 2

This relation between the L2-norms motivates to transform the samples to
the transformed samples R and then use an approximation operator on . In
this paper, we use the operator Sn , defined in (2.3). But in general, the transforma-
tion can be applied to any approximation operator on . At the end, we receive the
approximation

Sn f R 1 R (3.4)

which takes the given sample points and gives back a function defined on .

In fact, we change the function and approximate the transformed function f R 1,
which is a function on . For the approximation operator on , it is known that the
smoother the function, the better the approximation. Indeed, it is not clear whether the
transformed function f R 1 inherits the smoothness of the function f itself, if the
density is smooth enough. So far, we do not know which regularity the transformed
function f R 1 has. In the following, we will show that if we request more regularity
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from the density , the regularity in the Sobolev and Besov norm is preserved under
the transformation, i.e., our aim is to introduce suitable weighted norms on , namely
f Hs and f Bs

2
, such that

f R 1
Hs f Hs (3.5)

f R 1
Bs
2

f Bs
2

(3.6)

The multivariate setting
In the multivariate setting, we consider the domain d

i 1 i with i

0 1 for i d . We require that the input variables yi are independent,
which means that the density y is a product measure,

y
d

i 1

i yi (3.7)

We build up a d-dimensional transformation R d from one-dimensional
transformations (3.2) by

R y R1 y1 Rd yd with
d

dyi
Ri yi

i yi if i

1 i yi if i 0 1
(3.8)

From time to time, we use the notation Ru yu Ri yi i u, which is similar to
the notation for vectors with index u. The inverse transformation is given by

R 1 x R 1
1 x1 R 1

d xd with
d

dx j
R 1
i xi i j

1

i R 1
i xi

if i

1
1 i R 1

i xi
if i 0 1

(3.9)

The relation that we will use through this paper can be seen in this illustration:

samples: y x

domain: d

R

R 1

f

R

f R 1 or f

R 1

By the observation that the Jacobi matrix

D R 1 x i j
x j

R 1
i x i j

1

i R 1
i xi

if i

1
1 i R 1

i xi
if i 0 1
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is a diagonal matrix because of the product structure (3.8) of our transformation, it
follows that, similar as in the univariate case (3.3),

f 2
L2

f y 2 y d y
d

f R 1 x 2 R 1 x det D R 1 x dx

d
f R 1 x 2 dx

1

1 d
f R 1 2

L2
d (3.10)

where d i d i 0 1 is the dimension of the non-periodic variables of
f . The norm equality (3.10) ensures that the transformation R preserves the L2-norm
of the function f , up to some factor for the non-periodic setting.

One main advantage of our transformation approach is that we have in addition a
semi-orthogonal system on with respect to , i.e.,

per
j k R 1 per

j k
R 1

j j
per
j k

per
j k

The next chapter is dedicated to the introduction of weighted function spaces on ,
such that also the smoothness of the function is inherited, i.e., we want to generalize
the equations (3.5) and (3.6) to the function spaces of dominating mixed derivatives.

3.1 The transformationRmeets the ANOVA decomposition

For an L2-function on the domain d
i 1 i with i 0 1 for i

1 d with respect to the density , it is possible to define a generalized ANOVA
decomposition. We assume in this paper that the input variables yi are independent,
which means that y has a product structure (3.7). Hence, for an ANOVA index

u 1 d , we define the marginal distributions

u u u yu
i u

i yi

Then, the ANOVA decomposition with respect to the measure is defined by

f y
u d

fu yu (3.11)

where the ANOVA terms are expressed, analogously to (2.11) by a recursive formula

f f y y d y

fu yu
uc

f y uc yuc d yuc
v u

fv yv (3.12)

see also [14, 25, 34] for the case in d . Our main idea is to transform a function f from
to the torus d . Using Definition 2.1, we have a decomposition of periodic functions
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on the torus, i.e., for the function f R 1. If we transform this decomposition back
to , we receive the decomposition (3.11). This can be seen by the following.

Lemma 3.1 Let i for all i d . The ANOVA terms defined in (3.12) are the
same as the transformed terms of the periodic function f R 1 with the transformation
defined in (3.2), i.e.,

f R 1
u Ru yu fu yu

Proof We defined the ANOVA terms on as well as the terms on d recursively
(see (2.11) and (3.11)). Hence, we show by induction over the order u with the help
of the substitution R y x:

f R 1

d
f R 1 x dx f y y d y f

f R 1
u Ru yu f R 1

u xu
uc

f R 1 x dxuc
v u

f R 1
v xv

uc

f y uc yuc d yuc
v u

f R 1
v Ru yv

uc

f y uc yuc d yuc
v u

fv yv fu yu

This gives the assertion.

The decomposition (3.11) of f L2 preserves the orthogonality of the
ANOVA terms, since a simple substitution similar to (3.10) shows that

fu fv fu yu fv yv y d y
d

f R 1
u xu f R 1

v xu dx

0 if v u

f R 1
u

2
L2

d if v u

Hence, the variance of the ANOVA term of the transformed function f R 1
u

is equal to the variance of fu with respect to the density ,

2 fu
u

fu yu
2

i u

i yi d yu (3.13)

Analogously to the unweighted case (2.14), we define the global sensitivity indices
for functions defined on by

S u f
2 fu
2 f

0 1 (3.14)

Remark 3.2 (Dependent input variables) Note that there is no natural way to decom-
pose f into ANOVA terms for dependent input variables. Consider the extremal case
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where yi y j for i j : It is not possible to say which proportion of the variance
belongs to fi or f j . Problems arise when the input variables are correlated. If we inte-
grate over some distribution, when in reality features are dependent, we create a new
data set that deviates from the joint distribution and extrapolates to unlikely combina-
tions of features, which can indicate unwanted variances for feature decompositions.
Thus, there has to be a precomputation step to avoid such dependencies. It would be
possible to preprocess the given data by a PCA and a linear data transformation. Fur-
thermore, there are approaches to generalize the ANOVA decomposition to dependent
variables (see, for example, [19, 35]). The generalized ANOVA decomposition is very
difficult to estimate, and the generalization of our approach to this setting is behind
the scope of our paper and provides an opportunity for further research.

4 Weighted function spaces

In this chapter, we introduceweighted function spaces on , which generalize smooth-
ness from periodic functions to functions defined on using the transformation R. The
general idea is to study the smoothness of the concatenated function f R 1, since in
the periodic setting we know from [26] the higher the smoothness, the better approxi-
mation results using hyperbolic wavelet regression. On the torus, there are results for
the Sobolev and Besov regularity, which is based on the wavelet coefficient decay in
these spaces. For that reason, we study these two cases, in which functions on are
transformed to a smooth function on d . In Sect. 4.1, we study the Sobolev norm (A.1)
or (A.2), which requests the norm inequality (3.5) to preserve smoothness. For that
reason, we introduce in Definition 4.6 a weighted Sobolev norm on , which can be
generalized to fractional smoothness by (4.10). In Sect. 4.2, we present the relation to
function spaces already known from the literature. To preserve Besov regularity with
the transformation R, we use in Sect. 4.3 the characterization (A.3) and we introduce
the weighted Besov spaces in Definition 4.9, which fulfill (3.6).
First, we will study in the following the case where i for all i d .
In Sect. 4.4, we then show that the non-periodic setting is similar, up to some slight
modifications.

4.1 Weighted Sobolev spaces

For measuring the smoothness of the transformed function f R 1, we have to cal-
culate the derivatives of the concatenation f R 1 (see Definition (A.1)). We use the
transformation (3.2) and consider in this subsection only the case i . The
slight modification for non-periodic functions, i.e., 0 is described in Sect. 4.4.

The univariate setting
We use Faá di Bruno’s formula, which generalizes the chain rule for 1 to

d

dx
f R 1 x

i 1

f i y B i R 1 1 x R 1 2 x R 1 i 1 x
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where B i are the Bell polynomials

B i x1 x i 1
j1 j2 j i 1

i 1

k 1

xk
k

jk

where the sum is taken over all sequences j1 j2 j i 1 of non-negative integers,
such that these two conditions are satisfied:

i 1

k 1

jk i
i 1

k 1

k jk

We use the substitution R x y. Note that for the differentials of the inverse
transformation, R 1 holds

R 1 1 x
1

y
R 1 2 x

1 y
3 y

R 1 3 x
2 y
4 y

3 1 y 2

5 y

d

dx

1

y

k

k
1

y

k 1 1
2 y

1 y

y
k

1

y

k 2
1 y

Thus, every derivative of R 1 k x can be expressed by a term containing only
derivatives of y up to order k 1 as well as power of 1

y up to order 2k 1. This
allows us to shorten the notation by

B i y B i R 1 1 x R 1 2 x R 1 i 1 x (4.1)

With this notation, Faá di Bruno’s formula reads as

d

dx
f R 1 x

i 1

B i y f i y

The Bell polynomial B i can be expressed in terms of derivatives of y up to order
1 and powers of up to order 4 2i 1. We have for small indices,

B1 1 y 1
y

B2 1 y y
3 y

B2 2 y 1
2 y

(4.2)

B3 1 y
2 y
4 y

3 y 2

5 y
B3 2 y 3 y

4 y
B3 3 y 1

3 y

The L2 -norm of the derivatives of f R 1 can thus be expressed as

d

dx
f R 1 x

2

L2 k 1

B k y Dk f y

2

dx
k 1

B k y Dk f y
2

y dy

k 1

Dk f y
2

L2 B k y 2 y
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For the Sobolev norm, we have to sum over and interchange the sums, which
yields

f R 1 2
Hm f 2

L2

m

1

d

dx
f R 1 x

2

L2

f 2
L2

m

1 k 1

Dk f y
2

L2 B k y 2 y

f 2
L2

m

k 1

m

k

Dk f y
2

L2 B k y 2 y

This motivates us to generalize the Sobolev norm to functions defined on by the
following definition.

