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Abstract
In this paper, we describe an algorithm for fitting an analytic and bandlimited closed
or open curve to interpolate an arbitrary collection of points inR2. The main idea is to
smooth the parametrization of the curve by iteratively filtering the Fourier or Cheby-
shev coefficients of both the derivative of the arc-length function and the tangential
angle of the curve and applying smooth perturbations, after each filtering step, until
the curve is represented by a reasonably small number of coefficients. The algorithm
produces a curve passing through the set of points to an accuracy of machine pre-
cision, after a limited number of iterations. It costs O(N log N ) operations at each
iteration, provided that the number of discretization nodes is N . The resulting curves
are smooth, affine invariant, and visually appealing and do not exhibit any ringing arti-
facts. The bandwidths of the constructed curves are much smaller than those of curves
constructed by previous methods. We demonstrate the performance of our algorithm
with several numerical experiments.
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1 Introduction

The construction of smooth curves passing through data points has uses in many areas
of applied science, including boundary integral equation methods, computer graphics,
and geometric modeling. While much of the time, Ck continuity is sufficient, there
are certain applications for which C∞ continuity is essential. One such example is
the high-accuracy solution of partial differential equations on general geometries. In
CAD/CAMsystems,C∞ smooth curves can be used as primitives to construct arbitrary
smooth objects. Solving partial differential equations on these smooth objects prevents
the loss of accuracy due to the imperfect smoothness of Ck shapes.

Countlessmethods have been proposed for fitting a spline or aCk curve to a given set
of data points. Most interpolation techniques use piecewise polynomials and impose
constraints to ensure globalCk smoothness of the curve (see, for example, [1], [2], [3],
[4]). In CAD/CAM systems, non-uniform rational B-splines (NURBS) are commonly
used to construct a curve which approximates a set of control points, by defining the
curve as a linear combination of the control points multiplied by Ck and compactly
supported B-spline basis functions. The contribution of each control point to the over-
all curve is determined by the corresponding weight, and the B-spline basis functions
are normalized to ensure that the approximating curve remains affine invariant (see,
for example, [5]). A generalization of NURBS, called partition of unity parametrics
(PUPs), was first introduced in Runions and Samavati [6]. The PUP curves are con-
structed by replacing the weighted B-spline basis functions with arbitrary normalized
weight functions (WFs), so that the resulting curves still exhibit the desired properties,
including compact support and Ck smoothness. In [6], the authors specifically discuss
uniform B-spline WFs, to illustrate that each WF can be adjusted independently to
fine-tune various shape parameters of the curve. Additionally, they observe that it is
possible to choose theWFs to generate a PUP curve that interpolates the control points
without solving a system of equations.

Another method proposed by Zhang and Ma [7] employs products of the sinc
function and Gaussian functions as basis functions for constructing C∞ interpolat-
ing curves that pass through all the given data points exactly. The resulting curves
are almost affine invariant and almost compactly supported, and their shapes can be
adjusted locally by directly adding or moving control points. Subsequently, Runions
and Samavati [8] designed CINPACT-splines, by employing C∞ and compactly sup-
ported bump functions as the WFs in a PUP curve, optionally multiplied by the
normalized sinc function. When the WFs are chosen to be products of bump func-
tions and the normalized sinc function, the resultingC∞ curve interpolates the control
points exactly, and when theWFs are bump functions, the resultingC∞ curve approx-
imates a uniform B-spline with the given control points. In addition to the properties
inherited from PUP curves, CINPACT-splines possess C∞ smoothness and the ability
to specify tangents at control points. To increase the accuracy of the approximation
to uniform B-splines, Akram et al. [9] further proposed CINAPACT-splines, by suc-
cessively convolving a CINPACT-spline with B-splines of order one, ensuring any
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finite order of approximation to uniform B-splines, as well as to other compactly sup-
ported kernels with maximal order and minimal support ([10]), while preserving C∞
smoothness and compact support. Zhu [11] proposed curves that share similaritieswith
CINPACT-splines in terms of affine invariance, compact support, and C∞ smooth-
ness. In [11], a class of non-negative blending functions is constructed by designing
basis functions which combine bump functions with the sinc function. The resulting
interpolating curves are defined by three local shape parameters,with one of the param-
eters determining whether the curve approximates or interpolates the given control
points.

One notable distinction of the approach of [7] from the other methods we have
discussed is that, since Gaussian functions are utilized in the basis functions, the
interpolating curves produced by [7] are not only C∞ smooth, but are also analytic.
This paper mainly compares our method with [7], as the interpolating curves in [7]
have a smaller bandwidth, compared to methods based on C∞ compactly supported
bump functions. The approach in [7] (as well as [6], [8], [9], [11]) necessitates a more
specially chosendistribution of data points to achieve a visually smooth curve, as it only
guarantees smoothness in the curve parameter, which does not necessarily correspond
to the smoothness of the curve in R

2. However, our method directly smooths the
tangential angle of the curve and the first derivative of the arc-length function, yielding
a significantly smoother curve which is also more visually appealing.

Among all the methods for constructing a C∞ interpolating curve, the algorithm
described by Beylkin and Rokhlin [12] bears the closest resemblance to our method,
generating a bandlimited closed curve through a set of data points. The bandlimited
curve is constructed by filtering the Fourier coefficients of the tangential angle of the
curve, parametrized by the arc-length. However, the number of coefficients required
to represent the curve can be large, which appears to be a major drawback of the
algorithm in practical applications.

In this paper, we describe an algorithm for fitting a bandlimited closed or open
curve to pass through a collection of points. The main idea is to iteratively filter the
tangential angle and the first derivative of the arc-length function of the curve and
apply small corrections after each filtering step, until the desired bandwidth of the
curve is reached, to the required precision. Our algorithm produces an analytic and
affine invariant curve with far fewer coefficients, and the curve is visually appealing
and free of ringing artifacts.

The structure of this paper is as follows. Section2 describes the mathematical
preliminaries. Section3 describes the algorithm to construct the bandlimited approx-
imation to a closed curve, and to an open curve. Finally, Sect. 4 presents several
numerical examples to demonstrate the performance of our algorithm, as well as some
comparisons between our algorithm and the methods proposed in [7] and [12].

2 Preliminaries

In this section, we describe the mathematical and numerical preliminaries.
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2.1 Geometric properties of a curve

Let γ : [a, b] → R
2 be a smooth curve parametrized by the curve parameter t , such

that

γ (t) = (x(t), y(t)), t ∈ [a, b], (1)

where x(t) and y(t) are the x and y coordinates.
Assuming γ ∈ C1([a, b]), we define the tangent vector T (t),

T (t) = (x ′(t), y′(t)), t ∈ [a, b], (2)

and the arc-length s(t), which is the length of the curve from the point (x(a), y(a))

to the point (x(t), y(t)),

s(t) =
∫ t

a
‖T (τ )‖dτ, t ∈ [a, b]. (3)

It is obvious that

s′(t) = ‖T (t)‖, t ∈ [a, b]. (4)

Thus, we have

s′(b) = s′(a) (5)

when the curve is closed. The tangential angle θ(t) of the curve at the point (x(t),
y(t)) measures the angle between the tangent vector T (t) at that point and the x-axis,
defined by the formula

θ(t) = atan2(y′(t), x ′(t)), t ∈ [a, b], (6)

where atan2 : R2 → (−π, π ] is the arctangent at the point (x(t), y(t)). As a result,
θ(t) ∈ (−π, π ]. Since the function atan2 has a branch cut at θ = −π , it is possible for
θ(t) to have ω jump discontinuities of size 2π , where ω ∈ Z is the winding number.

The curve (x(t), y(t)) can be constructed from θ(t) and s′(t) by the formulas

x(t) =
∫ t

a
s′(τ ) cos θ(τ ) dτ + x(a), t ∈ [a, b], (7)

y(t) =
∫ t

a
s′(τ ) sin θ(τ ) dτ + y(a), t ∈ [a, b], (8)

and (x(a), y(a)) = γ (a). If the curve is closed, we require x(a) = x(b) and y(a) =
y(b), which means that

∫ b

a
s′(τ ) cos θ(τ ) dτ = 0 (9)

123

74 Page 4 of 45



A continuation method for fitting...

and that ∫ b

a
s′(τ ) sin θ(τ ) dτ = 0. (10)

2.2 Cubic Bézier interpolation

A Bézier curve is a function B : [0, 1] → R
2 defined by a set of control points P0,

…, Pm ∈ R
2. The Bézier curve is designed to go through the first and the last control

points P0 and Pm , and the shape of the curve is determined by the intermediate control
points P1, …, Pm−1. A mth order Bézier curve is a polynomial of degree m, defined
by

B(t) =
m∑
i=0

(
m

i

)
(1 − t)m−i t iPi ,

= (1 − t)mP0 +
(
m

1

)
(1 − t)m−1tP1 + . . .

