
https://doi.org/10.1007/s10444-024-10136-5

Local behaviors of Fourier expansions for functions
of limited regularities

Shunfeng Yang1,2 · Shuhuang Xiang1

Received: 13 February 2023 / Accepted: 4 April 2024 / Published online: 9 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Based on the explicit formula of the pointwise error of Fourier projection approxi-
mation and by applying van der Corput-type Lemma, optimal convergence rates for
periodic functions with different degrees of smoothness are established. It shows that
the convergence rate enjoys a decay rate one order higher in the smooth parts than that
at the singularities. In addition, it also depends on the distance from the singularities.
Ample numerical experiments illustrate the perfect coincidence with the estimates.
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1 Introduction

Fourier expansions and projection approximations are powerful tools in various sci-
entific fields [1–3] and in developing numerical methods for ordinary and partial
differential equations [4–13].
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Let f be a 2π -periodic function, and |E f
n (x)| = | f (x) − S f

n (x)|, where S f
n (x)

denotes the Fourier projection of f defined by

S f
n (x) = a f

0

2
+

n∑

k=1

[
a f
k cos (kx) + b f

k sin (kx)
]
, a f

0 = 1

π

∫ π

−π

f (t)dt,

a f
k = 1

π

∫ π

−π

f (t) cos (kt)dt, b f
k = 1

π

∫ π

−π

f (t) sin (kt)dt, k = 1, · · · , n.

(1.1)

Lebesgue in 1910 showed for f satisfying a Lipschitz condition of order α ∈ (0, 1]
that the uniform error of the Fourier projection decays at rate O(n−α ln n) [14]. This
error bound was improved by Salem and Zygmund in 1946 to O(n−α) by imposing
a monotonic type condition on f [15]. Particularly, Jackson [16] gave a sharp bound
O(n−k−α) for the best uniform trigonometric polynomial approximation provided that
f (k) satisfies a Lipschitz condition of order α ∈ (0, 1], from which together with the
Fejér’s estimate for the Lebesgue constant [17] it leads to the estimate [18]

‖E f
n ‖L∞([−π,π ]) = O(n−k−α ln n). (1.2)

Moreover, for a function that can be analytically extended to a strip area {z ∈ C :
|�(z)| ≤ a}, where a is a positive constant and �(z) denotes the imaginary part of z,
Paley-Wiener theorem shows that its projection approximation enjoys an exponential
convergence rate [5, 19, 20]. Whereas for a limited regular function, it converges at
an algebraic rate [20–22].

Theorem 1.1 Let f be a 2π -periodic function. Then the following holds.
(1) ([5, 19, 20, Paley-Wiener theorem]) If f is holomorphic with | f (x)| ≤ M in a
strip domain {z ∈ C : |�(z)| ≤ a}, where M and a are some positive constants, then

‖E f
n ‖L∞([−π,π ]) ≤ 2Me−an

ea − 1
, x ∈ I = [−π, π ].

(2) ([20, Theorem 4.2]) If f is r ≥ 1 times differentiable and f (r)(x) is of bounded
variation V on [−π, π ], then

‖E f
n ‖L∞([−π,π ]) ≤ V

πrnr
, x ∈ I .

The errors mentioned above usually refer to the sense of infinite norm. It is worth
noting that the pointwise error is usually an accurate indication for the approximability
and approximation effect. It has been attracting much attention, although it is always
challenging [18, 23–25, 36].

Wahlbin, one of the deep insights of the local behaviors, considered the local con-
vergence in 1985 for spline L2 projections, Fourier series and Legendre series in [24].
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In particular, for the local behavior of E f
n (x0) with x0 ∈ Ix0,δ ⊂ I , where I and

Ix0,δ are bounded intervals and δ = dist
(
x0, I \ Ix0,δ

)
> 0, Wahlbin [24] proved the

following theorem in the case that f is smooth on interval Ix0,δ but possibly rough on
I \ Ix0,δ .

Theorem 1.2 ([24]) Assume that f ≡ 0 on Ix0,δ and let p and q be given nonnegative
integers. There exist constants C1, C2 = C2(q), C3 = C3(q), C4 = C4(p, q) such
that for δ = dist(x0, I \ Ix0,δ) ≥ C4

ln n
n ,

|E f
n (x0)| ≤

{
C1δ

−1ωp
[
f ,C2

ln n
n ; L1(I )

] + C3n−q‖ f ‖L1(I ), p ≥ 1,

C1δ
−1‖ f ‖L1(I ), p = 0.

Here x0 ∈ Ix0,δ and ωp(·, ·; ·) denotes the pth modulus of continuity.

The local convergence of Theorem 1.2 was illustrated in [24] by the following
numerical example

H(x) =
{
0, x ∈ [−π

2 , π
2 ]

1, x ∈ I \ [−π
2 , π

2 ] and fα(x) = h(x)
∞∑

j=1

2− jαe−i2 j x (0 < α < 1)

with

h(x) =
{
0, x ∈ [−π

2 , π
2 ]

1, x ∈ I \ [− 3π
4 , 3π

4 ] ∈ C∞(I ),

whose convergence rates are

|EH
n (0)| ≤ C

ln n

n
and |E fα

n (0)| ≤ Cn−α (ln n)α (1.3)

for some constant C independent of n, respectively. Both the local convergence rates
are sharp, against modulo the logarithmic factors.

Ample numerical examples show that the logarithmic factor “ln n” in (1.2) can
be removed. Furthermore, we see from Fig. 1 that the pointwise errors of Fourier

Fig. 1 Comparisons for the pointwise errors of the Fourier projection approximations and the best uniform
trigonometric approximations, where f (x) = | sin x | (left), f (x) = arcsin sin x (right), and n = 24
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projection approximation are much smaller than those of the best uniform approxima-
tion in the most area of underlying domain, which excludes a small neighborhood of
the singularities.More specifically, the pointwise errors corresponding to the smoother
parts of f enjoy a faster convergence rate with an extra order n−1 without the loga-
rithmic factor in (1.3).

For the orthogonal polynomial expansions, the logarithmic factor “ln n” inWahlbin
[24] can be removed. Babuška andHakula [25] in 2019 considered the pointwise errors
of projection approximations of the Legendre series for the class of functions of inte-
rior singularities like �-functions, and obtained an accurate pointwise error estimate
without the logarithmic factor in Wahlbin [24] for the step function. More recently,
Xiang et al. [26] considered the sharp error bounds on the pointwise errors without the
logarithmic factor for Jacobi expansions for generalized �-functions with interior or
boundary singularities.Wang [27–29] presented the superconvergence orders of point-
wise errors corresponding to the smoother parts of�-functions for the Chebyshev and
Gegenbauer expansion. For more details see [25–29].

However, Fourier projection in many settings remains a favorable choice for the
approximation of nonperiodic function [30–32], since it often offers good frequency
resolution, and the approximation can be computed numerically via the fast Fourier
transform (FFT).

This paper primarily focuses on the decay rates of pointwise errors E f
n (x) in Fourier

projections for functions with varying degrees of smoothness, including some singu-
larities of integer or fractional regularities, as well as logarithmic singularities. We
explore the phenomenon of superconvergence mentioned earlier in Fourier approxi-
mations for these functions and derive optimal convergence rates theoretically. This
implies that the previously mentioned factor “ln n” can be eliminated. Additionally,
we provide a detailed analysis of the behaviors of E f

n (x) around singular points. For
convenience, we assume that the function under investigation is 2π -periodic and we
specifically focus on f (x) within the cardinal period I = [−π, π ].

The rest of this paper is organized as follows. In Sect. 2, a detailed analysis will
be presented for functions with integer regularities. Section3 will focus on functions
with fractional regularities, while also discussing the extension of similar results to
cases involving logarithmic singularities. Numerical examples will be provided in
both Sect. 2 and Sect. 3 to illustrate the sharpness of the proposed results. Finally,
conclusions and discussions are concluded in Sect. 4.