Definition 4.1 For m , we define the function space

Hm f f Hm

where the norm is defined by

f 2
Hm

m

k 0

Dk f
2

L2 m k
(4.3)

and the density m k is defined by

m k y
m

k B k y 2 y if 1 k m

y if k 0
(4.4)

Note that we have for m 2 the useful recursion formula,

m k y m 1 k y Bm k y 2 y

We state the previous definition for the cases 1 m 3 explicitly:

f 2
H1 f 2

L2
f 2

L2 1

f 2
H2 f 2

L2
f 2

L2 1 2 5 f 2
L2 1 3

f 2
H3 f 2

L2
f 2

L2 1 2 5 2 7 6 2 8 9 4 9

f 2
L2 1 3 9 2 7 f 2

L2 1 5

This can also be interpreted as follows: the function f can not have a large L2-norm
of its derivatives up to orderm in areas where is small. One can not expect to capture
such functions, since where the density is low, we can not approximate derivatives
of the function f well. Note that only in special cases, where the derivatives of the
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density and the density itself are bounded from below and above, this defined norm
is equivalent to a norm defined using the derivatives of a function, weighted with the
density .

Lemma 4.2 Let m be positive and the density fulfill 0 c1 i
L

c2 for i 0 m 1. Then, the norm in (4.3) is equivalent to the norm

f Hm

m

k 0

Dk f
L2

Proof Since every derivative DkR 1 can be expressed in terms of derivatives of up
to order k 1 and we also assume that itself is bounded from above and below, the
terms m k y can be bounded by

0 C y m k y C y

with some constants 0 C C . This yields the assertion.

Example 4.3 We give three examples for distributions on . We plotted the
density function, the transformation R, and the densities m k y from (4.4) in Figs. 3,
4, and 5.

i) Standard normal distribution on
The density

N y 1
2

e y2 2 (4.5)

is the standardnormal distribution. Because of this very smooth density,we expect
that this transformation passes the smoothness of f to f R 1. The corresponding
transformation is

R y
1

2
erf

y

2
where erf y

2

y
e t2 dt

ii) Cauchy distribution on

Fig. 3 The standard normal distribution N on
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Fig. 4 The Cauchy distribution C on

The density

C y
1

1 y2
(4.6)

is a Cauchy distribution. The corresponding transformation is

R y
1
arctan y

iii) Laplace distribution
The density

L y
1

8
e

y 2
4 (4.7)

is a Laplace distribution, and the corresponding transformation is

R y
1

2
sgn y 2 1 e

y 2
4

So far, we characterized for natural numbers m function spaces where the trans-
formation R preserves the smoothness. The definition of the Sobolev norm using the
decay of the Fourier coefficients in (A.2) allows us to study functions of fractional
smoothness. Hence, we define fractional smoothness for functions defined on .

Definition 4.4 Let s 0. Then, we define

Hs f f Hs

Fig. 5 The Laplace distribution L on
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where the norm is defined by

f 2
Hs

k

ck f 2 1 k 2 s

with the Fourier coefficients ck f of the transformed function ck f ck f R 1

and the Fourier coefficients for periodic functions are defined in (2.1).

Remark 4.5 The norm in the previous definition is for m s 0 equivalent to the
norm from Definition 4.1, since the terms m k y are chosen such that

m

k 1

Dk f R 1 2
L2

m

k 1

Dk f
2

L2 m k

because of the norm equality of the norms (A.1) and (A.2), see [24].

The multivariate setting
The theory from the one-dimensional case can be transferred to the d-dimensional
setting. Again, we have to use (A.1) and have to estimate norms of derivatives of the
transformed function f R 1. Using the equations (3.9), we have that

Dα f R 1 x
α

k 1

Bα k y Dk f y (4.8)

where we define the multivariate analogon to (4.1) by

Bα k y
d

i 1

B i ki yki (4.9)

This motivates to generalize Definition 4.1 to multivariate Sobolev spaces of mixed
dominating smoothness by

Definition 4.6 For m and i , we define the function space

Hm
mix f f Hm

mix

where the norm is defined by

f 2
Hm
mix

0 k m

Dk f y
2

L2 m k

and the density m k y is defined by

m k y
d

i 1

m ki yki

where the one-dimensional functions m ki are defined in (4.4).
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This Hm
mix -norm is equivalent to a norm definition using the decay of the

Fourier coefficients of the transformed function ck f R 1 like in (A.2), which can
be generalized to the case of fractional smoothness by

Hs
mix f f Hs

mix
(4.10)

where the norm is defined by

f 2
Hs
mix

k d

ck f 2
d

i 1

1 ki
2 s (4.11)

The function spaces Hs
mix are defined such that the transformed function

f R 1 inherits the smoothness of the function f , i.e.,

f Hs
mix

f R 1
Hs
mix

d (4.12)

4.2 Weighted function spaces in the literature

There is a huge literature aboutweighted function spaces.We restrict ourselves to a few
references closely related to our approach. Sobolev norms as defined in Definition 4.1,
where the norms of the derivatives are measured with respect to a different density
are also considered in [14] in the case m 1. For the one-dimensional case on

, the authors showed that the norms f 2 f 2
L2

1 D1 f 2
L2

and f 2 f y y dy 2 1 D1 f 2
L2

are equivalent under certain
conditions on the density . We are in the special case where y 1 y and
meet the conditions in our examples. The authors also showed a norm equivalence for
multivariate functions.
Another example ofweighted norms is [30],where the authorsweight the derivatives of
functions with some exponential term in order to integrate functions on numerically.

In [40], several weighted function spaces were introduced. On d , the authors
defined the weighted counterpart to the classical Sobolev spaces by introducing a
weight function for weighting all derivatives of the function f similarly, i.e., in our
notation

f Wm
2

d

α 1 m

Dα f 2
L2

d 2

1 2

An admissible weight function has the following properties (see [40, Definition
6.1]).

Definition 4.7 The class Wd of admissible weight functions is the collection of all
positive functions C d with the following properties:

i) For all γ d
0 , there is a positive constant cγ with

Dγ y cγ y for all y d (4.13)
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i) There are two constants c 0 and 0 such that

0 y1 c y2 1 y1 y2
2

2

for all y1
d y2

d

We have the following connection between these weighted spacesWm
2

d and
the spaces Hm d defined in this paper.

Theorem 4.8 Let m , Wd be an admissible weight function with y
for all y d . Then

Wm
2

d m 1 2 Hm d

Proof We begin with the one-dimensional case. First, we show that for the Bell poly-
nomials defined in (4.1), there holds

B k y y

by induction over . The condition (4.13) of an admissible weight function and the
examples (4.2) show that this is true for 3. The Bell polynomials can be described
recursively by [4]

B k y
k 1

j 1

1

j 1
B 1 k 1 R 1 1 x R 1 2 x R 1 j k 2 x R 1 j R y

(4.14)

The derivatives of R 1 can be bounded by

R 1 j R y
1

y
for j 1 (4.15)

since R 1 1 R y 1
y and inductively every further derivative (of the sum of

several terms which are fractions of polynomials of derivatives of and a power of
in the denominator) either increases the power of in the denominator while adding
a in the nominator or just increases the derivatives of (but not the degree of the
polynomial) in the nominator. The condition (4.13) shows than (4.15), which gives by
induction and using (4.14) the result (4.15). This again gives us that

m k y 2 1

y 2m 1

which is also true in case where m 0 because of the condition that y . The
choice m 1 2 Wd gives then

Dk f L2
d 2 Dk f L2

d
m k

for 0 k m. The multivariate case follows from the fact that is assumed to be
a product density, such that the weight is also a product weight, since the densities
m k y , defined in (4.11), are also products of the one-dimensional functions.
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Note that, for instance, the constant function is in all Hm d , but not in
Wm d m 1 2 , since limx x 0. The Cauchy distribution (4.6) belongs
to the set of admissible weight functions. It is also possible to extend this theory of
weighted function spaces to other weight functions, for instance, exponential weights.
Then, one has to change the definition of admissible weights (see [40, Remark 6.4]),
but the connection to our function spaces via Theorem 4.8 is nevertheless possible.

4.3 Weighted Besov spaces

So far, we studied the smoothness of the transformed function f R in Sobolev
spaces with dominating mixed derivatives. The advantage of Besov-Nikolskij spaces
compared to the Sobolev spaces is that they are a muchmore general tool in describing
the smoothness properties of functions.
Be aware that we will use in this chapter the indices j and k not as wavelet indices,
but k as index of the Fourier coefficients and j as index of dyadic blocks in which we
decompose the indices k.
We use the Fourier analytic characterization of the spaces (A.3). Therefore, we intro-
duce the dyadic blocks

J j
k 2 j 1 k 2 j if j 1

0 if j 0

For j d
0 , we define

J j J j1 J jd

if all components belong to 0. Using these dyadic blocks, we decompose the Fourier
series of the function f into

f

j d
0

f j x with f j x
k J j

ck f e2 i k x (4.16)

Furthermore, we introduce the Fourier coefficients for functions defined on , using
the Fourier coefficients of the transformed function f R 1 from (2.1) by

ck f
d

f R 1 x e 2 i k x dx f y e 2 i k R y y d y

Therefore,
f y

k d

ck f e2 i R y k

This yields immediately by (3.10).

k d

ck f 2 f 2
L2
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For the Definition in (A.3), we have to split the periodic function f R 1 in dyadic
blocks belonging to the indices j . For a fixed index j d

0 , we define u i
d ji 0 . Similar to the decomposition with wavelet functions, one can describe
a connection of Fourier coefficients and ANOVA terms (see [31]) for a function g
L2

d

ck gu 0 supp k i d ki 0 u

and
ck g cku gsupp k (4.17)

The splitting of the function f R 1 in dyadic blocks j 0 gives for

α d
0 suppα u

i u

i m

using ck g 1
k ck g and (4.8) that

f R 1
j

2
L2

d

k J j

ck f R 1 2 (4.17)

k J j

cku f R 1
u

2

k J j

1

i u ki 2 i
cku

dαu

dxαu
f R 1

u

2

(4.8)

k J j

1

i u ki 2 i
cku

αu

β 1

Bαu β yu Dβ fu yu

2

αu

β 1 k J j

1

i u ki 2 i
Bαu β R 1

u xu Dβ f R 1
u xu e 2 i xu ku dxu

2

αu

β 1 k J j

1

i u ki 2 i
Bαu β yu Dβ fu yu e 2 i Ru yu k

u yu d yu
2

αu

β 1 k J j

1

i u ki 2 i
c u
ku

Bαu β yu Dβ fu yu
2

where we used the notation from (4.9) and u . In the special case j 0, we
have k 0 and

f R 1
j

2
L2

d
d
f R 1 x dx f

Therefore, we define a Besov norm for functions defined on by

Definition 4.9 Let s 1 2 and m s . Then, we define

f 2
Bs
2

max f sup
j d

j 0

22 j 1s sup
αu u

αu m

sup
1 β αu k J j

1

i u ki 2 i
c u
ku

Bαu β yu Dβ fu yu
2
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This definition yields the estimate

f R 1
Bs
2

d f Bs
2

(4.18)

In contrast to the norm f R 1
Bs
2

d , which deals with the transformed func-

tion on d , the norm defined in Definition 4.9 considers products of the function f
with terms consisting of powers and derivatives of the density .

