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Abstract
This paper is concerned with the numerical approximations for stochastic differen-
tial equations with non-Lipschitz drift or diffusion coefficients. A modified truncated
Euler-Maruyama discretization scheme is developed. Moreover, by establishing the
criteria on stochastic C-stability and B-consistency of the truncated Euler-Maruyama
method, we obtain the strong convergence and the convergence rate of the numerical
method. Finally, numerical examples are given to illustrate our theoretical results.
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1 Introduction

Due to the wide applications in many fields, such as finance, biology and engineering
stochastic differential equations (SDEs) have been extensively studied in the past
decades. Lots of existing results, especially the early ones, were established under
the global or local Lipschitz conditions and the linear growth assumptions. In 2002,
replacing the linear growth condition with the Khasminskii-type condition, Mao [1]
developed the existence and uniqueness result of solution for a class of super-linear
SDEs. As we know, the local Lipschitz condition is necessary for the local maximum
solutions. However, there are a large number of models, such as most mathematical
financial models including Ait-Sahalia[2],Cox-Ingersoll-Ross[3],3 2 models [4] and
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SIS epidemicmodel [5], whose coefficients fail to satisfy the local Lipschitz condition.
Thus it ismeaningful andnecessary to consider theSDEswith non-Lipschitz condition.

Most SDEs can not be solved analytically, so study on numerical solutions for
SDEs has received widespread attention. During the past decades, various numerical
methods have been proposed for SDEs under the global or local Lipschitz conditions
and the linear-growth-type conditions. But Hutzenthaler et al. [6] have proved that
the classical Euler-Maruyama (EM) method is divergent for SDEs whose drift or
diffusion coefficients are super-linear. Therefore, much attention has been devoted to
modifying the classical EM method such that the modified method is effective to deal
with the super-linear SDEs. For example, Hutzenthaler et al. established the tamed
EM method [7], Liu et al. proved the stopping EM method [8], Mao proposed the
truncated EM method [9, 10], Guo modified the truncated EM method to obtain the
partially truncated EMmethod [11, 12] and Beyn discussed the projected EMmethod
[13, 14].

In the framework of Higham [15], the boundness of the numerical approxima-
tion plays a key role in order to get the convergence rate of the numerical method.
Whereas it is often difficult to prove the boundness of numerical method for some
mathematical financial models. So Beyn et al. [13, 14] investigated theC-stability and
B-consistency of numerical approximations, which can help avoid studying higher
moment estimates of the numerical scheme. In this way, the convergence analysis of
numericalmethods can be simplified significantly.Meanwhile, Chassagneux et al. [16]
proposed convergence analysis by Lamperti transform for SDEs with non-Lipschitz
diffusion. But the Lamperti transform method may be failure when the diffusion is
not continuously differentiable or its inverse function is not well defined. Moreover,
the Lamperti transform method is a little cumbersome. We always need to calculate
the Lamperti transformation and verify the boundness of the transformed numerical
solution. In this paper, we will thus carry out the convergence analysis directly rather
than use the Lamperti transform and obtain the convergence rate by the C-stability
and B-consistency technique.

The remainder of this paper is organized as follows. Notations, assumptions, struc-
ture numerical methods and some useful lemmas will be presented in Section 2. In
Section 3, we will establish our main results that the modified EM method is stochas-
tically C-stable and B-consistent and hence will be strongly convergent. Section 4
covers an application to the famous Ait-Sahalia model to illustrate our theoretical
result. Finally, the article is concluded in Section 5.

2 Preliminaries and useful lemmas

Throughout this paper, unless otherwise specified, we let be a complete
probability space with filtration t t 0 satisfying the usual conditions. denotes the
probability expectation with respect to . stands for the set of all positive real
number. We write and respectively for the Euclidean inner product and the
Euclidean norm on . Let L2 denote the family of -valued random variables
with 2 and for simplicity we set L2 L2. Let W t be a 1-

dimensional t -adapted Brownian motion defined on the probability space. For two

123

W. Zhana and Y. Li 30 Page 2 of 15



real number a and b, we use a b max a b and a b min a b . For a set G,
its indicator function is denoted by IG , namely IG x 1 if x G and IG x 0
otherwise.We denote by I d t Y Y Y t the projection of an -value
random variable orthogonal to the conditional expectation Y t .

Consider a 1-dimensional nonlinear SDEs

dX t f X t dt g X t dW t (2.1)

with the initial value X 0 , where f g and W is the standard Brownian
motion.

Throughout this paper, we impose the following standing hypotheses.

Assumption 2.1 There are constants 0 and K 0 such that

x y f x f y g x g y 2 K x y 2

f x f y g x g y K 1 x y
1

x

1

y
x y

and

f x g x K 1 x 1 1

x 1

for all x y .

