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Abstract
Numerical methods for the optimal feedback control of high-dimensional dynamical
systems typically suffer from the curse of dimensionality. In the current presentation,
we devise a mesh-free data-based approximation method for the value function of
optimal control problems, which partially mitigates the dimensionality problem. The
method is based on a greedy Hermite kernel interpolation scheme and incorporates
context knowledge by its structure. Especially, the value function surrogate is elegantly
enforced to be 0 in the target state, non-negative and constructed as a correction of
a linearized model. The algorithm allows formulation in a matrix-free way which
ensures efficient offline and online evaluation of the surrogate, circumventing the large-
matrix problem for multivariate Hermite interpolation. Additionally, an incremental
Cholesky factorization is utilized in the offline generation of the surrogate. For finite
time horizons, both convergence of the surrogate to the value function and for the
surrogate vs. the optimal controlled dynamical systemare proven.Experiments support
the effectiveness of the scheme, using among others a new academic model with an
explicitly given value function. It may also be useful for the community to validate
other optimal control approaches.
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1 Introduction

The feedback control of dynamical systems is an important type of automation that is
indispensable in modern industrial plants, for example. Furthermore, there are appli-
cations in which the control must be optimal tominimize energy consumption or costs.
An optimal feedback rule can be based on a mathematical model, an optimal control
problem (OCP), which shall be in our consideration of the following form:

min
u∈U∞

J (u) = min
u∈U∞

∫ ∞

0
r(x(s)) + u(s)�Ru(s) ds (1)

subject to ẋ(s) = f (x(s)) + g(x(s))u(s) and x(0) = x0 ∈ R
N (2)

with U∞ := {u : [0,∞) → R
M |u measurable} being the space of all possible

control signals. Note that we indicate time-dependent scalar or vectorial functionswith
bold symbols to distinguish them from time-independent quantities. The OCP has an
infinite time horizon, which is typical, for example, in mathematical economics when
considering economic sustainability or economic growth [1]. Moreover, the dynamics
of the trajectory x : [0,∞) → R

N is affine with respect to the control signal u. This is
commonwhen the ordinary differential equation (ODE) results froma semi-discretized
partial differential equation (PDE) where the controller could be an external force.
The function J : U∞ → R+ ∪ {∞} is the cost function, which determines the goal
of optimal control. It consists of the integral over the running payoff r ∈ C(RN ,R+)

and a quadratic control term, involving a positive definite matrix R ∈ R
M×M . It is

assumed that the preimage of r for 0 is only 0, i.e., r−1({0}) = {0} and f (0) = 0,
leading to the desired target position in the zero state. Furthermore, as the constraints
in (2) determine the solution of the dynamical system for a given u, the cost function
depends only on u. The optimal process of the infinite horizon OCP is denoted by
(x∗,u∗). For a compact set of initial states A ⊂ R

N , it is assumed throughout the
paper that for every x0 ∈ A, there is an optimal process. Existence results for infinite
horizon OCP can be found in [2].

Twopossibilities for solving (1)–(2) are givenbyopen-loop and closed-loop control.
In an open-loop process, the optimal signal is determined in advance as a function
u : [0,∞) −→ R

M , and no further adaptation of the signal to the current state is
possible in an ongoing process, making it unsuitable for many real-world applications
where unpredictable disturbancesmay occur. This requires a closed-loop that maps the
current state to the current optimal control signal, which is in fact a muchmore general
tool since it can be used to solve (1)–(2) for many initial states. The optimal feedback
rule is denoted by K( ·; ∇v( · )) : RN −→ R

M . As the notation indicates, the optimal
feedback policy depends on the gradient of a function v called the value function (VF).
It gives the optimal costs-to-go depending on an initial state. Further, if it is available,
the problemof optimal feedback control is solved and theOCP reduces to anODE.This
followsby settingu(s) = K (x(s); ∇v (x (s))) and inserting it into (2). FromBellman’s
dynamic programming principle (DPP), it can be deduced that the VF is the solution of
the PDE called the Hamilton-Jacobi-Bellman (HJB) equation. However, the problem
with solving theHJB equation is that classical numerical solution algorithms for PDEs,
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such as finite differences or finite elements, suffer from the curse of dimensionality [3],
making such approaches infeasible for dimensions N > 6. Since the ODE in the OCP
often originates from a semi-discretized PDE and therefore has a high state dimension,
much research has been pursued in recent years to find strategies to overcome this
difficulty.

In many methods, a semi-Lagrangian scheme [4] is applied to the HJB equation.
Advanced techniques such as spatially adaptive sparse grid [5] are used to avoid an
impractical full grid. In the finite horizon case, using a tree structure [6, 7], a reasonable
discrete domain can be constructed utilizing the underlying dynamics. This approach
can also be combined with model order reduction (MOR) [8]. In the infinite horizon
case, from the semi-Lagrangian point of view, but also when (1)–(2) is discretized in
time, an iterative fixed-point scheme called value iteration (VI) [9] can be motivated
to solve the HJB. Convergence is guaranteed for this method [10], but it comes at a
high computational cost and slow convergence, since the contraction constant tends
to 1 as the mesh becomes finer. Most methods based on the VI differ in their ansatz
to the approximant of the VF. In [11], Shepard’s moving least squares approximation
method using radial basis functions is utilized to generate an interpolant. A neural
network can also be used for this as in [12] and the references therein. Additional
references and discussion can be found in [13].

Another notable iterative scheme based on the HJB equation is the policy iteration
(PI) [14]. This requires an approximation step for the numerical solvability of the
generalized linear HJB equation. In this approximation step, most PI-based methods
differ. In [15–17], this is a Galerkin projection of the residual equation using a certain
polynomial basis, which is enabled by assuming separability of the data and mitigates
the curse of dimensionality. A semi-Lagrangian scheme can also perform the approx-
imation step, as in [18], where MOR then allows applicability to high-dimensional
problems. In a finite horizon scenario, the VF, which is then time-dependent, can be
approximated for discrete time instances in a tensor train format using a PI on small
time intervals [19, 20]. Here, the approximate VF of the previously computed time
step is included in the PI to compute the approximate VF of the currently considered
time step. To obtain the latter, regression is performed in [19] or the Dirac-Frenkel
variational principle is used in [20]. Generally, for the PI, however, convergence is
only guaranteed for the stabilizing initial solution of the VF [21], which makes the
combination of VI and PI interesting [22].

Furthermore, there are many techniques for generating suboptimal feedback con-
trol, such as model predictive control (MPC), which is a very relevant feedback design
(see [23] for an introduction). Another common feedback controller can be provided
by the linearization of the problem and the solution of the associated algebraic Riccati
equation (ARE) [24]. For parameter-dependent problems, this can also be combined
with reduced basis methods (see [25]), which is interesting for multi-query scenarios.
However, under controllability assumptions, this only stabilizes in a certain neighbor-
hood around the target position. A truncated Taylor expansion can also replace the
VF, with the HJB equation and certain regularity assumptions leading to generalized
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Lyapunov equations for the higher-order terms [26]. Moreover, it is also possible to
solve a state-dependent Riccati equation in each step, provided that the dynamics sat-
isfies the structure f (x) = A(x)x (see [27] for a survey). Here, many AREs have to
be solved online, which is costly. In [28], this is avoided by solving many AREs for a
set of training states and then fitting a neural network to this data to provide efficient
online feedback control.

Furthermore, in the case of finite [29] and infinite horizons [30], the VF and its
gradient can be directly approximated by a NN that minimizes an appropriate con-
strained optimization problem involving trajectories starting from a compact set of
initial states. The obtained approximation of the VF then yields an optimal feedback
control only on the set of optimal trajectories starting from this set of initial states.
Therefore, it is called semi-global. In this respect, this approach is very similar to ours,
but differs mainly in the approximation ansatz for the VF and in the way the infinite
time horizon is treated. A similar optimization approach to those just discussed is [31]
for the finite horizon case and [32] for the infinite horizon case, where instead of a
NN, a sparse polynomial ansatz is chosen for the approximate VF. Both papers give a
rigorous convergence analysis of their approaches. Furthermore, in [32], the approxi-
mate VF is forced to satisfy some known properties of the true VF by an appropriate
choice of the ansatz space. We will proceed like this in the current work as well, but
go a step further in incorporating structure.

