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Abstract
In this article, we propose an efficient hybrid method to calculate the highly oscilla-
tory Bessel integral

∫ 1
0

f (x)
x−τ

Jm(ωxγ )dx with the Cauchy type singular point, where
0 < τ < 1,m ≥ 0, 2γ ∈ N+. The hybrid method is established by combining the
complex integration method with the Clenshaw– Curtis– Filon– type method. Based
on the special transformation of the integrand and the additivity of the integration
interval, we convert the integral into three integrals. The explicit formula of the first
one is expressed in terms of the Meijer G function. The second is computed by using
the complex integration method and the Gauss– Laguerre quadrature rule. For the
third, we adopt the Clenshaw– Curtis– Filon– type method to obtain the quadrature
formula. In particular, the important recursive relationship of the required modified
moments is derived by utilizing the Bessel equation and the properties of Chebyshev
polynomials. Importantly, the strict error analysis is performed by a large amount of
theoretical analysis. Our proposed methods only require a few nodes and interpolation
multiplicities to achieve very high accuracy. Finally, numerical examples are provided
to verify the validity of our theoretical analysis and the accuracy of the proposed
methods.
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1 Introduction

In many application fields, such as quantum mechanics, celestial mechanics, electro-
dynamics, signal processing, medical imaging and fluid mechanics, highly oscillatory
problems are involved [3, 4, 6, 7, 18]. The highly oscillatory Bessel integrals with a
Cauchy type singular point and exotic oscillators are defined by

I [ f ] =
∫ 1

0

f (x)

x − τ
Jm(ωxγ )dx, (1.1)

where 0 < τ < 1, ω � 1, 2γ is a positive integer, f (x) denotes a smooth function on
[0, 1] and Jm(x) denotes the first kind of Bessel function of order m. We can deduce
from [11] that the integral (1.1) exists if the function f (x) satisfies Hölder’s condition
on the interval [0, 1]. Furthermore, the integral (1.1) is understood in the sense of
principal value and is defined as follows

I [ f ] = lim
ε→0+

( ∫ τ−ε

0
+

∫ 1

τ+ε

) f (x)

x − τ
Jm(ωxγ )dx .

The integral (1.1) has three significant characteristics. It is clear that the integral
has a Cauchy type singularity at x = τ . Moreover, if frequency ω is high enough,
the integrand becomes very oscillatory. In addition, The oscillator xγ has zero and
stationary points at x = 0. It is highly time consuming for very large values of ω to
use the traditional quadrature method such as Gaussian quadrature rules. Therefore,
the calculation of the integral (1.1) becomes very difficult. We must investigate an
effective quadrature rule to approximate the integral.

In recent years, a few researchers devoted to studying the calculation of highly oscil-
latory Bessel integrals. For the general form of g(x), there were some methods [31,
36] to compute the integral

∫ b
a f (x)Jv(ωg(x))dx . For the simple form of g(x) = x ,

manymethods were also used to calculate the integral
∫ b
a f (x)Jv(ωx)dx , for example,

the asymptotic method [35], the numerical steepest descent method [8, 10], the Clen-
shaw–Curtis–Filon–type method [37], the modified Clenshaw–Curtis method [27]
and the Levin-type method [34, 35]. Wang et al. [32] studied the asymptotics and fast
computation of the following onesided oscillatory Hilbert transforms of the form

∫ +∞

0

f (t)

t − x
eiωtdt, ω > 0, x ≥ 0.

Many methods [9, 13, 14, 20, 24, 29, 30, 32] were utilized for computing the Cauchy
principal value integral of oscillating function

∫ 1

−1

f (x)

x − τ
eiωxdx, −1 < τ < 1. (1.2)
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Further, Xu et al. [39] constructed two efficient methods to calculate the Hilbert trans-
form with the oscillatory Bessel function, as follows

∫ +∞

0

f (x)

x − τ
Jv(ωx)dx, 0 < τ < +∞. (1.3)

However, these methods cannot directly calculate the integral (1.1). In order to accu-
rately and efficiently compute the integral (1.1), we must improve, modify or combine
these methods.

In this paper, we first rewrite the integral (1.1) as

∫ 1

0

f (x)

x − τ
Jm(ωxγ )dx= f (τ )

∫ 1

0

1

x − τ
Jm(ωxγ )dx+

∫ 1

0
F(x)Jm(ωxγ )dx, (1.4)

where

F(x) =
{

f (x)− f (τ )
x−τ

, x �= τ,

f ′(τ ), x = τ,

is a continuously differentiable function if f (x) ∈ C∞[0, 1]. Then the first integral
on the right of (1.4) is transformed as follows

∫ 1

0

1

x − τ
Jm(ωxγ )dx=

∫ +∞

0

1

x−τ
Jm(ωxγ )dx−

∫ +∞

1

1

x−τ
Jm(ωxγ )dx . (1.5)

We let I11 = ∫ +∞
0

1
x−τ

Jm(ωxγ )dx and I12 = ∫ +∞
1

1
x−τ

Jm(ωxγ )dx . According to
the relationship between Meijer G function and Bessel function, the integral I11 can
be explicitly computed via the Meijer G function. For the integral I12, we estab-
lish new steepest descent integration paths to transform the integral into two infinite
integrals on [0,+∞) on the basis of analytic continuation, and then use the Gauss–La-
guerre quadrature rule to compute the resulting two infinite integrals. We use the
Clenshaw–Curtis–Filon–type method to calculate the integral

∫ 1
0 F(x)Jm(ωxγ )dx in

(1.4). First, the quadrature formula is obtained by interpolating F(x) at the Clenshaw-
Curtis point. Then, the recursive relationship of the modified moments is derived by
utilizing integration by parts, the Bessel equation and the properties of Chebyshev
polynomials. Finally, employing explicit formula can effectively calculate the values
of the initial modified moments.

The structure of this paper is as follows. In Section 2, we first derive the explicit
formula of the integral I11. Then, we use the complex integration method to com-
pute the integral I12. Finally, we adopt the Clenshaw–Curtis–Filon–type method for
calculating the integral

∫ 1
0 F(x)Jm(ωxγ )dx . Moreover, the very useful recursive rela-

tionship of the required modified moments is deduced through detailed theoretical
analysis. In Section 3, we carry out strict error analysis by a large amount of theo-
retical derivation. In Section 4, we verify the correctness of the theoretical analysis
through numerical experiments. Meanwhile, these numerical experiments show the
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accuracy and efficiency of the proposedmethods. The conclusion of this paper is given
in the final.

2 Hybridmethod

In this section, we devise a hybrid method. First, the explicit formula of I11 is given
by the following lemma.

Lemma 2.1 If 2γ is a positive integer, then it is true that

I11=
∫ +∞

0

1

x − τ
Jm(ωxγ )dx = −πG1+2γ,2γ

4γ,2+4γ

(
1

4
ω2τ 2γ

∣
∣
∣
0, 1

2γ , 2
2γ ,··· , 2γ−1

2γ ,− 1
4γ , 1

4γ ,··· , 4γ−3
4γ

0, 1
2γ , 2

2γ ,··· , 2γ−1
2γ , m2 ,− m

2 ,− 1
4γ , 1

4γ ,··· , 4γ−3
4γ

)

,(2.1)

where Gp,q
u,v (· ) is the Meijer G function [5, p. 206].