+
(

m

m − 1

)
(1 − t)tm−1Pm−1 + tmPm, (11)

where t ∈ [0, 1].
A continuous Bézier spline connecting all the given points C0, …, Cn can be

constructed by combining n cubic Bézier curves

Bi (t) = (1 − t)3Pi0 + 3(1 − t)2tPi1 + 3(1 − t)t2Pi2 + t3Pi3, i = 1, . . . , n,

(12)

where t ∈ [0, 1] and Bi (t) is the i th Bézier curve, with controls points

Pi0 = Ci−1, (13)

Pi3 = Ci , (14)

for i = 1, …, n. We define the spline S : [0, n] → R
2 from the cubic Bézier curves

Bi by letting S(t) = Bi (t − i + 1) for t ∈ [i − 1, i], for i = 1, …, n. It is easy to
see that S ∈ C0([0, n]), however, in general, S /∈ C1([0, n]). It is possible to ensure
S ∈ C2([0, n]) by imposing additional conditions on the intermediate control points,
which we derive as follows. Note that the following derivation is similar to the one
presented in Joost [13]. First, we observe that the first and second derivatives of a
cubic Bézier curve are

B′
i (t) = −3(1 − t)2Pi0 + 3(3t2 − 4t + 1)Pi1 + 3t(2 − 3t)Pi2 + 3t2Pi3, (15)

B′′
i (t) = 6(1 − t)Pi0 + 6(3t − 2)Pi1 + 6(1 − 3t)Pi2 + 6tPi3, (16)

for i = 1, …, n. In order for S ∈ C2([0, n]), we require that
B′
i−1(1) = B′

i (0), i = 1, . . . , n, (17)
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B′′
i−1(1) = B′′

i (0), i = 1, . . . , n. (18)

Then, Eq. 17 implies that

P(i−1)2 = 2Ci−1 − Pi1, i = 1, . . . , n. (19)

Likewise, it is possible to show that Eq. 18 implies that

P(i−1)1 + 2Pi1 = Pi2 + 2P(i−1)2, i = 1, . . . , n. (20)

Substituting Eq. 19 into Eq. 20, we get

P(i−1)1 + 4Pi1 + P(i+1)1 = 2Ci + 4Ci−1, i = 1, . . . , n. (21)

2.2.1 Solving for the control points for an open curve

When the curve is open, we have that Eq. 21 must hold for i = 2, …, n − 1, and we
need two boundary conditions in order to solve a linear system of n equations for the
values of P11, …, Pn1. Assuming that the slopes at the two endpoints of the curve,
cleft and cright, are given, we have

B′
1(0) = cleft, (22)

and

B′
n(1) = cright. (23)

It is possible to show that Eq. 22 implies that

P11 = cleft + 3C0

3
(24)

and Eq. 23 implies that

Pn2 = 3Cn − cright
3

. (25)

Substituting Eqs. 19 and 25 into Eq. 20, we get

P(n−1)1 + 4Pn1 = 4Cn−1 + Cn − cright
3

. (26)

With Eqs. 21, 24, and 26, we build a system of n equations to calculate P11, …,
Pn1 and use Eq. 19, Eq. 25 and the values of P11, …, Pn1 to calculate P12, …, Pn2.
This system of equations is tridiagonal, and so can be solved in O(n) operations.
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2.2.2 Solving for the control points for a closed curve

When the curve is closed, we require n + 1 cubic Bézier curves instead of n cubic
Bézier curves to connect the points C0, …, Cn , where the (n + 1)th curve connects
the points Cn and C0. We have that the conditions Eq. 21 must hold for i = 2, …, n,
and we need the following two boundary conditions,

B′
1(0) = B′

n+1(1), (27)

B′′
1(0) = B′′

n+1(1), (28)

to solve a linear system of (n + 1) equations for the values of P11, …, P(n+1)1.
It is possible to show that Eq. 27 implies that

P11 + P(n+1)2 = 2C0 (29)

and Eq. 28 implies that

−2P11 + P12 = P(n+1)1 − 2P(n+1)2. (30)

Substituting Eqs. 19 and 20 into Eq. 29, we get

P11 + Pn1 + 4P(n+1)1 = 2C0 + 4Cn . (31)

Substituting Eqs. 19 and 20 into Eq. 30, we get

−2P11 − P21 + 2Pn1 + 7P(n+1)1 = −2C1 + 8Cn . (32)

Similarly, with Eqs. 21, 31 and 32, we build a system of (n + 1) equations to
calculate P11, …, P(n+1)1 and use Eq. 19, Eq. 29 and the values of P11, …, P(n+1)1
to calculate P12, …, P(n+1)2. This system of equations is cyclic tridiagonal, and thus,
we can solve it in O(n) operations.

2.3 Chebyshev polynomial interpolation

A smooth function f (x) on the interval [−1, 1] can be approximated by a (n − 1)th
order Chebyshev expansion with the formula

f (x) ≈
n−1∑
k=0

f̂kTk(x), (33)

where Tk(x) is the Chebyshev polynomial of the first kind of degree k, defined by

Tk(x) = cos(k arccos x), x ∈ [−1, 1]. (34)
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It is known that the Chebyshev coefficients { f̂k} decay like O(n−m+ 1
2 ) when f ∈

Cm([−1, 1]) and the coefficients f̂k are chosen to satisfy the n collocation equations

f (xi ) =
n−1∑
k=0

f̂kTk(xi ), i = 0, . . . , n − 1, (35)

for the practical Chebyshev nodes {xi },

xi = − cos
( iπ

n − 1

)
, i = 0, . . . , n − 1. (36)

Alternatively, one can compute f̂k for k = 0, . . . , n−1using the discreteChebyshev
transform,

f̂0 = 1

n − 1

(1
2
( f (x0) + f (xn−1)) +

n−2∑
i=1

f (xi )T0(xi )
)
, (37)

and

f̂k = 2

n − 1

(1
2
( f (x0)(−1)k + f (xn−1)) +

n−2∑
i=1

f (xi )Tk(xi )
)
, (38)

for k = 1,…, n−1. Once the coefficients { f̂k} are computed, we can use the expansion∑n−1
k=0 f̂kTk(x) to evaluate f (x) everywhere on the interval [−1, 1].

2.3.1 Spectral differentiation and integration

Assuming that k ≥ 1 is an integer, the formula

2Tk(x) = T ′
k+1(x)

k + 1
− T ′

k−1(x)

k − 1
, (39)

can be used to spectrally differentiate the Chebyshev expansion of f (x), as follows.
Suppose that

f (x) ≈
n−1∑
k=0

f̂kTk(x) (40)

and that

f ′(x) ≈
n−1∑
k=0

f̂ ′
kTk(x). (41)

The coefficients f̂ ′
k can be computed from f̂k by iterating from k = n − 1, n − 2, …,

2 and, at each iteration, assigning f̂ ′
k−1 the value 2k f̂k , and assigning f̂k−2 the value

k
k−2 f̂k + f̂k−2.
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Similarly, the formula

2
∫ t

−1
Tk(x) dx = Tk+1(t)

k + 1
− Tk−1(t)

k − 1
− (−1)k+1

k + 1
+ (−1)k−1

k − 1
(42)

can be used to spectrally integrate the Chebyshev expansion of f (x). Suppose that

∫ t

−1
f (x) dx ≈

n∑
k=0

ˆ̃fkTk(t). (43)

Since

∫ t

−1
f (x)dx ≈

n−1∑
k=0

f̂k

∫ t

−1
Tk(x) dx

=
n−1∑
k=1

f̂k
1

2

(Tk+1(t)

k + 1
− Tk−1(t)

k − 1
− (−1)k+1

k + 1
+ (−1)k−1

k − 1

)

+ f̂0(t + 1), (44)

one can compute the coefficients ˆ̃fk from f̂k by first assigning f̂1 the value f̂1 + f̂0,
then iterating from k = n − 1, …, 1 and, at each iteration, assigning f̂k+1 the value

f̂k+1 + f̂k
2(k+1) , assigning f̂k−1 the value f̂k−1 − f̂k

2(k−1) , and assigning f̂0 the value

f̂0 − f̂k(
(−1)k+1

2(k+1) − (−1)k−1

2(k−1) ). Finally, ˆ̃fk takes the value f̂k , for k = n, …, 0.

2.4 The discrete Fourier transform (DFT)

A periodic and smooth function f (x) on the interval [0, 1] can be approximated by
a n-term Fourier series using the discrete Fourier transform. The discrete Fourier
transform defines a transform from a sequence of n complex numbers f0, …, fn−1 to
another sequence of n complex numbers f̂0, …, f̂n−1, by the formula

f̂k =
n−1∑
j=0

f j e
− 2π i

n k j , k = 0, . . . , n − 1, (45)

The sequence { f̂k} consists of the Fourier coefficients of { fk}.
The inverse discrete Fourier transform (IDFT) is given by

f j = 1

n

n−1∑
k=0

f̂ke
2π i
n k j , j = 0, . . . , n − 1. (46)
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Another representation of the DFT which is usually used in applications is given by a
shift in the index k, and a change in the placement of the scaling by 1

n ,

f̂k = 1

n

n−1∑
j=0

f j e
− 2π i

n k j , k = −n

2
, . . . ,

n

2
− 1. (47)

Thus, the corresponding IDFT is

f j =
n
2−1∑

k=− n
2

f̂ke
2π i
n k j , j = 0, . . . , n − 1. (48)

Suppose that f : [0, 1] → C is a smooth and periodic function, and that f j = f (t j )
for j = 0, …, n − 1, where {t j } are the equispaced points on [0, 1]. Observing that

f̂k = 1

n

n−1∑
j=0

f j e
− 2π i

n k j ,

≈
∫ 1

0
f (x)e−2π ikx dx, (49)

for k = − n
2 , …, n

2 − 1, we obtain the approximation to f (x) by a truncated Fourier
series,

f (x) ≈
n
2−1∑

k=− n
2

f̂ke
2π ikx , x ∈ [0, 1]. (50)

It is known that the Fourier coefficients { f̂k} decay like O(n−m+ 1
2 )when f ∈ Cm(S1),

where S1 = [0, 1] is the circle.
2.4.1 Spectral differentiation and integration

A truncated Fourier series approximation to f (x) on [0, 1] can be spectrally differen-
tiated as follows. Suppose that f (x) is given by Eq. 50 and that

f ′(x) ≈ 1

n

n
2−1∑

k=− n
2

f̂ ′
ke

2π ikx . (51)

Since

f ′(x) ≈ 1

n

n
2−1∑

k=− n
2

f̂ke
2π ikx · 2π ik, (52)
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the coefficients f̂ ′
k can be computed from f̂k by assigning f̂ ′

k the value f̂k · 2π ik for
k = − n

2 , …, n
2 − 1.