Remark 2.2 The stochastic differential systems satisfyingAssumption 2.1 exist widely
in the real world, such as the Ait-Sahalia interest rate model in finance and the SIS
epidemic model in biomedicine. In Section 4, we analyse these two models in detail.

Assumption 2.3 Assume for any p 2 , there exists a pair of constants q
p 1 and q p such that

sup
t 0 T

X t q X t q

Remark 2.4 Assumption 2.3 is in fact the property of moment boundness for the ana-
lytical solution X t of SDE Eq. 2.1, which has been investigated in many works, such
as [6–10, 15–17] and references therein. Moreover, we can know from these works
that the Ait-Sahalia, Cox-Ingersoll-Ross, 3 2 and SIS models all belong to this class.

Assumption 2.5 The strictly positive constants k and k satisfy 2 k 1 and 2 k 1.

Before giving the numerical method, we define the truncated mapping
for a given step size 0 1 by

x k x k

Now let us present the truncated EM method , which is a one-step scheme

x x f x g x Wn (2.2)
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where Wn W tn 1 W tn , f x f x and g x g x .
Next we establish two important lemmas for later use.

Lemma 2.6 Let Assumptions 2.1 and 2.5 hold. Then for all 0 1 , we have

x y f x f y
2

2 g x g y 2 1 C x y 2

(2.3)
where C stands for generic positive real constants and its values may change between
occurrences, but independent of the step size .

Proof We can derive from Assumption 2.1 that

x y f x f y 2

x y 2 2 x y f x f y f x f y 2 2

x y 2 2K x y 2 2 g x g y 2 f x f y 2 2

According to Assumptions 2.1 and 2.5 (2 k 1 and 2 k 1), we get

f x f y

K 1 x y
1

x

1

y
x y

K 1 2 k 2 k x y

K 1 4 1 2 x y

Therefore

x y f x f y 2 2 g x g y 2

x y 2 2K x y 2 K 2 1 4 1 2 2 2 x y 2

1 C x y 2

It is easy to see we just need to prove x y x y to get the inequality
Eq. 2.3. According to the symmetry of x and y, we may as well let x y, so we have
Case 1. when x y k k , x k and y k . Then the
inequality

x y 0 x y

holds clearly.

Case 2. when x k y k , x k and y y. Thus

x y k y x y

Case 3. when k x y k , x x and y y. Then the required
expression holds obviously.
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Case 4. when k x k y, then x x and y k . Therefore,

x y x k x y

Case 5. when k k x y, x k and y k . The case is
same as case 1, so the inequality also holds.

In conclusion, the inequality Eq. 2.3 holds. The proof is complete.

Lemma 2.7 Under Assumptions 2.1 and 2.3, for any p 2 and t1 t2 0 T ,
there exists a constant C such that

X t1 X t2
p C p 2

Proof Without loss of generality, let 0 t1 t2 T . Integrating both sides of
Eq. 2.1, by the Hölder inequality and Itô isometry, we get

X t1 X t2
p

t2

t1
f X s ds

t2

t1
g X s dW s

p

C p 1
t2

t1
f X s pds

p 2
2

t2

t1
g X s pds

It follows from Assumptions 2.1 and 2.3 that

f x p K 1 x 1 x 1 p C 1 x p 1 x p 1 C

where C is a positive constant whose value may change back and forth. Similarly, we
have g x p C . So we can further obtain

X t1 X t2
p C p 2

The proof is complete.

For the convenience of the reader, we list the definitions on C-stability and B-
consistency. We also refer the reader to [13] and [14] for more details.

Definition 2.8 (see Definition 3.2 in [13]) A stochastic one-step method is
called stochastically C-stable if there exists a constant Cstab and a parameter value

1 such that for all t 0 T and all random variable Y Z L2, it holds
that

Y Z t
2
L2 I d t Y Z 2

L2

1 Cstab Y Z 2
L2 (2.4)
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Definition 2.9 (see Definition 3.3 in [13]) A stochastic one-step method is
called stochastically B-consistent of order 0 to Eq. 2.1 if there exists a constant
Ccons such that for every t 0 T , it holds that

X t X t t L2 Ccons
1 (2.5)

and
Id t X t X t L2 Ccons

1
2 (2.6)

where X t denotes the exact solution to Eq. 2.1.

3 Main results

We can know from Theorem 3.7 in [13] that in order to obtain the convergence rate
of the one-step numerical method, we only need to prove the numerical method is
C-stable and B-consistent. Thus, let us establish the results on stochastic C-stability
and B-consistency respectively.

Theorem 3.1 Under Assumptions 2.1, 2.3 and 2.5, for any time step 0 1 , the
truncated EM method is stochastically C-stable.