The majority of the techniques mentioned above are based on the DPP. However,
there is another class of techniques that are data-driven, including our method. They
often rely on an indirect approach that was developed independently of Bellman and
goes back to L. S. Pontryagin [34]. There, the first-order necessary condition of the
OCP leads to a two-point boundary value problem called Pontryagin’s maximum
principle (PMP), among whose solutions the optimal solution can be found. This
procedure only generates the open-loop solution for one initial state, but with the
well-known relation between DPP and PMP, information about the VF and its gradient
is provided along this optimal trajectory. Thus, by solving many open-loop controls
for different initial states, which can be done in parallel (causal-free) in an offline
phase, it is possible to generate a data set that can be used to approximate the VF. An
approximate feedback control can then be generated online using a surrogate.

In [35], a neural network is used and the initial states for data generation are first
chosen randomly. Later, the data is enriched adaptively based on the current surrogate.
Without the latter, a similar approach is taken in [36], where a hyperbolic cross poly-
nomial model is fitted to the VF. Polynomial interpolation is also used in [37], where
the VF data is computed on a sparse grid.

The current presentation is based on the idea in [38] and extends [39, 40]. In our
approach, the domain of interest is explored by optimal trajectories starting from a
problem-dependent set of initial states. This avoids having to specify a domain of
possible states, which is generally very difficult. Instead, a hypercube is often used for
this purpose, which is a very crude choice since it can contain physically meaningless
states in the sense that values in neighboring nodes of the underlying semi-discretized
PDE may be uncorrelated. Furthermore, in our data generation method, the selected
initial states are chosen adaptively with the advantage that previously computed data
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can be used to find new, promising initial states for solving the most informative next
open-loop process. This avoids redundant data and keeps it sparse. Hermite kernel
interpolation techniques are then applied to this data set to obtain a surrogate that
exploits all the available information of the VF. Here, an adapted vectorial kernel
orthogonal greedy algorithm (VKOGA) [41] is used to select the interpolation points.
In general, these kernel techniques are more robust to the curse of dimensionality,
since under certain conditions the convergence rate with respect to the number of
interpolation points is partially independent of the dimension [42].Moreover, theyhave
the advantage of being grid-free and therefore are a perfect choice for scattered data.
One difficulty that arises in VKOGA when considering Hermite kernel interpolation
is that the surrogate must be evaluated on a big number of inputs, resulting in an
extremely large system matrix that cannot be stored or processed. Using a special
class of kernels, we overcome this with a matrix-free strategy that can also be used for
fast online evaluation of the surrogate on many inputs. Under the (strong) assumption
that the VF belongs to the reproducing kernel Hilbert space (RKHS) for the considered
kernel, we show the convergence of the surrogate to the VF as well as the convergence
of the surrogate-controlled solution to the optimal solution. Later in the numerical
experiment, the RKHS will be a Sobolev space, and the requirement that the VF must
be in this space is satisfied by assuming that the VF is sufficiently smooth.

Instead of directly approximating the optimal feedback control function, construct-
ing a surrogate for theVFhas the advantage thatwe can incorporate the known structure
of the VF and perform a Hermite interpolation using all available data, which may
result in a better fit to the underlying true function and thus a better generalization.

The paper is organized as follows. Section2 provides a brief background on optimal
control. Then, in Section 3, the Hermite kernel interpolation is introduced. Addition-
ally, the matrix-free strategy and the construction of the surrogate that satisfies certain
properties of the VF are explained. In Section 4, the convergence proofs are given. We
perform some numerical tests in Section 5. Finally, conclusions and an outlook are
presented in Section 6.

2 Background on optimal control

Optimal closed-loop control

The core of optimal feedback control is the value function, mentioned in the introduc-
tion and explicitly given by

v(x) = min
u∈U∞

∫ ∞

0
r(x(s)) + u(s)�Ru(s) ds

subject to ẋ(s) = f (x(s)) + g(x(s))u(s) and x(0) = x .

Since the initial state is a free variable of the VF, it is denoted by x . Furthermore,
in the following, we explicitly indicate the dependence of the trajectory on the initial
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state x0 by x(·; x0), if this is not obvious from the context. The VF satisfies Bellman’s
optimality principle, which states that any subtrajectory to the target state of an optimal
trajectory is also optimal. This is reflected by

v(x) = min
u∈U∞

{∫ t

0
r(x(s; x)) + u(s; x)�Ru(s; x) ds + v(x(t; x))

}
. (3)

Next, a precise definition of the domain of interest is given

T (A) := clos{x∗(t; x0) ∈ R
N | (x∗(t; x0),u∗(t; x0))

solves (1)–(2) ∀x0 ∈ A and ∀t ∈ [0,∞)},

which is the closed set of the states of all optimal trajectories with the initial state in the
compact set A. Here, clos denotes the closure. The main reason why we can mitigate
the curse of dimensionality with our data-based approach is that we are only interested
in feedback control on T (A). The latter can be a much lower dimensional manifold
since it only contains meaningful states that can occur under optimal control. This
is because, for example, values in neighboring nodes of the underlying semi-discrete
PDE are typically correlated. Next, we introduce a property that we assume the VF
has. A function v is radially unbounded if it satisfies

v(x) −→ ∞ for all ‖x‖2 −→ ∞.

If this property and the additional continuity on A hold for the VF, then the set
T (A) is compact:

Lemma 1 Let A ⊂ R
N be a non-empty compact set. Let further, v be radially

unbounded and v ∈ C(A), then the set T (A) is bounded.

Proof We prove this by contradiction. Assume T (A) is unbounded, and so there exists
a sequence

(
tk, x0,k

)
k∈N ⊂ [0,∞) × A such that

∥∥x∗(tk; x0,k)
∥∥
2 −→ ∞.

Since the set A is compact, the continuous VF assumes its maximum on it, i.e., there
is a M ∈ R+ with

M ≥ v(x) for all x ∈ A.

Then, Bellman’s principle of optimality leads to

M ≥ v(x∗(0; x0,k)) =
∫ tk

0
r(x∗(s; x0,k),u∗(s; x0,k)) ds + v(x∗(tk; x0,k))

≥ v(x∗(tk; x0,k)),

which contradicts the assumption that v(x∗(tk; x0,k)) −→ ∞ for k −→ ∞, as∥∥x∗(tk; x0,k)
∥∥
2 −→ ∞ for k −→ ∞. 
�
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The main assumption of the present study is that the OCP has a VF that fulfills the
following assumptions, including those of the latter lemma:

Assumption 1 The VF v satisfies v ∈ C1(T (A)) and is radially unbounded.

A comprehensive discussion and conditions for regularity of the VF in the con-
sidered infinite horizon setting can be found in [43, 44] and [30, Theorem C.8]. A
characterization of the VF as a solution of a PDE can be obtained via (3) by rearrang-
ing, dividing by t , and letting t go to 0. It follows

min
u∈RM

{
( f (x) + g(x)u) · ∇xv(x) + r(x) + u�Ru

}
= 0 (4)

for at least all x ∈ T (A), which is the famous HJB equation. Due to the structure
of the considered problem, the local minimization in (4) can be solved exactly. This
yields

∇v(x)� f (x) − 1

4
∇v(x)�g(x)R−1g(x)�∇v(x) + r(x) = 0,

where the minimizer is

K(x; ∇v) := u(x) = −1

2
R−1g(x)�∇v(x). (5)

The optimal feedback rule is also given by the latter equation. So if∇v is known, it can
be used to obtain the optimal feedback policy. However, solving the HJB numerically
in higher dimensions is not possible with classical numerical solution algorithms, as
already discussed. Therefore, in our approach, a data-based surrogate for the VF is
constructed using the available data from optimal open-loop controlled trajectories.
Since we obtain feedback control only on T (A) with the resulting VF surrogate, it
can be considered semi-global [30].

Optimal open-loop control

There are two conceptually different ways of solving an open-loop control problem
[33]. The first is the class of direct methods, where the problem is transformed into
a nonlinear finite-dimensional minimization problem by discretization. This can be
seen as “first discretize, then optimize.” However, this does not provide any additional
information about the system, in particular about the gradient of the VF. This requires
indirect methods using PMP-like conditions, which can be understood as “first opti-
mize, then discretize.” Since we are interested in this additional information for the
Hermite interpolation, we present the indirect ansatz below. For what follows, we need
another mild assumption. This is a summary and adaptation of Assumptions (A0) and
(A1) in [45].
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Assumption 2 Let r , f , g ∈ C1(RN ) and let further for all x0 ∈ A exist a continuous
function ϕ1 : [0, 1) −→ (0, 1) and a locally integrable function ϕ2 : [0, 1) −→ R,
such that for almost every t ≥ 0 it holds

max
x̄ : ‖x̄−x∗(t)‖2≤ϕ1(t)

{
N∑
i=1

∥∥∇x
(
f (x̄) + g(x̄)u∗(t)

)
i

∥∥
2
+ ‖∇xr(x̄)‖2

}
≤ ϕ2(t)

with (x∗,u∗) being the optimal process corresponding to x0.