Similarly, a truncated Fourier series approximation to f (x) can be spectrally inte-
grated as follows. Suppose that

∫ t

0
f (x)dx ≈ 1

n

n
2−1∑

k=− n
2

ˆ̃fke2π ikt . (53)

Since

∫ t

0
f (x)dx ≈ 1

n

∑
k 	=0

f̂k
2π ik

e2π ikt − 1

n

∑
k 	=0

f̂k
2π ik

+ 1

n
f̂0t, (54)

it is easy to see that, for
∫ t
0 f (x)dx to be periodic, it must be the case that f̂0 = 0.

Then, we have

∫ t

0
f (x)dx ≈ 1

n

∑
k 	=0

f̂k
2π ik

e2π ikt − 1

n

∑
k 	=0

f̂k
2π ik

. (55)

We can compute the Fourier coefficients ˆ̃fk from f̂k by assigning ˆ̃fk the value f̂k
2π ik

for k = − n
2 , …, n

2 − 1, k 	= 0 and assigning ˆ̃f0 the value −∑
k 	=0

f̂k
2π ik .

2.5 Gaussian filter

A low-pass filter is commonly used in signal processing to construct a bandlimited
function. In this paper, we use the Gaussian filter, which is a popular low-pass filter
whose impulse response is a Gaussian function,

g(x) = ae−πa2x2 , (56)

where a determines the bandwidth of g(x).
The Gaussian filter g0, …, gn−1 is defined to be the IDFT of the sequence

ĝk = e
−π k2

a2 , k = −n

2
, . . . ,

n

2
− 1, (57)

and coincides with the discrete values of g(x) at the equispaced nodes x j = j
n , j = 0,

…, n − 1.
To filter the Fourier coefficients f̂0, …, f̂n−1 in Eq. 47, we take the product

ĥk = ĝk f̂k, k = −n

2
, . . . ,

n

2
− 1. (58)
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It is easily to obtain h0, …, hn−1 by the IDFT,

h j = 1

n

j∑
k=0

gk f j−k, j = 0, . . . , n − 1. (59)

This can be considered to be a smoothing of f (x) by a convolution with the Gaussian
function g(x).

Filtering the Chebyshev coefficients f̂0, …, f̂n−1 defined in Eq. 35 is very similar
to filtering the Fourier coefficients, and proceeds as follows. Substituting x = cos(θ),
where x ∈ [−1, 1], into Eq. 33, we have

f (cos(θ)) ≈
n−1∑
k=0

f̂kTk(cos(θ))

=
n−1∑
k=0

f̂k cos(kθ), (60)

where θ ∈ [−π, π ]. Letting f̂−k = f̂k , k = 1, …, n − 1, we have

f (cos(θ)) ≈ 1

2

n−1∑
k=−n+1

f̂ke
ikθ + 1

2
f̂0, θ ∈ [−π, π ]. (61)

Hence, by defining φ by the formula θ = 2πφ,

f (cos(2πφ)) ≈ 1

2

n−1∑
k=−n+1

f̂ke
2π ikφ + 1

2
f̂0, φ ∈ [− 1

2 ,
1
2 ]. (62)

Since Eq. 62 can be viewed as a Fourier transform in φ with the Fourier coefficients
{ f̂k}, we follow Eq. 58 to filter { f̂k}, and apply the IDFT to obtain the filtered values of
{ f j }. Therefore, f (x) is smoothed by a convolution with the Gaussian function g(φ)

in the φ-domain, where x = cos(2πφ).
Alternatively, there are other low-pass filters that can be used, such as the Butter-

worth filter (see, for example, Chapter 14 of [14]) which resembles the Gaussian filter
but is flatter in the passband. The brick-wall filter also preserves signals with lower
frequencies and excludes signals with higher frequencies. However, after applying the
brick-wall filter, the resulting functions tend to oscillate at the cutoff frequency (this
phenomenon is known as ringing).

3 The algorithm

In this section, we give an overview of our algorithm for fitting a C∞ curve to pass
through a collection of points C0, …, Cn . We begin with a C2 cubic Bézier spline
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connecting the points C0, …, Cn . Given that the curve is at least C2, we interpolate
the tangential angle θ(t) and the first derivative of the arc-length function s′(t), which
are both C1, using Chebyshev expansions when the curve is open, or using truncated
Fourier series when the curve is closed. We then iteratively filter the coefficients of
θ(t) and s′(t) by applying a Gaussian filter, whose bandwidth decreases with each
iteration. If the curve is closed before filtering, we impose constraints on θ(t) and
s′(t) to ensure that the curve remains closed. We then reconstruct the curve with the
filtered values of θ(t) and s′(t) at discretization nodes.

While filtering leads to small discrepancies between the reconstructed curve and the
pointsC0,…,Cn , it also improves the bandwidth of the curve. To fix the discrepancies
after each filtering step, we rotate and rescale the curve to minimize the total distance
between the curve and the points and add small, smooth perturbations, which do
not negatively affect the smoothness of the curve. We stop filtering when the desired
bandwidths of the Chebyshev or Fourier approximations to θ(t) and s′(t) are achieved.
This algorithm gives us a C∞ smooth curve that can be represented by a reasonably
small number of coefficients. The resulting curve also maintains affine invariance.

This iterative filtering procedure can be viewed as a continuationmethod, producing
a sequence of curves along a continuous path from large bandwidth to small bandwidth.
Suppose that F

(
(θ(t), s′(t)), λ̃

)
measures the extent to which (θ(t), s′(t)) satisfies

somebandlimit λ̃, and the extent towhich the curve represented by (θ(t), s′(t)) interpo-
lates the pointsC0,…,Cn . The goal of our algorithm is to find (θλ(t), s′

λ(t)), such that
F

(
(θλ(t), s′

λ(t)), λ
) = 0, for some desired bandwidth λ. One approach is to start with

an initial curve represented by (θλ0(t), s
′
λ0

(t)), such that F
(
(θλ0(t), s

′
λ0

(t)), λ0
) = 0,

where the bandwidth λ0 can be much larger than the desired bandwidth λ, even ∞. If
λ0 is much larger than λ, applying a single step of filtering to reduce the bandwidth
to λ will lead to large discrepancies between the reconstructed curve and the points
C0, …, Cn , and adding large perturbations will reduce the overall smoothness of the
curve. Since a small filtering step results in only a small change in the curve, and
adding small perturbations does not reduce the bandwidth of the curve, we filter the
curve iteratively by slightly reducing the bandwidth of (θλi−1(t), s

′
λi−1

(t)) from λi−1

to λi at the i th iteration, so that we can ensure F
(
(θλi (t), s

′
λi

(t)), λi
) = 0. Our method

can be interpreted as a continuation method, following a continuous solution path{
(θλ̃(t), s

′
λ̃
(t))

}λ

λ̃=λ0
under the constraint F

(
(θλ̃(t), s

′
λ̃
(t)), λ̃

) = 0.

3.1 Initial approximation

To initialize our algorithm, we require a C2 curve, the reasons for which are described
in Sect. 3.3.

Given a set of data pointsC0,…,Cn ∈ R
2, we fit a cubicBézier spline by solving for

the intermediate control points {Pi1} and {Pi2}, as described in Sect. 2.2.1 for an open
curve and in Sect. 2.2.2 for a closed curve.We define the Bézier spline S : [0, L] → R

2

connecting all the points C0, …, Cn by

S(t) = Bi (t − i + 1), t ∈ [0, n] and i = 1, . . . , n, (63)
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if the curve is open, or

S(t) = Bi (t − i + 1), t ∈ [0, n + 1] and i = 1, . . . , n + 1, (64)

if the curve is closed.

3.2 Representation of the curve

In this section, we denote the curve by

γ (t) = (x(t), y(t)), (65)

where γ : [0, L] → R
2 is at least C2.

3.2.1 Representation of an open curve

When the curve is open, we discretize x(t) and y(t) at N 
 n practical Chebyshev
nodes {t j } on the interval [0, L] (see Eq. 36) to obtain {x j } and {y j }, where x j = x(t j )
and y j = y(t j ). We use (N − 1)th order Chebyshev expansions to approximate x(t)
and y(t), constructing the coefficients from {x j } and {y j } using the discrete Cheby-
shev transform, and then spectrally differentiate x(t) and y(t) to derive the Chebyshev
expansions approximating x ′(t) and y′(t). By Eqs. 4 and 6, we can compute the values
of s′(t) and θ(t) sampled at nodes {t j }, and then construct the corresponding Cheby-
shev expansions, again using the discrete Chebyshev transform. However, performing
the Chebyshev transform on θ(t) requires θ(t) to be continuous, and as discussed in
Sect. 2.1, θ(t) can have jump discontinuities of size 2π . These can be fixed by adding
or subtracting multiples of 2π to θ(t) wherever a discontinuity is detected.