Proof Recalling the definition of the truncated EM method x in Eq. 2.2, we
have

Y Z t

Y f Y g Y Wk Z f Z g Z Wk t

Y Z f Y f Z

and

I d t Y Z

Y Z Y Z t

g Y g Z Wk

Then from the Itô isometry and Lemma 2.6, it follows that

Y Z f Y f Z 2
L2 2 g Y g Z Wk

2
L2

Y Z f Y f Z 2 2 g Y g Z 2

1 C Y Z 2 1 C Y Z 2
L2

which implies condition Eq. 2.4 holds. The proof is therefore complete.

Theorem 3.2 LetAssumptions 2.1, 2.3 and2.5hold. Then for any time-step 0 1 ,
the truncated EM method is stochastically B-consistent of order 1

2 .
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Proof It follows from Eqs. 2.1 and 2.2 that

X tn 1 X tn

X tn
tn 1

tn
f X s ds

tn 1

tn
g X s dW s

X tn f X tn g X tn Wn

X tn X tn
tn 1

tn
f X s f X tn ds f X tn f X tn

tn 1

tn
g X s g X tn dW s g X tn g X tn Wn

Taking condition expectation on both sides yields

X tn 1 X tn t
L2

X tn X tn
L2

f X tn f X tn
L2

tn 1

tn
f X s f X tn t L2ds

I1 I2 I3 (3.1)

For the first term I1, we have

X tn X tn
2

X tn X tn
2 I X tn k 0 X tn X tn

2 I X tn k

X tn
k 2 I X tn k X tn

k 2 I X tn k

2k X tn
k X tn

2 I X tn k

Set q
2 and q

q 2 as the conjugate exponent. Then by the Hölder inequality,
the Chebyshev inequality and Assumption 2.3, we get

X tn
2 I X tn k X tn

q 1 X tn
k 1

C X tn
k 1 C

X tn q

k q

1

C
k q

C k q 2

Similarly, we have

X tn
k X tn

q kq X tn q

kq
C kq
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Then

2k X tn
k C k q 2

Therefore

X tn X tn
2 C k q 2 k q 2

Choosing k 1
2 , q 6 2 and k 1

2 , q 6 2, we can get k q 2 3,
k q 2 3, so

X tn X tn
2 C 3

Consequently,

I1 X tn X tn
L2

X tn X tn
2

1 2

C
3
2 (3.2)

For the second term I2, from Assumption 2.1, we can obtain

f X tn f X tn
2

K 1 X tn X tn
1

X tn

1

X tn

2
X tn X tn

2

K 2 X tn
2 X tn

2 1

X tn 2

1

X tn 2 X tn X tn
2

C 1 X tn
2 2k I X tn k C 1 X tn

2 X tn
2 I X tn k

Set q
2 and q

q 2 as the conjugate exponent, we get

1 X tn
2 2k I X tn k

2k I X tn k X tn
2 2k I X tn k

2k X tn
k 2k X tn

q 1 X tn
k 1

2k X tn
k C 2k X tn

k 1

C 2k kq C 2k k q 2 2

C k q 2 2

Similarly,

1 X tn
2 X tn

2 I X tn k C k q 2 2
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Then

f X tn f X tn
2 C k q 2 2 k q 2 2

Here we choose k 1
2 , q 4 2, k 1

2 and q 4 2 such that
k q 2 2 1 and k q 2 2 1. Therefore,

I2 f X tn f X tn
L2

f X tn f X tn
2

1 2

C
3
2 (3.3)

For the last term I3, since Y t L2 Y L2 , thus

I3
tn 1

tn
f X s f X tn t

L2
ds

tn 1

tn
f X s f X tn

L2
ds

However, due to Assumption 2.1, we have

f X s f X tn
2

K 1 X s a X tn
1

X s

1

X tn

2
X s X tn

2

K 1 X s 2 X tn
2 X s X tn

2

K 1
1

X s 2

1

X tn 2 X s X tn
2

I31 I32

For the term I31, we choose
q
2 and q

q 2 as the conjugate exponent, then
recalling Assumption 2.3, we have

1 X s 2 X tn
2 X s X tn

2

1 X s q X tn
q

2
q X s X tn

2q
q 2

q 2
q

C X s X tn
2q

q 2

q 2
q

Finally, by setting p q
q 2 in Lemma 2.7, we can obtain

1 X s 2 X tn
2 X s X tn

2 C
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For the term I32, by the same technique, we can also have

1
1

X s 2

1

X tn 2 X s X tn
2 C

So
f X s f X tn

2 C

Hence, we can obtain

I3
tn 1

tn
f X s f X tn

L2
ds

tn 1

tn
f X s f X tn

2
1 2

ds

C 3 2 (3.4)

Substituting Eqs. 3.2, 3.3 and 3.4 into Eq. 3.1, we have

X tn 1 X tn t
L2

C 3 2

That is to say, Eq. 2.5 holds with 1
2 .