This makes it possible to specify the necessary conditions that an optimal process
must fulfill:

Theorem 1 Let Assumption 2 be satisfied and let further (x∗,u∗) be an optimal pro-
cess, then there is a q0 ≥ 0 and locally absolutely continuous co-state p∗ : [0,∞) −→
R

N such that

ẋ∗(s) = ∇pH
(
x∗(s), q0,p∗(s),u∗(s)

)
, x∗(0) = x, (6)

ṗ∗(s) = −∇x H
(
x∗(s), q0,p∗(s),u∗(s)

)
, (7)

u∗(s) = argmin
u∈RM

{
H
(
x∗(s), q0,p∗(s), u

)}
(8)

are valid for s ∈ [0,∞), where H(x, q, p, u) = ( f (x)+g(x)u) · p+q(r(x)+u�Ru)

is the control Hamiltonian.

The proof for this theorem can be found in [45]. These equations are the core
conditions of the PMP, since they determine the dynamics of the system. We extend
them by an additional transversality condition

lim
t−→∞p∗(t) = 0. (9)

to further restrict the solution space. It is motivated by the finite horizon OCP, where
the PMP equations are given by the upper core condition (6)–(8) with the additional
transversality condition p∗

T (T ) = 0. Here, T > 0 is the finite time horizon. However,
under the current assumption, (9) need not be satisfied as T goes to infinity, as the
famous Halkin counterexample shows. Therefore, we pose another assumption and
refer the reader to [45, 46] where additional conditions implying (9) are given.

Assumption 3 Let the co-state satisfy (9) and let q0 = 1.

In the latter, we also include the assumption that we do not consider abnormal cases,
i.e., q0 = 0. In all other cases, we have, without loss of generality, that q0 = 1 (see
[45] for instance). Overall, under Assumptions 2 and 3, the PMP conditions for the
infinite horizon OCP are given by

ẋ∗(s) = ∇pH
(
x∗(s),p∗(s),u∗(s)

)
, x∗(0) = x, (10)

ṗ∗(s) = −∇x H
(
x∗(s),p∗(s),u∗(s)

)
, lim

t−→∞p∗(t) =: p∗(∞) = 0, (11)

u∗(s) = argmin
u∈RM

{
H
(
x∗(s),p∗(s), u

)}
(12)
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for s ∈ [0,∞) andwith the abbreviation H(x, p, u) := H(x, q = 1, p, u) = ( f (x)+
g(x)u) · p + r(x) + u�Ru. With respect to our data-based Hermite interpolation
approach, the next well-known relationship (see [43, 45, 46]) between the co-state
and the gradient of the VF is very important:

p∗(s) = ∇xv(x∗(s)) (13)

It is valid with Assumption 1. One can also determine the values of the VF along
the optimal trajectories by an additional function v∗ : [0,∞) −→ R+ which satisfies

v̇∗(s) = −r(x∗(s)) − u∗(s)�Ru∗(s) with lim
t−→∞ v∗(t) =: v∗(∞) = 0. (14)

Note that v∗(t) = v(x∗(t)). The conditions in (10)–(12) and (14) can be formulated
as an inhomogeneous Dirichlet two-point boundary value problem, among whose
solutions the optimal one can be found. The vector

z∗(s) := [
x∗(s)� p∗(s)� v∗(s)

]�

is introduced for this purpose and the right-hand side

F(z∗) :=
⎡
⎢⎣

∇pH (x∗,p∗,u∗(x∗,p∗))
−∇x H (x∗,p∗,u∗(x∗,p∗))

−r(x∗) − (u∗(x∗,p∗))� R (u∗(x∗,p∗))

⎤
⎥⎦

with u∗(x∗(s),p∗(s)) := argminu∈RM {H (x∗(s),p∗(s), u)}. The boundary condi-
tions in (10), (11) and (14) can be compactly represented by

b(z∗(0), z∗(∞)) :=
⎡
⎣ IN 0 0

0 0 0
0 0 0

⎤
⎦ z∗(0) +

⎡
⎣0 0 0
0 IN 0
0 0 1

⎤
⎦ z∗(∞) −

⎡
⎣ x0

0
0

⎤
⎦ = 0.

Here, IN ∈ R
N×N is the N × N identity matrix. In total,

ż∗(s) = F(z∗(s)) with b(z∗(0), z∗(∞)) = 0, (15)

needs to be solved, where the infinity part of the boundary condition has to be under-
stood in the limit sense. Note that (15) are necessary conditions, i.e., they only provide
candidates for the optimal solution. Depending on the problem, this has to be taken
into account when working with this PMP-based approach. Later in the numerical
experiments, we will see that for the considered model problems, the satisfaction of
the HJB on the computed trajectories is extremely good, which is a strong indication
that we are computing the optimal trajectories. Conditions under which (15) is also
sufficient to deliver an optimal solution can be found in [47].

With the basic idea of [48], such problems with an infinite time horizon can be
treated numerically. That article also contains a list of references to other works that
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analyze this technique theoretically.We refrain from such considerations in the current
work. In general, the technique is to map the interval [0, 1) to the interval [0,∞) using
a function such as �(τ) = τ

1−τ
. The transformed system z̄∗(τ ) := z(�(τ)) on the

finite interval [0, 1) with the new time variable τ is then

˙̄z∗(τ ) = �′(τ )F(z̄∗(τ )) with b(z̄∗(0), z̄∗(1)) = 0. (16)

However, even for this finite time system, solvers for inhomogeneous Dirichlet two-
point boundary value problems such as bvp5c from Matlab or solve_bvp from SciPy
cannot be used. These evaluate the right-hand side of (16) at the singularity τ = 1.
Similar to [49], this can be avoided by using one step of an explicit Euler method. An
approximation to the solution z̄∗(1) on the right boundary can be generated as follows:

z̄∗(1) ≈ z̄∗(1 − �τ) + �τ�′(1 − �τ)F(z̄∗(1 − �τ)). (17)

The system which is now on the finite time interval [0, 1−�τ ] without singularity
problems and approximates (15) is

˙̄z∗(τ ) = �′(τ )F(z̄∗(τ )) (18)

with b(z̄∗(0), z̄∗(1 − �τ) + �τ�′(1 − �τ)F(z̄∗(1 − �τ))) = 0. (19)

Overall, solving (18)–(19) allows information to be gathered about both the VF and
its gradient along optimal trajectories. Here, it does not matter whether we consider the
data on the transformed time interval or not, since the original system is autonomous
and therefore the time values are not included in the construction of the surrogate.
At this point, however, it is not yet clear which optimal trajectories are chosen. This
is realized using the greedy exploration algorithm that we introduced in [40] which
builds a data set D ⊂ T (A) that approximates T (A). Subsequently, on D a feedback
rule is generated. The idea of this algorithm is to compute the optimal open-loop
trajectories only for particularly promising initial states of A in order to expand the
entire data set. It is given by the Algorithm 1.

Algorithm 1 Greedy exploration algorithm.
Require: A, X := ∅, D = {0} and εtol,d
1: ε := εtol,d + 1
2: while ε > εtol,d do
3: xa := argmaxx∈Aminy∈D ‖x − y‖2
4: ε := miny∈D ‖xa − y‖2
5: [x( · ; xa), v(x( · ; xa)), ∇v(x( · ; xa))] := solveOpenLoop(xa)

6: D := D ∪ {x( · ; xa)}
7: end while

The rule in step 3 is used to find new starting positions xa . The solveOpenLoop
function in step 5 outputs the optimal trajectory and the corresponding value of the
VF and its gradient for the initial state xa . The data set D is then expanded by that
trajectory in step 6. This process is performed until the cover distance in step 4 is

smaller than a given tolerance εtol,d. Here, the quantity ε behaves like n− 1
N in the
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worst case, where n is the number of iterations [50]. This is due to the fact that the
fill distance is an upper bound of the cover distance. However, since we choose A
as a set of lower dimensional structures with physically meaningful initial states, we
expect this rate to be much better, as in [40]. The outputs of this algorithm are the sets
D, v(D) and ∇v(D). In the numerical implementation, the set of initial states A will
be discrete and D will consist of time-discrete trajectories that we get from the two-
point boundary value problem solver we use. Step 3 can be implemented efficiently by
storing a list of minimum distances from each element inA to the current setD. When
a new trajectory is added to the setD, only this list needs to be updated by considering
the distance of the elements ofA to the new trajectory. Then, the maximum of the list
is the desired result. Thus, step 3 is in the complexity of the number of elements inA
times the number of elements of a new trajectory.