4.4 A note on non-periodic functions

So far, we studied function spaces for the case i for all i d . A key
difficulty in the approximation on 0 1 is the non-periodicity of the function, i.e.,
the behavior at the boundary. No matter how the density looks like, a transformation
which equals the cumulative distribution function can not ensure that the function
f R 1 is periodic. Therefore, we introduced in the transformation (3.2) the extension
parameter . We denote the extension of the function f by f with f 1 2 1 2

f R 1. The L2-norm of the function f itself behaves like the L2-norm of the
transformation up to some factor (see (3.10)). The same is true for the derivatives. For

with m, we have

f 2
L2 0 1 D f 2

L2 1 2 1 2

1

1
k 1

Dk f 2
L2 0 1 B k y 2 y

D f 2
L2 1 2 1 2

k 1

Dk f 2

L2 0 1 B k y 2 y
1

(4.19)

Hence, for every non-periodic direction, we get the additional factor 1 . This
gives us the reasonable assumption that extension f at the boundary has to have
a small Sobolev norm. For more details, see Sect. 5.1. Since the factor 1 is
a constant for fixed , we define for the sake of simplicity for function on 0 1 d

the weighted function spaces in the same manner as for periodic functions with the
following definition.

Definition 4.10 For m , let the extension of f R 1 to the boundary be in the
Sobolev space Hm

mix
d 1 2 1 2

d . Then, we define the function space

Hm
mix 0 1 d f 0 1 d f Hm

mix 0 1 d

where the norm is defined by

f 2
Hm
mix 0 1 d

0 k m

Dk f y
2

L2 0 1 d
m k
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and the density m k y is defined by

m k y
d

i 1

m ki yki

where the one-dimensional functions m ki are defined in (4.4).

Of course, this definition can be mixed with Definition 4.6 for a mixed function,
which has different domains i for different i d . Analogously, the function spaces
for fractional smoothness s and for mixed Besov spaces are defined like in the periodic
case.

If the function f has certain smoothness m on the interval 0 1 , the transformed
function inherits the smoothness of this function, as in the cases for periodic functions.
This means, if the Sobolev norm of the extended function f at boundary is finite, we
have

f Hs
mix 0 1 d f R 1 Hs

mix
1
2

1
2

d f Hs
mix

d

Let us finish this excursion to the non-periodic setting with an example for the
distribution .

Example 4.11 Beta distribution on the interval 0 1
Let 0 1 be the unit interval. For 0, we define by

B y
2

2 y
1 1 y 1 (4.20)

the beta distribution with the shape parameter , where be the Gamma function.
For 1, this is the uniform distribution. For 1, the cumulative distribution
function is the regularized incomplete beta function, so the transformation in the case

0 reads

R y
2

2

y

0
t2 t 1 dt 1

2

which can be computed analytically for fixed . These functions are plotted in Fig. 6
for different parameters .

Remark 4.12 The beta distribution B 1 2 coincides with the Chebychev distribution,
which is defined on 1 1 . In this case [22, Section 10.3], [13] propose theChebyshev
polynomials as basis in L2 1 1 d

B 1 2 . This coincides with using our transfor-
mation R and the cosine basis on d .

5 First setting: known density

In this chapter, we study the case where we assume that the underlying density of the
samples is known, and it is a tensor product density (3.7). With this information, we
use the transformation (3.2), transform the given samples to the transformed
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Fig. 6 The beta distribution B on the interval 0 1 for 1 2 2 3

samples R on the torus, and apply the approximation operator Sn , given
in (2.3). With the introduction of weighted function spaces in the previous chapter,
we estimate the error of this approximation if the function f itself is in a weighted
function space. In fact, we formulate the following theorem.

Theorem 5.1 Let i the density i be in Cm 1
i for i d , and let

m be the order of vanishing moments of the wavelet . Let the function fulfill for
all i d where i that

lim
yi

f y lim
yi

f y

Let furthermore M be the number of samples satisfying M rN log N, where
N In is the number of wavelet functions and r 1. Let y j

M
j 1

be drawn i.i.d,. at random according to , f C a continuous function and the
samples transformed to R using (3.7). In the case where 1 2 s m,
we have

f Sn f R 1 R L2 2 nsn d 1 2 f Bs
2

1 2M r

(5.1)
And in the case s m, we have

f Sn f R 1 R L2 2 nsn d 1 2 f Hs
mix

1 2M r

(5.2)

Proof The theory from in [26] studies the behavior of periodic functions on d .
Because of the assertions, the function f R 1 is a function on d , and the sam-
ples R are uniform i.i.d. Hence, [26, Corollary 3.22] is applicable to the
function f R 1. Together with the definitions of the Sobolev and Besov norms for
functions of mixed smoothness, for which we have (4.12) as well as (4.18), this yields
the assertion.

This theorem is about the case where we do not have non-periodic variables yi
involved. We introduced in (3.2) the extension parameter to also deal with non-
periodic functions. In the next chapter, wewill give a similar result for the non-periodic
case. Of course, these results can be mixed if the domain has different parts i .
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5.1 Extensions of non-periodic functions

Here, we study the case where 0 1 d . Of course, one can interpret a function on
0 1 d as a (possibly non-continuous) function on the torus by gluing the endpoints
together. This coincides with the transformation (3.2) with no extension 0. Since
the function f R 1 is then non-continuous, Theorem 5.1 does not give us a reasonable
error decay. For that reason, the aim of this section is to show that the transformation
idea also works for non-periodic functions with a reasonable choice of the extension
parameter in the transformation (3.2).

For Fourier approximation, there is the approach of Fourier extension [3, 5, 20],
where the function is continued outside of the interval 0 1 to a smooth function.
See also [2] for a nice overview and the connection to the frame approach. We use
a similar approach by introducing the extension parameter , which allows us to
extend f on the boundary 1 2 1 2 in an appropriate way. On one hand, this
gives better approximation rates, but on the other hand, the stability gets worse. The
occurring problem is that we have to bound the condition of the approximation matrix
A (see (2.2)). To circumvent this, in the mentioned literature, the authors use for
instance the truncated singular value decomposition. We do not want to set up the
whole matrix A, but rather use a least squares algorithm which gets only the result
of a matrix-vector multiplication with A and A . We will see in this chapter that an
appropriate choice of the extension parameter ensures stability.

Remember, rather than taking the cumulative distribution function of the density
, we use the modification

R y 1
y

0
t dt (5.3)

where 0 1 is some extension parameter. In fact, we get the transformed samples
R , which are uniformly distributed on the cube 1 2 1 2

d . This
procedure transforms and compresses the original function f into the box and allows
to extend this function to a function f defined on d . Figure7 shows an illustration
of the two-dimensional domains. On the boundary 1 2 1 2 , we extend the
function f . As mentioned in the discussion before Definition 4.10, it is reasonable
to choose an extension which has Sobolev smoothness. For the following result, we
introduce the notation of restricting function spaces V L2

d to some smaller
domain by

V a b d g a b d g V

for some cube a b d d .

Lemma 5.2 Let m be the order of the Chui-Wang wavelets and n the maximal wavelet
level. Denote the hyperbolic function spaces by

V d
n span per

j k j k In L2
d

123

Variable transformations in combination... Page 29 of 61 53



Fig. 7 Illustration of the
two-dimensional extension

Let the function g fulfill the boundary conditions

g
xi

1
2

V d 1
n 1

2
1
2

g
xi

1
2

V d 1
n 1

2
1
2

for all i d

g ei x for all x with xi
1
2

1
2 for all 0 m 2

where ei denotes the unit vector ei j i j . Let furthermore the extension parameter
fulfill

m 1

2
n
d 1

(5.4)

where a denotes the smallest integer, which is bigger than a. Then, there exists an
extension

g 1
2

1
2

d g V d
n 1

2
1
2

d

Proof Let us begin with the one-dimensional case. The function space V 1
n is the

space of all spline functions, which are piecewise polynomials of degree m with
discontinuities of the m 1 -th derivative only at the grid points k

2n 1 2n k

2n . These grid points divide the domain naturally in pieces of length 2 n 1 . The
function g is defined on 2n 1 m 1 of them. The function g has to be a piecewise
polynomial of degree m 1 with m 1 pieces. To construct the coefficients of the
function g, one has to solve a systemof linear equations,which are independent. In fact,
we havem m 1 coefficients and 2 m 2 m 1 m m 1 constraints (at
the boundary and the conditions for piecewise polynomials). This system has always
been a solution. Figure8 is an illustration of the one-dimensional case. For m 2, a
simple linear interpolation between g 1

2 and g 1
2 does the job.

For the multivariate case, we have to observe that we use the index set In of hyper-
bolic structure. That means we need an index j with j 1 n, such that m 1

2 ji 1

for all i 1 d. Since all indices ji are natural numbers, multiplication and taking
the d-th root of these inequalities lead to the condition (5.4).
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Fig. 8 The extension of the
function g to g for the
dimension d 1 and the order
of wavelets m 2

Remark 5.3 If we choose not the hyperbolic index set In , but the tensor index set

j k 1 j n 1 k j

the corresponding tensor product spaces are

V d
n

d

i 1

V 1
n span per

j k j n k j

For the case d 1, this coincides with the previous lemma. But for d 2, we need
in the previous proof only an index j with j n, such that m 1

2 ji 1 for all

i 1 d. This leads to the condition m 1
2n 1 .