Let us continue to prove Eq. 2.6. It is easy to get

I d t X tn 1 X tn
L2

tn 1

tn
I d t f X s f X tn

L2
ds

tn 1

tn
g X s g X tn dW s

L2

g X tn g X tn W
L2

J1 J2 J3

For the term J1, considering the inequality I d t Y L2 Y L2 for all
Y L2 and the estimation of I3, we have

J1
tn 1

tn
I d t f X s f X tn

L2
ds

tn 1

tn
f X s f X tn

L2
ds

C
3
2 (3.5)
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By the same technique as that used in the estimation of I3, we can get

g X s g X tn
2 C

Then by the Itô isometry, we have

J2
tn 1

tn
g X s g X tn dW s

L2

tn 1

tn
g X s g X tn

2
L2ds

1
2

tn 1

tn
g X s g X tn

2ds
1
2

C (3.6)

By the Itô isometry and in a similar way to estimating I2, we can obtain the esti-
mation for J3 as follows

J3 g X tn g X tn W
L2

g X tn g X tn
L2

C (3.7)

Combining Eqs. 3.5, 3.6 and 3.7, we find Eq. 2.6 holds with 1 2. Therefore, the
proof is complete.

We conclude this section by stating the strong convergence result for the truncated
EM method, which follows directly from Theorem 3.1 and Theorem 3.2 as well as
Theorem 3.7 in [13].

Proposition 3.3 Let the functions f x and g x satisfyAssumptions 2.1, 2.3 and 2.5.
Then for any 0 1 , the truncated EM method has 1 2 strong convergent rate.
Moreover,

X T X T 2 C

4 Numerical examples

Example 4.1 (Ait-Sahalia model) Let us consider the well-know Ait-Sahalia interest
rate model. According to [17], there exists a strong solution X t to

dX t
a 1

Xt
a0 a1Xt a2Xt dt Xt dW t

on 0 with the initial value x0 1 and the time T 1. Here W t is a scalar
Brownian motion and all constant parameters are nonnegative, especially, 1.

123

The improvement of the truncated Euler-Maruyama method ... Page 11 of 15 30



We may as well choose the parameters a 1 a0 a1 a2 1 1 1 1 1 and
5 2 . Thus, for any x y ,

x y f x f y g x g y 2

x y
1

x

1

y
x y y5 x5 x2 y2 2

1

xy
1 x4 x3y x2y2 xy3 y4 x y 2 x y 2

1 x4 x3y x2y2 xy3 y4 x y 2 x y 2

However

x3y xy3 xy x2 y2 0 5 x2 y2 2 0 5 x4 y4 x2y2

Hence

x y f x f y g x g y 2

1 0 5 x4 y4 x2 y2 x y 2

2 2 x y 2

Moreover, let 4 2, then the Assumption 2.1 is satisfied.
Based on [17 Lemma 2.1] , there exists a strong solution on 0 to the model,

and we recall that if 2 1, then sup0 t T X t p and sup0 t T X t p

are finite for all p 0. In other words, Assumption 2.3 holds.
Let us fix these parameters and recall that 4 and 2. We choose k 1 4

and k 1 8 such that 2 k 1 and 2 k 1. That is, Assumption 2.5 holds.
Weuse2 12 as the step size of the reference solution andchoose2 10 2 9 2 8 2 7

and 2 6 respectively as the step size of the truncated EM. For each step size, 500 paths
are simulated. Finally, we get the result presented in the figure, which clearly indicates
that our numerical method has 1 2 strong convergence rate. Please note that the red
dashed is reference line (Fig. 1).

Example 4.2 (SIS model) Let us consider the following stochastic SIS epidemic model
[5].

dS t N S t I t I t S t S t I t dW t
d I t S t I t I t dt S t I t dW t

with initial values satisfying I 0 S 0 S0 I0 N where N are
non-negative numbers. Since d S t I t N S t I t dt , it is easy
to obtain I t S t N . Then we only need to consider the SIS model for I t as
follows

d I t I t I 2 t dt I t N I t dW t

where N .

We can choose the N 5 0 5 0 035 100 (see e.g. [5 Example 4.2])
(Fig. 2).
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Fig. 1 Ait-Sahalia model

Fig. 2 SIS epidemic model

5 Conclusion

In this paper, we have studied the numerical approximations for stochastic differen-
tial equations with non-Lipschitz coefficients. A modified truncated Euler-Maruyama
discretization scheme has been proposed and its convergence and the convergence
rate have been obtained by establishing the criteria on stochastic C-stability and B-
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consistency of the numerical method.We have also verified the theoretical results with
a famous financial example.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10444-024-10131-w.
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