3 On Hermite kernel surrogates

We recall some basic information about kernels. A symmetric function k : �×� −→
R for a non-empty set� is called a kernel. If for each finite pairwise distinct set Xn :=
{x1, ..., xn} ⊂ �, the Gram matrix (KXn )i, j = k(xi , x j ) is positive semidefinite, then
the kernel is called positive definite (p.d.), and if all such Gram matrices are positive
definite, then the kernel is called strictly positive definite (s.p.d.). Obviously, all s.p.d
kernels are also p.d kernels, the latter being of particular interest since each of them can
be associated with a unique reproducing kernel Hilbert spaceHk(�) (RKHS), where
k is the corresponding reproducing kernel. A RKHS is a Hilbert space of functions
f : � −→ R with the property that there exists a kernel k : � × � −→ R, such that
k(x, · ) ∈ Hk(�) for all x ∈ � and 〈 f , k(x, · )〉Hk (�) = f (x) for all f ∈ Hk(�). The
latter is called reproducing property. An introduction can be found in [51, Chapter 10].

Hermite kernel interpolation

We continue with the introduction of generalized kernel interpolation as discussed in
[51, Chapter 16], which also covers the Hermite kernel interpolation. For a p.d. kernel,
the interpolation conditions for an unknown interpolant snf ∈ Hk(�) in a generalized
setting are given by

λi (s
n
f ) = fi , (20)

where λ1, ..., λn ∈ Hk(�)′ are linear functionals contained in the dual space of the
RKHSand f1, ..., fn ∈ R are some target values. FromTheorem16.1 in [51], it follows
that (20) can be solved uniquely if the λ1, ..., λn ∈ Hk(�)′ are linearly independent.
Furthermore, the interpolant is given by

snf =
n∑

i=1

αivi ,

where vi ∈ Hk(�) is the Riesz representer of λi and the coefficients α1, ..., αn ∈
R are determined via the interpolation condition in (20). The considered Hermite
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interpolation problem is of the following type: It is assumed that for a set D ⊂ �,
the values of the VF v(D) and of its gradient ∇v(D) are given. For a p.d. kernel
k ∈ C2(� × �) and a finite pairwise distinct set Xn = {x1, ..., xn} ⊂ D, the goal is
to find a surrogate such that

∂asnv (xi ) = δxi ∂
asnv = δxi ∂

av = ∂av(xi ) (21)

for all multiindices a ∈ N
N
0 with

∑N
l=1(a)l ≤ 1 and i = 1, ..., n. Note that due to

the assumed regularity of the kernel, both the point evaluation functional δxi and the
combination with the partial derivative δxi ∂

a are in the dual spaceHk(�)′. This results
from the reproducing property. The Riesz representers of these functionals are given
by ∂a1 k(xi , ·) since δxi ∂

ag = 〈∂a1 k(xi , ·), g〉Hk (�) for all g ∈ Hk(�) (see Theorem
10.45 in [51]). Here, the 1 in the subscript of ∂a1 denotes that it acts on the first input
variable of the kernel. Overall, the surrogate can be represented by

snv (x) =
n∑

i=1

αi k(xi , x) + 〈βi ,∇1k(xi , x)〉2. (22)

The condition from (21) for determining the coefficients {αi }ni=1 ⊂ R and {βi }ni=1 ⊂
R

N can be written compactly with matrices as follows:

[
KXn BXn

] [α
β

]
= [

v(x1) . . . v(xn)
]� =: v(Xn),

where

KXn :=
⎡
⎢⎣
k(x1, x1) . . . k(xn, x1)

...
. . .

...

k(x1, xn) . . . k(xn, xn)

⎤
⎥⎦ ∈ R

n×n,

BXn :=
⎡
⎢⎣

∇1k(x1, x1)� . . . ∇1k(xn, x1)�
...

. . .
...

∇1k(x1, xn)� . . . ∇1k(xn, xn)�

⎤
⎥⎦ ∈ R

n×nN ,

α := [
α1 . . . αn

]� ∈ R
n and β := [

β�
1 . . . β�

n

]� ∈ R
nN

for the part of the conditions involving the values of the VF. For the derivative part,
we first take a look at the gradient of the surrogate, which is

∇snv (x) =
n∑

i=1

αi∇2k(xi , x) + Ek(xi , x)βi

with

Ek(xi , x) :=
⎡
⎢⎣

∂2,1∇1k(xi , x)�
...

∂2,N∇1k(xi , x)�

⎤
⎥⎦ ∈ R

N×N .
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Here,∇2 denotes the gradient that acts on the second input variable of the kernel and
∂2,i the partial derivative that acts on the i-th component of the second input variable.
A compact matrix notation of the second part then results in

[
B�
X CX

] [α
β

]
= [∇v(x1)� . . . ∇v(xn)�

]� =: ∇v(Xn),

where

CX =
⎡
⎢⎣
Ek(x1, x1) . . . Ek(xn, x1)

...
. . .

...

Ek(x1, xn) . . . Ek(xn, xn)

⎤
⎥⎦ ∈ R

nN×nN .

In doing so, we have taken advantage of the fact that ∇2k(xi , x j ) = ∇1k(x j , xi ).
Ultimately, the system of linear equations for determining the coefficients for the
surrogate is

[
KXn BXn

B�
Xn

CXn

]

︸ ︷︷ ︸
=:MXn

[
α

β

]
=
[

v(Xn)

∇v(Xn)

]
. (23)

By construction, the matrix MXn ∈ R
N (n+1)×N (n+1) is symmetric. Furthermore,

it can be shown that it is positive definite for a suitable choice of kernel, and therefore,
the system is uniquely solvable.

Proposition 1 Let k(x, y) = �(x − y) be a s.p.d kernel with � ∈ C2(�) ∩ L1(�),
then the matrixMXn is symmetric positive definite for all pairwise distinct Xn ⊂ R

N .

Proof First, we recall Theorem 16.4 in [51], which states that under the assumed
condition the set

{δx∂a | x ∈ � and (ai )
N
i=1 ∈ N

N
0 with

N∑
i=1

ai ≤ m} ⊂ Hk(�)′

is linearly independent. So, since

∂1,i k(y, x) = 〈
∂1,i k(y, · ), k(x, · )〉Hk (�)

and

∂2, j∂1,i k(y, x) = 〈
∂1,i k(y, · ), ∂1, j k(x, · )〉Hk (�)
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for all α ∈ R
N (n+1) \ {0}, it follows that

a�MXna =
∥∥∥∥∥∥

n∑
i=1

ai k(xi , · ) +
n∑

i=1

N∑
j=1

a(i N+ j) ∂1, j k(xi , · )
∥∥∥∥∥∥
2

Hk (�)

=
∥∥∥∥∥∥

n∑
i=1

aiδxi +
n∑

i=1

N∑
j=1

a(i N+ j) δxi ∂1, j

∥∥∥∥∥∥
2

Hk (�)′
�= 0,

which shows that the matrix is positive definite. 
�

A greedy selection criterion for the interpolation points

At this point, we have not yet clarified how the centers that represent the interpolation
points will be selected. This is determined by an iterative scheme that successively
increases the set of centers through a greedy strategy. The algorithm is a version based
on the VKOGA from [41], which by Algorithm 2 has been adapted to the Hermite
interpolation.

Algorithm 2 Hermite VKOGA.
Require: D, v(D), ∇v(D) , X := ∅, sv := 0 and εtol,f
1: while maxx∈D\X (|v(x) − sv(x)| + ‖∇v(x) − ∇sv(x)‖2) > εtol,f do
2: x := argmaxx∈D\X (|v(x) − sv(x)| + ‖∇v(x) − ∇sv(x)‖2)
3: X := X ∪ {x}
4: sv := interpolant (X ,∇v(X))

5: end while

The procedure is performed until the interpolation error is less than εtol,f. At each
iteration step in the loop, the algorithm selects the state that has the greatest deviation
between the current interpolation and the output data in the sense that both the function
value and the value of the gradient are included. In the numerical implementation, this
means finding themaximumof a list, sinceD is then discrete. The picked state is added
to the set of centers in step 3. Thus, the resulting Hermite interpolant has no error there.
The determination of the surrogate in each step can be performed by incrementally
constructing the inverse of the Cholesky factorization of the system matrixMXn . The
complexity of each step is determined by a Cholesky factorization of a matrix of size
(N + 1) × (N + 1) and by the product of a lower triangular matrix of size Nn × Nn
with a dense matrix of size Nn × (N + 1), where n is the current iteration step. The
output of the algorithm is a surrogate sv ≈ v. Theoretical results on the observed
excellent convergence rates of the VKOGA can be found in [42]. A difficulty in the
implementation of VKOGA for the Hermite interpolation arises in steps 1 and 2. In
general, a matrix of size |D |N × (n + 1)N , where |D| is the number of samples the
input data set, must be constructed to evaluate the surrogate on the data set, i.e.,

[KD,Xn BD,Xn

B�
Xn ,D CD,Xn

] [
α

β

]
=:

[
snv (D)

∇snv (D)

]
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with
(
KD,Xn

)|D |,n
j,i = k(y j , xi ) for xi ∈ {x1, ..., xn} =: Xñ , y j ∈ {y1, ..., y|D |} =: D

andBD,Xn , CD,Xn accordingly. This is practically infeasible for even moderately large
state dimension and data set D. For the special class of kernels, however, this is not
necessary, as the next section shows.