Proof We can know from [5, p. 219] and [16],

Jm(ωxγ ) = G1,0
0,2

(
1

4
ω2x2γ

∣
∣
∣ 1
2m,− 1

2m

)

, (2.2)

∫ +∞

0

tα−1

t − τ
Gu,v

p,q

(

atl
∣
∣
∣
a1,a2,··· ,av,av+1,··· ,ap
b1,b2,··· ,bu ,bu+1,··· ,bq

)

dt

= − πτα−1Gu+l,v+l
p+2l,q+2l

⎛

⎝aτ l
∣
∣
∣
1−α
l ,··· , l−α

l ,a1,··· ,av,av+1,··· ,ap, −α+ 1
2

l ,··· , l−α− 1
2

l

1−α
l ,··· , l−α

l ,b1,··· ,bu ,bu+1,··· ,bq ,
−α+ 1

2
l ,··· , l−α− 1

2
l

⎞

⎠ . (2.3)

We let α = 1, l = 2γ, a = 1
4ω

2 in (2.3) and substitute (2.2) into the integral I11.
Then, employing (2.3), we can obtain the result.

In Matlab, the Meijer G function Gm,n
p,q

(

z

∣
∣
∣
∣

a1,··· ,an ,an+1,··· ,ap

b1,··· ,bm ,bm+1,··· ,bq

)

can be computed by

invoking the built-in function

MeijerG([a1, a2, · · · , an], [an+1, an+2, · · · , ap], [b1, b2, · · · , bm], [bm+1, bm+2,

· · · , bq ], z).

In Maple, the Meijer G function is implemented as

MeijerG([[a1, a2, · · · , an], [an+1, an+2, · · · , ap]], [[b1, b2, · · · , bm], [bm+1, bm+2,

· · · , bq ]], z),

and it is suitable for both symbolic and numerical manipulation and its value can be
evaluated with an arbitrary precision. TheMeijer G function can be computed with the
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Matlab code MeijerG.m [26]. Moreover, according to [17], as |z| → ∞, the Meijer
G function has the following asymptotic formula

Gm,n
p,p+2

(

z

∣
∣
∣
∣

a1,··· ,an ,an+1,··· ,ap

b1,··· ,bm ,bm+1,··· ,bp+2

)

∝

1

2
πm+n−p− 3

2

m∑

k=1

∏p
j=n+1 sin((a j − bk)π)

∏m
j=1, j �=k sin((b j − bk)π)

zbk ((−1)p−m−n−1z)χ−bk

(

e−i(π(χ−bk )+2
√

(−1)p−m−n−1z)

(1 + O(
1

√
(−1)p−m−n−1|z| )) + e−i(π(χ−bk )+2

√
(−1)p−m−n−1z)(1 + O(

1
√

(−1)p−m−n−1|z| ))
)

+

πm+n+p
m∑

k=1

∏p
j=n+1 sin((a j − bk)π)

∏m
j=1, j �=k sin((b j − bk)π)

zbk
p∑

i=1

∏p
s=1,s �=i Γ (a j − as)

sin((ai − bk)π)
∏p+2

s=1 
(ai − bs)

((−1)p−m−n−1z)ai−bk−1(1 + O(
1

|z| )), (2.4)

where χ = 1
2 (

∑p+2
j=1 b j −∑p

j=1 a j − 1
2 ). TheMeijer G function can be also computed

by truncating the above asymptotic formula (2.4).
Next, we use the complex integration method to calculate the second integral I12

on the right of (1.5). We set t = xγ , and the integral is transformed as

I12 = 1

γ

∫ +∞

1

x
1
γ

−1

x
1
γ − τ

Jm(ωx)dx . (2.5)

From [33, p. 386], when m ≥ 0, the relationship between the Bessel function and the
Whittaker’s functions is as follows

Jm(x) = 1

(2πx)
1
2

{
e
1
2 (m+ 1

2 )π iW0,m(2i x) + e− 1
2 (m+ 1

2 )π iW0,m(−2i x)
}

. (2.6)

With the aid of (2.6), the integral I12 can be rewritten as

I12 = 1

γ (2πω)
1
2

e
1
2 (m+ 1

2 )π i
∫ +∞

1

x
1
γ

− 3
2

x
1
γ − τ

eiωxW0,m(2iωx)e−iωxdx

+ 1

γ (2πω)
1
2

e− 1
2 (m+ 1

2 )π i
∫ +∞

1

x
1
γ

− 3
2

x
1
γ − τ

e−iωxW0,m(−2iωx)eiωxdx . (2.7)

From [2, pp. 505 and 508], we get the asymptotic formula of the Whittaker’s function
as follows

Wα,β(t) ∼tαe− t
2

{

1 +
N∑

n=1

(−1)n
( 12 − α + β)n(

1
2 − α − β)n

n!tn
}

+ O(|t |α−N−1e− t
2 ), |t | → ∞. (2.8)

Fast numerical integration of highly...



Theorem 2.1 Suppose that

G1(x) = x
1
γ

− 3
2

x
1
γ − τ

e−iωxW0,m(−2iωx), (2.9)

G2(x) = x
1
γ

− 3
2

x
1
γ − τ

eiωxW0,m(2iωx). (2.10)

Then the integral I12 can be rewritten as

I12 = 1

γ (2πω)
1
2

{

e− 1
2 (m+ 1

2 )π i ie
iω

ω

∫ +∞

0
G1(1 + i t

ω
)e−tdt

− e
1
2 (m+ 1

2 )π i ie
−iω

ω

∫ +∞

0
G2(1 − i t

ω
)e−tdt

}

. (2.11)

Proof Based on (2.7), we rewrite the integral I12 as

I12 = 1

γ (2πω)
1
2

{
e− 1

2 (m+ 1
2 )π i I ′

1 + e
1
2 (m+ 1

2 )π i I ′
2

}
, (2.12)

where

I ′
1 =

∫ +∞

1
G1(x)e

iωxdx, (2.13)

I ′
2 =

∫ +∞

1
G2(x)e

−iωxdx . (2.14)

In the following, we only calculate I ′
1. Similarly, I ′

2 can be easily calculated. The
following is the definition of the region P:

P =
{
z ∈ C ||z − 1| ≤ R, 0 ≤ arg(z) ≤ π

2

}
.

Both G1(x) and G2(x) are analytic functions in P . The boundary of the region P
can be thought of as a closed contour 
. Through the Cauchy’s residue theorem [1, p.
206], we have ∮




G1(x)e
iωxdx = 0. (2.15)

We let


 =
3⋃

k=1


k,
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where


1 : η1(t) = t, t : 1 → 1 + R,


2 : η2(θ) = 1 + Reiθ , θ : 0 → π

2
,


3 : η3(t) = 1 + i t, t : R → 0,

are shown on Fig. 1 (left). Then, we respectively consider every integral on contour

1, 
2, 
3.