2 Asymptotic behaviors for integer-regular functions

We restrict our attention to the pointwise error E f
n (x) = f (x) − S f

n (x). Let Dn(t)
denote the n-th Dirichlet kernel

Dn(t) =
n∑

k=−n

eikt = sin (n + 1
2 )t

sin t
2

. (2.1)
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It is well known that S f
n (x) can be represented as a convolution of f and the n-th

Dirichlet kernel (2.1), precisely,

S f
n (x) = 1

2π

∫ π

−π

f (t)Dn(x − t)dt . (2.2)

The convolution (2.2) will be reduced to an identical transform once that f (x) degen-
erates into a trigonometric polynomial Tm(x) = ∑m

k=0

[
αk cos (kx) + βk sin (kx)

]
,

m ≤ n, i. e.,

Tm(x) = 1

2π

∫ π

−π

Tm(t)Dn(x − t),m = 0, 1, · · · , n.

Subsequently, the pointwise error function can be presented by

E f
n (x) = 1

2π

∫ π

−π

[ f (x) − f (t)]Dn(x − t)dt

= 1

2π

∫ π

−π

[ f (x) − f (x − t)]Dn(t)dt = 1

π

∫ π

−π

ϕ(x, t)
sin

[
(n + 1

2 )t
]

sin t
2

dt

= 1

π

∫ π

−π

ϕ(x, t) cos (nt)dt + 1

π

∫ π

−π

φ(x, t) sin (nt)dt

=aϕ(x,t)
n + bφ(x,t)

n , (2.3)

where

ϕ(x, t) = f (x) − f (x − t)

2
, φ(x, t) = ϕ(x, t)

cos t
2

sin t
2

= f (x) − f (x − t)

t

t
2

sin t
2

cos
t

2
, (2.4)

and φ(x, 0) is defined by limt→0 φ(x, t). Then all we have left is to estimate aϕ(x,t)
n

and bφ(x,t)
n , which depend on the smoothness of ϕ(x, t) and φ(x, t). Throughout this

paper, ϕ(x, t) and φ(x, t) are regarded as functions of variable t , and x is a fixed
parameter. Additionally, the following notations will be used repeatedly:

zr ,k(x − t) = ∂rt

( x−t
2

sin x−t
2

)
∂kt

(
cos

x − t

2

)
, Hr ,k(x − t) =

r−k∑

j=0

r !z j,r−k− j (x − t)

(r − k − j)! j ! .

Firstly, we give a lemma that will be used repeatedly in the subsequent discussion,
whose proof can be completed easily by induction.

Lemma 2.1 Suppose thatα(x) andβ(t) are two functions, and β(t) is suitably smooth,
then for any nonnegative integer m, it holds that

∂mt

[
α(x) − β(t)

x − t

]
= m!α(x) − ∑m

l=0
β(l)(t)

l! (x − t)l

(x − t)m+1 . (2.5)
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The functionsweencounter frequently in practice are sufficiently smooth in themost
parts of the underlying domain, except for a few singularities. Inspired by Krylov’s
method of separating singularities, we restrict our attention on a class of 2π -periodic
functions satisfying that

f ∈ Cr (I ) and f (r+l) ∈ C (I \ {ς}) , ς ∈ (−π, π) (2.6)

with f (r+l)(ς ± 0) = limx→ς± f (r+l)(ς) existing for l = 1, 2, 3.
It is enough to consider the case of inner singularity, since the function f (x) is peri-

odic, and a translation can be imposed on f once the singularity lies on the endpoints
of I = [−π, π ].

The following lemma concerns the smoothness of φ(x, t) in (2.4).

Lemma 2.2 Let f be a 2π -periodic function defined by (2.6). Then for fixed x ∈ I ,
φ(x, t) defined by (2.4) is included in Cr (I ) when x �= ς , while in Cr−1(I ) when
x = ς . Additionally, ∂rt φ(ς, 0 ± 0) exist.

Proof From the definition of φ(x, t), it is obvious that φ(x, t) has continuous deriva-
tives up to order r at t ∈ [−π, 0) ∪ (0, π ]. With the help of Leibniz’s Formula,
Lemma 2.1 and Taylor’s theorem, we have that for x �= ς and t (t is sufficiently
closed to 0 such that x and x − t locate in the same side of ς ),

∂rt φ(x, t) =
r∑

k=0

(
r

k

)[
f (x) − f (x − t)

t

](k) r−k∑

j=0

(
r − k

j

)
z j,r−k− j (t)

=
r∑

k=0

f (x) − ∑k
l=0

f (l)(x−t)
l! t l

(−1)k tk+1

r−k∑

j=0

r !z j,r−k− j (t)

(r − k − j)! j !

=
r∑

k=0

(−1)k+1

(k + 1)! f
(k+1)[x − (1 − θ)t]Hr ,k(t)

→
r∑

k=0

(−1)k+1

(k + 1)! f
(k+1)(x)Hr ,k(0), t → 0, (2.7)

where

Hr ,k(t) =
r−k∑

j=0

r !z j,r−k− j (t)

(r − k − j)! j ! , z j,r−k− j (t) =
( t

2

sin t
2

)( j)(
cos

t

2

)(r−k− j)
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and θ ∈ (0, 1). From (2.7) and the derivative limit theorem, it establishes thatφ(x, t) ∈
Cr (I ) since zk, j (t)’s are sufficiently smooth. Analogously, it indicates for x = ς that

∂r−1
t φ(x, t) =

r−1∑

k=0

(−1)k+1

(k + 1)! f
(k+1)[x − (1 − θ)t]Hr−1,k(t)

→
r−1∑

k=0

(−1)k+1

(k + 1)! f
(k+1)(x)Hr−1,k(0), t → 0

due to that f (k) ∈ C(I ), k = 0, · · · , r . Again by the derivative limit theorem, we see
that φ(ς, t) ∈ Cr−1(I ).

In addition, for x = ς , by (2.7) it yields that ∂rt φ(ς, 0 ± 0) are well defined by
f (k)(ς ∓ 0), k = 0, · · · , r + 1 and the smoothness of zk, j (t).

Remark 2.1 Lemma 2.2 is also true for f (x) possessing multiple singularities
S = {ςi ∈ I : i = 1, · · · , s}. Assume that the 2π -periodic function f ∈
Cr (I ), and f (r+l) ∈ C(I \ S) with f (r+l)(ςi ± 0), l = 1, 2, 3 existing for ςi ∈ S.
Then φ(x, t) ∈ Cr (I ) for x ∈ I \ S, and φ(x, t) ∈ Cr−1(I ) for x ∈ S. Additionally,
∂rt φ(ςi , 0 ± 0) exist for ςi ∈ S.

From Lemma 2.2 and Remark 2.1, we see that φ(x, t) in (2.4) inherits almost all of
smooth features of f in R except for x = ςi + 2kπ, k ∈ Z (Z is the set of integers).
For a special case f (x) = arcsin sin x , φ(x, t) ∈ C(I ) when x ∈ I \ {±π

2 } and the
smoothness is degenerated when x = ±π

2 , we see from Fig. 2 that φ(±π
2 , t) have two

jump discontinuities in the cardinal interval.
Now we return to our motif: the superconvergence rates of Fourier expansions for

limited regular functions.

Theorem 2.1 Let f be a 2π -periodic function defined by (2.6). Then the error defined
by (2.3) enjoys decay orders

E f
n (x) =

{
A(x) · O(n−r−2), x ∈ I \ {ς}
O(n−r−1), x = ς

(2.8)

Fig. 2 φ(x, t) inherits perfectly the smoothness of f (x) = arcsin sin x except for x = 2kπ ± π
2 , k =

0, ±1, · · · . The non-smooth points (circled) in the second graph match exactly those in the first graph. The
jump discontinuities in the last two graphs owe to the singularities ±π

2
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with A(x) = |x − ς |−1 for x near ς .