Matrix-free approach

An explicit representation of the matrix used to evaluate the surrogate on the data
is not needed for some kernels. All that is required here is the implementation of
a matrix–vector multiplication. By restricting the consideration to a special class of
radial kernels, the matrix–vector multiplication becomes efficient. The kernels in this
class are of the form k(x, y) = �(‖x − y‖22) with � ∈ C2(R+

0 ,R). To see that this
choice is beneficial, we look at Ek(x, y):

Ek(x, y) = −2�′(‖x − y‖22)IN×N + 4�′′(‖x − y‖22)(x − y)(y − x)�.

Thus, the matrix Ek(x, y) consists of two scalar factors, a unit matrix IN×N ∈ R
N×N

and the rank-one matrix (x − y)(y − x)�. Both the unit matrix and the latter matrix
are advantageous in terms of matrix–vector multiplication, since

CD,Xnβ =⎡
⎢⎣

∑n
i=1−2�′(‖xi −y1‖22)βi +4�′′(‖xi −y1‖22)(xi −y1)〈y1−xi , βi 〉RN

...∑n
i=1−2�′(

∥∥xi −y|D|
∥∥2
2)βi +4�′′(

∥∥xi −y|D|
∥∥2
2)(xi −y|D|)〈y|D|−xi , βi 〉RN

⎤
⎥⎦ ,

which reduces the total number of operations from O(N |D| n2) to O(|D| n2). Since
N is potentially very high, only such a matrix-free strategy is capable of realizing the
VKOGA algorithm for Hermite interpolation.

A structured surrogate for the value function

Now, we describe a strategy for structuring the surrogate of the VF in a way that
incorporates three known properties of the VF. This makes the surrogate more context-
aware. The first property is the fact that v(0) = 0 and ∇v(0) = 0, since the zero state
is the target state and therefore we have no cost there. By using a kernel k which
satisfies k(x, 0) = 0, ∂1,i k(x, 0) = 0 and ∂2, j∂1,i k(x, 0) = 0 for all x ∈ � and all
i, j = 1, ..., n, one can ensure that the surrogate also fulfills this. Such a kernel can be
generated, for example, by multiplying any kernel k′ by 〈x, y〉2. If k′ is p.d., then so
is the resulting kernel. Furthermore, we then remove the state 0 from the data set D.
Another possibility would be to force snv (0) = 0 via an interpolation condition, but this
would be incompatible with the realization of the next property. The second property
to consider is that the VF can be very well represented locally near zero as a quadratic
function. For example, if

(
J f (0), g(0)

)
is controllable (see [52]), it can be determined

by the linearized OCP. Here, J f is the Jacobian matrix of f . The VF of the linearized
problem can be generated by solving the corresponding algebraic Riccati equation. It
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has the form vlocal(x) = x�Qx , where Q ∈ R
n×n is a positive definite matrix. This is

added to the surrogate so that only a correction term is determined by the data-based
strategy. The third property that the surrogate should adapt is positivity, since the
costs considered must always be positive. This is achieved by squaring. Altogether,
the structured surrogate is given by

snStr,v(x) =
(√

x�Qx +
n∑

i=1

αi k(xi , x) + 〈βi ,∇1k(xi , x)〉2
)2

.

As in the penultimate subsection, the interpolation condition for determining the
coefficients {αi }ni=1 ⊂ R and {βi }ni=1 ⊂ R

N are

snStr,v(x j ) = v(x j ) and ∇snStr,v(x j ) = ∇v(x j ) for all j = 1, ..., n. (24)

These conditions are not linear with respect to {αi }ni=1 and {βi }ni=1, but linear
conditions implying them can be found. Since the VF is always positive,

n∑
i=1

αi k(xi , x j ) + 〈βi ,∇1k(xi , x j )〉2=
√

v(x j ) −
√
x�
j Qx j for all j = 1, ..., n

(25)

implies the first equation in (24). Furthermore, this linear condition can be written
compactly in matrix form as follows:

[
KXn BXn

] [α
β

]
=
[√

v(x1) −
√
x�
1 Qx1 . . .

√
v(xn) −√

x�
n Qxn

]�
.

The second interpolation condition can also be expressed by an equivalent linear
system of equations. To see this, we first need to look at the derivative of the structured
surrogate:

∇snStr,v(x) = 2
√
snStr,v(x)

(
Qx√
x�Qx

+
n∑

i=1

αi∇2k(xi , x) + Ek(xi , x)βi

)

and with the interpolation conditions in (24), we get

∇v(x j )=∇snStr,v(x j ) 25=2
√
v(x j )

⎛
⎝ Qx j√

x�
j Qx j

+
n∑

i=1

αi∇2k(xi , x j )+Ek(xi , x j )βi

⎞
⎠

for all j = 1, ..., n. The case v(x j ) = 0 cannot appear, as this is equivalent to x j = 0
which we have excluded from the data set D as explained at the beginning of the
current subsection. Therefore, with the upper equation, the linear condition implying
the second interpolation condition in (24) for all x j with v(x j ) �= 0 becomes

∇v(x j )

2
√

v(x j )
− Qx j√

x�
j Qx j

=
n∑

i=1

αi∇2k(xi , x j ) + Ek(xi , x j )βi for all j = 1, ..., n,
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which can be compactly formulated with matrices by

[
B�
Xn

CXn

] [α
β

]
=
[(

∇v(x1)
2
√

v(x1)
− Qx1√

x�
1 Qx1

)�
. . .

(
∇v(xn)
2
√

v(xn)
− Qxn√

x�
n Qxn

)�]�
.

Therefore, the system of linear equations to obtain the surrogate is similar to (23),
only the right-hand side is changed. It is remarkable that all three properties can be
included natively in the surrogate without any additional effort in the solution step, as
long as the matrix Q is known.

4 Two convergence results for the Hermite kernel method

We present two convergence results for the (unstructured) Hermite surrogate and for
the surrogate-controlled trajectories. Another assumption combining the conditions
from Sections 2 and 3 is required at this point.

Assumption 4 For a compact set � ⊂ R
N , let k ∈ C4 (conv(�) × conv(�)) be a

s.p.d. kernel. Further, let the VF v be radially unbounded and v ∈ Hk(�).

Note that this assumption implies v ∈ C2(�) (also with Theorem 10.45 in [51]),
which is a higher regularity requirement than that of Section 2. However, this leads to a
continuous dependence of the optimal trajectories on the initial data, which is essential
for the subsequent proof of convergence. For brevity, we will use the abbreviations
‖·‖k := ‖·‖Hk (�) for the norm induced by the inner product of the RKHS and 〈·, ·〉k :=
〈·, ·〉Hk (�) for the inner product of the RKHS in the following.

Lemma 2 Under the Assumption 4, it holds

|snv (x) − snv (y)| + ∥∥∇snv (x) − ∇snv (y)
∥∥
2 ≤ L ‖x − y‖2 (26)

for all x, y ∈ �, where the constant L is independent of the respective Hermite kernel
surrogate for the VF.