On the basis of Eq. (2.8), as |z| → +∞, it follows that

zG1(z) ∼ z
1
γ

− 1
2

z
1
γ − τ

{

1 +
N∑

n=1

(−1)n
( 12 + m)n(

1
2 − m)n

n!(−2iωz)n

}

+ O(|z|−N− 3
2 ),

zG2(z) ∼ z
1
γ

− 1
2

z
1
γ − τ

{

1 +
N∑

n=1

(−1)n
( 12 + m)n(

1
2 − m)n

n!(2iωz)n
}

+ O(|z|−N− 3
2 ).

Therefore, there exist two constants C1 and C2, such that

|G1(z)| ≤ C1

|z| , |G2(z)| ≤ C2

|z| , as |z| → +∞. (2.16)

Firstly, using Jordan inequality [1, p. 223]

2

π
θ ≤ sin θ, θ ∈

[
0,

π

2

]
,

Fig. 1 The integration paths of I ′1, which involve the kernel eiωx , are shown in the left figure. The integration
paths of I ′2, which involve the kernel e−iωx , are shown in the right figure
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we obtain

∣
∣
∣
∣

∮


2

G1(x)e
iωxdx

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∫ π
2

0
G1(1 + Reiθ )eiω(1+Reiθ )d(1 + Reiθ )

∣
∣
∣
∣
∣

≤ R

∣
∣
∣
∣
∣

∫ π
2

0
G1(1 + Reiθ )e−ωR sin θdθ

∣
∣
∣
∣
∣

≤ R
C1

|1 + Reiθ |
∫ π

2

0
e− 2ωRθ

π dθ

≤ C1
π

2ωR
(1 − e−ωR) → 0, R → +∞. (2.17)

Then, we can express the integral on 
3 as

∮


3

G1(x)e
iωxdx = − ieiω

∫ R

0
G1(1 + i t)e−ωtdt

= − i

ω
eiω
∫ ωR

0
G1(1 + i t

ω
)e−tdt . (2.18)

According to (2.15)-(2.18), we can get

I ′
1 =

∫ +∞

1
G1(x)e

iωxdx

= lim
R→+∞

∮


1

G1(x)e
iωxdx

= − lim
R→+∞

∮


2+
3

G1(x)e
iωxdx

= ieiω

ω

∫ +∞

0
G1(1 + i t

ω
)e−tdt . (2.19)

Similarly, we can calculate the integral I ′
2 according to the contour path in the right of

Fig. 1. The integral I ′
2 can be expressed as follows

I ′
2 = − ie−iω

ω

∫ +∞

0
G2(1 − i t

ω
)e−tdt . (2.20)

We can obtain (2.11) by substituting (2.19) and (2.20) into (2.12).

We approximate the integral (2.11) by the Gauss–Laguerre quadrature rule. The
n–points Gauss–Laguerre quadrature rule of the integral

∫ +∞
0 φ(x)e−xdx is denoted

as [11, p. 222]

∫ +∞

0
φ(x)e−xdx ≈

n∑

k=1

wkφ(xk),
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where xk and wk are respectively node and weight. Then, we use the above formula
to obtain the complex integration method of the integral I12 as follows

Q12 = 1

γ (2πω)
1
2

{

e− 1
2 (m+ 1

2 )π i ie
iω

ω

n∑

k=1

wkG1(1 + i tk
ω

) − e
1
2 (m+ 1

2 )π i ie
−iω

ω

n∑

k=1

wkG2(1 − i tk
ω

)

}

= 1

γ (2πω)
1
2

{

e− 1
2 (m+ 1

2 )π i i

ω

n∑

k=1

wk
(1 + i tk

ω
)
1
γ

− 3
2

(1 + i tk
ω

)
1
γ − τ

etk W0,m(−2iω + 2tk)

− e
1
2 (m+ 1

2 )π i i

ω

n∑

k=1

wk
(1 − i tk

ω
)
1
γ

− 3
2

(1 − i tk
ω

)
1
γ − τ

etk W0,m(2iω + 2tk)

}

, (2.21)

where the Whittaker’s function Wα,β(t) can be computed by either truncating the
above asymptotic formula (2.8) or invoking ‘whittakerW (α, β, t)’ in Matlab.

Next, we apply the Clenshaw–Curtis–Filon–type method to calculate the integral

I13 = ∫ 1
0 F(x)Jm(ωxγ )dx . Let PN1+2s(x) =

N1+2s∑

n=0
d(s)
n T ∗

n (x) be the Hermite inter-

polation polynomial of F(x) at the Clenshaw-Curtis points

xi = 1

2
+ 1

2
cos

(
iπ

N1

)

, i = 0, 1, · · · , N1,

where s is a non-negative integer, T ∗
n (x) represents the Chebyshev polynomial of the

first kind shifted to the range [0,1]. The interpolation polynomial PN1+2s(x) satisfies
the following relationships

P(k)
N1+2s(0) = F (k)(0), PN1+2s(x j ) = F(x j ), P

(k)
N1+2s(1) = F (k)(1), k = 0, 1, · · · ,

s, j = 1, 2, · · · , N1 − 1.

The coefficient d(s)
n can be effectively computed by a modified algorithm [37, 38].

The algorithm is based on the Fast Fourier Transform. Then the Clenshaw–Curtis—
Filon–type method for the integral I13 can be expressed as

QCCF
N1

[F] =
∫ 1

0
PN1+2s(x)Jm(ωxγ )dx

=
N1+2s∑

n=0

d(s)
n Mn(m, ω, γ ), (2.22)

where

Mn(m, ω, γ ) =
∫ 1

0
T ∗
n (x)Jm(ωxγ )dx, (2.23)

are known as the modified moments.
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In the following, we utilize the Bessel equation and Chebyshev polynomial to
derive a homogeneous recurrence relationship for the modified moments (2.23). It is
applicable for all positive integers 2γ .

Theorem 2.2 Themodifiedmoments (2.23) satisfy the following recursive relationship

(n2 + 6n + 9 − γ 2m2)Mn+2(m, ω, γ ) + (2n + 4 + 4γ 2m2)Mn+1(m, ω, γ ) − (2n2 − 6 + 6γ 2m2)

Mn(m, ω, γ ) − (2n − 4 − 4γ 2m2)Mn−1(m, ω, γ ) + (n2 − 6n + 9 − γ 2m2)Mn−2(m, ω, γ )

+ γ 2 ω2

22γ

2γ∑

j=0

C j
2γ 2

− j
[ j+2∑

k=0

Ck
j+2Mn+ j+2−2k(m, ω, γ ) − 4

j+1∑

k=0

Ck
j+1Mn+ j+1−2k(m, ω, γ )

+ 4
j∑

k=0

Ck
j Mn+ j−2k(m, ω, γ )

]

= 0, (2.24)

where Ck
j = j !

k!( j−k)! .