Proof (1) We prove firstly the case x �= ς . From Lemma 2.2 and by integrating by
parts repeatedly, bφ(x,t)

n (x) satisfies that

πnr+1
∣∣bφ(x,t)

n

∣∣ =
∣∣∣∣
∫ π

−π

∂r+1
t φ(x, t) sin(nt − r + 1

2
π)dt

∣∣∣∣ ≤
∣∣∣∣
∫ π

−π

∂r+1
t φ(x, t)eint dt

∣∣∣∣

=
∣∣∣∣

( ∫ ς

−π

+
∫ π

ς

)
∂r+1
t g(x, t)e−int dt

∣∣∣∣, (2.9)

where we used the symmetry of the convolution and set

g(x, t) = f (x) − f (t)

x − t
· z0,0(x − t).

For the case x ∈ [−π, ς): We endow f (r+l)(x) at x = ς with supplementary
values f (r+l)(ς − 0), l = 1, 2, 3. From (2.5) and Taylor’s theorem with Lagrange’s
remainder, it is easy to verify for t ∈ [−π, ς ] that

∂r+1
t g(x, t) =

r+1∑

k=0

f (x) − ∑k
l=0

f (l)(t)
l! (x − t)l

(x − t)k+1 Hr+1,k(x − t)

=
r+1∑

k=0

f (k+1)(ξk)

(k + 1)! Hr+1,k(x − t) (2.10)

and

∂r+2
t g(x, t) =

r+2∑

k=0

f (k+1)(ηk)

(k + 1)! Hr+2,k(x − t)

are well defined at t = x too and uniformly bounded since f (k)(x) ∈ C[−π, ς ],
k = 0, 1, · · · , r + 3, where ξk and ηk locate between t and x . Therefore

∣∣∣∣
∫ ς

−π

∂r+1
t g(x, t)e−int dt

∣∣∣∣ ≤1

n

{∣∣∣∣∂
r+1
t g(x, t)e−int

∣∣ς−π

∣∣∣∣ +
∫ ς

−π

∣∣∣∣∂
r+2
t g(x, t)

∣∣∣∣dt
}

=O(n−1) (2.11)

holds uniformly for x ∈ [−π, ς).
For the other integral in the parentheses of (2.9), we have

∣∣∣∣
∫ π

ς

∂r+1
t g(x, t)e−int dt

∣∣∣∣ ≤ 1

n

{∣∣∣∣∂
r+1
t g(x, t)e−int

∣∣π
ς

∣∣∣∣ +
∫ π

ς

∣∣∣∣∂
r+2
t g(x, t)

∣∣∣∣dt
}
. (2.12)
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In addition, ∂r+1
t g(x, t) can be bounded for some positive number C1 that

∣∣∣∣∂
r+1
t g(x, t)

∣∣∣∣ =
∣∣∣∣
r+1∑

k=0

f (x) − ∑k
l=0

f (l)(t)
l! (x − t)l

(x − t)k+1 Hr+1,k(x − t)

∣∣∣∣

=
∣∣∣∣
r+1∑

k=0

[
f (x) − ∑k−1

l=0
f (l)(t)
l! (x − t)l

(x − t)k+1 − f (k)(t)

k!(x − t)

]
Hr+1,k(x − t)

∣∣∣∣

≤ C1

t − x
≤ C1

|x − ς | , t ∈ (ς, π ], (2.13)

due to that

f (x) − ∑k−1
l=0

f (l)(t)
l! (x − t)l

(x − t)k
=

∫ x
t f (k)(τ )(x − τ)k−1dτ

(k − 1)!(x − t)k
= σk

k! , (2.14)

f (k)(t) and Hr+1,k(x − t) are bounded on [ς, π ], where we used Taylor’s theorem
with Cauchy’s integral remainder in the last equality in (2.14), and

min
τ∈[t,x] f

(k)(τ ) ≤ σk ≤ max
τ∈[t,x] f

(k)(τ ),

for all k = 0, 1, · · · , r + 1. Thus, it yields that the first term in the brace of (2.12)

∣∣∣∣∂
r+1
t g(x, t)e−int

∣∣π
ς

∣∣∣∣ = O(|x − ς |−1). (2.15)

Similarly, ∂r+2
t g(x, t) can be bounded by

∣∣∣∣∂
r+2
t g(x, t)

∣∣∣∣ =
∣∣∣∣
r+2∑

k=0

[∫ x
t f (k−1)(τ )(x − τ)k−2dτ

(k − 2)!(x − t)k+1

− f (k−1)(t)

(k − 1)!(x − t)2
− f (k)(t)

k!(x − t)

]
Hr+2,k(x − t)

∣∣∣∣

≤ C2

t − x
+ C3

(t − x)2
, t ∈ (ς, π ] (2.16)

for some positive constants C2, C3, which implies that the integral in the brace of
(2.12) satisfies ∫ π

ς

∣∣∣∣∂
r+2
t g(x, t)

∣∣∣∣dt = C |x − ς |−1 (2.17)

for some constant C > 0.
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Therefore, from (2.12), (2.15) and (2.17) it shows that

∣∣∣∣
∫ π

ς

∂r+1
t g(x, t)e−int dt

∣∣∣∣ = |x − ς |−1 · O(n−1). (2.18)

Combining (2.9), (2.11) and (2.18) leads to

∣∣bφ(x,t)
n

∣∣ = |x − ς |−1 · O(n−r−2), x ∈ (−π, ς). (2.19)

For the case x ∈ (ς, π ]: by the same argument, (2.19) also holds for x ∈ (ς, π ].

For aϕ(x,t)
n , by a routine exercise we have

2π
∣∣aϕ(x,t)

n

∣∣ ≤2

∣∣∣∣
∫ π

−π

ϕ(x, t)eint dt

∣∣∣∣ =
∣∣∣∣
∫ π

−π

[
f (x) − f (t)

]
e−int dt

∣∣∣∣

=
∣∣∣∣
∫ π

−π

f (t)e−int dt

∣∣∣∣ = O(n−r−2). (2.20)

Substituting (2.19) and (2.20) into (2.3), we deduce (2.8) for x �= ς .

(2) The case x = ς can be checked by integration by parts as follows

πnr
∣∣bφ(ς,t)

n

∣∣ =
∣∣∣∣
∫ π

−π

∂rt φ(ς, t) sin(nt − rπ

2
)dt

∣∣∣∣ ≤
∣∣∣∣
∫ π

−π

∂rt φ(ς, t)eint dt

∣∣∣∣

=
∣∣∣∣
∫ π

−π

∂rt g(ς, t)e−int dt

∣∣∣∣ =
∣∣∣∣

( ∫ ς

−π

+
∫ π

ς

)
∂rt g(ς, t)e−int dt

∣∣∣∣

=O(n−1), (2.21)

since

∣∣∂υ
t g(ς, t)

∣∣ =
∣∣∣∣

υ∑

k=0

f (ς) − ∑k
l=0

f (l)(t)
l! (ς − t)l

(ς − t)k+1 Hυ,k(ς − t)

∣∣∣∣

≤
υ∑

k=0

∣∣ f (k+1)(ξ)
∣∣∣∣Hυ,k(ς − t)

∣∣
(k + 1)!

is bounded for υ = r , r + 1, where ξ locates between ς and t . This implies E f
n (ς) =

O(n−r−1) by noticing that (2.20) also holds for x = ς .

Remark 2.2 For f defined by (2.6), it is easy to verify that f (r+1)(x) is of bounded
variation and then ‖E f

n ‖∞ = O(n−r−1) by Theorem 1.1.
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Remark 2.3 If the non-dominant term C2
t−x in (2.16) is taken into account, then A(x)

becomes a slightly redundant form O(|x − ς |−1 + | ln |x − ς ||). For more details on
the sharpness, see Fig. 6.