3.2.2 Representation of a closed curve

When the curve is closed, we discretize x(t) and y(t) at N 
 n equispaced nodes {t j }
on the interval [0, L], where

t j = j

N
L, j = 0, . . . , N − 1, (66)

to obtain {x j } and {y j } by x j = x(t j ) and y j = y(t j ). We then approximate x(t) and
y(t) by N -term Fourier series, separately, and spectrally differentiate x(t) and y(t) to
approximate x ′(t) and y′(t). Following the same procedure described in Sect. 3.2.1,
we ensure that θ(t) is continuous and approximate s′(t) by a truncated Fourier series.
Recall that, in order to approximate functions by their Fourier series, the functions
must be both smooth and periodic. The sequence {θ j }, which are the discrete values
of θ(t) at {t j }, is not periodic after being shifted by multiples of 2π to remove the
discontinuities. Defining c by

c = θ(n + 1) − θ(0), (67)

123

74 Page 14 of 45



A continuation method for fitting...

we let

θ̃ j = θ j − c

L
t j , t j ∈ [0, L]. (68)

This transforms {θ j } into a periodic sequence {θ̃ j } on the interval [0, L], which can
be approximated by a truncated Fourier series. To recover the true values of {θ j } after
filtering, we can add c

L t j to θ̃ j . In an abuse of notation, we denote {θ̃ j } by {θ j }wherever
the meaning is clear.

3.3 Filtering the curve

In this section, we describe the process of iteratively filtering θ(t) and s′(t) using a
Gaussian filter. Given γ (t) ∈ C2, we have θ(t) ∈ C1 and s′(t) ∈ C1. It is known that
the decay rate of the Chebyshev coefficients or the Fourier coefficients of aC1 function

is O(N− 1
2 ), where N is the order of the expansion. By iteratively decreasing the band-

width of the Gaussian filter, we construct a sequence of bandlimited representations of
θ(t) and s′(t). The decay rate of the Fourier coefficients or the Chebyshev coefficients
in the expansions of θ(t) and s′(t) increases with each iteration. This filtering process
smooths both the curve itself and the parameterization of the curve.

3.3.1 Filtering the open curve

Let {t j } denote the practical Chebyshev nodes translated to the interval [0, L] (see
Eq. 36). Using the Chebyshev expansions of θ(t) and s′(t) computed in Sect. 3.2.1,
we discretize θ(t) and s′(t) at the points {t j } to obtain the sequences {θ j } and {s′

j },
where θ j = θ(t j ) and s′

j = s′(t j ). We filter the Chebyshev coefficients {θ̂k} of θ(t)

and {ŝ′
k} of s′(t) using the Gaussian filter in Eq. 57, and obtain the filtered coefficients

{θ̂ ( f )
k } and {ŝ′( f )

k },

θ̂
( f )
k = e

−π k2

a2 θ̂k, k = 0, . . . , N − 1, (69)

and

ŝ′( f )
k = e

−π k2

a2 ŝ′
k, k = 0, . . . , N − 1. (70)

Applying the IDFT to {θ̂ ( f )
k } and {ŝ′( f )

k }, we obtain

θ
( f )
j =

N−1∑
k=0

θ̂
( f )
k Tk(t̄ j ), t̄ j ∈ [−1, 1], (71)

where t̄ j = 2
L t j − 1, t j ∈ [0, L], and

s′( f )
j =

N−1∑
k=0

ŝ′( f )
k Tk(t̄ j ). (72)
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We can then use the values of {θ( f )
j } and {s′( f )

j } to recover {x ( f )
j } and {y( f )

j } using
Eqs. 7 and 8.

In practice, we set a = βN at the first iteration of the filtering process, for some

β > 0, so that the sizes of θ̂
( f )
k and ŝ′( f )

k become small for values of k close to N − 1.
Subsequently, we decrease a slightly at each iteration to reduce the bandwidth of the
Gaussian filter.

3.3.2 Filtering the closed curve

Assume that {θ j } and {s′
j } are the values of θ(t) and s′(t) discretized at the equispaced

nodes {t j } in Eq. 66, where θ j = θ(t j ) and s′
j = s′(t j ). We apply the DFT to derive

the Fourier coefficients {θ̂k} of θ(t) and {ŝ′
k} of s′(t). Using the Gaussian filter, we

filter the Fourier coefficients {θ̂k} and {ŝ′
k} to obtain the filtered Fourier coeffcients

{θ̂ ( f )
k } and {ŝ′( f )

k },

θ̂
( f )
k = e

−π k2

a2 θ̂k, k = −N

2
, . . . ,

N

2
− 1, (73)

and

ŝ′( f )
k = e

−π k2

a2 ŝ′
k, k = −N

2
, . . . ,

N

2
− 1. (74)

We recover the filtered sequences {θ( f )
j } and {s′( f )

j } by applying the IDFT to the filtered

Fourier coefficients {θ̂ ( f )
k } and {ŝ′( f )

k },

θ
( f )
j =

N
2 −1∑

k=− N
2

θ̂
( f )
k e

2π i
N k j + c

L
t j , j = 0, . . . , N − 1, (75)

and

s′( f )
j =

N
2 −1∑

k=− N
2

ŝ′( f )
k e

2π i
N k j , j = 0, . . . , N − 1. (76)

Similarly, the curve can be reconstructed from {θ( f )
j } and {s′( f )

j }, using Eqs. 7 and
8.

When the curve is closed, we set a = β N
2 at the first iteration of the filtering process,

for some β > 0, so that the sizes of θ̂
( f )
k and ŝ′( f )

k become small for values of k close
to − N

2 or N
2 − 1. Similarly, we decrease a at each subsequent iteration to reduce the

bandwidth of the Gaussian filter.
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3.4 Closing the curve

Applying a filter to θ(t) and s′(t) of a closed curve, in general, makes the curve become
open. To close the curve, we require that

∫ L

0
s′(t) cos θ(t) dt = 0, (77)

and

∫ L

0
s′(t) sin θ(t) dt = 0. (78)

We orthogonalize s′(t) to cos θ(t) and sin θ(t) using the trapezoidal rule, as follows.
Suppose we have the values {s′

j }, {cos θ j } and {sin θ j } of s′(t), cos θ(t) and sin θ(t)
sampled at the points {t j } defined in Eq. 66. We ensure that {s′

j } is orthogonal to cos θ j

by setting {s′
j } to the values

s′
j − cos θ j

1
N

∑N−1
j=0 s′

j cos θ j

1
N

∑N−1
j=0 cos2θ j

, j = 0, . . . , N − 1. (79)

We let {λ j } be the vector defined by the formula

λ j = sin θ j − cos θ j

1
N

∑N−1
j=0 sin θ j cos θ j

1
N

∑N−1
j=0 cos2θ j

, j = 0, . . . , N − 1. (80)

Finally, we orthogonalize {s′
j } to {λ j } by setting {s′

j } to the values

s′
j − λ j

1
N

∑N−1
j=0 s′

jλ j

1
N

∑N−1
j=0 λ2j

, j = 0, . . . , N − 1. (81)

The sequence {s′
j } is now orthogonal to both {cos θ j } and {sin θ j }. Thus, the conditions

Eqs. 77 and 78 are satisfied to within the accuracy of the trapezoidal rule.

3.5 Repositioning the curve

In general, the curve will not pass through the original data points after filtering.
Moreover, filtering θ(t) and s′(t) changes the tangent vector T (t), which results in
changes in the orientation and position of the curve. In this section, we describe how
to rotate the reconstructed curve so that the sum of squares of the distances between
the curve and the original data points is minimized.

Given the original data points {Ci }, where Ci = (Ci x ,Ciy), i = 0, . . . , n, we find
t̃0, …, t̃n ∈ [0, L] such that if (x̃i , ỹi ) = (x(t̃i ), y(t̃i )), then (x̃i , ỹi ) is the closest point
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on the curve to (Ci x ,Ciy), for i = 0, …, n. We determine t̃0, . . . , t̃n only once, as
described in Remark 2. Let (x̄, ȳ) denote the centroid of the closest points {(x̃i , ỹi )}.
Suppose that {φi } are the values of the angle between {(x̃i , ỹi )} and (x̄, ȳ), and that
{ri } are the distances between {(x̃i , ỹi )} and (x̄, ȳ). We shift the centroid of all the
closest points {(x̃i , ỹi )} by (
x,
y), and rotate the curve by an angle ofψ around the
centroid. Observe that the sum of squares of the distances between the closest points
and the original data points is given by

f (ψ,
x,
y) =
n∑

i=0

(x̄ + 
x + ri cos (φi + ψ) − Ci x )
2+

(ȳ + 
y + ri sin (φi + ψ) − Ciy)
2. (82)

We use Newton’s method to obtain the values of ψ , 
x , and 
y which minimize
f (ψ,
x,
y).

Remark 1 One might also think to rescale the curve by multiplying {ri } by a constant
c, since filtering s′(t) changes the length of the curve. However, rescaling the curve
distorts the structure of the closest points (x̃i , ỹi ) on the curve. Large perturbations, as
described in Sect. 3.6, are sometimes needed as a result, and therefore, the smoothness
of the curve after adding perturbations can be reduced.