Proof First, we need to see that the RKHS norm of a surrogate is bounded by the
RKHS norm of the VF independent of n:

‖v‖k
∥∥snv

∥∥
k ≥ 〈v, snv 〉k +

n∑
i=1

αi
(
snv (xi ) − v(xi )

)
︸ ︷︷ ︸

=0

+〈βi ,∇snv (xi ) − ∇v(xi )︸ ︷︷ ︸
=0

〉2

= 〈v, snv 〉k + 〈snv − v, snv 〉k = ∥∥snv
∥∥2
k

For the first inequality, we used the Cauchy-Schwarz inequality and inserted a
zero, which is possible because of the interpolation conditions. Using the reproducing
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property and the sum representation of the Hermite interpolant, we have reformulated
the zero term. So, overall, we see that ‖v‖k ≥ ∥∥snv

∥∥
k . This property is the reason why

later the constant L depends only on ‖v‖k . To show (26), we consider

|snv (x) − snv (y)|2 =〈snv , k(x, · ) − k(y, · )〉2k
≤ ∥∥snv

∥∥2
k ‖k(x, · ) − k(y, · )‖2k

≤ ‖v‖2k (k(x, x) − k(x, y) + k(y, y) − k(y, x))

= ‖v‖2k (∇2k(x, ξ1)(x − y) + ∇2k(y, ξ2)(y − x))

≤ ‖v‖2k ‖x − y‖2 ‖∇2k(x, ξ1) − ∇2k(y, ξ2)‖2
= ‖v‖2k ‖x−y‖2 ‖∇2k(x, ξ1)−∇2k(x, ξ2)+∇2k(x, ξ2)−∇2k(y, ξ2)‖2
≤C1 ‖v‖2k ‖x − y‖2

(‖x − y‖2 + ‖ξ1 − ξ2‖2
)

≤2C1 ‖v‖2k ‖x − y‖22

with ξ1 = (1− t1)y + t1x for a t1 ∈ [0, 1] and ξ2 = (1− t2)x + t2y for a t2 ∈ [0, 1].
For the first inequality, we utilized the Cauchy-Schwarz inequality, and for the second
inequality, we used the first partial result of this proof. The third and fourth inequalities
follow from the mean value theorem, with a zero term inserted for the latter. Hence,

C1 := √
N max

x̄,ȳ∈conv(�)
max

i=1,...,N
max{∥∥∂i,1∇2k(x̄, ȳ)

∥∥
2 ,
∥∥∂i,2∇2k(x̄, ȳ)

∥∥
2},

because the maximum is reached since conv(�) is compact and k ∈ C4(conv(�) ×
conv(�)) with the Assumption 4. The last inequality follows from the fact that

‖ξ1−ξ2‖2=‖(1−t1)y + t1x−(1−t2)x − t2y‖2=|1−t1−t2| ‖y−x‖2≤‖x−y‖2 ,

which is a rough estimate. This shows that snv is Lipschitz continuous, where the
Lipschitz constant is independent of the respective Hermite kernel surrogate for the
VF. For the partial derivative, very similar steps can be performed:

|∂i snv (x) − ∂i s
n
v (y)|2

=|〈snv , ∂i,1k(x, ·) − ∂i,1k(y, ·)〉k |2
≤ ∥∥snv

∥∥2
k

∥∥∂i,1k(x, ·) − ∂i,1k(y, ·)
∥∥2
k

≤‖v‖2k
(
∂i,2∂i,1k(x, x) − ∂i,2∂i,1k(x, y) + ∂i,2∂i,1k(y, y) − ∂i,2∂i,1k(y, x)

)
≤‖v‖2k ‖x − y‖2

∥∥∥∇2∂i,2∂i,1k(x, ξ̃1) − ∇2∂i,2∂i,1k(y, ξ̃2)
∥∥∥
2

= ‖v‖2k ‖x − y‖2
·
∥∥∥∇2∂i,2∂i,1k(x, ξ̃1)−∇2∂i,2∂i,1k(x, ξ̃2)+∇2∂i,2∂i,1k(x, ξ̃2)−∇2∂i,2∂i,1k(y, ξ̃2)

∥∥∥
2

≤2C2 ‖v‖2k ‖x − y‖22 ,

where

C2 :=√
N max
x̄,ȳ∈conv(�)

max
j,i=1,...,N

max{∥∥∂ j,1∇2∂i,2∂i,1k(x̄, ȳ)
∥∥
2,
∥∥∂ j,2∇2∂i,2∂i,1k(x̄, ȳ)

∥∥
2}.
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Overall, the statement follows with L = √
2(

√
C1 + √

NC2) ‖v‖k . 
�
Now, we can give a convergence result related to the VF and its derivative:

Theorem 2 Let Assumption 4 with � := T (A) and additionally f , g ∈ C1(T (A))

hold, then for every T > 0 there is a constant CT > 0 independent of εtol,d , εtol, f
and the respective Hermite kernel interpolant snv for v such that

max
(t,x0)∈[0,T ]×A

(|v(x∗(t; x0)) − snv (x∗(t; x0))|
+ ∥∥∇v(x∗(t; x0)) − snv (x∗(t; x0))

∥∥
2

) ≤ εtol,d CT + εtol, f

if Algorithm 1 with εtol,d and Algorithm 2 with εtol, f have terminated.

Proof First, we fix an x∗(t1; x0,1) ∈ T (A) with t1 ≤ T and x0,1 ∈ A. Due to the
selection criterion in Algorithm 1, we know that for the state x0,1 in A, there is a
trajectory x∗( ·; x0,2) ⊂ D in the available data set and a time t2 ≥ 0 with

∥∥x0,1 − x∗(t2; x0,2)
∥∥
2 ≤ εtol,d . (27)

Next, we define h(x) := f (x) − 1
2g(x)R

−1g(x)�∇v(x), which is Lipschitz con-
tinuous with constant Lh on the compact set T (A) as f , g and ∇v are differentiable.
Thus, the ODE of the optimal trajectory in integral form for any x0 ∈ A becomes

x∗(t; x0) = x0 +
∫ t

0
h(x∗(s; x0))ds.

Using this, we get

∥∥x∗(t1; x0,1) − x∗(t1 + t2; x0,2)
∥∥
2

≤ ∥∥x0,1 − x∗(t2; x0,2)
∥∥
2 +

∫ t1

0

∥∥h(x∗(s; x0,1)) − h(x∗(s + t2; x0,2))
∥∥
2 ds

≤ ∥∥x0,1 − x∗(t2; x0,2)
∥∥
2 + Lh

∫ t1

0

∥∥x∗(s; x0,1) − x∗(s + t2; x0,2)
∥∥
2 ds,

which leads with Grönwall’s lemma, Equation (27) and t1 ≤ T to

∥∥x∗(t1; x0,1)−x∗(t1 + t2; x0,2)
∥∥
2≤∥∥x0,1−x∗(t2; x0,2)

∥∥
2 e

Lht1 ≤εtol,de
LhT . (28)

Furthermore, after the termination of Algorithm 2, we know that

|v(x∗(t1 + t2; x0,2)) − snv (x∗(t1 + t2; x0,2))|
+ ∥∥∇v(x∗(t1 + t2; x0,2)) − ∇snv (x∗(t1 + t2; x0,2))

∥∥
2 ≤ εtol, f (29)
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as x∗( ·; x0,2) ⊂ D is in the available data set. So, overall, we get

|v(x∗(t1; x0,1))−snv (x∗(t1; x0,1))|+
∥∥∇v(x∗(t1; x0,1))−∇snv (x∗(t1; x0,1))

∥∥
2

=|v(x∗(t1; x0,1))−v(x∗(t1+t2; x0,2))+v(x∗(t1+t2; x0,2))−snv (x∗(t1; x0,1))|
+ ∥∥∇v(x∗(t1; x0,1)) − ∇v(x∗(t1 + t2; x0,2))
+ ∇v(x∗(t1 + t2; x0,2)) − ∇snv (x∗(t1; x0,1))

∥∥
2

≤(Lv + L∇v)e
LhT εtol,d

+ |v(x∗(t1 + t2; x0,2)) − snv (x∗(t1; x0,1))|
+ ∥∥∇v(x∗(t1 + t2; x0,2)) − ∇snv (x∗(t1; x0,1))

∥∥
2

=(Lv + L∇v)e
LhT εtol,d

+ |v(x∗(t1 + t2; x0,2)) − snv (x∗(t1 + t2; x0,2))
+ snv (x∗(t1 + t2; x0,2)) − snv (x∗(t1; x0,1))|
+ ∥∥∇v(x∗(t1 + t2; x0,2)) − ∇snv (x∗(t1 + t2; x0,2))
+ ∇snv (x∗(t1 + t2; x0,2)) − ∇snv (x∗(t1; x0,1))

∥∥
2

≤(Lv + L∇v)e
LhT εtol,d + εtol, f

+ |snv (x∗(t1 + t2; x0,2)) − snv (x∗(t1; x0,1))|
+ ∥∥∇snv (x∗(t1 + t2; x0,2)) − ∇snv (x∗(t1; x0,1))

∥∥
2

≤ (Lv + L∇v + L)eLhT︸ ︷︷ ︸
=:CT

εtol,d + εtol, f ,

where we inserted zero terms for the first inequality and then used the triangle inequal-
ity, the Lipschitz continuity of v (Lipschitz constant Lv) and ∇v (Lipschitz constant
L∇v andEquation (28) to obtain thefirst inequality. For the second equality,we inserted
other zero terms and then utilized the triangle inequality, Lemma 2, and Equation (28)
to get the second inequality. The last inequality results from (29). Since x∗(t1; x0,1)
was chosen arbitrarily, the above inequality also holds for the maximum, and so the
statement follows. 
�

Note that the latter theorem is valid for any fixed finite time horizon T , but not in
the limit T −→ ∞, since the constants involved also go to infinity.