Remark 5.4 Consider theANOVAdecomposition (3.11) of a function f L2 0 1 d

. One ANOVA term fu yu is a function, which depends on only u variables.
Transforming fu to fu R 1

u needs only a u - dimensional extension. For that reason,
it is enough to choose m 1

2

n
u 1

for the transformation Ru. We will go more into

details in Chapter 7.

Motivated by the previous lemma, we make the reasonable choice

m 1

2
n
d 1

(5.5)

In the remaining part of this section, we will focus on the one-dimensional
case, because this can be also applied to high-dimensional functions with only low-
dimensional interactions. The following ideas can be generalized to d 1, but in this
case, we have to omit boundary wavelets to ensure stability.

The one-dimensional case
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The following lemma shows that the projection operator (2.6) applied to the extended
function f indeed inherits the approximation rate set by the order of the wavelets if the
non-periodic function f is smooth enough on 0 1 . Comparing the following result
with the periodic setting (2.7), the only difference is the term 1

1 3 2
.

Theorem 5.5 Let d 1 and themaximal wavelet level n .We choose the extension
parameter as in (5.5) and the transformation (5.3), which gives 1 2 1 2 .
Then,we have for the approximation error of the projection operator Pn defined in (2.6)
for functions f Hm 0 1 that

f Pn f R L2 0 1
2 nm

1 3 2
f Hm 0 1

where f f R 1.

Proof For j 0, let us split the indices k into the sets, depending on the support of
the wavelet functions

Iin k supp per
j k

Ibo k supp per
j k

1
2

1
2

Ir j Iin Ibo

First, we have a look at the wavelet coefficients of the extended function f with
j n. From [26, Lemma 3.4], we have that

f per
j k 2 j 22 jm

I j k
f m x m 2 j x k dx (5.6)

where I j k supp per
j k and the function m is defined in (B.2). Since the

extension of f to f , namely f , is contained in the space of wavelet functions,

the m-th derivative of f is zero at the boundary 1 2 1 2 , and we have that

f m x x 1
2 F1 f x 1

2 F0 f x 1
2

1
2

where is the delta distribution and the numbers F0 f and F1 f depend on the
boundary behavior of the function f .
For the indices k r, we split the integral (5.6),

f per
j k 2 j 22 jm

I j k
f m x m 2 j x k dx F1 f m 2 j 1

2 k

(5.7)
if 1 2 supp per

j k . The other case where 1 2 supp per
j k is analogue. The

function m has the property that m x 0 for x (see Lemma B.2). Because
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of the choice m 1
2n 1 and the assumption j n, the numbers 2 j 1

2 k are
in 1 m . This allows us to omit the second term in (5.7), and we get that

f per
j k

2 j 22 jm
I j k

f m x m 2 j x k dx if k Ir Iin

0 if k Ibo

Using Cauchy-Schwarz inequality, we receive for k Ir Iin that

f per
j k 2 j 22 jm

I j k
f m x 2dx

1 2

I j k
m 2 j x k 2dx

1 2

2 jm f m
L2 I j k

max
x 0 2m 1

m x

2 jm 1

1 1 2
f

Hm 0 1
R 1 I j k

(5.8)

where the last inequality follows from (4.19) and (B.3). The Riesz basis property (2.4),
which also applies to the dual wavelets yields

k j

f per
j k

2 1

m k j

f per
j k

per
j k

2

L2

1

m k j

f per
j k

per
j k

2

L2

m

m k j

f per
j k

2

(5.9)

Also, because of the Riesz basis property of the wavelet functions, we have for
j n that

1 2

1 2

2 j 1

k 0

a j k
per
j k x

2

dx
1 2

1 2 k Iin Ir

a j k
per
j k x

2

dx m

k Iin Ir

a j k
2

(5.10)
To estimate the error of the projection operator Pn , we have to estimate the sum of
wavelet coefficients, namely we first insert the definition (2.6) of Pn ,

f Pn f R 2
L2 0 1

1

1
f Pn f

2
L2

1

1
j n k j

f per
j k

per
j k

2
L2

1

1
j n k j

f per
j k

per
j k L2

2

5 10
1 2

m

1
j n k j

f per
j k

2

1 2
2

5 9
3 2

m

m 1
j n k j

f per
j k

2

1 2
2
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5 8 3 2

m

m 1 3
j n

2 jm

k j

f 2
Hm 0 1

R 1 I j k

1 2
2

3 2

m

m 1 3 f 2
H 0 1

j n

2 jm

2

(5.11)

The last sum of 2 jm is bounded by geometric series,

j n

2 jm 1

1 2 m

1 2 n 1 m

1 2 m

2 n 1 m

1 2 m
2 nm

Taking the square root in (5.11) gives the result, where the factor
3 2

m
m
is a constant.

Note that we receive at least in the one-dimensional case the same approximation
rate as in the periodic setting. In the higher-dimensional setting, this is not the case,
since we lose the orthogonality between different wavelet levels in the L2 -norm. It
is also possible to estimate the L -error. Here, also, the only change is the additional
term 1

1 in comparison to the periodic result, (2.8).

Theorem 5.6 Let d 1 and themaximal wavelet level n .We choose the extension
parameter as (5.5), the transformation (5.3) and denote f f R 1. Then, we
have for the approximation error of the projection operator

f Pn f R L 0 1
2 n m 1 2

1
f Hm 0 1

Proof Similar to the proof of the previous theorem, we consider

f Pn f R L 0 1 sup
y 0 1

f y Pn f R y sup
x 1

2
1
2

f x Pn f x

sup
x 1

2
1
2 j n k I j

f per
j k

per
j k x

Using the same lines as in [26, Theorem 3.15], we have

f Pn f R L 0 1
j n

2 j 1 m 1 2 sup
j n

2 j s

k I j

f per
j k

2

1 2

2 n m 1 2

1
f Hm 0 1

which gives the assertion.

In the following, we discuss the numerical properties, that arise when using such an
extension. We lose some stability in the sense that the wavelet matrix A has a bigger
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condition number. But nevertheless, we estimate the eigenvalues of theMoore Penrose
inverse from below. The eigenvalues of the expectation matrix

per
j k x per

j k x dx
j k In j k In

are bounded by the Riesz constants m and m (see [26, Lemma 3.18]). The transfor-
mation R changes the expectation matrix to

per
j k x per

j k x dx
j k In j k In

If we choose the extension parameter like (5.5), it turns out that the eigenvalues
of do not differ much from the eigenvalues of the initial expectation matrix . We
show this numerically. We lose the orthogonality of the wavelets of different levels.
But the entries of the matrix differ from the entries of only at indices where
supp per

j k
1
2

1
2 . For different maximal level n, we construct the

matrix and calculate the extremal eigenvalues min and max . The results
are summarized in Table 1. For comparison, we also give the extremal eigenvalues of
the matrix , which are the lower Riesz-constant m and 1. We leave the proof that
min C 0 for a constant C is an open problem, but the numeric indicates that

this is true.
In fact, the choice of must be a balance between an ill-conditioned matrix for big
and a large approximation error for small . The choice (5.5) does this job.

Error estimates
Up to now, we gave estimates for the L2 and L error of the projection operator
Pn , (2.6), instead of the approximation operator Sn . To end this subsection, we give
also for the non-periodic case an error estimate with high probability, similar to The-
orem 5.1.

Corollary 5.7 Let d 1, m be the order of vanishing moments of the wavelet ,
Cm 1 0 1 be a density and and n be the maximal level of the wavelets. We

choose the transformation R as (5.3) with the extension parameter as in (5.5). Let

Table 1 Extremal eigenvalues of the expectation matrix for different maximal level n and order m of the
wavelets

m n 2 3 4 5 6 7

2 min 0 0896 0 0903 0 0879 0 0859 0 0848 0 0843 0 1481

max 0 8990 0 9497 0 9748 0 9873 0 9937 0 9968 1

3 min 0 0032 0 0025 0 0024 0 0024 0 0024 0 0025 0 0379

max 0 7735 0 8854 0 9426 0 9714 0 9857 0 9928 1
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furthermore yi M
i 1 0 1 with M r 2n 1 n 1 be drawn i.i.d.at random

according to and r 1. Then, we denote by R the transformed samples.
Let furthermore min C 0. Then, we have

f Sn f R L2 0 1
2 nm

1 5 2
f Hm 0 1 1 2M r

Proof First, we denote e2 f Pn f L2
and e f Pn f L .

By using the extension, we lose the orthogonality of the wavelet functions even for
different levels, since the L2-norm is then defined on and not on the whole torus.
Therefore, we have to modify the proof of [26, Theorem 3.20] slightly. We have

f Sn f R L2 0 1
1

1
f Sn f L2

1

1
e2 Pn f Sn f L2

1

1
e2 Sn Pn f f L2

d
1

1
e2 Sn 2 Pn f f 2

For the last term, we use the same lines as in [26, Theorem 3.20], which are based
on Bernstein’s inequality to get

f xi Pn f xi 2 M
2 e2 e22r logM

M
2 e2 r logM

3M e22

1 2

M r

Taking the event into account that

Sn 2
2

M min

2

C

with high probability, we obtain by union bound the overall probability exceeding the
sum of the probabilities, i.e.,

f SXn f L2
e2

2
C

e22
M e2e

r logM
M e2 r logM

M

1 2

1 2M r

Collecting the bounds from the occurring terms from Theorems 5.5 and 5.6 as well
as logarithmic oversampling, which means logM

M 2 n , we end up with

f Sn f R L2 0 1
1

1
f Sn f L2

1

1

2 nm

1 3 2

2
C

2 2nm

1 3 2n 1

2 2nm

1 5 2
r

2 2nm

1 2 r

1 2

f Hm 0 1

2 nm

1 5 2
1 2

C

1

1 3 2 2n 1

r

1

r

1 1 2

1 2

f Hm 0 1

with high probability.
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5.2 Numerical experiments

In this section, we study the approximation behavior numerically for some examples
to underpin our findings from Theorem 5.1 and Corollary 5.7. We consider examples
where d d 0 1 d .
We do the following procedure. For amaximal level n, we drawM N log N 2n nd

i.i.d. samples according to the density , which coincides with logarithmic oversam-
pling. Also, the corresponding function values are given. In our approximation, we
transfer the samples in the set to the torus, by R and apply the approxima-
tion operator Sn given in (2.3). A good estimator for the L2 -error, is the root
mean square error (RMSE), which is defined by

RMSE
1

test y test

f y Sn f R 1 R y 2

1 2

(5.12)

for sample points test , which are i.i.d. according to . We use always test
3 3M . We defined in Examples 4.3 and 4.11 only one-dimensional densities.
In the following, we interpret the d-dimensional densities as a tensor product in the
sense of (3.7).