3.6 Adding perturbations to the curve

Since the curve does not pass through the original data points {Ci } after filtering θ(t)
and s′(t), we introduce a set of Gaussian functions, {gi (t)}, which we use as smooth
perturbations that can be added to the curve to ensure that the curve passes through
the points {Ci }. We define gi (t) by

gi (t) = e−σi

(
t−t̃i
L

)2
, i = 0, . . . , n, (83)

for t ∈ [0, L], where t̃i is the curve parameter of the closest point (x̃i , ỹi ) = (x(t̃i ),
y(t̃i )) to Ci , and σi determines the bandwidth of the perturbation. When the curve is
closed, gi (t) is modified to be a periodic function with period L , given by the formula

gi (t) =
∞∑

k=−∞
e−σi

(
t−t̃i
L +k

)2
, i = 0, . . . , n. (84)

It is obvious that gi (t) = gi (t + L). We construct {(x̄ j , ȳ j )} from {(x j , y j )} by adding
gi (t) at the discretized points {t j },

x̄ j = x j +
n∑

i=0

cix gi (t j ), j = 0, . . . , N − 1, (85)
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and

ȳ j = y j +
n∑

i=0

ciygi (t j ), j = 0, . . . , N − 1, (86)

where {cix } and {ciy} are the coefficients of perturbations in x and y, separately, which
are reasonably small since the curve is filtered slightly at each iteration. Let {( ˜̄x j , ˜̄y j )}
denote the points on the perturbed curve corresponding to t̃0, . . . , t̃n . We require

˜̄xi = Ci x , i = 0, . . . , n, (87)

and

˜̄yi = Ciy, i = 0, . . . , n, (88)

and solve two linear systems of n+1 equations to compute the values of {cix } and {ciy}.
We observe that, since the perturbations gi (t) are Gaussians, they are each, to finite
precision, compactly supported. Thus, the linear systems that we solve are effectively
banded, and the number of bands is determined by mini σi . An O(n + 1) solver can
be used to speed up the computations.

Remark 2 We only calculate {t̃i } once, at the first iteration before filtering, and use
the same set of {t̃i } at each iteration. Although it seems more natural to recalculate
{t̃i } at each iteration, so that the discrepancies are fixed by smaller perturbations, the
resulting perturbations are always orthogonal to the curve. Changes in the length of
the curve due to filtering cannot be eliminated by adding such perturbations, with
the effect that the length of the curve grows if the points {t̃i } are recalculated at each
iteration. By using the same set of closest points for all iterations, the perturbations
can be oblique, which results in a control over the total length of the curve during the
filtering process.

3.7 The termination criterion of the algorithm

Since the bandwidths of the coefficients of θ(t) and s′(t) are reduced at each iteration,
and adding small, smooth perturbations has a negligible effect on the bandwidth of
the curve, one can expect to achieve the desired bandwidth of the representations of
θ(t) and s′(t) by iteratively filtering the coefficients. However, we note that there is a
minimum number of coefficients that are necessary to represent a curve, as determined
by the sample data points. When fewer than this number of coefficients are used, the
curve reconstructed by these overfiltered coefficients may deviate drastically from the
sample data points. The resulting large perturbations required to fix the discrepancies
can harm the smoothness of the curve. The purpose of this section is to set up a
termination criterion, so that the algorithm will terminate if the coefficients of θ(t)
and s′(t), beyond a user-specified number of terms, are filtered to zero, to the requested
accuracy.
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We denote the desired accuracy of the approximation by ε, which is often set to be
machine precision, and the desired number of coefficients representing the curve that
are larger than ε by ncoefs. Due to the potentially large condition number of spectral
differentiation, some accuracy is lost when computing the coefficients of x ′(t) and
y′(t), and thus θ(t) and s′(t), at each iteration. Thus, we determine thresholds for
the coefficients of θ(t) and s′(t), representing the smallest values we can expect to
measure, and denote them by δθ and δs′ . We consider first the open curve case. Since
the condition number of the Chebyshev differentiation matrix is bounded by approxi-

mately N
3
2 , where N is the number of coefficients, the error induced by differentiating

x(t) and y(t) is approximately

εN
3
2

√
‖x(t)‖2

L2[0,L] + ‖y(t)‖2
L2[0,L] (89)

≈ εN
3
2

√∑
j

x2jw j +
∑
j

y2jw j , (90)

where {w j } denotes the Chebyshev weights on [0, L]. Considering how θ(t) is cal-
culated, the error in θ(t) is proportional to the error in x ′(t) and y′(t), divided by the
norm of the tangent vector (x ′(t), y′(t)). Thus, we set

δθ = εN
3
2

√
‖x(t)‖2

L2[0,L] + ‖y(t)‖2
L2[0,L] ·

∥∥∥∥∥
1√

x ′(t)2 + y′(t)2

∥∥∥∥∥
L∞[0,L]

≈
εN

3
2

√∑
j x

2
jw j + ∑

j y
2
jw j

min
√
x ′2
j w j + y′2

j w j

, (91)

where x ′
i and y′

i are the discretized values of x ′(t) and y′(t). Similarly, the error in
s′(t) is proportional to the error in x ′(t) and y′(t). Thus, we set

δs′ = εN
3
2

√
‖x(t)‖2

L2[0,L] + ‖y(t)‖2
L2[0,L],

≈ εN
3
2

√∑
j

x2jw j +
∑
j

y2jw j . (92)

The thresholds δθ and δs′ for the closed curve case are almost identical, except that
the condition number of spectral differentiation matrix is approximately N , where N

is the number of coefficients, from which it follows that N
3
2 is replaced by N , and the

weights w j are replaced by L
N .

Suppose that we have the desired accuracy of the approximation, ε, the threshold,
δθ , and the desired number of coefficients larger than ε, ncoefs. We consider first the
coefficients of θ(t). Our goal is to determine the number of coefficients, nδθ

coefs, that we
expect to be larger than δθ , when there are only ncoefs terms larger than ‖θ̂‖∞ε. In order
to approximate nδθ

coefs, we assume that the coefficients {θ̂k} decay exponentially, like
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‖θ̂‖∞e−Ck , from themaximum value ‖θ̂‖∞ to ‖θ̂‖∞ε. This implies thatC = log (1/ε)
ncoefs

.
Thus,

e
− log (1/ε)

n
δθ
coefs

ncoefs = δθ , (93)

so,

nδθ

coefs = ncoefs
log (1/δθ )

log (1/ε)
. (94)

We compute n
δs′
coefs in exactly the same way. At each iteration, if only nδθ

coefs and

n
δs′
coefs numbers of terms are larger than δθ and δs′ , respectively, then the algorithm

terminates. Eventually, ncoefs coefficients are returned to the user to represent the
curve, up to the precision ε.

Remark 3 Since the values of δθ , δs′ , n
δθ

coefs and n
δs′
coefs are fairly consistent in each

iteration, we only calculate these values once, at the first iteration.

3.8 Summary and cost of the algorithm

The algorithm can be summarized as follows:

1. Given n + 1 points C0, …, Cn , fit a C2 Bézier spline to connect the points.
2. Discretize the curve at N 
 n + 1 Chebyshev nodes if the curve is open, or

N 
 n + 1 equispaced nodes if the curve is closed, and compute {θ j } and {s′
j }.

Repeat the steps 3, …, 9 until a C∞ smooth curve can be represented by the
requested number of coefficients, ncoefs, letting i denote the iteration number:

3. Obtain the Chebyshev coefficients or the Fourier coefficients of {θ j } and {s′
j }.

4. Determine the number of coefficients of {θ j } and {s′
j } larger than δθ and δs′ . If there

are fewer than nδθ

coefs and n
δs′
coefs, respectively, then return the first ncoefs coefficients

of x(t) and y(t).
5. Apply the filter in Eq. 57, with parameter ai , to the coefficients of {θ j } and {s′

j } to
compute the filtered values of {θ j } and {s′

j }.
6. In the case of a closed curve, modify {s′

j } to satisfy the constraints Eqs. 77 and 78
in order to close the curve after filtering.

7. Reconstruct the curve from {θ j } and {s′
j } by Eqs. 7 and 8.

8. Rotate the curve to minimize the sum of squares of the distances between the curve
and the points C0, …, Cn .

9. Add smooth Gaussian perturbations to make the curve pass through the points C0,
…, Cn .

10. Compute ai+1 = c · ai , for some 0 < c < 1.

Solving for the control points of theBézier spline in step 1 costsO(n+1) operations,
and discretizing the spline at N points in step 2 costs O(N ) operations. Step 3 involves
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spectral differentiation and the discrete Chebyshev transform in the open curve case,
or the DFT in the closed curve case, where the discrete Chebyshev transform can
be replaced by the fast Chebyshev transform and the DFT can be replaced by the
FFT. The cost of step 3 is thus reduced to O(N log N ). Checking the termination
condition in step 4 costs approximately O(N ) operations. Applying the filter and
reconstructing {θ j } and {s′

j } in step 5 has the same cost as applying the inverse fast
Chebyshev transform or the IFFT, which costs O(N log N ) operations. If the curve is
closed, we must modify {s′

j } so that the curve remains closed. The cost of closing the
curve by looping through {s′

j } in step 6 is O(N ). Step 7 involves spectral integration,
and the inverse fast Chebyshev transform in the open curve case, or the IFFT in the
closed curve case, which has the same O(N log N ) cost as step 3. The cost of using
Newton’s method to rotate the curve in step 8 is O(n + 1), and the cost of solving for
the coefficients of the smooth perturbations added to the curve in step 9 is O(n + 1).
The total cost is thus O(N log N ) per iteration.

3.9 Affine invariance of the curve

Recall that the primary steps of our algorithm involve filtering θ(t) and s′(t), closing
the curve if needed, repositioning the curve, and adding perturbations, as described in
Sects. 3.3, 3.4, 3.5, and 3.6, respectively. We aim to demonstrate the affine invariance
of the curve produced by our algorithm, by examining each of these steps under affine
transformations. Note that themain types of affine transformations include translation,
rotation, and scaling, which result in either an addition of an angle to θ(t) or a scaling
in s′(t). Although there exist other types of affine transformations, such as reflection
and shear mapping, we omit them from this discussion as their analysis follows the
same reasoning.