The next result concerns the convergence of the surrogate-controlled trajectory xs
to the optimal trajectory x∗. In order to establish the convergence, it is required that the
regularity of the VF applies to a slightly larger domain. Therefore, for a fixed δ > 0,
we define the dilated set Tδ(A) := T (A) + Bδ , where Bδ is the closed ball centered
at zero with radius δ. By the addition of two sets, we mean the set that results from
adding arbitrary elements of both sets.

Theorem 3 Let Assumption 4 with � := Tδ(A) hold for a δ > 0 and additionally
f , g ∈ C1(Tδ(A)), then for every T > 0, there are two constants CT > 0 and
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C̃T > 0 independent of εtol,d , εtol, f and the respective Hermite kernel interpolant snv
for v such that

max
(t,x0)∈[0,T ]×A

∥∥x∗(t; x0) − xs(t; x0)
∥∥
2 ≤ εtol,d CT + εtol, f C̃T ,

if Algorithm 1 with εtol,d and Algorithm 2 with εtol, f have terminated. Furthermore, it
is assumed that the thresholds εtol,d , εtol, f are so small that εtol,d CT +εtol, f C̃T < δ

holds.

Proof We start by defining a function that summarizes the dynamics of the ODE
systems under consideration for a given VF surrogate e(x):

he(x) := f (x) − 1

2
g(x)R−1g(x)�∇e(x)

Note that the function hsnv is Lipschitz continuous on Tδ(A) where the Lipschitz
constant Lhs is independent of the respective interpolant of the VF. This follows
with the differentiability of f , g, and ∇v. The independence of the constant from the
surrogate follows as in Lemma 2. Due to Kirszbraun’s theorem [53], there is a globally
Lipschitz continuous function hsnv : RN −→ R

N with the same Lipschitz constant
Lhs and hsnv (x) = hsnv (x) for x ∈ Tδ(A). Next, an auxiliary trajectory xs(t; x0) is
defined which satisfies the ODE

ẋs(t; x0) = hsnv (xs(t; x0))

with xs(0; x0) = x0. With the Picard-Lindelöf theorem, such a trajectory exists for all
time intervals, due to the global Lipschitz continuity of hsnv . In a further step, we show
that the auxiliary trajectory and the optimal trajectory are getting closer to each other
as εtol,d and εtol, f decrease. Let us also use the definition G(x) = − 1

2g(x)R
−1g(x)�

here to simplify. For a fixed (t; x0) with t ≤ T , it holds

∥∥x∗(t; x0)−xs(t; x0)
∥∥
2

≤
∫ t

0

∥∥hv(x∗(t; x0))−hsnv (xs(t; x0))
∥∥
2dt

=
∫ t

0

∥∥hv(x∗(t; x0))−hsnv (x∗(t; x0))+hsnv (x∗(t; x0))−hsnv (xs(t; x0))
∥∥
2dt

≤
∫ t

0

∥∥hv(x∗(t; x0))−hsnv (x∗(t; x0))
∥∥
2dt+

∫ t

0

∥∥hsnv (x∗(t; x0))−hsnv (xs(t; x0))
∥∥
2dt

≤
∫ t

0

∥∥hv(x∗(t; x0))−hsnv (x∗(t; x0))
∥∥
2︸ ︷︷ ︸

=‖G(x∗(t;x0))(∇v(x∗(t;x0))−∇snv (x∗(t;x0))‖2

dt+Lhs

∫ t

0

∥∥x∗(t; x0)−xs(t; x0)
∥∥
2dt

≤(εtol,d CT + εtol, f ) max
x∈T (A)

‖G(x)‖2 T + Lhs

∫ t

0

∥∥x∗(t; x0)−xs(t; x0)
∥∥
2dt,
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where we utilized Theorem 2 for the last inequality. So with the Grönwall’s
inequality [54], the definitions CT := CT maxx∈T (A) ‖G(x)‖2 T eLhs T and C̃T :=
maxx∈T (A) ‖G(x)‖2 T eLhs T , it follows

∥∥x∗(t; x0) − xs(t; x0)
∥∥
2 ≤ εtol,d CT + εtol, f C̃T ≤ δ.

Here, the latter inequality comes from the assumption. The crucial point now is that
because of the estimate ‖x∗(t; x0) − xs(t; x0)‖2 ≤ δ, it holds that xs(t; x0) ∈ Tδ(A)

for all t ∈ [0, T ] and thereforexs(t; x0) = xs(t; x0) as hsnv (x) = hsnv (x) for x ∈ Tδ(A).
Thus, the statement follows as (t; x0) was chosen arbitrarily. 
�

From a practical point of view, the last theorem is very interesting because it gives
a guarantee that the approximate optimal feedback control will provide near optimal
trajectories if Algorithms 1 and 2 have terminated for sufficiently small thresholds
εtol,d and εtol, f .

5 Numerical experiments

Three model problems are considered in this section. For each of them, a training
data set is computed using Algorithm 1. Because the optimal open-loop solution
becomes slightly less accurate near zero, as indicated by the first model problem, all
trajectories are truncated after time T . Algorithm 2 generates the Hermite surrogate
and the structured Hermite surrogate, adapting step 4 for the latter. For the former
surrogate, we use the Wendland kernel k(x, y) = �N ,m(γ ‖x − y‖2) with

�N ,m = (1 − r)l+2+
[
(l2 + 4l + 3)r2 + (3l + 6)r + 3

]
,

l := �N/2� + 3 and (1 − r)+ := max{1 − r , 0} from Corollary 9.14 in [51], which
exactly satisfies the regularity assumptions in Assumption 4. Here, 1/γ > 0 is the
kernel width.Wemultiply thisWendland kernel by 〈x, y〉2 asmentioned in Section 3 to
obtain the kernel for the structured Hermite surrogate. The VF surrogates are assessed
with respect to a test error for the approximation of the VF and the quality of the
resulting surrogate-controlled trajectories. The required test set consists of 20 open-
loop trajectories for which the initial states {x0,1, ..., x0,20} are selected in A using
a so-called geometric greedy procedure [50]. In our case, this test set size is about
10% of the training set size, which seems reasonable. To determine the quality of the
feedback realized by the surrogate, we use a mean relative L2-error

MRL2Error(xOL, xSR) := 1

20

20∑
j=1

√√√√
∑N j

i=0

∥∥xOL(t j,i ; x0, j )−xSR(t j,i ; x0, j )
∥∥2
2∑N j

i=0

∥∥xOL(t j,i ; x0, j )
∥∥2
2

for partitionings 0 = t j,0 < t j,1 < ...t j,N j = T , which are determined adaptively by
the solver solve_bvp from SciPy, for j = 1, ..., 20. It compares the optimal open-loop
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controlled trajectories xOL of the test set with the surrogate-controlled trajectories
xSR. The latter is computed by solving the approximate optimal feedback control in
closed-loop form

ẋSR(s;x0, j )= f (xSR(s;x0, j ))
− 1

2
g(xSR(s;x0, j ))R−1g(xSR(s;x0, j ))�∇sv(xSR(s;x0, j ))

with x(0) = x0, j for all j = 1, ..., 20 using SciPy’s solve_ivp. This error is also used
to determine the hyperparameter γ , which is realized with a s-fold cross validation,
where the training set of the trajectories is divided into s sets of complete trajectories.
To allow a better comparison of the model problems with each other, we introduce the
quantities Cmax,A := maxx∈A ‖x‖2 and Cmax,v := maxx∈D (‖v(x)‖2 + ‖∇v(x)‖2)
to specify a relative cover distance and training error in the following. All runtimes of
the numerical experiments refer to a laptop with an AMD Ryzen 9 5900HX CPU and
16GB RAM.