Distributions on d

We begin with the normal distribution N from (4.5) for all one-dimensional densities
i yi . As a test function, we use the Gaussian

f d f y e y 2
2 (5.13)

which is smooth.But in the sense of (4.10),wehave to note that in the one-dimensional-
case

f 2
H1

N

1
5

8
3 3

5 28

f 2
H2

N

1
5

8
3 3

48 2 144 2 1900

f 2
H3

N

Due to the embedding H2 B2
2 , we also have f R 1 B2

2 . To
investigate the smoothness further, we have a look at the terms from Definition 4.9,
i.e., for s 5 2

sup
j
j 0

25 j 1 sup
2

sup
1 k J j

1

k 2 ck D f y B y
2

We have

ck D2 f y B2 2 y ck 2 4y2 e y2 2 ey
2

ck 2 4y2 2

2 ck 2 4 R 1 x 2 1
k
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since R 1 x 2 is a smooth function except at x 1 2. Analogously, we get for the
other term

ck D1 f y B2 1 y 1
k

This yields

f 2
B

5 2

2
sup
j

25 j

k J j

1

k 4

1

k 2 sup
j

25 j 2 j 12 6 j

since the index sets J j are defined such that k 2 j 1 and J j 2 j . The function f

and the density N have a tensor product structure; hence, we get f R 1 B5 2
2

d

and f B5 2
2 N .

We did the approximation for d 1 2 3 and for the orderm 2 3 of vanishing
moments of the wavelet. In Fig. 9, we plotted the results. One can see that we end up
with the proposed error decay rates from Theorem 5.1. In case where m 2, we are
in the case (5.1) and get the proposed error decay rate of 2 2n n d 1 2. If we increase
the order of vanishing moments of the wavelets to m 3, we are in the case (5.1) and
receive also numerically the proposed error decay of 2 5 2n n d 1 2. The numerical
results are even slightly better in some cases.

Note that a different density y can lead to a different smoothness of f R 1

even for the same function f . For a tensor product of the one-dimensional Cauchy
C , (4.6), or the Laplace distribution L , (4.7), we even have f R 1 Hs

mix

for all s . That follows from D f y p y e y2 2 for a polynomial p y and
the fact that all differentials of the Cauchy as well as the Laplace distribution are
polynomials or polynomials with a the factor of the behavior ek y 2 . Furthermore, all
integrals of the form e y2 k y 2 p y dy are finite. In Figs. 10 and 11, we plotted
the approximation results. In this case, the order of vanishing moments determines
the error decay. In dimension d 3 with Laplace distribution, we are still in the
preasymptotic case.

Fig. 9 Approximation of the function (5.13) on d for d 1 2 3 and the normal distribution N
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Fig. 10 Approximation of the function (5.13) on d for d 1 2 3 with the Cauchy distribution C

The beta distribution on the torus
Let us consider the beta distribution (4.20), but shifted by 1 2 to the torus

1 2 1 2 , for all one-dimensional densities i xi , which also includes the uniformly
distribution on for 1. We choose as test function

f d f y
d

i 1

yi
1
2

3 yi
1
2

3 (5.14)

which is the tensor product of a polynomial of degree 6 and has triple zeros at 1 2 and is
in H3

mix
d . Depending on the choice of the parameter of the beta distribution, the

transformed function has different regularity. We consider first the one-dimensional
case. The crucial points to decide whether the norm f L2 B

is finite is at the
points with lower regularity 1 2 1 2. Because of the symmetry of the function f as
well as the density , it is sufficient to have a look at the point y 1 2. There we have
the behavior f i y 1 2

3 i for i 0 1 2 3. With the same arguments we have
that i

B y 1 2
1 i for 1 2 and i 0 1 2. Furthermore, the integral

1
0 xk dx is finite for k and k 1. Hence, Definition 4.1 gives that we have to
require the following:

f H1
B f L2 1 1 6

f H2
B f L2 2 2 f L2 0 1 1 2 2

Fig. 11 Approximation of the function (5.13) on d for d 1 2 3 with the Laplace distribution L
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f H3
B f L2 3 3 f L2 0 1 2 3 f L2 0 1 1 3 6 5

Since the function f is a tensor product, we have the same estimates for the multi-
variate cases. Indeed, we used the order of vanishing momentsm 3 of the wavelets,
which limits the maximal error decay rate, and Fig. 12 is the resulting numerical
approximation decay for different parameters and d. Indeed, if we are below the
critical values 6 5 2 and 6 for , we get the desired approximation rates of 2 3n , 2 2n

and 2 n given in Theorem 5.1.
Even dense samples at the boundary, which coincide with small , can not increase
the error decay rate of 3.

Extensions of non-periodic functions on the cube
Here, we want to demonstrate the benefits of the extension proposed in Sect. 5.1. Let
us study the non-periodic function

f 0 1 f y y3 (5.15)

and the uniformly distribution on the cube, y 1. Also, for this non-periodic
function, wemanaged to use the periodic approximation operator and get good approx-
imation results. We use a polynomial of degree 3, since a lower degree together with
the order of the wavelets m leads to a function f R 1, which is in the finite func-
tion space, which we use for the approximation and gives us approximation errors
near machine precision. The results are plotted in Fig. 13. We see that the extension
increases the approximation rate to 2 mn , as proposed in Crollary 5.7 Additionally,
the wavelet matrix is in both cases well-conditioned.

6 Second setting: using kernel density estimation for unknown
density

While working with real-world data, the underlying density y is possibly a priori
not known, and we only have the given random sample points . For that reason,
we want to adapt our strategy to this setting. A transformation of the given data

is also in this case a useful tool to approximate a function f well. Instead of

Fig. 12 Approximation on d for d 1 2 of the test function (5.14) samples distributed with respect to
the beta distribution B
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Fig. 13 Approximation on 0 1 of the test function (5.15) with uniformly distributed points using Chui-
Wang wavelets of order m 2 3

using the transformation R belonging to the underlying density as in Chapter 5,
we approximate the underlying density function by a kernel density estimation [15].
The cumulative distribution function R̊ of the estimated density function gives us a
transformation for the underlying data set to the samples ˚ R̊ on the torus.
Then, we apply our approximation method for functions on the torus and at the end
we transform the function back to a function defined on . We will restrict our study
in this chapter to the one-dimensional case, which we apply in Chapter 7 to high-
dimensional functions. The error between the estimated density and the true density
influences the total approximation error.

Let us introduce the kernel density estimator

˚ y
x

1

M
k

y x
(6.1)

where k is a non-negative kernel function k which is normedby k y dy
1 and is a smoothing parameter. Frequently used kernels are the standard normal
distribution N , (4.5) or B-Splines (B.1). The normalization ensures that also ˚ is
normalized. We get a transformation R̊ , which fulfills (3.1), by integration,

R̊ y

y
0 ˚ t dt 1

2 if 0 1
y ˚ t dt 1

2 if
y
1 2

˚ t dt 1
2 if

1

M
x

K y x 1
2 (6.2)

where K is the antiderivative

K y

y
0 k t dt if 0 1
y k t dt if
y
1 2
k t dt if
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Hence, the integral K of the kernel k has to be calculated once in advance. Then,
the calculation of the integral of ˚ is only the evaluation of K at different points.
Using this transformation, we get our transformed sample points by ˚ R̊ . If ˚
is a good approximation to , these samples ˚ are nearly uniformly distributed on ,
which allows us to approximate the function f R̊ 1 using an approximation operator

on d , for instance S
˚

n from (2.3). Our procedure to get an approximation of f out
of the samples and the corresponding function values f is summarized in Fig. 14.
For shortening notation, we denote the error function e̊ f by

e̊ f f S
˚

n f R̊ 1 R̊

which we aim to estimate. Using the theory of the previous section, we receive a bound
for e̊ f L2 ˚ in the normwith density ˚ , if we assume that we choose the bandwidth

so that ˚ , which yields that the samples ˚ R are distributed uniformly
on . Since the original samples are distributed according to and we assume new
test points are also samples according to , we are interested in the L2 -error
e̊ f L2 . Intuitively, if and ˚ are equal enough, these two errors have the same
behavior. This can be made more precise by

Theorem 6.1 In the case where , we have that

e̊ f
2
L2

e̊ f
2
L2 ˚ e̊ f y 4 dy

1 2

˚ y y L2

In the case , there is a set , such that y dy for some 0.
Therefore, we have

e̊ f
2
L2

e̊ f
2
L2 ˚ E

e̊ f y 4 dy
1 2

˚ y y L2 sup
y E

e̊ f
2 (6.3)

Proof The first inequality follows from triangle inequality and Cauchy-Schwarz
inequality,

e̊ f
2
L2

1 2

1 2

e̊ f y 2 y dy
1 2

1 2

e̊ f y 2 ˚ y 1
˚ y y

˚ y
dy

e̊ f
2
L2 ˚

1 2

1 2

e̊ f y 2 ˚ y y dy

Fig. 14 Outline of our approximation procedure
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e̊ f
2
L2 ˚

1 2

1 2

e̊ f y 4 dy
1 2

˚ y y L2

In the case where , we can not use these calculations, since e̊ f y can be non-
zero on the whole real axis. But the splitting of into the set and the complement

and using the previous estimates gives

e̊ f
2
L2 E

e̊ f y 2 y dy
E

e̊ f y 2 y dy

e̊ f
2
L2 E ˚ E

e̊ f y 4 dy
1 2

˚ y y L2 E sup
y E

e̊ f
2

e̊ f
2
L2 ˚ E

e̊ f y 4 dy
1 2

˚ y y L2 sup
y E

e̊ f
2

Therefore, it follows the assertion.