• Since the filtering process does not involve any low-frequency coefficients, the addi-
tion of a constant to θ(t), which is equivalent to an addition to the zero-frequency
coefficient, is unaffected by the filtering process. Scaling s′(t) is clearly also unaf-
fected by the filtering process.

• Closing the curve requires the orthogonality of s′(t) to both cos(θ(t)) and sin(θ(t)),
as specified in Eqs. 77 and 78. Recall that cos(θ(t) + c) = cos(θ(t)) cos(c) −
sin(θ(t)) sin(c) and sin(θ(t) + c) = sin(θ(t)) cos(c) + cos(θ(t)) sin(c). Thus, the
curve remains closed after the addition of a constant to θ(t). Scaling s′(t) also
preserves its orthogonality to sin(θ(t)) and cos(θ(t)).

• The repositioning step minimizes the distance between the sample data points and
certain points on the curve, and thus, the final position of the curve relative to the
sample data points is invariant under translation, rotation, and scaling.

• Since perturbations are added to eliminate the discrepancies between the curve and
the sample data points, and the perturbations are determined by the positions of
certain points on the curve relative to the sample data points, the step of adding
perturbations is also invariant under translation, rotation, and scaling.

Considering that the curve preserves affine invariance during each of these steps,
the resulting curve produced by our algorithm is affine invariant.
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3.10 Comparison with themethod of Beylkin and Rokhlin

As our method is closely related to the method of Beylkin and Rokhlin [12], in this
section, we provide an analysis of the similarities and differences between these two
methods.

Both methods ensure the global smoothness of the curve, with the primary steps
involving filtering the coefficients of the representations of the curve to attain smaller
bandwidths and adding smooth perturbations to reconnect the curve with the sample
data points without reducing the smoothness of the curve.

The method of [12] filters the tangential angle of the curve, θ(s), which is
parametrized by the arc-length parameter s. This parametrization may lead to dra-
matic changes in θ(s) around some high-curvature features on the curve, requiring a
large number of coefficients to represent the curve. Ourmethod, on the other hand, uses
the curve parameter t for the parametrization of the curve and filters both the tangential
angle θ(t) and the first derivative of the arc-length function s′(t). This choice of param-
eterization allows s′(t) to become smaller near the high-curvature areas, resulting in
smaller bandwidths for both θ(t) and s′(t). Additionally, it avoids the computation of
the inverse function of s(t), required by the method of [12]. The procedure of closing
the curve can be achieved by directly orthogonalizing s′(t) to cos(θ(t)) and sin(θ(t))
using the trapezoidal rule, without employing nonlinear searches, as required by the
method of [12].

The next key difference is thatwe use a continuationmethod rather than a single step
of filtering, by slightly filtering the representations of the curve at each iteration and
adding small perturbations to the reconstructed curve. This enables the representations
of the curve to have much smaller final bandwidths after a reasonable number of
iterations, provided that a small amount of filtering is applied at each iteration.

The final key difference is that our method is applicable not only to closed curves,
but also to open curves.

4 Numerical experiments

In this section, we demonstrate the performance of our algorithm with several
numerical examples, and compare our method to several other methods for filter-
ing bandlimited curves through user-specified points. We implemented our algorithm
in Fortran 77 and compiled it using the GFortran Compiler, version 9.4.0, with -O3
flag. All experiments were conducted on a laptop with 16 GB of RAM and an Intel
11th Gen Core i7-1185G7 CPU. Furthermore, we use FFTW library (see [15]) for the
implementations of the FFT and the fast cosine transform. The latter is used to imple-
ment the fast Chebyshev transform. An implementation of our algorithm is provided
in https://doi.org/10.5281/zenodo.7742917.

The following notation appears in this section:

− N : the number of discretization nodes.
− n: the number of sample data points.
− niters: the maximum number of iterations.
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− nstop: the number of iterations needed for the algorithm to terminate.
− a1: the parameter defined inEq. 57,whichdetermines the bandwidth of theGaussian

filter at the first iteration. We set a1 = βN for open curves and a1 = β N
2 for closed

curves. Throughout this section, we choose β =
√
2π
5 .

− hfilter: the amount of filtering at each iteration, as expressed in the formula ai =
a1(1 − hfilter)i−1, where ai determines the bandwidth of the Gaussian filter at the
i th iteration.

− ε: the desired accuracy of the approximation to the curve. As ε is dependent on the
size of the curve, for consistency, we scale the sample data points, so that either
the width or height of the collection of data points, whichever is closer to 1, is set
equal to 1.

− ncoefs: the requested number of the coefficients representing the curve to precision
ε.

− nbands: the bandwidth of the matrix describing the effect of the Gaussian perturba-
tions centered at each closest point.

− x ′
left, y

′
left: the derivative of the initial curve specified at the left endpoint, in the x

coordinate and y coordinate separately. This notation only exists in the open curve
case. Notice that the filtering process can potentially alter the derivative of the curve
at the left endpoint.

− x ′
right, y

′
right: the derivative of the initial curve specified at the right endpoint, in

the x coordinate and y coordinate separately. This notation only exists in the open
curve case. Notice that the filtering process can potentially alter the derivative of
the curve at the right endpoints.

− Esamp: the maximum l2 norm of the distance between the curve, defined by ncoefs
Chebyshev or Fourier coefficients, and the sample data points.

While there is no strict rule on how to choose the input parameters, we assume that the
users pick a reasonable combination of inputs, so that the algorithm terminates before
reaching the maximum number of iterations, niters.

4.1 Performance of our algorithm

In this section, we demonstrate the performance of our algorithm on several examples,
for both open and closed curves.

4.1.1 Open curve examples

For our first example, we sample some points from a spiral shape with the polar
representation (r(t) cosϕ(t), r(t) sin ϕ(t)), where

ϕ(t) = 6π

log 2
log t,

r(t) = ϕ(t), (95)

with t ∈ [1, 2], and construct the initial Bézier spline passing through the data points,
as shown in Fig. 1a. The sample data points are scaled so that their width is 1. We set
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Fig. 1 The result of our algorithm applied to Eq. 95. The red dots mark the sample data points

N = 1000, n = 50, x ′
left = 0.05, y′

left = 0.05, x ′
right = 0.05, y′

right = 0.05, niters = 60,

hfilter = 1
25 , ε = 10−16, ncoefs = 500, nbands = 8. After nstop = 16 iterations,

the algorithm terminates and returns a curve represented by only 500 Chebyshev
coefficients. The magnitudes of the Chebyshev coefficients of s′(t) and θ(t), for
both the initial and final curves, are displayed in Fig. 2. We display the Chebyshev
coefficients that are necessary to represent both the initial and final curves in Fig. 3.
We can see that the shape of the final curve in Fig. 1b is smoother, especially at the
center of the spiral. Moreover, the final curve passes through the sample data points
with an error of Esamp = 0.11548 · 10−13.

Another example, depicted in Fig. 4a, is obtained by sampling from the curve

γ (t) = (
5t, 3 cos (10tπ)3

)
, t ∈ [0, 1]. (96)

The sample data points are scaled so that their height is 1. We run the algorithm by
choosing n = 70, N = 4500, x ′

left = 0.25, y′
left = 0.25, x ′

right = 0.25, y′
right = 0.25,

Fig. 2 of s′(t) and θ(t) corresponding to Fig. 1. The value of δs′ is indicated by a horizontal solid line
and the value of δθ is indicated by a horizontal dashed line. The 355th coefficient of s′(t) decays to δs′ ,
indicated by a vertical solid line. The 380th coefficient of θ(t) decays to δθ , indicated by a vertical dashed
line
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Fig. 3 Chebyshev coefficients of x(t) and y(t) corresponding to Fig. 1. The value of ncoefs is indicated by
a vertical dashed line

niters = 70, hfilter = 1
45 , ε = 10−16, ncoefs = 3620, nbands = 6. The initial curve is

observed to bend unnaturally when zooming in on some details, for example, those
shown in Fig. 5a. Thus, a reasonably large number of Chebyshev coefficients are
required to represent s′(t) and θ(t), as shown in Fig. 6. By looking at Figs. 4b and 5b,
the final curve appears more like a manually drawn smooth curve after nstop = 60
iterations. The coefficients returned by the algorithm represent a curve passing through
the sample data points to within an error of Esamp = 0.16875 · 10−13. We display the
magnitudes of the Chebyshev coefficients of both the initial and final curves in Fig. 7.

Figure8a shows a roughly sketched shape resembling a snake. We scale the sample
data points so that their height is 1 and run the algorithm by choosing N = 4000,
n = 44, x ′

left = 0.05, y′
left = −0.02, x ′

right = −0.06, y′
right = 0.02, niters = 80,

hfilter = 1
50 , ε = 10−16, ncoefs = 1780, nbands = 6. The algorithm terminates at

the nstop = 71st iteration, and the final curve passes through the sample data points
to within an error of Esamp = 0.35056 · 10−14. We present the magnitudes of the
coefficients of s′(t) and θ(t), for both the initial and final curves, in Fig. 9, and the
magnitudes of the coefficients of x(t) and y(t) of both the initial and final curves in
Fig. 10.