Next, we consider that f (x) has a finite number of singular points in I . Suppose
S = {ς1, . . . , ςs} ⊆ I is a finite set with

−π < ς1 < ς2 < · · · < ςs < π,

f (x) is a 2π -periodic function having continuous derivatives up to order r j at ς j ∈ S,
and sufficiently smooth in I \ S with f (r j+l)(ς j ±0) exiting for all ς j ∈ S, l = 1, 2, 3.
Define μ0 = −π , μs = π , μκ = ςκ+ςκ+1

2 , κ = 1, · · · , s − 1 and Uj = [μ j−1, μ j ],
U ◦

j = Uj \ {ς j } for j = 1, 2, · · · , s.

Corollary 2.1 Assume f (x) and S are defined by the above, then it holds that

E f
n (x) =

{
A j (x) · O(n−r−2), x ∈ U ◦

j , (2.22a)
O(n−min{r+2,r j+1}), x = ς j , (2.23b)

where r = min{r j : j = 1, · · · , s}, A j (x) = |x − ς j |−1 if r j = r and A j (x) can be
removed if r j ≥ r + 2.

Proof It is obvious from Lemma 2.2 that ∂rt φ(x, t) ∈ C(I ) when x ∈ I \ S. Suppose
x ∈ U ◦

j , then by the similar method (2.9) for Theorem 2.1 we have that

πnr+1
∣∣bφ(x,t)

n

∣∣ =
∣∣∣∣
∫ π

−π

∂r+1
t φ(x, t) sin (nt − r + 1

2
π)dt

∣∣∣∣

≤
∣∣∣∣

⎛

⎝
s∑

j=1

∫

Uj

+
∫

I\
(
∪s

j=1Uj

)

⎞

⎠ ∂r+1
t g(x, t)e−int dt

∣∣∣∣.

Analogous to the proof of Theorem 2.1, we see that

∫

Uj

∂r+1
t g(x, t)e−int dt = |x − ς j |−1O(n−1),

∫

I\
(
∪s

j=1Uj

) ∂r+1
t g(x, t)e−int dt = O(n−1),

where A j (x) = |x −ς j |−1 if r j = r , and A j (x) can be removed if r j ≥ r j +2, which
leads to (2.22a).

By analogous arguments of Theorem 2.1, (2.22b) can be obtained.

To check the results obtained above numerically, we illustrate the asymptotic orders
of E f

n (x) for f (x) = | sin (x − 1)|3e1+sin x and the zigzag linear function f (x) =
arcsin sin x . See Figs. 3 and 4, respectively.
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Fig. 4 Pointwise errors of Fourier expansions for function f (x) = arcsin sin x , which is a zigzag linear
function, with singular points x = 2kπ ± π

2 , k ∈ Z (see Fig. 2)

Interestingly, for the functions with some jump discontinuities such as sawtooth
function

f (x) = −x + πsgn(x),

the pointwise error E f
n (x) corresponding to the smooth parts also enjoys a convergence

rateO(n−1), although theGibbs phenomenonmay come as expected at singular points
x = 2kπ, k ∈ Z (see Fig. 5).

From Figs. 3, 4 and 5 we observe that the convergence orders of E f
n (x) for different

functions with various smooth degrees are completely consistent with the statements
of Theorem 2.1 and Corollary 2.1. All of these convergence orders are attainable,
which indicate that the estimates above are optimal.

In order to illustrate the behaviors of A(x) in front ofO(n−r−2), we further consider
the function

f (x) = arcsin sin x, x ∈ [−π, π ]

(see Fig. 6). In particular, the demonstrations in the zoomed-in graphs indicate that
the estimates for A(x) are much sharp. The consistencies may be more accurate if the
logarithm term (Remark 2.3) is taken into account (see the third subplot of Fig. 6).

Fig. 5 Pointwise errors of Fourier expansions for sawtooth function f (x) = −x + πsgn(x) with singular
points x = 2kπ, k ∈ Z. The graph of f (x) and the Gibbs phenomenon are sketched in the last subplot
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Fig. 6 Pointwise error of E f
n (x) of Fourier expansion for f (x) = arcsin sin x around the singularities,

where c1 = 1.1e − 5 and c2 = 9e − 6. The consistencies of A(x) and E f
n (x) around the singularities

are demonstrated in the zoomed-in graphs (the second and the third). The experiment is performed with
n = 249

3 Asymptotic behaviors of Efn(x) for fractional-regular functions

Generally, the algebraic and logarithmic singularities are two classical types of irreg-
ular behaviors, which can be described as |x−ςk |λk and ln |x − ςk | in a neighborhood
Iςk of ςk . Subsequently, the present section focuses on the 2π -periodic function f (x)
that is sufficiently smooth in I except for S = {ςk : −π < ς1 < · · · < ςs < π},
around which f (x) can be described by

f (x) = |x − ςk |λk hk(x), x ∈ Iςk (3.1)

or

f (x) = |x − ςk |λk hk(x) ln |x − ςk |, x ∈ Iςk , (3.2)

where Iςk = (ςk − δ, ςk + δ) ⊂ (−π, π), k = 1, · · · , s with δ ∈
(
0, δ̃

)
and

δ̃ = min

{
1,

min0≤k≤s |ςk+1 − ςk |
2

}
, ς0 = −π, ςs+1 = π

and all the hk(x) are sufficiently smooth.
Inspired by the translation invariance of periodic function and the method of sepa-

rating singularities, we restrict our attention on the case f (x) with only one internal
singularity ς = 0, without loss of generality. Consequently, the remaining of this
section is mainly devoted to the consideration of the type of 2π -periodic functions
sufficiently smooth on I \ {ς}, which can be described around the origin by

f (x) = |x |λh(x), x ∈ I0 = (−δ, δ) ⊂ [−π, π ], (3.3)

where λ > −1 and h(x) is sufficiently smooth. In almost exactly the same way, our
conclusions can be extended to the case of logarithmic singularity

f (x) = |x |λh(x) ln |x |, x ∈ I0, (3.4)
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also h(x) here is sufficiently smooth and λ > −1.
The n-th remainder of the expansion for f (x) is

E f
n (x) =

∞∑

k=n+1

[
a f
k cos (kx) + b f

k sin (kx)
]
. (3.5)

Obviously, the coefficients a f
k , b

f
k dominate the error E f

n (x), so we estimate firstly

the convergence orders of a f
k and b f

k . Recently, Dominguez, Graham and Kim [33,
Lemma 3.1] and Xiang, He and Cho [34, Lemmas 3.1 and 3.2] generalized the van
der Corput’s Lemma [35].

Lemma 3.1 ([33, 34]) For α > −1 and t ∈ [0, b], b > 0, we have for w tending to
∞ that

∫ t

0
ταeiwτdτ =

{
O(w−(1+α)), α ∈ (−1, 0]
O(w−1), α > 0

(3.6)

and

∫ t

0
τα ln τeiwτdτ =

{
O

(
1+| lnw|

w1+α

)
, α ∈ (−1, 0],

O(w−1), α > 0,
(3.7)

where the constants in O are independent of w.

Lemma 3.2 (van der Corput-type Lemma) Let f be defined on [0, b] and f ′ ∈
L1[0, b]. Then we have for α > −1 and b > 0 that

∣∣∣∣
∫ b

0
τα f (τ )eiwτdτ

∣∣∣∣ = D ·
{
O(w−(1+α)), α ∈ (−1, 0]
O(w−1), α > 0

(3.8)

and

∣∣∣∣
∫ b

0
τα ln τ f (τ )eiwτdτ

∣∣∣∣ = D ·
{
O

(
1+| lnw|

w1+α

)
, α ∈ (−1, 0]

O(w−1), α > 0
(3.9)

hold for w tending to ∞, whereD = (| f (b)| + ∫ b
0 | f ′(τ )|dτ

)
and the constants inO

are independent of w.

Proof Let F(τ ) = ∫ τ

0 tαeiwt dt . Then we have

∣∣∣∣
∫ b

0
τα f (τ )eiwτdτ

∣∣∣∣ =
∣∣∣∣
∫ b

0
ταdF(τ )

∣∣∣∣ ≤
[∣∣ f (b)

∣∣ +
∫ b

0

∣∣ f ′(τ )
∣∣dτ

]
‖F‖∞,
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which, together with (3.6), follows (3.8). Additionally, we arrive at (3.9) immediately
in the same way by setting F(τ ) = ∫ τ

0 tα ln teiwt dt .