Proof Firstly, we rewrite the modified moments as

Mn(m, ω, γ ) = 1

2

∫ 1

−1
Tn(x)Jm

(
ω
(1 + x

2

)γ )
dx,

where Tn(x) is the Chebyshev polynomial of degree n. According to the Bessel equa-
tion [2, p. 358]

z2
d2 Jm(z)

dz2
+ z

dJm(z)

dz
+ (z2 − m2)Jm(z) = 0,

we can obtain

(1 + x)2

γ 2

[

Jm
(
ω
(1 + x

2

)γ )]′′
+ (1 + x)

γ 2

[

Jm
(
ω
(1 + x

2

)γ )]′

−
(
m2 − ω2

(1 + x

2

)2γ )[

Jm
(
ω
(1 + x

2

)γ )] = 0. (2.25)

We let

K1 = 4
∫ 1

−1
(1 + x)2(1 − x)2Tn(x)

[
Jm
(
ω
(1 + x

2

)γ )]′′
dx, (2.26)

K2 = 4
∫ 1

−1
(1 + x)(1 − x)2Tn(x)

[
Jm
(
ω
(1 + x

2

)γ )]′
dx, (2.27)

K3 = 4γ 2
∫ 1

−1
(1 − x)2

[
m2 − ω2

(1 + x

2

)2γ ]
Tn(x)

[
Jm
(
ω
(1 + x

2

)γ )]
dx . (2.28)
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From (2.25), we can easily deduce that K1, K2 and K3 satisfy the following relation-
ship

K1 + K2 − K3 = 0. (2.29)

Applying integration by parts to (2.26) and (2.27), we have

K1 = 4
∫ 1

−1

[
(1 + x)2(1 − x)2Tn(x)

]′′
Jm
(
ω
(1 + x

2

)γ )
dx,

K2 = −4
∫ 1

−1

[
(1 + x)(1 − x)2Tn(x)

]′
Jm
(
ω
(1 + x

2

)γ )
dx .

For K1, K2 and K3, utilizing the properties of the first kind of Chebyshev polynomials
[23]

(1 − x2)Tn
′(x) = n

2
(Tn−1(x) − Tn+1(x)),

xmTn(x) = 2−m
m∑

j=0

C j
mTn+m−2 j (x),

we can obtain

K1 =(n2 + 7n + 12)Mn+2(m, ω, γ ) − (2n2 − 8)Mn(m, ω, γ ) + (n2 − 7n + 12)Mn−2(m, ω, γ ),

(2.30)

K2 = − (n + 3)Mn+2(m, ω, γ ) + 2(n + 2)Mn+1(m, ω, γ ) − 2Mn(m, ω, γ )

− 2(n − 2)Mn−1(m, ω, γ ) + (n − 3)Mn−2(m, ω, γ ), (2.31)

K3 =γ 2m2
[
Mn+2(m, ω, γ ) − 4Mn+1(m, ω, γ ) + 6Mn(m, ω, γ ) − 4Mn−1(m, ω, γ )

+ Mn−2(m, ω, γ )
]

− γ 2 ω2

22γ

2γ∑

j=0

C j
2γ 2

− j
[ j+2∑

k=0

Ck
j+2Mn+ j+2−2k(m, ω, γ )

− 4
j+1∑

k=0

Ck
j+1Mn+ j+1−2k(m, ω, γ ) + 4

j∑

k=0

Ck
j Mn+ j−2k(m, ω, γ )

]
. (2.32)

Finally, we can get (2.24) by substituting (2.30), (2.31) and (2.32) into (2.29).

Since T− j (t) = Tj (t), j = 1, 2, · · · , we have that T ∗− j (t) = T ∗
j (t) and

M− j (m, ω, γ ) = Mj (m, ω, γ ). In addition, if the first few terms are known,
the next few terms can be obtained by recursion of the previous terms. For
example, when γ = 1 and Mn(m, ω, γ ), n = 0, 1, 2, 3, 4, 5 are known, we
can obtain M6(m, ω, γ ), M7(m, ω, γ ), M8(m, ω, γ ) and M9(m, ω, γ ). Further,
Mn(m, ω, γ ), n = 10, 11, · · · can be computed by forward recursion. By substi-
tuting T ∗

0 (t) = 1, T ∗
1 (t) = 2t − 1, T ∗

2 (t) = 8t2 − 8t + 1, T ∗
3 (t) = 32t3 − 48t2 +

18t − 1, T ∗
4 (t) = 128t4 − 256t3 + 160t2 − 32t + 1 and T ∗

5 (t) = 512t5 − 1280t4 +
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1120t3 − 400t2 + 50t − 1 into Mn(m, ω, γ ) = ∫ 1
0 T ∗

n (t)Jm(ωtγ )dt , we obtain the
initial modified moments

M0(m, ω, γ ) = I0(m, ω, γ ),

M1(m, ω, γ ) = 2I1(m, ω, γ ) − I0(m, ω, γ ),

M2(m, ω, γ ) = 8I2(m, ω, γ ) − 8I1(m, ω, γ ) + I0(m, ω, γ ),

M3(m, ω, γ ) = 32I3(m, ω, γ ) − 48I2(m, ω, γ ) + 18I1(m, ω, γ ) − I0(m, ω, γ ),

M4(m, ω, γ ) = 128I4(m, ω, γ ) − 256I3(m, ω, γ ) + 160I2(m, ω, γ )

−32I1(m, ω, γ ) + I0(m, ω, γ ),

M5(m, ω, γ ) = 512I5(m, ω, γ ) − 1280I4(m, ω, γ ) + 1120I3(m, ω, γ )

−400I2(m, ω, γ ) + 50I1(m, ω, γ ) − I0(m, ω, γ ).

Here, the computation of themoments I j (m, ω, γ ) = ∫ 10 x j Jm(ωxγ )dx are as follows.
Firstly, we can know from [22, p. 44]

∫ 1

0
t j Jm(ωt)dt = ωm

2m(m + j + 1)
(m + 1)
1F2

(1

2
(m + j + 1); 1

2
(m + j + 3);m + 1; −1

4
ω2
)
.

Letting xγ = t , we can obtain

I j (m, ω, γ ) = 1

γ

∫ 1

0
t

j+1
γ

−1 Jm(ωt)dt

= 1

γ

ωm

2m(m + j+1
γ

)
(m + 1)
1F2

(1

2
(m + j + 1

γ
); 1

2
(m + j + 1

γ
+ 2);m + 1;−1

4
ω2
)

= ωm

2m(γm + j + 1)
(m + 1)
1F2

(1

2
(m + j + 1

γ
); 1

2
(m + j + 1

γ
+ 2);m + 1; −1

4
ω2
)
.

(2.33)

Here, pF p+1 is the hypergeometric function, which has the following asymptotic
formula [15]

p F p+1(a1, a2, · · · , ap; b1, b2, · · · , bp+1; z) ∝
∏p+1

j=1
(b j )

2
√

π
∏p

k=1
(ak)
(−z)χ

(

ei(πχ+2
√−z)

(
1 + O

( 1√−z

))
+ e−i(πχ+2

√−z)
(
1 + O

( 1√−z

)))

+
∏p+1

j=1
(b j )
∏p

k=1
(ak)

p∑

k=1


(ak)
∏p

j=1, j �=k
(a j − ak)
∏p+1

j=1
(b j − ak)
(−z)−ak

(
1 + O

(1

z

))
,

where |z| → ∞; χ = 1
2 (
∑p

k=1 ak −∑p+1
j=1 b j + 1

2 ); j, k ∈ Z; 1 ≤ j, k ≤ p; a j −
ak /∈ Z . The hypergeometric function can be computed by either truncating the above
asymptotic formula or invoking ‘hypergeom(a1, a2, · · · , ap; b1, b2, · · · , bp+1; z)’
in Matlab.