The introduction of the set in the case where tackles the behavior, that
given data is contained in a finite interval a b and y is small outside this
interval. In fact, we can not expect to approximate a function well where we have no
information about the function.

The previous theorem shows that a good estimator for the bandwidth ensures that
the mean integrated squared error (MISE)

MISE ˚ ˚ y y 2 dy ˚ y y 2
L2

is small. This choice of the smoothing parameter has to be a good trade-off between
over- and underfitting. Consider the two extremal cases, which do not work. This
behavior is illustrated in Fig. 15.

If we would choose a small smoothing parameter ( 0 01 in Fig. 15) or even
as kernel function k the delta distribution, we would get an equi-spaced sample
set R̊ . But this possesses on the other hand no smooth cumulative distribution
function R̊, and the distribution ˚ is not a good approximation on , sinceMISE ˚
would not decay.
If we choose the parameter in the Kernel function k too big ( 1 in Fig. 15),
the density ˚ would not capture the behavior of the density and the transformed
samples would not be uniformly distributed on .

6.1 Smoothing parameter selection

There are some very simple and easy-to-compute mathematical formulas for estimat-
ing the smoothing parameter . They are often called the rules-of-thumb (ROT). One
possibility is

ROT 1 06 min std
IQR

1 34
M 1 5 (6.4)
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Fig. 15 Illustration of the problem of over- and underfitting

where std is the standard deviation and IQR is the inter-quartile range (see [15, Section
4.2.1]). The assumption for that rule is that the unknown density belongs to the family
of the normal distribution. In practice, we do not know, whether y is a normal
distribution. If it is, then ROT gives the optimal smoothing parameter. If not, then
ROT will give a parameter not too far from the optimum, if the distribution of the

samples is not too different from the normal distribution.

6.1.1 Data on the real axis

Another approach, which is more general and performs better than the ROT, is the
Direct Plug-In-Selector (DPI) (see [15, Section 4.2.2]). To describe this approach, we
have to introduce some notation. The second moment of the kernel k is defined by

2 k y2k y dy

Since the MISE is set as the error criterion to be minimized, our aim is to find

MISE argmin
0

MISE ˚

The dominating part of MISE is denoted by AMISE, which stands for Asymptotic
MISE,

AMISE ˚
1

4
2
2 k 2

L2
4

k 2
L2

M

The minimizer AMISE is given by

AMISE
k 2

L2

2
2 k 2

L2
M

1 5
k 2

L2

2
2 k 4M

1 5

(6.5)

where

4
4 y y dy or more generally r

r y y dy
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where r is an even number. The naming convention of r was introduced in [41,
Section 3.5]. The critical step is to estimate 4 in (6.5), as this is the only unknown
value. Assuming that is some normal distribution, would lead to (6.4). This is an
example of a zero-stage plug-in selector, a terminology inspired by the fact that 4
was estimated by directly plugging in a parametric assumption. Another possibility
is to estimate 4 non-parametrically and then to plug it into AMISE. First note, that
integration by parts gives

r 2
L2 1 r 2r y y dy

Therefore, a possible way to estimate r is

r
1

M2gr 1

M

i 1

M

j 1

k r yi y j
g

(6.6)

where g is the smoothing parameter of a kernel density estimation. Typically, two
stages are considered to have a good trade-off between bias and variance. This is the
method proposed by [38] and does the following steps.

i) Estimate 8 by 8
105

32 std 9 , where std is an estimate for the standard

derivation of , which can be std or min std IQR
1 34 .

ii) Estimate 6 using 6 from (6.6), where g1
2k 6 0

2 k 8M

1 9

iii) Estimate 4 using 4 from (6.6), where g2
2k 4 0

2 k 6M

1 7

iv) The selected smoothing parameter is DPI
k 2

L2
2
2 k 4M

1 5

6.2 Non-periodic data

A general problem with kernel density estimation is that certain difficulties can arise
at the boundaries and near them. In many practical situations, the values of a random
variable are bounded. For example, the age of a person obviously can not be a negative
number. On the other hand, the normal kernel has unlimited support. Even if a kernel
with finite support is used, the estimated density can usually go beyond the permissible
domain.
For that reason, we use on 0 1 compactly supported kernels k, but we allow
the approximated density ˚ to be non-zero outside the interval 0 1 . Especially, we
receive a non-zero density in the interval ˚ 1 2 with supp k 2 1 0

and 1 2 1 supp k 2 . This allows us to create a function f̊ , which smoothly

extends the function f to a function on whole ˚ , such that the transformed function
f R̊ 1 becomes a periodic function. This idea of an extension of the function is
similar to the studies in Sect. 5.1. The choice of the extension parameter is now
hidden in the choice of the smoothing parameter selection , which determines the
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interval ˚ . This is illustrated in Fig. 16. The kernel density estimation of can be seen
as a periodization of the function f , such that we can use approximation operators for
functions on . In contrast to the tent transformation (see [28]), which passes through
the function forth and back, we have here no need to double the number of sample
points.

To select the smoothing parameter , one simple possibility is to again use the
estimator ROT from (6.4). Analogously to Theorem 6.1, we give an estimate for the
error decay, namely,

e̊ f
2
L2 0 1

1

0
e̊ f y 2 y

˚ y
˚ y dy max

y 0 1

y

˚ y
e̊ f

2
L2 0 1 ˚

The extension f̊ is similar to the proposed method in Sect. 5.1. But here, naturally,
the extension is on both sides of the interval because of the kernel density estimation.
Instead of the factor 1

1 , we have now the the term maxy 0 1
y

˚ y .

6.3 Numerical experiments

In this section, we endorse our theoretical findings by two numerical experiments on
and 0 1 . We compare the approximation results of unknown density with the results
if the density is known. In both cases, we use Chui-Wang wavelets of order m 3.

The Gauss kernel on the real axis
For the case where , we choose k y N to be the standard normal dis-
tribution (4.5). The expressions used for estimating the smoothing parameter DPI
are

k 2
L2

1

2
2 k 1

To study the performance of our algorithm, we use as a test function again the
function in (5.13). We investigate the densities N , (4.5); C , (4.6); and L , (4.7).
Doing the same procedure as described in Sect. 5.2, we study the resulting
RMSE (5.12). We used the two different proposed parameter selection methods and

Fig. 16 Periodization of f using instead of the real density the estimated density ˚
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Fig. 17 RMSE of the approximation on of the test function (5.13) using kernel density estimation

plotted the results in Fig. 17. It is reasonable to compare the results with the approx-
imation error of the previous section, where we assume that the density is known
(see (3.4) in Fig. 17). One can see that our approximation approach without knowing
the density works well for all three examples, since for both investigated smoothing
parameter selectors, we end up with nearly the same error, which we get with knowing
the density. Furthermore, we had a look at the bound in Theorem 6.1. We choose

max test max test

since this is the interval where we do not expect data. Then, we calculated the right-
hand side of (6.3) numerically for the choice DPI. In Fig. 17, we see that this is indeed
a good upper bound for the approximation error from choosing DPI.

The polynomial kernel on the cube
Let the density be the beta distribution B from (4.20) with shape parameter

1 2 1 2 . Let us study the test function f y ey . We use a B-Spline ker-
nel k y B3 y , see (B.1). In this case, the integral K y can be calculated easily.
The resulting RMSE are plotted in Fig. 18. We compare with the case where the
density is known, (3.4). In the case where 1 2, the density B 1 2 is large on the
boundary (see Fig. 6a), which means that we have more points at the boundary. In this
case, we receive the error rate 2 3n , which is specified by the order of the wavelets.

Fig. 18 RMSE of the approximation on the interval 0 1 of the test function f y ey using kernel
density estimation
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This behavior occurs even in the case 1, which means that the samples are uni-
formly distributed on 0 1 . In the case where 2, the benefit of our approximation
approach is not as big as in the other cases, since the density tends to zero at the
boundary and we do not have much samples at the boundary. This means that the func-
tion f̊ does not have support bigger than 0 1 and the smoothing effect of f̊ R̊ 1

at the boundary does not apply. The approximation is slightly better in the case where
the density is known, but nevertheless, this density does not inherit the decay rate from
the other examples due to the lack of sample points at the boundary.

7 High-dimensional approximation

Themain aim of this paper is the fast and effective approximation of high-dimensional
functions. We study the setting where the variables y1 yd are independent, which
means that density y is a product of the one-dimensional densities (3.7). There-
fore, we transform every variable of the given samples separately after estimating
one-dimensional densities. Additionally, we utilize the ANOVA decomposition from
Sect. 3.1 to deal with the curse of dimensionality.

For the function f L2 , we have the ANOVA decomposition (3.11). The
number ofANOVA terms of a function is equal to 2d and therefore grows exponentially
in the dimension d. This reflects the curse of dimensionality in a certain way and
poses a problem for the approximation of a function. In high-dimensional settings,
the underlying function can very often be effectively represented as a sum of lower-
order functions. In other words, the function can be expressed as a combination of
component functions, where only d variables out of the total d variables are
active in each component [12, 25]. Recent methods such as ANOVAapprox [26, 31]
(and the successful application to different datasets in [32]), SALSA [23], SRFE [17],
and SHRIMP [44] use this approach. To this end, we introduce the notion of effective
dimension (see [6]).

Definition 7.1 For 0 1, the effective dimension of f , in the superposition sense,
is the smallest integer d, such that

u

2 fu
2 f

A function with low effective dimension allows a good approximation using only
ANOVA terms up to order . To approximate fu, we have to use the transformation
Ru, or if the density u is unknown, we have to estimate the one-dimensional densities
i yi for i u, and use a transformation R̊u yu Ru yu to transform the samples

u to ˚u R̊u u . Since we deal with independent input variables, we transform
every variable separately, i.e.,

R̊u y R̊i yi
i u
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where we get R̊i from one-dimensional transformations (6.2). In the truncated
hyperbolic wavelet matrix A, we insert only the indices j k belonging to the low-
dimensional terms, i.e.,

A per
j k xu

xu ˚u j k I un

For chosen d, we do this for all u with u , i.e., U u d u
. This is summarized in Algorithm 1. The notation i means analogously to the

notation yu that we only consider the components yi of the samples in . Similar
to [26, 31], we calculate the variances of the approximations of the ANOVA terms
fu and omit in a second approximation step the ones with low variance in order to
increase the accuracy with a higher wavelet level n for the important ones. Hence, in
a second approximation step, we use only the ANOVA terms u U d and
get the approximant S U

n f , (7.1), also for an arbitrary ANOVA index set U .