Remark 3.1 It is evident that both (3.6) and (3.8) also hold for w approaching to −∞.
Furthermore, when assumptions in Lemma 3.2 are satisfied on [b, 0] (b < 0), (3.6) and
(3.8) still hold with the integral limits interchanged, w replaced by −w. Meanwhile,
(3.7) and (3.9) are true with w in logarithm terms replaced by |w|.

With the help of Lemma 3.2 and Remark 3.1, we have that

Lemma 3.3 Let f (x) be the function defined in (3.3). Then it holds for all λ > −1
that

a f
k = O(k−λ−1), b f

k = O(k−λ−1), k → ∞, (3.10)

where the constants in O are independent of k.

Proof By v = [λ] we denote the largest integer not larger than λ. In the case λ not an
integer, by integrating by parts repeatedly we have for the projection integral that

∣∣∣∣
∫ π

−π

f (x)eikxdx

∣∣∣∣ = (λ)v+1

kv+1

∣∣∣∣
∫ π

−π

f (v+1)(x)eikxdx

∣∣∣∣ (3.11)

≤ (λ)v+1

kv+1

∣∣∣∣

{∫ −δ

−π

+
∫ δ

−δ

+
∫ π

δ

}
f (v+1)(x)eikxdx

∣∣∣∣

= (λ)v+1

kv+1

∣∣∣∣
∫ δ

0

[
xλh(x)

](v+1)
eikxdx +

∫ δ

0

[
xλh(−x)

](v+1)
e−ikxdx

∣∣∣∣

+ O(k−v−1),

where we used in (3.11) the sufficient smoothness of f (x) on I \ (−δ, δ) and the
Pochhammer symbol (λ)v+1 = λ(λ − 1) · · · (λ − v) with (λ)0 = 1.

From Leibniz’s formula it follows that

[
xλh(x)

](v+1) =xλ−v−1
v+1∑

l=0

(
v + 1

l

)
xv−λ+1(xλ)(l)h(v−l+1)(x)

= : (x)λ−v−1z(x), (3.12)

where
z(x) = p

[
x, h(x), h′(x), · · · , h(v+1)(x)

]

is a sufficiently smooth function due to that p is a polynomial of v + 3 variables.
Then, we obtain immediately from (3.12) and Lemma 3.2 that

∣∣∣∣
∫ δ

0

[
xλh(x)

](v+1)eikxdx

∣∣∣∣ =
∣∣∣∣
∫ δ

0
xλ−v−1z(x)eikxdx

∣∣∣∣ = O(k−λ+v). (3.13)
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By analogous arguments, it is easy to obtain from Remark 3.1 that

∣∣∣∣
∫ δ

0

[
xλh(−x)

](v+1)e−ikxdx

∣∣∣∣ = O(k−λ+v). (3.14)

Thus, substituting (3.13) and (3.14) into (3.11) leads to

∣∣∣∣
∫ π

−π

f (x)eikxdx

∣∣∣∣ = O(k−λ−1). (3.15)

For λ being an integer, we obtain (3.15) directly by integration by parts λ + 1 times.
Now we arrive at the conclusion (3.10) by (3.15), since

∣∣∣∣
∫ π

−π

f (x)sc(kx)dx

∣∣∣∣ ≤
∣∣∣∣
∫ π

−π

f (x)eikxdx

∣∣∣∣,

where sc(x) = cos x or sin x .

The analogous conclusion for the logarithmic case (3.4) can be checked in the same
manner by replacing (3.12) with

[
xλh(x) ln x

](v+1) =xλ−v−1
v+1∑

l=0

l∑

r=0

(v + 1)!(λ)r xv+1−r (ln x)(l−r)

(v + 1 − l)!(l − r)!r ! hv+1−l(x)

= : (x)λ−v−1 p̃
[
x, ln x, h(x), h′(x), · · · , h(v+1)(x)

]
, (3.16)

where p̃ is a polynomial of v + 4 variables, with the degree of ln x at most 1.

Corollary 3.1 Let f (x) be the function defined in (3.4). Then it holds for all λ > −1
that

a f
k = O

(
k−λ−1 ln k

)
, b f

k = O
(
k−λ−1 ln k

)
, k → ∞, (3.17)

where the constants in O are independent of k.

Proof The proof can be completed in the analogous manner by (3.9) and (3.16).

Theorem 3.1 Suppose f (x) is a function defined in (3.3) or (3.4) with λ > 0, then

‖E f
n ‖L∞([−π,π ]) =

{O(n−λ), for (3.3),
O(n−λ ln n), for (3.4).

Proof Substitute (3.10) into (3.5), it holds for some constant G that

‖E f
n ‖L∞([−π,π ]) ≤ G

∞∑

k=n+1

k−λ−1 ≤ G
∫ ∞

n
x−λ−1dx = O(n−λ).
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Similarly, by substituting (3.17) into (3.5) and when ln n ≥ 1
λ+1 , we have

‖E f
n ‖L∞([−π,π ]) ≤ G

∞∑

k=n+1

k−λ−1 ln k ≤ G
∫ ∞

n
x−λ−1 ln xdx = O(n−λ ln n).

In the remainder of this section, we will focus on the pointwise error E f
n (x) corre-

sponding to f (x) defined by (3.3) based on the smoothness of φ(x, t) and the van der
Corput-type Lemma. It is obvious from Remark 2.1 that φ(x, t)w.r.t. f (x) is included
in Cv(I ) when x ∈ [−π, 0) ∪ (0, π ], and in Cv−1(I ) when x = 0, where v = [λ].
Theorem 3.2 Let f (x)be a function defined in (3.3). Then the corresponding pointwise
error E f

n (x) enjoys the following decay orders

E f
n (x) =

⎧
⎨

⎩

A(x) · O(n−λ−1), x ∈ I0 \ {0}, λ > −1, (3.19a)
O(n−λ−1), x ∈ I \ I0, λ > −1, (3.19b)
O(n−λ), x = 0, λ > 0, (3.19c)

where A(x) = |x |−1 for x near 0.

Proof By C, C ′ we denote some positive constants that may be unequal in different
places in the current proof. We focus our proof solely on the case where λ is not an
integer, as the cases of λ = 0, 1, · · · can be reduced to the specific examples covered
in Corollary 2.1.

(1) We first consider the case x ∈ [−π, 0) ∪ (0, π ].
• For the decay order of bφ(x,t)

n : According to Lemma 2.2, we have for x ∈
[−π, 0) ∪ (0, π ] that

|bφ(x,t)
n | = 1

πnv+1

∣∣∣∣
∫ π

−π

∂v+1
t φ(x, t) sin

(
nt − v + 1

2
π

)
dt

∣∣∣∣

≤ 1

πnv+1

∣∣∣∣

( ∫ δ

0
+

∫ π

δ

+
∫ 0

−δ

+
∫ −δ

−π

)
∂v+1
t g(x, t)eint dt

∣∣∣∣. (3.20)

In the case x ∈ (0, δ): For the first integral in the parentheses of (3.20), it is
obvious that

∫ δ

0
∂v+1
t g(x, t)eint dt =

∫ δ

0
∂v+1
t

[
xλh(x) − tλh(t)

x − t
z0,0(x − t)

]
eint dt

=
∫ δ

0
∂v+1
t

[
tλ
h(x) − h(t)

x − t
z0,0(x − t)

]
eint dt

+ h(x)
∫ δ

0
∂v+1
t

[
xλ − tλ

x − t
z0,0(x − t)

]
eint dt . (3.21)
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From Lemma 3.2 we have that for the first integral in the last formula of (3.21)

∫ δ

0
∂v+1
t

[
tλ · h(x) − h(t)

x − t
· z0,0(x − t)