Generally, both forward recursion and backward recursion are unstable. If ω is
large, the instability is less pronounced. For larger ω, if n ≤ ω

2 , it is accurate to
compute Mn(m, ω, γ ) by forward recursion. However, when n > ω

2 , the loss of
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important figures increases and the forward recursion is no longer applicable. In this
case, we compute the modified moments by either using Oliver’s method [25] or
Lozier’s method [21]. This means that (2.24) has to be solved as a boundary value
problem. In this paper, we primarily consider the moderate and large ω and employ
the forward recursion to accurately calculate the values of the modified moments.

And then, as n > ω
2 , we provide a table to illustrate the numerical instability of

forward recursion.
FromTable 1, we can see that the forward recursion becomes unstable when n > ω

2 .
In this case, as n becomes large, the values ofmodifiedmomentsMn(m, ω, γ ) obtained
by the forward recursion become more inaccurate. The recursive relationship (2.24)
may be considered as a homogeneous difference equation. The numerical stability
of forward recursion depends on the behaviour of all solutions of these difference
equations, especially on the asymptotic behaviour for n → ∞ (see Gautschi [12],
Oliver [25] ). In the future research, we will consider how to study the asymptotic
behavior of all solutions of these difference equations.

In the following, as n ≤ ω
2 , we use forward recursion for the recursion relationship

(2.24) to compute the values of the modified moments Mn(m, ω, γ ). Tables 2 and 3
verify the accuracy of these values.

As n ≤ ω
2 , practical experiments illustrate that Mn(m, ω, γ ) can be computed

accurately by using forward recursion for the recursion relationship (2.24). In the
numerical experiments in Section 4, we only need to take a small number of nodes to
achieve high accuracy for the moderate and large ω. Therefore, a small number of the
modified moments Mn(m, ω, γ ) are sufficient.

So far, we can get the quadrature formula of the integral (1.1) as follows

Q[ f ] = f (τ )(I11 − Q12) + QCCF
N1

[F], (2.34)

where I11 is calculated by using (2.1), Q12 and QCCF
N1

[F] are given in (2.21) and
(2.22), respectively.

3 Error analysis

Firstly, we analyze the error of the quadrature formula Q12.

Table 1 The absolute errors for the calculation of Mn(m, ω, γ ) by the forward recursion for the recursion
relationship (2.24) with m = 2, γ = 1

2

n ω = 6 ω = 8 ω = 10 ω = 11 ω = 13

n = 11 1.56 × 10−6 4.34 × 10−8 2.08 × 10−9 6.88 × 10−10 1.71 × 10−11

n = 12 9.56 × 10−5 1.45 × 10−6 4.29 × 10−8 1.14 × 10−8 1.92 × 10−10

n = 13 6.93 × 10−3 5.78 × 10−5 1.06 × 10−6 2.28 × 10−7 2.62 × 10−9

n = 14 5.85 × 10−1 2.69 × 10−3 3.06 × 10−5 5.37 × 10−6 4.24 × 10−8

The values of the initial modified moments Mn(m, ω, γ ), n = 0, 1, 2, 3, 4, 5, 6, can be calculated by using
T ∗
n (t) in terms of powers of t [23, subsections 2.3.2, 1.3.1, Eqs. 2.16, 1.21 ] and the formula (2.33)
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Table 2 The absolute errors for the calculation of Mn(m, ω, γ ) by the forward recursion for the recursion
relationship (2.24) with m = 4, γ = 1

2

n ω = 50 ω = 100 ω = 200 ω = 300 ω = 500

n = 6 3.55 × 10−15 7.24 × 10−17 4.90 × 10−17 1.62 × 10−17 3.17 × 10−17

n = 7 8.88 × 10−15 1.67 × 10−16 8.20 × 10−17 4.67 × 10−17 1.00 × 10−16

n = 8 9.18 × 10−15 3.15 × 10−16 4.70 × 10−17 6.70 × 10−17 1.52 × 10−16

n = 9 1.04 × 10−14 4.83 × 10−16 2.89 × 10−16 1.27 × 10−16 2.86 × 10−16

The values of the initial modified moments Mn(m, ω, γ ), n = 0, 1, 2, 3, 4, 5, can be calculated by using
T ∗
n (t) in terms of powers of t [23, subsections 2.3.2, 1.3.1, Eqs. 2.16, 1.21 ] and the formula (2.33)

Theorem 3.1 The absolute error of the quadrature formula (2.21) for the integral I12
satisfies

∣
∣
∣I12 − Q12

∣
∣
∣ = O

(
ω−2n− 3

2

)
, ω → +∞. (3.1)

Proof Firstly, we know that Bessel function and Hankel function have the following
relationship [2, p. 358]

Jm(x) = 1

2
[H (1)

m (x) + H (2)
m (x)],

with

H (1)
m (x) =

√
2

πx
e−i π

2 (m+ 1
2 )W0,m(−2i x),

H (2)
m (x) =

√
2

πx
ei

π
2 (m+ 1

2 )W0,m(2i x).

According to the above relationships, we can rewrite (2.11) as

I12 = ieiω

2γω

∫ +∞

0
Q1(1 + i t

ω
)e−tdt − ie−iω

2γω

∫ +∞

0
Q2(1 − i t

ω
)e−tdt, (3.2)

Table 3 The absolute errors for the calculation of Mn(m, ω, γ ) by the forward recursion for the recursion
relationship (2.24) with m = 1, γ = 2

n ω = 100 ω = 150 ω = 200 ω = 600 ω = 800

n = 12 4.56 × 10−13 7.93 × 10−14 9.50 × 10−13 2.58 × 10−13 1.95 × 10−13

n = 13 1.27 × 10−12 2.68 × 10−13 3.64 × 10−12 3.28 × 10−13 6.59 × 10−13

n = 14 3.10 × 10−12 6.78 × 10−13 9.58 × 10−12 4.68 × 10−13 1.67 × 10−12

n = 15 6.71 × 10−12 1.57 × 10−12 2.32 × 10−11 4.52 × 10−14 3.89 × 10−12

The values of the initial modified moments Mn(m, ω, γ ), n = 0, 1, 2, · · · , 11, can be calculated by using
T ∗
n (t) in terms of powers of t [23, subsections 2.3.2, 1.3.1, Eqs. 2.16, 1.21 ] and the formula (2.33)
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where

Q1(x) = H (1)
m (ωx)T (x)

eiωx
,

Q2(x) = H (2)
m (ωx)T (x)eiωx ,

T (x) = x
1
γ

−1

x
1
γ − τ

.