Fig. 4 The result of our algorithm applied to Eq. 96. The red dots mark the sample data points
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Fig. 5 A zoom-in detail of Fig. 4

Fig. 6 Chebyshev coefficients of s′(t) and θ(t) corresponding to Fig. 4. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 2472nd coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 2148th coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line

Fig. 7 Chebyshev coefficients of x(t) and y(t) corresponding to Fig. 4. The value of ncoefs is indicated by
a vertical dashed line
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Fig. 8 The result of our algorithm applied to a hand-drawn depiction of a snake. The red dots mark the
sample data points

We then apply our algorithm to an arbitrarily oscillating shape, as displayed in
Fig. 11a. The sample data points are scaled so that their width is 1. The initial curve
oscillates unnaturally and has some sharp features. We set N = 4500, n = 40,
x ′
left = 0.20, y′

left = −0.20, x ′
right = −0.20, y′

right = 0.40, niters = 70, hfilter = 1
40 ,

ε = 10−16, ncoefs = 1830, nbands = 8. After nstop = 69 iterations, the algorithm
terminates and returns a curve passing through the sample data points to within an
error of Esamp = 0.22649 ·10−13. The final curve in Fig. 11b resembles a curve drawn
by hand, with a completely smooth shape that bends naturally to pass through all
the sample data points to exhibit these oscillations. We present the magnitudes of the
coefficients of s′(t) and θ(t), for both the initial and final curves, in Fig. 12, and the
magnitudes of the coefficients of x(t) and y(t) of both the initial and final curves in
Fig. 13.

The runtimes per iteration for the first open curve example are displayed in Table 1.
Since we use the library [15] for the implementation of the FFT, and the speed of the

Fig. 9 Chebyshev coefficients of s′(t) and θ(t) corresponding to Fig. 8. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 1214th coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 1171st coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line
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Fig. 10 Chebyshev coefficients of x(t) and y(t) corresponding to Fig. 8. The value of ncoefs is indicated
by a vertical dashed line

Fig. 11 The result of our algorithm applied to an arbitrarily oscillating shape. The red dots mark the sample
data points

Fig. 12 Chebyshev coefficients of s′(t) and θ(t) corresponding to Fig. 11. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 1222nd coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 1088th coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line
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Fig. 13 Chebyshev coefficients of x(t) and y(t) corresponding to Fig. 11. The value of ncoefs is indicated
by a vertical dashed line

FFT routines in the library depends in a complicated way on the input size, we observe
that the runtimes in Table 1 are not strictly proportional to the number of discretization
points, N .

4.1.2 Closed curve examples

The first closed curve example is obtained by sampling from the polar representation
(r(t) cosϕ(t), r(t) sin ϕ(t)), where

ϕ(t) = 2π t,

r(t) = (1 + 1

α
cos (18ϕ(t)) sin (4ϕ(t)), (97)

with t ∈ [0, 1], and α is a tuning parameter. The sample data points are scaled so
that both their width and height are 1. We sample the curve Eq. 97 with α = 2,
N = 8000 and n = 100 to obtain the initial curve in Fig. 14a. Applying the algorithm
with niters = 70, hfilter = 1

40 , ε = 10−16, ncoefs = 5200, nbands = 12, we obtain
the final curve, which appears much smoother visually when zoomed in on some
details, as shown in Fig. 15. The filtered coefficients of θ(t) and s′(t) are displayed in
Fig. 16b. We find that, after nstop = 46 iterations, 5200 coefficients of x(t) and y(t)
are necessary to represent the final curve displayed in Fig. 14b, to within an error of
Esamp = 0.20644 · 10−14. The magnitudes of the coefficients of both the initial and
final curves are displayed in Fig. 17.

Table 1 Average runtime per iteration of our algorithm, for the first open curve example, calculated by
determining the total runtime for 100 iterations and dividing by the number of iterations

Case N = 1025 N = 2049 N = 4097 N = 8193

Fig. 1 0.14308 · 10−02 0.20470 · 10−02 0.29810 · 10−02 0.51040 · 10−02
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Fig. 14 The result of our algorithm applied to Eq. 97 with α = 2. The red dots mark the sample data points

Remark 4 Note that, since the DFT, X− N
2
, . . . , X N

2 −1, of a real sequence, x0, …,
xN−1, satisfies the relation:

Xk = X−k, k = −N

2
, . . . ,

N

2
− 1, (98)

we only show the magnitudes of the coefficients for k = 0, …, N
2 − 1.

Another example is provided in Fig. 18, sampling the curve Eq. 97 with α = 8,
N = 2000 and n = 60. The sample data points are scaled so that both their width and
height are 1. This curve has a smaller curvature than the previous curve. In this case,
we set niters = 60, hfilter = 1

40 , ε = 10−16, ncoefs = 1560, nbands = 8. The algorithm
terminates after nstop = 25 iterations, and the error between the final curve and the
sample data points is Esamp = 0.10240 · 10−14. The magnitudes of the coefficients
of s′(t) and θ(t), for both the initial and final curves, are displayed in Fig. 19, and
the magnitudes of the coefficients of both the initial and final curves are displayed in
Fig. 20. While the shapes of the curves appear similar before and after smoothing, the
coefficients change dramatically.

Fig. 15 A zoom-in detail of Fig. 14
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Fig. 16 Fourier coefficients of s′(t) and θ(t) corresponding to Fig. 14. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 1901st coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 1785th coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line

Fig. 17 Fourier coefficients of x(t) and y(t) corresponding to Fig. 14. The value of ncoefs is indicated by
a vertical dashed line

Fig. 18 The result of our algorithm applied to Eq. 97 with α = 8. The red dots mark the sample data points.
Although the two curves are visually indistinguishable, the curve on the right can be represented with fewer
coefficients
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Fig. 19 Fourier coefficients of s′(t) and θ(t) corresponding to Fig. 18. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 588th coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 588th coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line

The example shown in Fig. 21 has the shape of a cat, corresponding to n = 50
sample data points. We scale the sample data points so that their height is 1, and
discretize the curve with N = 4000, and set niters = 100, hfilter = 1

50 , ε = 10−15,
ncoefs = 1360, nbands = 4. After nstop = 70 iterations, 1360 coefficients are sufficient
to represent the curve, and the error between the final curve and the sample data points
is Esamp = 0.10214 · 10−13. The magnitudes of the coefficients of s′(t) and θ(t), for
both the initial and final curves, are displayed in Fig. 22, and the magnitudes of the
coefficients of both the initial and final curves are displayed in Fig. 23. We observe
that the sharp corners on the curve in Fig. 21a become more rounded, and the final
curve in Fig. 21b more closely resembles the shape of a cat.

The runtimes per iteration for the first two closed curve examples are displayed in
Table 2. We observe that, as in the open curve example, the runtimes are not strictly
proportional to N .

Fig. 20 Fourier coefficients of x(t) and y(t) corresponding to Fig. 18. The value of ncoefs is indicated by
a vertical dashed line
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Fig. 21 The result of our algorithm applied to a hand-drawn depiction of a cat. The red dots mark the sample
data points

Fig. 22 Fourier coefficients of s′(t) and θ(t) corresponding to Fig. 21. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 525th coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 492nd coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line

Fig. 23 Fourier coefficients of x(t) and y(t) corresponding to Fig. 21. The value of ncoefs is indicated by
a vertical dashed line
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Table 2 Average runtime per iteration, for the first two closed curve examples, calculated by determining
the total runtime for 250 iterations and dividing by the number of iterations

Case N = 1024 N = 2048 N = 4096 N = 8192

Fig. 14 0.44050 · 10−03 0.72667 · 10−03 0.13412 · 10−02 0.26530 · 10−02

Fig. 18 0.36162 · 10−03 0.61837 · 10−03 0.11924 · 10−02 0.24492 · 10−02

4.2 Comparison with the algorithm in Zhang andMa

Wefirst compare the performance of our algorithmwith that of the algorithm presented
in Zhang and Ma [7], using the set of sample data points that define the arbitrarily
oscillating shape in Fig. 11. We set the parameter a in [7] to a = 0.2, which produces
the smoothest shape of the curve, as displayed in Fig. 24a. The magnitudes of the
coefficients of s′(t) and θ(t) of the resulting curve are shown in Fig. 24b. Although
the curve in Fig. 24a requires fewer coefficients to represent x(t) and y(t) compared
to the curve in Fig. 11b, it requires over 8000 coefficients to represent s′(t) and θ(t),
as opposed to the 1830 coefficients for the curve produced by our method, as shown
in Fig. 12b. This results in a curve with areas of high curvature. With our algorithm,
any high-curvature areas are effectively smoothed, yielding a visually appealing curve
and requiring much fewer coefficients to represent s′(t) and θ(t).

We also present a comparison between our algorithm and the algorithm of [7] for a
closed curve example. Figure25a displays the result of the algorithm in [7] applied to
the set of sample data points defining the cat in Fig. 21a, with a = 0.4. The number of
coefficients required to represent s′(t) and θ(t) is approximately 2 · 4000 = 8000, as
displayed in Fig. 25b, whereas with our method, only 1360 coefficients are necessary
to represent the curve in Fig. 21b. Aswe can observe fromFig. 25a, their curve contains
some sharp features, and its visual smoothness is similar to the initial curve as displayed
in Fig. 21a, prior to applying our algorithm. In contrast, our algorithm eliminates high-
curvature areas, resulting in a much smoother appearance.

Fig. 24 The result of the algorithm in [7] applied to the same data points as in Fig. 11
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Fig. 25 The result of the algorithm in [7] applied to the same data points as in Fig. 21a

4.3 Comparison with the algorithm in Beylkin and Rokhlin

Inspired by Figs. 3 and 5 in Beylkin and Rokhlin [12], we apply our algorithm to
the same sample data points to show that our algorithm produces a smoother curve
and represents the curve with fewer coefficients. We start with the example in Fig. 5,
reproduced in Fig. 26a. The sample data points are scaled so that their width is 1.
With the parameters N = 1600, n = 13, niters = 80, hfilter = 1

40 , ε = 10−16,
ncoefs = 840, and nbands = 4, our algorithm terminates after nstop = 40 iterations,
and the final curve in Fig. 27b passes through the sample data points within an error
of Esamp = 0.19666 · 10−13. We display the magnitudes of the coefficients of s′(t)
and θ(t), for both the initial and final curves, in Fig. 28, and the magnitudes of the
coefficients of both the initial and final curves in Fig. 29.