]
eint dt =

∫ δ

0
tλ−v−1u(x, t)eint dt

=O(
nv−λ

)
, (3.22)

since

u(x, t) =
v+1∑

k=0

k∑

j=0

j∑

l=0

(v + 1)!(λ)v+1−k tk z j−l,l(x − t)

(v + 1 − k)!(k − j)!( j − l)!l!
(
h(x) − h(t)

x − t

)(k− j)

is smooth.
For the second integral in the last formula of (3.21), we get from (2.5) and Taylor’s
theorem that

∫ δ

0
∂v+1
t

[
xλ − tλ

x − t
z0,0(x − t)

]
eint dt

=
( v−2∑

k=0

+
v+1∑

k=v−1

) ∫ δ

0
σk(x, t)Hv+1,k(x − t)eint dt, (3.23)

where

σk(x, t) = xλ − ∑k
l=0

(λ)l tλ−l

l! (x − t)l

(x − t)k+1 (3.24)

satisfies for t ∈ [0, δ] that
∣∣σk(x, t)

∣∣ =
∣∣∣∣
(λ)k+1ξ

λ−k−1
k

(k + 1)!
∣∣∣∣ ≤ C, k = 0, · · · , v − 1, (3.25a)

∣∣∂tσk(x, t)
∣∣

k + 1
=

∣∣∣∣
xλ − ∑k+1

l=0
(λ)l tλ−l

l! (x − t)l

(x − t)k+2

∣∣∣∣

=
∣∣∣∣
(λ)k+2ξ

λ−k−2
k+1

(k + 2)!
∣∣∣∣ ≤ C, k = 0, · · · , v − 2 (3.25b)

with ξk locating between x and t . Then from Lemma 3.2 it yields that

v−2∑

k=0

∫ δ

0
σk(x, t)Hv+1,k(x − t)eint dt = O(n−1). (3.26)

Whereas, it holds for k = v, v + 1 and t > 0 that

μk(x, t) :=tv+1−λσk(x, t) = (λ)k+1ξ
λ−k−1
k

(k + 1)!tλ−v−1

{
> 0, k = v

< 0, k = v + 1
(3.27)
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with some ξk between x and t . Analogous to [26, Appendix A] by an elemen-
tary proof, we can show that ∂tμk(x, t) ≥ 0 and then μk(x, t) is monotonically
increasing w.r.t. t ≥ 0 for k = v, v + 1. Therefore, we get from (3.27) and the
smoothness of Hr ,k(x − t) that

max
t∈[0,δ] |μv(x, t)| ≤ C ′

(
t

ξv

)v+1−λ
{

≤ C ′ tv+1−λ

x ≤ C
x , t > x,

≤ C ′, t ≤ x,
(3.28a)

max
t∈[0,δ] |μv+1(x, t)| ≤ C ′ lim

t→0
|μv+1(x, t)| = C ′ (λ)v+1

(v + 1)!x , (3.28b)

∫ δ

0

∣∣∂t
[
μk(x, t)Hv+1,k(x − t)

]∣∣ dt ≤ C ′
∫ δ

0

[∣∣∂tμk(x, t)
∣∣ + ∣∣μk(x, t)

∣∣] dt

≤ C ′∣∣μk(x, δ) − μk(x, 0)
∣∣ +

∫ δ

0

∣∣μk(x, t)
∣∣dt ≤ C

x
, k = v, v + 1. (3.28c)

With (3.28) in the hand, we have immediately by Lemma 3.2 that

∫ δ

0
σk(x, t)Hv+1,k(x − t)eint dt =

∫ δ

0
tλ−v−1μk(x, t)Hv+1,k(x − t)eint dt

=|x |−1O(
nv−λ

)
, k = v, v + 1. (3.29)

Additionally, from (3.25a) and (3.29), it holds that

∣∣∣∣
∫ δ

0
σv−1(x, t)Hv+1,v−1(x − t)eint dt

∣∣∣∣

≤1

n

[
C + v

∣∣∣∣
∫ δ

0
σv(x, t)Hv+1,v−1(x − t)eint dt

∣∣∣∣

]
≤ |x |−1O(n−1). (3.30)

Combining (3.23), (3.26),(3.29) and (3.30) yields that

∫ δ

0
∂v+1
t

[
xλ − tλ

x − t
z0,0(x − t)

]
eint dt = |x |−1O(

nv−λ
)
. (3.31)

Then, the following decay order is an immediate result by substituting (3.22) and
(3.31) into (3.21)

∫ δ

0
∂v+1
t g(x, t)eint dt = |x |−1O(

nv−λ
)
. (3.32)
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For the second integral in the last formula of (3.20), we have for x ∈ (0, δ
2 ) that

∫ π

δ

∂v+1
t g(x, t)eint dt =

∫ π

δ

∂v+1
t

[
f (x) − f (t)

x − t
z0,0(x − t)

]
eint dt

=xλh(x)
∫ π

δ

∂v+1
t

[
z0,0(x − t)

x − t

]
eint dt −

∫ π

δ

∂v+1
t

[
f (t)

x − t
z0,0(x − t)

]
eint dt

=xλO(n−1), (3.33)

and for x ∈ [ δ
2 , δ) that

∫ π

δ

∂v+1
t g(x, t)eint dt =

∫ π

δ

∂v+1
t

[
f (x) − f (t)

x − t
z0,0(x − t)

]
eint dt

=O(n−1), (3.34)

by the sufficient smoothness of f (t) and z0,0(x − t).
For the third integral in the parentheses of (3.20), we have by Remark 3.1 that

∫ 0

−δ

∂v+1
t g(x, t)eint dt =

∫ 0

−δ

∂v+1
t

[
xλh(x) − (−t)λh(t)

x − t
z0,0(x − t)

]
eint dt

=h(x)
∫ 0

−δ

∂v+1
t

[
xλ − (−t)λ

x − t
z0,0(x − t)

]
eint dt

+
∫ 0

−δ

∂v+1
t

[
(−t)λ

h(x) − h(t)

x − t
z0,0(x − t)

]
eint dt

=
v+1∑

k=0

∫ 0

−δ

(−t)λ−v−1Qk(x, t)Hv+1,k(x − t)eint dt + O(nv−λ), (3.35)

where

Qk(x, t) =(−t)v+1−λ · x
λ − ∑k

l=0
(−1)l (λ)l (−t)λ−l

l! (x − t)l

(x − t)k+1

= (x − t)v+1−k

x − t

[
xλ − (−t)λ

(x − t)λ

( −t

x − t

)v+1−λ

+
k∑

l=1

(−1)l+1(λ)l

l!
( −t

x − t

)v+1−l]
(3.36)

satisfies

max
t∈[−δ,0] |Qk(x, t)| ≤ C

x − t
, max

t∈[−δ,0]

∣∣∣∣∂t Qk(x, t)

∣∣∣∣ ≤ C

(x − t)2
(3.37)
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for k = 0, 1, · · · , v + 1. We obtain from (3.35), (3.37) and Remark 3.1 that

∫ 0

−δ

∂v+1
t g(x, t)eint dt = |x |−1O(nv−λ). (3.38)

For the forth integral in the parentheses of (3.20), it is obvious by the sufficient
smoothness of f (t) on [π,−δ] that

∫ −δ

−π

∂v+1
t g(x, t)eint dt =

∫ −δ

−π

∂v+1
t

[
xλh(x) − f (t)

x − t
z0,0(x − t)

]
eint dt

=O(n−1). (3.39)

Substituting (3.32), (3.33) or (3.34), (3.38) and (3.39) into (3.20) leads to

bφ(x,t)
n = |x |−1O(n−λ−1), x ∈ (0, δ). (3.40)

In the cases of x locating in (−δ, 0), [δ, π ], [−π,−δ]: For the case x ∈ (−δ, 0)
it can be proved in the exactly same way above that

bφ(x,t)
n = |x |−1O(n−λ−1), x ∈ (−δ, 0), (3.41)

and for cases x ∈ [δ, π ], [−π,−δ], we have from Lemma 3.2 that

bφ(x,t)
n = O(n−λ−1), x ∈ I \ I0, (3.42)

since f (t) is sufficiently smooth on I \ I0 and can be described by |t |αh(t) on
I0 = (−δ, δ).