At the same time, we can rewrite (2.21) as

Q12 = ieiω

2γω

n∑

k=1

wk Q1(1 + i xk
ω

) − ie−iω

2γω

n∑

k=1

wk Q2(1 − i xk
ω

). (3.3)

We let

E1 = ieiω

2γω

[ ∫ +∞

0
Q1(1 + i t

ω
)e−tdt −

n∑

k=1

wk Q1(1 + i xk
ω

)
]
, (3.4)

E2 = ie−iω

2γω

[ ∫ +∞

0
Q2(1 − i t

ω
)e−tdt −

n∑

k=1

wk Q2(1 − i xk
ω

)
]
. (3.5)

Then, we can obtain

|I12 − Q12| =
∣
∣
∣
∣
ieiω

2γω

[ ∫ +∞

0
Q1(1 + i t

ω
)e−tdt −

n∑

k=1

wk Q1(1 + i xk
ω

)
]

− ie−iω

2γω

[ ∫ +∞

0
Q2(1 − i t

ω
)e−tdt −

n∑

k=1

wk Q2(1 − i xk
ω

)
]∣∣
∣
∣

= ∣∣E1 − E2
∣
∣. (3.6)

From [28], for large |x |, it follows that

H (1)
m (x)e−i x =

√
2

πx
e−i(mπ

2 + π
4 )

2n+1∑

j=0

( 12 + m) j (
1
2 − m) j

j !(2i x) j + O(|x |−2n− 5
2 ), (3.7)

where (a) j is defined by

(a) j = 
(a + j)


(a)
=
{
1, j = 0,

a(a + 1)(a + 2) · · · (a + j), j ≥ 1.
(3.8)

Wedefine Dω(u)=T (1+iu), u= t
ω
,Wω(t)=

√
2
π
e−i(mπ

2 + π
4 )
∑2n+1

j=0
( 12+m) j (

1
2−m) j

j !(2i) j (ω+i t) j+
1
2
.

We apply the Hermite interpolation to the function Dω( t
ω
)Wω(t), and construct the
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interpolation polynomial P2n−1(
t
ω
), which satisfies that

P2n−1(
xk
ω

) = Dω(
xk
ω

)Wω(xk),

P ′
2n−1(

xk
ω

) =
[
Dω(

t

ω
)Wω(t)

]′∣∣
∣
t=xk

.

Thus, using the remainder formula of Hermite interpolation, we can get that

E =
∫ +∞

0

[
Dω(

t

ω
)Wω(t) − P2n−1(

t

ω
)
]
e−tdt

=
∫ +∞

0

[
Dω( t

ω
)Wω(t)

](2n)∣∣
∣
t=ζ

(2n)! Ln2(t)e−tdt, (3.9)

where Ln(x) = ∏n
j=1(x − x j ), ζ ∈ (0,max(t, xn)). Thus, according to (3.7) and

(3.9), we have

E1 = ieiω

2γω

[ ∫ +∞

0
Q1(1 + i t

ω
)e−tdt −

n∑

k=1

wk Q1(1 + i xk
ω

)
]

= ieiω

2γω

[ ∫ +∞

0
Dω(

t

ω
)H (1)

m (ω + i t)e−iω+t e−tdt −
n∑

k=1

wk Dω(
xk
ω

)H (1)
m (ω + i xk)e

−iω+xk
]

= ieiω

2γω

[ ∫ +∞

0
e−t Dω(

t

ω
)Wω(t)dt −

n∑

k=1

wk Dω(
xk
ω

)Wω(xk)

+
∫ +∞

0
e−t Dω(

t

ω
)O(|ω + i t |−2n− 5

2 )dt + O(|ω + i xk |−2n− 5
2 )
]

= ieiω

2γω

[ ∫ +∞

0

[
Dω( t

ω
)Wω(t)

](2n)∣∣
∣
t=ζ

(2n)! Ln2(t)e−tdt +
∫ +∞

0
e−t Dω(

t

ω
)O(|ω + i t |−2n− 5

2 )dt

+ O(|ω + i xk |−2n− 5
2 )
]
. (3.10)

For the second integral in the penultimate line of (3.10), we have

∫ +∞

0
e−t Dω(

t

ω
)O(|ω + i t |−2n− 5

2 )dt = O(ω−2n− 5
2 ), ω → +∞. (3.11)

In addition, it can be derived that

dk

dtk
Wω(t) = O(ω−k− 1

2 ), ω → +∞. (3.12)
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According to (3.12), applying the Leibniz’s Theorem [2, p. 12], the first integral in the
penultimate line of (3.10) can be written as

∫ +∞

0

[
Dω( t

ω
)Wω(t)

](2n)∣∣
∣
t=ζ

(2n)! Ln2(t)e−tdt = 1

ω2n+ 1
2

∫ +∞

0

R(ζ )

(2n)! Ln
2(t)e−tdt,

where
[
Dω( t

ω
)Wω(t)

](2n)∣∣
∣
t=ζ

= 1

ω
2n+ 1

2
R(ζ ). We use the Cauchy’s test to obtain that

the integral
∫ +∞
0

R(ζ )
(2n)! Ln

2(t)e−tdt is convergent. Therefore, we can get

∫ +∞

0

[
Dω( t

ω
)Wω(t)

](2n)∣∣
∣
t=ζ

(2n)! Ln2(t)e−tdt = O
( 1

ω2n+ 1
2

)
, ω → +∞. (3.13)

Thus, based on (3.10), (3.11) and (3.13), we have

E1 = ieiω

2γω

[ ∫ +∞

0
Q1(1 + i t

ω
)e−tdt −

n∑

k=1

wk Q1(1 + i xk
ω

)
]

= O
(
ω−2n− 3

2

)
, ω → +∞. (3.14)

Similarly, we can also get

E2 = ie−iω

2γω

[ ∫ +∞

0
Q2(1 − i t

ω
)e−tdt −

n∑

k=1

wk Q2(1 − i xk
ω

)
]

= O
(
ω−2n− 3

2

)
, ω → +∞. (3.15)

Finally, we obtain

∣
∣
∣I12 − Q12

∣
∣
∣ =

∣
∣
∣E1 − E2

∣
∣
∣

= O
(
ω−2n− 3

2

)
, ω → +∞.

Next, we analyze the error of the quadrature formula QCCF
N1

[F].
Lemma 3.1 When ω → +∞, 2γ ∈ N+,�(μ) > −1,�(v) > −1, it holds that [19]

∫ u

0
xv(u − x)μ Jm(ωxγ )dx = O

(

ω
−min

{
μ+ 3

2 , v+1
γ

})

. (3.16)

The following result can be obtained from Lemma 3.1.
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Theorem 3.2 Assume that f is adequately smooth on the range [0, 1]. Then the abso-
lute error of the quadrature formula (2.22) for the integral I13 satisfies

∣
∣
∣I13 − QCCF

N1
[F]
∣
∣
∣ = O

(

ω
−min

{
s+ 5

2 , s+2
γ

})

, ω → +∞. (3.17)

Proof First, we define the function ϕ(x) = F(x)−PN1+2s (x)

xs+1(1−x)s+1 . For k = 0, 1, · · · , s + 2,
it is relatively simple to obtain that

ϕ(k)(x) =
[
F(x) − PN1+2s(x)

xs+1(1 − x)s+1

](k)

, x ∈ (0, 1),

and

ϕ(k)(0) = lim
t→0+

[
F(t) − PN1+2s(t)

t s+1(1 − t)s+1

](k)

,

ϕ(k)(1) = lim
t→1−

[
F(t) − PN1+2s(t)

t s+1(1 − t)s+1

](k)

.