Algorithm 1 Transformed ANOVA hyperbolic wavelet regression.

Input: d dimension
superposition dimension

yi
M
i 1 sampling nodes

f f yi
M
i 1 function values at sampling nodes

1: Choose n such that for N u I un holds M N log N .
2: for i 1 d do
3: if i yi is known then
4: Calculate the transformation Ri by (3.2).
5: Transform the samples i to i Ri i .
6: Do the steps 13-15 with R instead of R̊.
7: else
8: Estimate i̊ with (6.1).
9: Calculate the transformation R̊i by (6.2).
10: Transform the samples i to ˚i R̊i i .
11: end if
12: end for
13: Construct the sparse matrix

A Au u
M N Au

per
j k xu xu X̊u j k I un

14: Solve the overdetermined linear system A a j k j k f via an LSQR-algorithm. This gives us the

approximation

SX̊n f R̊ x
u j k I un

a j k
per
j k x

15: Transform the approximation back to using R̊ 1
u for u .

Output: a j k j k
N coefficients of the approximant

SY U
n f y

u U j k I un

a j k
per
j k R̊ 1

u yu (7.1)

where U U .

123

Variable transformations in combination... Page 49 of 61 53



Fig. 19 For every variable yi of the sample set , we have these possibilities

To summarize our algorithm, we have for every variable yi two possibilities, which
are summarized in Fig. 19. Algorithm 1works well if the underlying density is a tensor
density.

7.1 Approximating the global sensitivity indices

A direct calculation of sensitivity indices S u f from (3.14) would require inte-
gral evaluations in (3.12), followed by numerous integral evaluations of sensitivity
indices (3.13). For high-dimensional systems, such an approach is impractical and
possibly prohibitive. Therefore, alternative routes must be charted to estimate the
sensitivity indices both accurately and efficiently. Our approach is to approximate
the function f by Sn f and afterwards calculate the GSIs of the approximation. It
was also shown in [16] that ANOVA terms inherit the smoothness of a function,
i.e., if f Hs

mix
d , then fu Hs

mix
u or even smoother. This fact was also

shown in [31, Theorem 3.10] by using a Fourier-based approach. Following these
lines, we immediately have this result for Besov spaces, i.e., if f Bs

2
d then

fu Bs
mix

u .
The intuition is that a good approximation of the function means also a good

approximation of theANOVA terms, and hence a good approximation of the variances.
Calculating the variances of the ANOVA terms for functions on d is easy because
of the connection (2.13). Therefore, we approximate the variances 2 fu by the
following estimated variances:

2 fu
u

SXn f R 1
u u

2 dxu
u

SXn f R 1
u u Ru

2 d

d y
Ru yu d yu

2
˚ fu

u
SX̊n f R̊ 1

u
2 dxu

u

SX̊n f R̊ 1
u u R̊u

2 d

d y
R̊u yu d yu

(see [26, Section 4] for computing details with hyperbolic wavelet regression). In the
following, we will study the error between the estimated variances 2 fu and the

variances 2 fu . First, let us consider the case where the density is known.

Theorem 7.2 Let u U and v i u i 0 1 and fu Bs
2 u u .

Denote furthermore e2 fu Sn f R 1
u R and a 1 1 v 2 1. Then

2 fu
2 fu e2 a fu L2 u u 2 e2 a fu L2 u u fu L2 u u
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Proof Let us denote in this proof g Sn f R 1
u R. Then, we have

2 fu
u

g yu
2 d

d y
Ru yu d yu

u

g yu
2 1 v

u yu d yu

For simplicity, we denote in this proof g 1 v 2 g. Then, we estimate the
difference of the variances of the ANOVA terms given in (3.12) by the reverse triangle
inequality and Cauchy-Schwarz inequality,

2 fu
2 fu

u

fu yu
2 g yu

2
u yu d yu

u

fu yu g yu fu yu g yu u yu d yu

fu g L2 u u fu g L2 u u

fu g L2 u u fu L2 u u 2 fu g L2 u u

Only in the case where v we have the additional factor, which depends on :

fu g L2 u u

1

1 v 2
fu g L2 u u 1 1

v 2 1 fu L2 u u

In the case of periodic functions, the second term is zero. Putting all inequalities
together gives the desired result.

The error between the function fu and its approximation g can be estimated
as follows. We are now concerned with a u -dimensional function. Therefore,
estimates (2.7) to (2.10) hold for d u for the transformed function. The con-
nection (3.10) or rather Theorem 5.1 transforms the results to u. Therefore, we have

fu g L2 u u 2 2nsn u 1 fu Bs
2

with high probability. The logarithmic term in the approximation error appears only
for ANOVA terms with u 2. In the case where the density is unknown, we get
an additional term, which depends on the error between the estimated density ˚ and
the actual density , similar as in Theorem 6.1.
We introduce the subset

dą

i 1
i min i max i

for which the estimate in the next theorem follows.
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Theorem 7.3 Let u U and fu Bs
2 u u . Let furthermore g S

˚ U
n f

be anapproximation received fromour procedure inAlgorithm1with unknowndensity.
Then,

2 fu
2 fu

2 fu
2 gu

A

gu y 2 y ˚ y d y

B

u

gu y 2 y d y sup
y u

1
˚ y
y

C

Let us briefly explain the appearing terms. Term A is the error from Theorem 7.2,
term C depends on the quality of the approximation ˚ , and term B describes the
variance of gu in the part where we have no samples, i.e., where we extend the original
function fu. Of course, if the original function is non-periodic, we use an extension
and study the variances, so we have to accept the additional term.

Proof We do the following splitting:

2 fu
2
˚ gu

2 fu
2 gu

2 gu
2
˚ gu

Then, by splitting the domain of the second integral, the assertion follows.

The quintessence of this subsection is that the approximation of the GSI of the
function f by the GSI of the approximant is a reasonable approach to get insides
about the variances of the ANOVA terms. In a second approximation step, we reduce
the index set to the ANOVA indices in the set

U u U S u Sn f

for some threshold 0. This allows on the other hand to increase the maximal
wavelet level for the important ANOVA terms and therefore decrease the approxima-
tion error, while ensuring logarithmic oversampling.

7.2 A synthetic numerical example

As a conclusion of this paper, we want to apply Algorithm 1 to a high-dimensional
test function. For that reason, let

f 5 0 1 3 f y 1
5 y

2
1

1
2 cos 2 y3 e y24 y

1 2

5 30 y36 1 y26
1
2 4 y7 2 5e y21 y25

(7.2)
be an 8-dimensional function where y5 0. We assume the given data to be
sampled from the distribution

5 0 1 3 y
8

i 1

i yi
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where we use different distributions, already studied in this paper,

1 y1 N y1 2 y2 L y2 3 y3 C y3 5 y5
1

2
e

y5
2 6 y6 8 y8 1

4 y4
1

11 52
e

y4 2 2

2 88
1

50
e

y4 3 2

12 5 7 y7
1
y7

1 2 1 y7
1 2

We drawM 1000 samples and use the corresponding function values f f .
These samples projected to the directions y1 and y2 are plotted in the introduction in
Fig. 1 together with the transformed samples R̊ , also projected to the directions
y1 and y2. We use as superposition dimension 2, which is a suitable guess if we
have a look at the function equation, which suggests only one ANOVA term of order
2. With the choice 3, we would conclude in a first step that we do not need the
three-dimensional terms. Furthermore, we use Chui-Wang wavelets of order m 2.
We consider the setting where we do not know the underlying density, so we use for
the variables y1 y5 the kernel density estimation for data on from Sect. 6.1.1
using the Gaussian kernel introduced there and for the remaining variables y6 y7 y8
the kernel density estimation for data on 0 1 from Sect. 6.2 using the B-spline kernel
introduced there. For different wavelet levels n, we plot in Fig. 20a the approximated
GSI’s S u Sn f , i.e., the 8 GSI’s of order 1 and then the 28 GSI’s of order 2. Since
we know the function explicitly, we compare this to the analytically calculated GSI’s
S u f . One can see that we could indeed figure out even with a low wavelet level
n 2 theANOVA termswith high variances. Sowefilter out the unnecessary variables
y2 and y8 and all two-dimensional terms except the termwith u 1 5 . Furthermore,

we plotted in Fig. 20b the error f Sn f 2 y f y Sn f y 2
1 2

and the RMSE (5.12) for a test set test sampled according to with test 3M .
The low 2 -error indicates that n 3 is already overfitting, i.e., using too many
parameters for the 1000 samples.

In a second approximation step, we omit the ANOVA terms with low variance
and use only the ANOVA indices U 1 3 4 5 6 7 1 5 for the
approximation. This procedure is similar to the proposed method suggested in [26,

Fig. 20 Approximation of the function f from (7.2) from M 1000 samples
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Fig. 21 Approximation of the
function f from (7.2) for
different numbers of samples M

32]. It is also reasonable to choose different maximal levels n for the one- and the
two-dimensional terms, since for different dimensions, these index sets have different
sizes. For the choice n 5 for the one-dimensional terms and the choice n 3 for
the two-dimensional term, we are able to reduce the RMSE on the test set additionally
from 0 4997 to 0 2248. Our procedure reduces the RMSE significantly; hence, we
are able to approximate an eight-dimensional function using only 1000 samples very
well. Using only a min-max transformation of the data, it is not possible to detect the
non-zero ANOVA terms.

In a second experiment, we only use theANOVA indices inU for the approximation
and do our procedure for different sample sizes M , with all other parameters kept the
same. The results are plotted in Fig. 21. We used the maximal wavelet level n for
which the RMSE is minimal for the given fixed data set.