• For the decay order of aϕ(x,t)
n : By Lemma 3.3, it is obvious that

aϕ(x,t)
n = 1

π

∫ π

−π

ϕ(x, t) cos (nt)dt = 1

2π

∫ π

−π

[
f (x) − f (t)

]
cos

[
n(x − t)

]
dt

= − cos (nx)

2π

∫ π

−π

f (t) cos (nt)dt − sin (nx)

2π

∫ π

−π

f (t) sin (nt)dt

= − cos (nx)

2
a f
n − sin (nx)

2
b f
n = O(n−λ−1). (3.43)

Now, we arrive at the conclusion (3.19a) by substituting (3.40), (3.41) and (3.43)
into (2.3), arrive at (3.19b) by (3.42) and (3.43) into (2.3).

(2) We consider the cases of x coinciding with the singularity 0.
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For λ > 0, we have by integrating by parts repeatedly and Lemma 3.2 that

π
∣∣bφ(0,t)

n

∣∣ ≤
∣∣∣∣
∫ π

−π

φ(0, t)eint dt

∣∣∣∣ = 1

2

∣∣∣∣
∫ π

−π

f (−t)
cos t

2

sin t
2

eint dt

∣∣∣∣

= 1

2nv

∣∣∣∣
∫

I\(−δ,δ)

[
f (−t)

cos t
2

sin t
2

](v)

eint dt +
∫ δ

−δ

[
|t |λh(−t)

cos t
2

sin t
2

](v)

eint dt

∣∣∣∣

≤O(n−v−1) + 1

nv

∣∣∣∣
∫ δ

0

[
tλh(−t)z0,0(t)

](v)
eint dt

∣∣∣∣

+ 1

nv

∣∣∣∣
∫ δ

0

[
tλh(t)z0,0(t)

](v)
e−int dt

∣∣∣∣

= 1

nv

∣∣∣∣
∫ δ

0
tλ−v−1w̃1(t)e

int dt

∣∣∣∣ + 1

nv

∣∣∣∣
∫ δ

0
tλ−v−1w̃2(t)e

−int dt

∣∣∣∣ + O(n−v−1)

= 1

nv
O(nv−λ) = O(n−λ), (3.44)

where w̃1(t) and w̃2(t) are smooth functions on [0, δ].
Then the conclusion (3.19c) is obtained by combining (2.3), (3.43) and (3.44).

By the same approach of separating irregularities for Corollary 2.1 and the same
method of the proof for Theorem 3.2, we have that for the case (3.1) with multiple
irregularities

Corollary 3.2 Let f (x)bea function defined in (3.1). Then the correspondingpointwise
error E f

n (x) enjoys the following decay orders

E f
n (x) =

⎧
⎨

⎩

Ak(x) · O(n−λ−1), x ∈ Iςk \ {ςk}, λ > −1, (3.45a)
O(n−λ−1), x ∈ I \ (∪s

k=1 Iςk
)
, λ > −1, (3.45b)

O(n−min{λk ,λ+1}), x = ςk, λk > 0, (3.45c)

where λ = min1≤k≤s {λk}, Ak(x) = |x − ςk |−1 for x near ςk and Ak(x) can be
removed if λk ≥ λ + 1.

Proof Similarly to the proof of Corollary 2.1 and by the same definition of Uk in
Corollary 2.1 we have

πnv+1
∣∣∣bφ(x,t)

n

∣∣∣ ≤
∣∣∣∣∣

s∑

k=1

∫

Uk

+
∫

I\(∪s
k=1Uk)

∂v+1
t g(x, t)e−int dt

∣∣∣∣∣ ,

∫

I\(∪s
k=1Uk)

∂v+1
t g(x, t)e−int dt = O(n−1)

and by the same method of the proof for Theorem 3.2 it holds that

∫

Uk

∂v+1
t g(x, t)e−int dt =

∫ μk

μk−1

∂v+1
t g(x, t)e−int dt = |x − ςk |−1O(nv−λ),
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Fig. 7 Pointwise errors of Fourier expansions for function f (x) = | sin x |λe1+sin x , with λ = 0.3 (the first
row) and π (the second row)

where we translated the integral
∫
Uk

onto a neighborhood of 0 by the change of
variables τ = t −ςk , the upper and lower integral bounds ±π should be changed into
ςk − μk−1 and μk − ςk , respectively.

Then by the same approach of Theorem 3.2 the proof is completed.

To observe the error bounds (3.19) and (3.45) numerically, we consider the concrete
function

f (x) = | sin x |λe1+sin x , x ∈ [−π, π ]
with various values for λ (see Fig. 7). All of these convergence orders are attainable,
which indicate that the estimates (3.19) and (3.45) are optimal.

In order to illustrate the behavior of A(x) in front of O(n−λ−1), we concern the
special case

f (x) = ∣∣ sin x
∣∣1.5e1+sin x

(see Fig. 8). Again, the demonstration in the zoomed-in graph indicates that the esti-
mates for A(x) are sharp.

We also consider the following function as an example with different irregularities
at various singularities

f (x) = |x |λh(x), x ∈ [−π, π ], (3.46)

where h(x) is a 2π -periodic sufficiently smooth function.
Different from the Jacobi projection approximation, the two endpoints may be two

corner points after a periodic extension being imposed on f (x), which may result in

123

S. Yang and S. Xiang47 Page 24 of 32



Fig. 8 Pointwise error of E f
n (x) of Fourier expansion for f (x) = ∣∣ sin x

∣∣1.5e1+sin x , x ∈ [−π, π ] around
the singularities, where c3 = 1.6e − 6. The consistencies of A(x) and E f

n (x) around the singularities are
demonstrated in the zoomed-in graph (the second). The experiment is performed with n = 249

a catastrophic deceleration on the decay rate of E f
n (x) (see Fig. 9). The convergence

rate depends largely on the scale of λwhen 0 < λ < 1, and suffered from the endpoint
singularities x = ±π when λ > 1 (see Corollary 3.3 and Fig. 11).

Based on the smooth degree of φ(x, t) and Corollary 3.2, it follows immediately
that

Corollary 3.3 Let f (x) be defined in (3.46) with λ > 0. Then the pointwise error
E f
n (x) enjoys the decay orders

E f
n (x) =

{
Ã(x) · O(n−2), x ∈ (−π, π),

O(n−1), x = ±π,
λ ≥ 2

Fig. 9 The periodically extended functions of f (x) = |x |λe1+sin2 x with λ = 2.5 (left), 1.5 (middle) and
0.9 (right). The circled points are corner points owed to periodic extensions, and the squared points are
singularities dependent on the size of λ
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Fig. 10 Pointwise errors of Fourier expansions for function f (x) = |x |λe1+sin2 x , with λ = 2.5 (the first
column), 1.5 (the second column) and 0.9 (the third column)

with Ã(x) = |x − ς |−1 for x near ς = ±π and

E f
n (x) =

⎧
⎪⎨

⎪⎩

A(x) · O(n−2), x ∈ (−π, 0) ∪ (0, π),

O(n−λ), x = 0,

O(n−1), x = ±π,

1 < λ < 2,

E f
n (x) =

⎧
⎪⎨

⎪⎩

A(x) · O(n−λ−1), x ∈ (−π, 0) ∪ (0, π),

O(n−λ), x = 0,

O(n−1), x = ±π,

0 < λ ≤ 1

with A(x) = |x − ς |−1 for x near ς = 0,±π , respectively.
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To illustrate Corollary 3.3 visually, we consider function f (x) = |x |λe1+sin2 x with
various values for λ. From Fig. 10, we see that the convergence orders are also in
accordance with the statements of Corollary 3.3, and all of the estimated orders are
attainable. From Fig. 11 and the third row of Fig. 10, we observe that the pointwise
errors E f

n (±π) increase instead of decreasing as λ growing up, though still E f
n (±π)

enjoy the convergence order O(n−1). A reasonable explanation would be that the
corners (circled points in Fig. 9) of periodically extended functions become more
acute as λ growing up, which erodes the smoothness of functions at the corners.