We let

ϕ1(x) = (s + 1)ϕ(x) − ϕ′(x)(1 − x),

ϕk(x) = (s − k + 2)ϕk−1(x) − ϕ′
k−1(x)(1 − x), 2 ≤ k ≤ s + 1,

and

G1(x) =
∫ x

0
t s+1 Jm(ωtγ )dt,

Gk(x) =
∫ x

0
Gk−1(t)dt, 2 ≤ k ≤ s + 2.

Then, through s + 2 times integration by parts, we can get

∣
∣
∣I13 − QCCF

N1
[F]
∣
∣
∣ =

∣
∣
∣
∣

∫ 1

0
xs+1(1 − x)s+1ϕ(x)Jm(ωxγ )dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0
ϕ(x)(1 − x)s+1 d

dx

(∫ x

0
t s+1 Jm(ωtγ )dt

)

dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0
ϕ(x)(1 − x)s+1G ′

1(x)dx

∣
∣
∣
∣

≤
∣
∣
∣
∣ϕ(x)(1 − x)s+1G1(x)|10

∣
∣
∣
∣+
∣
∣
∣
∣

∫ 1

0
G1(x)(1 − x)sϕ1(x)dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0
ϕ1(x)(1 − x)sG ′

2(x)dx

∣
∣
∣
∣
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≤
∣
∣
∣
∣ϕ1(x)(1 − x)sG2(x)|10

∣
∣
∣
∣+
∣
∣
∣
∣

∫ 1

0
G2(x)(1 − x)s−1ϕ2(x)dx

∣
∣
∣
∣

...

≤
∣
∣
∣
∣ϕs+1(x)Gs+2(x)|10

∣
∣
∣
∣+
∣
∣
∣
∣

∫ 1

0
Gs+2(x)ϕ

′
s+1(x)dx

∣
∣
∣
∣ . (3.18)

In addition, it is known from the literature [11, p. 28] that

∫ x

a
dtn

∫ tn

a
dtn−1 · · ·

∫ t2

a
f (t1)dt1 = 1

(n − 1)!
∫ x

a
(x − t)n−1 f (t)dt . (3.19)

Then we can know from (3.18) and (3.19)

∣
∣
∣I13 − QCCF

N1
[F]
∣
∣
∣ ≤ |ϕs+1(1)|

∣
∣
∣
∣

∫ 1

0
t s+1(1 − t)s+1 Jm(ωtγ )dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ 1

0
ϕ′
s+1(x)

[∫ x

0
t s+1(x − t)s+1 Jm(ωtγ )dt

]

dx

∣
∣
∣
∣ . (3.20)

For the second line of the formula (3.20), we use the integral mean valve theorem to
obtain

∣
∣
∣I13 − QCCF

N1
[F]
∣
∣
∣ ≤ |ϕs+1(1)|

∣
∣
∣
∣

∫ 1

0
t s+1(1 − t)s+1 Jm(ωtγ )dt

∣
∣
∣
∣

+ ∣∣ϕ′
s+1(ε)

∣
∣
∣
∣
∣
∣

∫ ε

0
t s+1(ε − t)s+1 Jm(ωtγ )dt

∣
∣
∣
∣ , (3.21)

where ε ∈ [0, 1].
In the following, we divide the discussion into three cases.
(I) If ε = 1, we can achieve

∣
∣
∣I13 − QCCF

N1
[F]
∣
∣
∣ ≤ [|ϕs+1(1)| + ∣∣ϕ′

s+1(1)
∣
∣]
∣
∣
∣
∣

∫ 1

0
t s+1(1 − t)s+1 Jm(ωtγ )dt

∣
∣
∣
∣

= O

(

ω
−min

{
s+ 5

2 , s+2
γ

})

, ω → +∞. (3.22)

(II) If ε = 0, it follows that

∣
∣
∣I13 − QCCF

N1
[F]
∣
∣
∣ ≤ |ϕs+1(1)|

∣
∣
∣
∣

∫ 1

0
t s+1(1 − t)s+1 Jm(ωtγ )dt

∣
∣
∣
∣

= O

(

ω
−min

{
s+ 5

2 , s+2
γ

})

, ω → +∞. (3.23)
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(III) If 0 < ε < 1, according to Lemma 3.1, we can obtain

∣
∣
∣
∣

∫ 1

0
t s+1(1 − t)s+1 Jm(ωtγ )dt

∣
∣
∣
∣ = O

(

ω
−min

{
s+ 5

2 , s+2
γ

})

, ω → +∞, (3.24)
∣
∣
∣
∣

∫ ε

0
t s+1(ε − t)s+1 Jm(ωtγ )dt

∣
∣
∣
∣ = O

(

ω
−min

{
s+ 5

2 , s+2
γ

})

, ω → +∞. (3.25)

Combining (3.21)–(3.25), we have

∣
∣
∣I13 − QCCF

N1
[F]
∣
∣
∣ = O

(

ω
−min

{
s+ 5

2 , s+2
γ

})

, ω → +∞. (3.26)

Based on Theorem 3.1 and Theorem 3.2, the error of the quadrature formula (2.34)
satisfies

O

(

ω
−min

{
s+ 5

2 , s+2
γ

,2n+ 3
2

})

, ω → +∞. (3.27)

In the following, we perform numerical experiments to verify their errors analysis.
Experimental results show that the proposed methods are accurate and effective.

4 Numerical experiments

In this section, we provide some figures and tables to validate the efficacy and precision
of our presented methods. Matlab 2018a with 64-digit arithmetic is used to compute
all examples, and all computation is run on a 2.4 GHz PC with 16 GB of RAM. In
addition, for the computation of Q12, we all take n = 5.

Example 1 In Fig. 2we showan example
∫ 1
0

ex
x−0.4 J3(ωx

2)dx with N1 = 3 by employ-
ing the quadrature formula (2.34). The figure on the left is the absolute errors, and the

scaled absolute errors by ω
s+2
2 are shown on the right.

Example 2 In Fig. 3 we show an example
∫ 1
0

sin(x)
x−0.3 J2(ωx

5
2 )dx with N1 = 2 by

employing the quadrature formula (2.34). The figure on the left is the absolute errors,

and the scaled absolute errors by ω
2(s+2)

5 are shown on the right.

Example 3 In Fig. 4we showan example
∫ 1
0

sin(x)
x−0.2 J4(ωx

3)dx with N1 = 3 by employ-
ing the quadrature formula (2.34). The figure on the left is the absolute errors, and the

scaled absolute errors by ω
s+2
3 are shown on the right.

Example 4 In Fig. 5we showan example
∫ 1
0

cos(x)
x−0.2 J2(ωx

2)dx with N1 = 2 by employ-
ing the quadrature formula (2.34). Thefigure on the left is the absolute errors, the scaled

absolute errors by ω
s+2
2 are shown on the right.
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Fig. 2 The absolute errors (left figure) and themmultiplied by ω
s+2
2 (right figure) of Q[ex ], for the integral

∫ 1
0

ex
x−0.4 J3(ωx

2)dx are shown. The blue, red and green curves correspond to s = 0, 1, 2, respectively.
Here, s is the interpolated multiplicity at the endpoints {0, 1}

Example 5 In Fig. 6 we show an example
∫ 1
0

ex
x−0.1 J1(ωx

5
2 )dx with N1 = 3 by

employing the quadrature formula (2.34). The figure on the left is the absolute errors,

and the scaled absolute errors by ω
2(s+2)

5 are shown on the right.