Since the initial curve is constructed by using smooth splines to connect the sample
data points, and our algorithm filters the curve further during the filtering process, the
shape of the final curve deviates from that of Fig. 5 in [12]. In order to preserve the
shape of the curve in Fig. 5, we increase the number of sample data points in a non-
uniformway, so that more data points are sampled near the sharp features on the curve.
The sample data points are scaled so that their width is 1. Applying our algorithmwith
N = 4000, n = 59, niters = 80, hfilter = 1

50 , ε = 10−16, ncoefs = 1700, nbands = 4,
we obtain Esamp = 0.70031 · 10−13 at the nstop = 47th iteration. The initial curve
is shown in Fig. 30a, and the final curve is shown in Fig. 30b. The magnitudes of the
coefficients of s′(t) and θ(t), for both the initial and final curves, are displayed in
Fig. 31, and the magnitudes of the coefficients of both the initial and final curves are

Fig. 26 The result of the algorithm in [12] applied to Figure5 in [12]
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Fig. 27 The result of our algorithm applied to Figure5 in [12]. The red dots mark the sample data points.
Although the two curves are visually indistinguishable, the curve on the right can be represented with fewer
coefficients

displayed in Fig. 32. It is noteworthy that the shape of the curve has been preserved,
and our algorithm produces a curve represented by only 1700 coefficients, while the
algorithm in [12] produces a curve inFig. 6 represented by2·2300 = 4600 coefficients.
Moreover, the number of coefficients required to represent the over-sampled curve in
Fig. 30b increases only moderately when compared to those of the curve in Fig. 27b.

For Figure 3 in [12], reproduced in Fig. 33, we scale the sample data points so
that their height is 1 and apply our algorithm to the initial curve in Fig. 34a, with
N = 2000, n = 40, niters = 70, hfilter = 1

40 , ε = 10−16, ncoefs = 690, nbands = 4.
Although the difference can not be distinguished visually, after nstop = 45 iterations,
690 coefficients are necessary to represent the curve in Fig. 34b, to within an error of
Esamp = 0.27535 · 10−13. The magnitudes of the coefficients of s′(t) and θ(t), for
both the initial and final curves, are displayed in Fig. 35, and the magnitudes of the
coefficients of both the initial and final curves are displayed in Fig. 36. Note that the
algorithm in [12] requires approximately 2 · 7000 = 14, 000 coefficients to fit a curve
passing through the same sample data points.

We also present the following examples to demonstrate the differences between our
method and the method of [12], as described in Sect. 3.10.

Fig. 28 Fourier coefficients of s′(t) and θ(t) corresponding to Fig. 27. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 303rd coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 283rd coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line
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Fig. 29 Fourier coefficients of x(t) and y(t) corresponding to Fig. 27. The value of ncoefs is indicated by
a vertical dashed line

Fig. 30 The result of our algorithm applied to Figure 5 in [12], with more sample data points. Due to the
large quantity and non-uniform distribution of the sample data points, we choose not to display them in the
plot. Although the two curves are visually indistinguishable, the curve on the right can be represented with
fewer coefficientsption

Fig. 31 Fourier coefficients of s′(t) and θ(t) corresponding to Fig. 30. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 545th coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 494th coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line
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Fig. 32 Fourier coefficients of x(t) and y(t) corresponding to Fig. 30. The value of ncoefs is indicated by
a vertical dashed line

Fig. 33 Figure 3 in [12]

Fig. 34 The result of our algorithm applied to Figure 3 in [12]. The red dots mark the sample data points.
Although the two curves are visually indistinguishable, the curve on the right can be represented with fewer
coefficients
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Fig. 35 Fourier coefficients of s′(t) and θ(t) corresponding to Fig. 34. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 241st coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 229th coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line

Fig. 36 Fourier coefficients of x(t) and y(t) corresponding to Fig. 34. The value of ncoefs is indicated by
a vertical dashed line

Fig. 37 The result of our algorithm with a single step of filtering, applied to the same data points as in
Fig. 21a
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Fig. 38 Fourier coefficients of the resulting curve corresponding to Fig. 37

Fig. 39 The result of our algorithm applied to equispaced sample data points in arc-length on the curve in
Fig. 34a. The red dots mark the sample data points. Although the two curves are visually indistinguishable,
the curve on the right can be represented with fewer coefficients

Fig. 40 Fourier coefficients of s′(t) and θ(t) corresponding to Fig. 39. The value of δs′ is indicated by a
horizontal solid line, and the value of δθ is indicated by a horizontal dashed line. The 1912nd coefficient of
s′(t) decays to δs′ , indicated by a vertical solid line. The 1577th coefficient of θ(t) decays to δθ , indicated
by a vertical dashed line
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Fig. 41 Fourier coefficients of x(t) and y(t) corresponding to Fig. 39. The value of ncoefs is indicated by
a vertical dashed line

Fig. 42 s′(t) and θ(t) corresponding to Fig. 39

Fig. 43 s′(t) and θ(t) corresponding to Fig. 34
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Recalling the discussion in Sect. 3.10, a key difference between our method and
the method of [12] is our use of iterative filtering. Suppose that, instead of iteratively
filtering the curve, we use a single step of filtering to directly filter the coefficients
of the representations of the initial curve to the desired bandwidth. This is similar to
the method of [12]. We apply our algorithm to the same set of sample data points
defining the cat, as depicted in Fig. 21a, with the same settings: n = 50, N = 4000,
ε = 10−15, ncoefs = 1360, nbands = 4. However, we replace a1, which determines the
bandwidth of the Gaussian filter at the first iteration, by a′

1 = a1(1−hfilter)nstop , where
hfilter = 1/50 and nstop = 70 are the same as in the iterative filtering case. This ensures
that the total amount of filtering remains the same, so that, before adding perturbations,
the coefficients of the curve are filtered to have the desired bandwidth. The resulting
curve is displayed in Fig. 37, and the magnitudes of the Fourier coefficients used to
represent the curve are shown in Fig. 38. The curve appears less smooth than the one
shown in Fig. 21b, and the coefficients are not filtered to zero after ncoefs = 1360
terms. Since substantial perturbations are added to the reconstructed curve after a
large of amount of filtering, the bandwidth of the curve is destroyed. This effect is
demonstrated by both the visual appearance of the curve and the large bandwidths of
the representations of the curve.

Another key difference between our method and the method of [12] is the use
of different parametrizations of the curve. In our method, we allow non-arc-length
parametrizations. In order to imitate the arc-length parametrization used in [12] for
the purpose of comparison, we employ equispaced sample data points in arc-length
on the curve in Fig. 34a. To preserve the original shape of the curve, especially around
areas with high curvature, we choose a large number of sample data points, n = 101,
and scale the points so that their height is 1. We apply our algorithm to the curve in
Fig. 39a, with N = 10, 000, niters = 60, hfilter = 1

40 , ε = 10−16, ncoefs = 6000,
nbands = 4. After nstop = 35 iterations, 6000 coefficients are sufficient to represent
the curve in Fig. 39b, and the error between the final curve and the sample data points
is Esamp = 0.33319 · 10−13. The magnitudes of the coefficients of s′(t) and θ(t) are
displayed in Fig. 40, and the magnitudes of the coefficients of both the initial and final
curves are displayed in Fig. 41. In Fig. 42, we plot s′(t) and θ(t) for both the initial and
final curves. Additionally, we plot s′(t) and θ(t) for the curves in Fig. 34 in Fig. 43. It
can be seen from the plots that the use of non-uniform sample data points in Fig. 34a,
together with the non-arc-length parametrization in our algorithm, results in smoother
s′(t) and θ(t). All these observations confirm that arc-length parametrizations can lead
to significantly larger bandwidths for the representations of the curve.

5 Conclusion

Our algorithm produces a bandlimited curve passing through a set of points, up to an
accuracy of machine precision. It first constructs a C2 Bézier spline passing through
the points, and then recursively applies a Gaussian filter to both the derivative of
the arc-length function and the tangential angle of the curve, to control the band-
width of their Fourier or Chebyshev coefficients, followed by smooth corrections.
The resulting curve can be represented by a small number of coefficients and resem-
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bles a smooth curve drawn naturally by hand, free of ringing artifacts. The algorithm
costs O(N log N ) operations at each iteration, where N is the number of discretization
nodes, and the cost can be further reduced by calling the FFT in the FFTW library [15],
in which the speed of the FFT routines is optimized for inputs of certain sizes.

One possible extension of this paper is to design an algorithm for curves and surfaces
in R

3. The main methodology is still applicable, if we parametrize a curve in R
3

by a function γ (t) : I → R
3, where I ⊂ R, in terms of the same parameter t as

in this paper, and a surface in R
3 by a function γ (t1, t2) : I1 × I2 → R, where

I1, I2 ⊂ R, in terms of both t1 and t2. We can apply the Chebyshev or the Fourier
approximation in eachparameter, dependingonwhether the curve or surface is periodic
in that parameter, filter the coefficients, and add smooth perturbations in a similar
way. Another application is to implement the algorithm of this paper as a geometric
primitive in CAD/CAM systems. Since primitives are generally defined as level sets
of polynomials (see Chapter 2 of [16]), the techniques in this paper could be used for
the constructions of more general C∞ shapes in CAD/CAM systems.
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