An appropriate therapy for this abnormal phenomenon is Fourier extensions, also
called Fourier continuation (see [31, 32, 36] for details). Also, the Jacobi projection
approximation is a really great choice, for which it holds [26]

|E f
n (x;α, β)| ≤ C(x)n−λ−1, x ∈ (−1, 0) ∪ (0, 1); |E f

n (0;α, β)| ≤ Cn−λ;
|E f

n (1;α, β)| ≤ Cn−λ+α− 1
2 ; |E f

n (−1;α, β)| ≤ Cn−λ+β− 1
2 .

On the account of the nice frequency resolution and the facility of FFT, Fourier
expansion generally remains a favorable choice. An alternative efficient approach is
to mollify the corners in Fig. 9 by multiplying f (x) with a window function [30, 37],
which eliminates the corners and may get higher convergence rates of the Fourier
projection. For example, we often employ the C∞-bump window

ωρ(x) =

⎧
⎪⎨

⎪⎩

1, x ∈ [−ρ, ρ] ⊂ [−π, π ],[
exp

( 1
π−|x | + 1

ρ−|x |
) + 1

]−1
, x ∈ (−π, π) \ [−ρ, ρ],

0, otherwise,

(3.47)

and Tuckey window

Tα(x) = 1[0,(1−α)π ](|x |) + 1

2

[
1 − cos

( |x | − π

α

)]
1[(1−α)π,π ](|x |), 0 < α < 1,

which force both ends of f to decay rapidly to 0. Then the windowed function ωρ f or
Tα f is extended periodically, thus the corners (circled points in Fig. 9) of extensions of

Fig. 11 The pointwise errors |E f
n (x)| of Fourier expansions for f (x) = |x |λe1+sin2 x with λ = 2.5 (left),

1.5 (middle) and 0.9 (right). The experiments are performed with n = 24
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f (x) are eliminated, and now the smoothness is spoiled only by the inner singularities
of f (x). Figure12 exhibits the numerical experiments for f (x) = |x |1.5e1+sin2 x win-
dowed by ωρ(x) with ρ = 0.5, which match perfectly the statements in Theorem 3.2,
Corollaries 3.2 and 3.3. Furthermore, the window functions can be employed to elim-
inate the jump discontinuities at boundaries, which may lead to Gibbs phenomenon
after a periodic extension (see Fig. 12).

Additionally, numerous windows have been developed for various functions (or
signals), see [30, 37–39]. The essential features of window functions are that they are
sufficiently smooth on R and equal to 1 on a closed subset [−ρ, ρ] of their supports
[−π, π ], that is, the general window �ρ(x) should satisfy

(1) 0 ≤ �ρ(x) ≤ 1, for x ∈ (−π, π),

(2) �ρ(x), for x ∈ R \ (−π, π), (3.48)

(3) �ρ(x) = 1, for x ∈ [−ρ, ρ].

Window’s constant value on [−ρ, ρ] leaves the original function intact on the closed
subset, and the regularity of windowed function is improved by the smooth and fast
fall off near the endpoints. For more details on the windowed function �ρ(x) f (x),
refer to [30, Corollary 4.5, Theorem 4.6].

Specially, the C∞-bump window ωρ(x) has infinitely smooth derivatives, which
decay exponentially near x = ±π, ±ρ and vanish onR\{x : ρ ≤ |x |}. Consequently,
multiplying f (x) by ωρ(x) erases the corners or jump discontinuities of extensions
of f (x), without damage to the smoothness of other areas, which results in that the
statements of Theorem 3.2 and Corollary 3.2 are also applicable to ωρ(x) f (x).

The preceding discussion presents a methodology for obtaining the optimal point-
wise convergence rates of Fourier projection approximations for functions that are

Fig. 12 Experiments for functions f (x) = |x |1.5e1+sin2 x (the first row) and f (x) = |x − 0.5|1.5e1+sin2 x

(the second row) mollified by ωρ(x), ρ = 0.5 (the first subplot). Notation f pe refers to the periodic
extension of f
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Fig. 13 The decay behaviors of coefficients a f
n and b f

n (left) and the pointwise errors |E f
n (x)| of Fourier

expansions for f (x) = e1+sin x | sin x |λ ln | sin x | with λ = 5.3 at the finitely regular point (middle) and
the sufficiently smooth point (right). In order to facilitate the use of Chebfun, we added an epsilon term to
the logarithm term in the numerical experiment, that is, f (x) = e1+sin x | sin x |λ ln (esp + | sin x |)

sufficiently smooth in the majority of the interval I , except for a few isolate finitely
regular points characterized by |x − ςk |λk . Similarly, by employing the logarithmic
versions of generalized van der Corput’s Lemma (see (3.7) in Lemma 3.1 and (3.9)
in Lemma 3.2), we can arrive at the similar conclusions (only one more logarithmic
term ln n attached) for functions exhibiting a different type of singularity, namely
|x − ςk |λk ln |x − ςk | as in (3.2).

Theorem 3.3 Let f (x)be a function defined in (3.2). Then the corresponding pointwise
error E f

n (x) enjoys the following decay orders

E f
n (x) =

⎧
⎪⎨

⎪⎩

Ak(x) · O(n−λ−1 ln n), x ∈ Iςk \ {ςk}, λ > −1,

O(n−λ−1 ln n), x ∈ I \ (∪s
k=1 Iςk

)
, λ > −1,

O(n−min{λk ,λ+1} ln n), x = ςk, λk > 0,

where λ = min1≤k≤s {λk}, Ak(x) = |x − ςk |−1 for x near ςk and Ak(x) can be
removed if λk ≥ λ + 1.

We also illustrate this extension by the function

f (x) = e1+sin x | sin x |λ ln | sin x |, x ∈ [−π, π ]

in Fig. 13, which displays both of decay orders of coefficients a f
n and b f

n and the
pointwise errors E f

n (x), in good agreement with the theoretical results in Corollary 3.1
and Theorem 3.3.

4 Conclusions and discussions

In most harmonic analysis textbooks, one of conclusions on Fourier expansions usu-
ally goes as that, the truncated expansions for a periodic continuous function does not
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always converge, and the expansion for a v-th differentiable function enjoys conver-
gence orderO(n−v). Afterwards, some extreme examples will be given to illustrate the
conclusion. Nevertheless, the functions we encounter in many settings are sufficiently
smooth in themost parts of underlying domain, except for a few singularities. Onemay
conclude from the previous discussions that the approximate quality corresponding to
the smooth parts of f (x) is much better than that around the contained singularities.
So the computing costs can be reduced substantially when one focus on local approx-
imations. Additionally, the results obtained describe again the localization theorem
of Fourier series from the view of convergence rate. It is surprised to find that the
superconvergence proved above is exactly similar to the phenomenon of Chebyshev
interpolation, which is referred to as the third of the six myths by Trefethen in [40,
Myth 3].

For aperiodic functions, Fourier transform plays an important role in spectrum
analysis and signal reconstruction. The truncated Fourier integral can be represented
by

f̃ (x) = 1

2π

∫ M

−M
eiwxdw

∫ ∞

−∞
f (t)e−iwt dt = 1

2π

∫ ∞

−∞
f (x − t)DM (t)dt,

where DM (t) = 2 sin (Mt)
t is the M-kernel of Fourier Transform. Since

f (x) = 1

2π

∫ ∞

−∞
f (x)DM (t)dt,

one has a similar pointwise error formula as (2.3)

E f
M (x) = f (x) − f̃ (x) = 1

π

∫ ∞

−∞
f (x) − f (x − t)

t
sin (Mt)dt .

Hence, the similar explorations completed in previous sections can be developed for
Fourier Transforms.
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