Example 6 In Fig. 7we showan example
∫ 1
0

cos(x)
x−0.2 J5(ωx

3)dx with N1 = 3 by employ-
ing the quadrature formula (2.34). The figure on the left is the absolute errors, and the

scaled absolute errors by ω
s+2
3 are shown on the right.

Fig. 3 The absolute errors (left figure) and them multiplied by ω
2(s+2)

5 (right figure) of Q[sin(x)], for the
integral

∫ 1
0

sin(x)
x−0.3 J2(ωx

5
2 )dx are shown. The multiplicities of endpoints {0, 1} respectively satisfy {s = 0

(blue), s = 1 (red), s = 2 (green)}
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Fig. 4 The absolute errors (left figure) and them multiplied by ω
s+2
3 (right figure) of Q[sin(x)], for the

integral
∫ 1
0

sin(x)
x−0.2 J4(ωx

3)dx . The blue, red and green curves correspond to the interpolation multiplicities
s = 0, 1, 2 at the endpoints {0, 1}, respectively

From the above Figs. 2-7, we can discover that the rate of convergence is consistent
with the error analysis given in (3.24).

In the following, we give four tables of the absolute errors.
From the above Figs. 2-7 and Tables 4, 5, 6 and 7, since the high accuracy can be

obtained only through a few interpolation nodes andmultiplicities,we easily verify that
the proposed method is efficient to compute the highly oscillatory Bessel integral (1.1)
with the moderate and large ω. In addition, it is very easy to find that when we fix the

Fig. 5 The absolute errors (left figure) and them multiplied by ω
s+2
2 (right figure) of Q[cos(x)], for the

integral
∫ 1
0

cos(x)
x−0.2 J2(ωx

2)dx are shown. The blue, red and green curves correspond to the interpolation
multiplicities s = 0, 1, 2 at the endpoints {0, 1}, respectively
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Fig. 6 The absolute errors (left figure) and themmultiplied byω
2(s+2)

5 (right figure) ofQ[ex ], for the integral
∫ 1
0

ex
x−0.1 J1(ωx

5
2 )dx are shown. The blue, red and green curves correspond to s = 0, 1, 2, respectively.

Here, s is the interpolated multiplicity at the endpoints {0, 1}

Fig. 7 The absolute errors (left figure) and them multiplied by ω
s+2
3 (right figure) of Q[cos(x)], for the

integral
∫ 1
0

cos(x)
x−0.2 J5(ωx

3)dx are shown. The interpolated multiplicities of endpoints {0, 1} respectively
satisfy {s = 0 (blue), s = 1 (red), s = 2 (green)}

Table 4 The absolute errors of calculating the integral
∫ 1
0

sin(x)
x−0.8 J5(ωx

2)dx with N1 = 3 by employing
the quadrature formula (2.34)

s ω = 50 ω = 60 ω = 150 ω = 200 ω = 500

s = 0 1.44 × 10−6 7.94 × 10−7 7.46 × 10−7 8.24 × 10−7 6.38 × 10−7

s = 1 7.58 × 10−9 3.96 × 10−9 2.66 × 10−9 2.62 × 10−9 1.37 × 10−9

s = 2 2.28 × 10−11 1.11 × 10−11 5.70 × 10−12 4.91 × 10−12 1.77 × 10−12
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Table 5 The absolute errors of calculating the integral
∫ 1
0

ex
x−0.6 J3(ωx

3)dx with N1 = 3 by employing
the quadrature formula (2.34)

s ω = 20 ω = 50 ω = 70 ω = 90 ω = 150

s = 0 1.01 × 10−6 7.76 × 10−7 5.59 × 10−7 3.97 × 10−7 1.12 × 10−7

s = 1 4.36 × 10−9 3.28 × 10−9 2.27 × 10−9 1.56 × 10−9 4.09 × 10−10

s = 2 2.54 × 10−10 1.40 × 10−10 8.61 × 10−11 5.27 × 10−11 1.11 × 10−11

interpolation nodes, the accuracy becomes higher as ω and interpolated multiplicities
at the two endpoints increase; on the other hand, the accuracy also improves with
the increase of the interpolation nodes when ω and interpolated multiplicities at the
two endpoints are fixed. Further, examples 1-6 also confirm that our error analysis is
correct.

5 Conclusion

In this paper, we propose an efficient hybrid method to approximate the highly oscil-
latory Bessel integral (1.1). We convert the integral (1.1) into three integrals, namely
I11, I12 and I13. For the integral I11, according to the relationship between Meijer G
function and Bessel function, we construct the useful explicit formula (2.1) to com-
pute it exactly. For the integral I12, based on the analytical continuation, the integral is
converted into two infinite integrals on [0,+∞), and we can effectively calculate the
resulting two infinite integrals through applying the Gauss–Laguerre quadrature rule.
For the integral I13, we interpolate F(x) at the Clenshaw-Curtis point to obtain the
quadrature formula. Then, the significant recurrence relation (2.24) of the modified
moments is derived by employing the Bessel equation and the properties of Chebyshev
polynomials, and the values of the initial modified moments are accurately and effec-
tively calculated by applying the explicit formula (2.33). Finally, we provide strict
error analysis for the proposed methods and obtain asymptotic order. We discover
that the accuracy can be greatly increased whether we interpolate at two endpoints
using derivatives or increase the frequency ω. The proposed methods are simple in the
process of construction. And, it is easy to implement the given numerical algorithms.
Moreover, when 2γ is a positive integer, i.e. γ = 1

2 , 1, 3
2 , 2, 5

2 , 3, · · · , the obtained
quadrature formula (2.34) is applicable. In addition, only a few interpolation nodes

Table 6 The absolute errors of calculating the integral
∫ 1
0

sin(x)
x−0.4 J3(ωx

2)dx with ω = 200 by employing
the quadrature formula (2.34)

s N1 = 1 N1 = 2 N1 = 3 N1 = 4 N1 = 5

s = 0 3.34 × 10−4 1.34 × 10−5 1.31 × 10−6 7.79 × 10−9 1.04 × 10−9

s = 1 1.78 × 10−6 5.16 × 10−8 3.66 × 10−9 1.57 × 10−11 1.52 × 10−12

s = 2 4.55 × 10−9 1.03 × 10−10 5.05 × 10−12 3.61 × 10−14 5.47 × 10−14
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Table 7 The absolute errors of calculating the integral
∫ 1
0

ex
x−0.4 J3(ωx

2)dx with N1 = 2 by employing
the quadrature formula (2.34)

s ω = 103 ω = 104 ω = 105 ω = 106 ω = 107

s = 0 1.31 × 10−5 1.46 × 10−6 1.52 × 10−7 1.54 × 10−8 1.53 × 10−9

s = 1 2.35 × 10−8 8.66 × 10−10 2.86 × 10−11 9.14 × 10−13 3.03 × 10−14

s = 2 2.23 × 10−11 3.94 × 10−13 4.23 × 10−14 1.28 × 10−14 4.06 × 10−15

are needed to achieve quite high accuracy for moderate and large ω. The numerical
experiments validate the correctness of the theoretical analysis and the efficiency of
the proposed methods.
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