7.3 Real-world data

The proposed Algorithm 1 was used in [42] to estimate the vertical ground reac-
tion force from time series of plantar pressure from instrumented insoles. The study
included data from 16 persons moving at different speeds on a two-belt treadmill
equipped with force plates. In total, about M 1 2 106 data points were used and
the data was modelled as an 8-dimensional function with ANOVA terms up to order

2. The approach successfully reached relative RMSEs of up to 10 6%, which is
comparable to other studies in the literature with the advantage of being interpretable
and having much more data available in the study used in [42].

In the following, we compare the performance of models obtained by Algorithm 1
with other state-of-the-art algorithms when applied to seven real-world datasets from
the the UCI repository (http://archive.ics.uci.edu/ml). For comparison, we test against
random forest regression (RF) and Gaussian processes (GP), both implemented in
ScikitLearn.jl, which implements the popular scikit-learn interface and algorithms in
Julia. Furthermore, we compare with sparse additive models [23, 36, 44] and follow
the experimental setup in [23], where the training data is normalized so that the input
and output values have zero mean and unit variance along each dimension. Each
dataset is divided in half to form the training and testing sets, and we use exactly the
same splitting as in [23] for the datasets used there and do the same procedure for the
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Table 2 Overview of seven
datasets: dimension d and
number of datapoints in training
and testing set

Dataset d Mtrain Mtest Basis N

Propulsion 15 200 200 chui-2 271

Galaxy 20 2000 2000 per 983

Airfoil 41 750 750 chui-2 339

Forestfire 10 211 167 per 100

Boston Housing 12 256 250 chui-2 166

Protein 9 22 685 22 685 per 2082

Elevators 17 8300 8399 chui-4 2332

The experimental setup and datasets for each test follow from [23]. We
give also the used basis functions on the torus, the total number N of
trained coefficients in the final model of Algorithm 1

datasets with more samples. Note that they test only one single random splitting. In
our experiments, we use a cross-validation of the original training dataset as training
data and 20% as validation data to select the best parameters n . An overview of
the datasets is presented in Table 2. Furthermore, we give details of our trained model:
The used basis functions on the torus (chui-m are Chui-Wang-wavelets of order m
and per means trigonometrical polynomials) as well as the total number N of trained
coefficients in the final model. For the transformation R, we use the DPI, described in
Sect. 6.1.1 applied to the Gaussian kernel.

The approximation results and comparisons are shown in Table 3. The results of
SALSA are obtained from [23], the results from HARFE and SRFE are obtained
from [36], andwe included the results of the SHRIMP algorithm [44]. Since the results
for the random algorithms depend on the draw of the random features, in contrast to the
given results for SHRIMP, HARFE, and SALSA, we did the approximation validation
50 times and present the mean in Table 3. Note that our parameter coincides with
the parameter q in the random feature literature. Furthermore, for the datasets with too
many samples, i.e., Protein and Elevators, the random feature algorithms are not able
to calculate an approximation, since the involved random matrices are getting too big.

Table 3 MSE on real datasets using various approximation techniques

Propulsion Galaxy Airfoil Forestfire Housing Protein Elevators

Alg. 1 ( ) 0.0001126 (2) 0 00344 (1) 0.1530 (2) 0 3460 (1) 0 3779 (1) 0.4095 (3) 0.2488 (1)

RF 0 005928 0 1092 0 6358 0 3372 0 3339 0 4225 0.2908

GP 0 009031 0 02765 1 0091 0 4729 0 4231 0 4414 0.4324

HARFE ( ) 0 000140 (2) 0.000110 (2) 0 5350 (2) 0.3122 (2) 0.2994 (2) - -

SHRIMP ( ) 0 000147 (1) 0 000190 (2) 0 3616 (2) 0 3501 (1) 0 4551 (7) - -

SALSA 0 00918 0 000135 0 5470 0 3635 0 3607 - -

SRFE 0 0154 0 0012 0 5702 0 4067 0 6395 - -

Details to the corresponding algorithms can be found in HARFE [36], SHRIMP [44], SALSA [23], and
SRFE [17] or are available via ScikitLearn.jl. The best results for every dataset are highlighted
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We want to highlight two cases: the cases where the dataset has many samples
M compared to the dimension d, and second, the dataset has not much data samples
available. In the first case (datasets Protein and Elevators), Algorithm 1 performs better
than the other machine learning algorithms. Since the random feature models set up a
matrix as large as the number of unknowns, they can not handle such big datasets. Our
Algorithm 1 even provides similar or smaller approximation errors compared to the
random features models in the case of a low sample size, with the advantage of being
interpretable, that means it is easy to calculate the GSIs of the involved ANOVA terms
for the final approximation model. In the application, the user can use this to derive
conclusions. Furthermore, we confirm the thesis, that real-world data can be described
by functions with low effective dimension. It should also be noted that in the dataset
Airfoil, additional 36 dimensions with random noise are added and Algorithm 1 easily
finds the non-importance of these dimensions and reduces the data to the important 5
dimensions.

8 Conclusion and outlook

In this paper, we introduced a new method for function approximation from given
fixed samples from an arbitrary density. This method combines previous work on least
squares approximation on the torus d and the truncation of the ANOVA decompo-
sition with a variable transformation and a kernel density estimation. We are able to
transfer the error decay rates and the fast algorithms from the torus to the domain .
The new extension method, which benefits from the Chui-Wang wavelets, even allows
the approximation of non-periodic functions. As shown in our numerical experiments,
this procedure is beneficial in function approximation. The code is available in the Julia
package ANOVAapprox on GitHub (see https://github.com/NFFT/ANOVAapprox).
We assume for our algorithm that the input variables are independent, which is not
necessarily the case in applications. In future work, we want to adapt our algorithm
also to the setting of dependent input variables.

Appendix 1. Besov-Nikolskij-Sobolev spaces of mixed smoothness on
the d-torus

Here, we summarize some relevant results from [10, Chapt. 3]. In particular, we give
the standard definition of the used function spaces. Let us first define Besov-Nikolskij
spaces of mixed smoothness. We will use the classical definition via mixed moduli
of smoothness. Therefore, first, recall the basic concepts. For univariate functions
f , the m-th difference operator m

h is defined by

m
h f x

m

j 0

1 m j m

j
f x jh x h 0 1

123

53 Page 56 of 61 D. Potts and L. Weidensager

https://github.com/NFFT/ANOVAapprox


Let u be any subset of 1 d . For multivariate functions f d and
h 0 1 d , the mixed m u -th difference operator m u

h is defined by

m u
h

i u

m
hi i and m

h Id

where Id f f and m
hi i

is the univariate operator applied to the i-th coordinate of
f with the other variables kept fixed.

Definition A.1 Let s 0 and 1 p . Fixing an integer m s, we define the
space Bs

p
d as the set of all f L p

d such that for any u 1 d

m u
h f L p

d C
i u

hi
s

for some positive constant C and introduce the norm in this space

f Bs
p

u 1 d

f Bs
p u

where

f Bs
p u sup

0 hi 1 i u i u

hi
s m u

h f L p
d

We define functions in a Sobolev space with dominating mixed derivatives,

Hm
mix

d f d f Hm
mix

d

where the norm is defined by

f Hm
mix

d

0 k m

Dk f
L2

d
(A.1)

with the partial derivatives Dk f
k1 kd

x
k1
1 x

kd
d

. It clearly holds for d 1

Hm
mix Hm

2 Hm

The case p 2 and d allows for a straightforward extension to fractional
smoothness parameters.

Definition A.2 Let s 0. Then, we define

Hs
mix

d f d f Hs
mix

d
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where the norm is defined by

f 2
Hs
mix

d

k d

ck f 2
d

i 1

1 ki
2 s (A.2)

This norm is equivalent to the norm in (A.1) for s (see [24]). We will consider
the case where s 1

2 , since in this case we have that Hs
mix

d C d , which
is necessary to sample the function. There is a further useful equivalent norm which
is based on a decomposition of f in dyadic blocks. The dyadic blocks (4.3) and the
decomposition (4.16) immediately give

f 2
Hs
mix

j d
0

22 j 1s f j
2
L2

d

Interestingly, there is also a Fourier analytic characterization of the above-defined
Besov-Nikolskij spaces Bs

p
d which even works for 1 p . Instead of

taking the 2-norm of the weighted sequence 2 j 1s f j L p
d j d

0
, we take the

-norm,
f Bs

p
sup
j d

0

2 j 1s f j L p
d (A.3)

Appendix 2. Cardinal B-splines and Chui-Wangwavelets

Wemostlywork in this paperwith splinewavelets, which have useful properties for our
purposes. Therefore, we introduce here the cardinal B-splines and the corresponding
Chui-Wang wavelets. The cardinal B-spline Bm of order m is a piecewise
polynomial function recursively defined by

B1 x
1 1

2 x 1
2

0 otherwise
and Bm x

x 1 2

x 1 2

Bm 1 t dt (B.1)

The function Bm x is a piecewise polynomial function of orderm 1. Furthermore,
the support of Bm x is m

2
m
2 , and they are normalized by

m 2
m 2

Bm x dx 1.

Definition B.1 If we use the cardinal B-spline of order m as scaling function Bm ,
the corresponding wavelet functions are the Chui-Wang wavelets [7], which are given
by

x
n

qn Bm 2x n m
2

where

qn
1 n

2m 1

m

k 0

m

k
B2m n 1 k m
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As in [26], we introduce the function

m x
x t x t m 1

m 1
dt (B.2)

which is supported on 0 2m 1 and fulfills Dm
m x x and is bounded, i.e.,

there exists a constant Cm , such that

m x Cm for all x (B.3)

Furthermore, this function has a nice property, which we use in Lemma 5.5.

Lemma B.2 For k , we have for the function (B.2) that

m k 0

Proof The result is a consequence of results from [7, Chapter 6]. The wavelet function
can also be written as

x L m
2m 2x 1

where Lm x is the fundamental cardinal spline, which is a piecewise polynomial of
degree m with the interpolation property Lm j j 0 for j . Then, we have

m x 1
2m L2m 2x 1 , which is zero for x .
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