An academic model problem

The first model problem is an academic model problem (AMP), which is not
application-motivated but dimension-variable and has the advantage that the VF is
known analytically, allowing exact error assessment. It has the form

min
u∈U∞

J (u) = min
u∈U∞

∫ ∞

0
αe‖x(s)‖22〈x(s), x(s)〉22 + β (u(s))2 ds (30)

subject to ẋ(s)=‖x(s)‖22 x(s) + e− ‖x(s)‖22
2 x(s)u(s) and x(0)= x0 ∈ R

N (31)

with controller dimension M = 1. This model problem may also be useful for other
studies. The HJB equation for this problem is

〈∇v(x), x〉2 ‖x‖22 − e−‖x‖22
4β

〈∇v(x), x〉22 + αe‖x‖22 ‖x‖42 = 0. (32)

For the VF, we chose the ansatz v(x) = Ce‖x‖22 − C and thus ∇v(x) = 2Ce‖x‖22x .
Inserting this into (32) gives

(
2C − C2 1

β
+ α

)
e‖x‖22〈x, x〉22 = 0,
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which is solved for C1\2 := β(1 ± √
1 + α/β). But only C := β(1 + √

1 + α/β)

makes sense, because the VFmust always be positive. The optimal closed-loop system
in terms of (30) is therefore

ẋ∗(s) =
(∥∥x∗(s)

∥∥2
2 − 1

2β
e−‖x∗(s)‖2

2〈x∗(s),∇v(x)〉2
)
x∗(s)

= −
√
1 + α

β

∥∥x∗(s)
∥∥2
2 x

∗(s),

which is globally asymptotically stable, since a Lyapunov function is given by v (see
[55, Chapter 4] formore background information on Lyapunov stability). The standard
linearization approach to get an approximation of the VF in a neighborhood of zero,
as required for the structured Hermite surrogate, is not possible for this problem, since
the Jacobian matrix of f holds J f (0) = 0 and g(0) = 0. Nevertheless, a quadratic
approximation can also be obtained by truncating the Taylor series of the true VF:

v(x) ≈ v(0) + ∇v(0)(x − 0) + (x − 0)� J∇v(0)(x − 0) = 2C ‖x‖22
The approximate optimum closed-loop system is therefore

ẋ∗(s) =
(
1 − 2C

β
e−‖x∗(s)‖2

2

)∥∥x∗(s)
∥∥2
2 x

∗(s),

which is only guaranteed to be asymptotically stable if(
1 − 2C

β
e−‖x∗(s)‖2

2

)
< 0,

which leads to

∥∥x∗(s)
∥∥
2 <

√
log

(
2 + 2

√
1 + α

β

)
:= r1,

since the VF v is again a Lyapunov function on the Ball Br1(0).
Note that the construction of the model problemworks for arbitrary state dimension

N . For the following experiments, we set N = 2 and sample the initial states A
uniformly from [−1, 1]N with 200 points in each direction. Although the model is
dimensionally scalable, we choose a very small dimension for this first example.
This is because our method is expected to perform well only for problems with a
low-dimensional solution manifold, which is not the case for the academic model
problem in higher dimensions with a hypercube as the set of initial states. This is
due to the non-physical origin and the resulting unclear choice of the set of initial
states. Moreover, the design parameters of the problem are chosen to be α = 105 and
β = 1, such that the high ratio α

β
ensures that the system quickly approaches zero.

Figure1 shows the training (turquoise) and test (orange) data sets for the academic
model problem, using 100 trajectories for the former, which then has a cover distance
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Fig. 1 The left diagram shows the training data, the test data, and the centers chosen by Algorithm 2 for
the Hermite and the structured Hermite surrogate. On the right diagram, we present a semilogy plot of the
MRL2Error for the three types of surrogate over the number of centers selected

smaller than εtol,d/Cmax,A = 1.3 · 10−3 in Algorithm 1. The relative deviation of
the computed data to the values of the true VF and its gradient is smaller than 10−7.
Without truncating the trajectories to T = 99, which corresponds to τ = 0.99 on
the transformed interval, it would be 10−5. Since only here the true VF is accessible,
we keep this value for T also for the other model problems. Another indicator of
data quality is the fulfillment of the HJB equation along the trajectories. Here, the
largest deviation is smaller than 10−12. Since this is close to machine precision, the
Hermite kernel interpolation can then also be interpreted as a collocation method of
the HJB equation. The average time taken to compute an optimal open-loop trajectory
is approximately 42seconds. For cross validation, s = 10 was used to determine the
kernel shape parameter. This yields γH = 0.04 for the Hermite surrogate. With a
total number of 200, the centers are scattered like the red dots in Fig. 1 (left). Using
Algorithm 2, the selection took 940seconds and resulted in a relative training error
smaller than εtol,f/Cmax,v = 5.089 · 10−4. For the structured Hermite surrogate, the
cross validation leads to γSH = 0.4. Here, the 200 centers are selected as the blue dots
in Fig. 1 (left), which took 893seconds. In this, the relative training error is smaller
than εtol,f/Cmax,v = 6.798 · 10−4.

In terms of the MRL2Error (see Fig. 1 right), it can be seen that both data-based
Hermite surrogates produce smaller errors than the quadratic approximation, whose
MRL2Error is around 1.688 · 10−1. For a few centers, the structured Hermite sur-
rogate is the best, as it gives a MRL2Error of 6.757 · 10−2 after 8 selected centers.
However, it is quickly caught up by the Hermite surrogate, which then overall results
in a lower MRL2Error . Its minimum is at 186 centers with a value of 4.556 · 10−4.
The minimal MRL2Error for the structured Hermite surrogate is at 200 centers with
a value of 2.033 ·10−3. It is also clearly visible in Fig. 1 (right) that for both surrogates
the error is beginning to stagnate, which is because there are trajectories in the test
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data that are not seen in the training (see Fig. 1 left). Therefore, the error could only be
reduced by having data with a smaller εtol,d, which fits to the convergence results in
Theorem 3. The calculation of a surrogate control trajectory for an initial state in the
test data set took on average 0.96 s for the Hermite surrogate and 1.16 s for the struc-
tured Hermite surrogate. So, here, we have a considerable advantage compared to the
runtime of 42 s mentioned above for an optimal open-loop solution, while achieving
almost the same result.Without reporting detailed results, wewould like to remark that
we also performed experiments in the eight-dimensional case using a very coarse grid
in the eight-dimensional hypercube as the initial state and 250 trajectories. However,
the Hermite surrogate with 1000 centers was unable to provide feedback control that
stabilized the system. On the other hand, the structured Hermite surrogate was able to
do so, although the quadratic approximation part itself does not stabilize on some parts
of the unit hypercube in this eight-dimensional case. This suggests that the structured
Hermite surrogate generalizes better.

Gripper-Soft-Tissue

The second model problem is the Gripper-Soft-Tissue (GST). We only give a very
concise description of the model; for more details, we refer to [39]. The GST is a
two-dimensional physical domain model that describes a gripper that has gripped a
soft tissue, such as a fruit or a piece of meat, and brings it to a prescribed target
position while avoiding an obstacle. Figure2 shows a schematic representation. The
governing equation of a linear elastic body is used to model the displacement field
of the soft tissue. The gripper is modeled by a point mass whose displacement is
described by Newton’s second law. An external force u(s) controls the gripper in
this process. Consequently, the controller dimension is M = 2. A semi-discretized
version of the coupled system can be represented by an ODE system utilizing finite
element methods. For this problem, we choose N = 36. The target position is the state
with no displacement and no velocity. The state constraints for the obstacle placed in

Fig. 2 A gripper that transports soft tissue to a target point while avoiding an obstacle. The purple dot
indicates the node which is zero when the system is in a position with no displacement
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(4, 0) with a radius of 1.8 are handled by an external penalty method. This means
that an additional term is introduced into the running payoff that makes states inside
the obstacle very expensive and thus the optimal trajectory bypasses the obstacle. The
OCP reads

min
u∈U∞

∫ ∞

0
x(s)�Qx(s) + x(s)�x(s)

c∑
i=1

e3.5Ci (x(s)) + u(s)�Ru(s) ds

subject to E ẋ(s) = Ax(s) + Du(s) and x(0) = x0,

where the functions (Ci )
c
i=1 are positive if the i th-node is in the obstacle and nega-

tive otherwise. Note that the problem without obstacle is a standard linear-quadratic
regulator (LQR) whose solution can be computed by solving the algebraic Riccati
equation. This was used to compute the quadratic approximation of the VF.

For reasons of dimensionality reduction, the set of initial states is chosen to contain
only states with constant displacement and velocity. So there is no initial state with
a deformed soft tissue. This results in four degrees of freedom for displacement and
velocity in x and y directions, which are taken from a 250×120×5×5 uniform grid in
[−2, 10]×[0, 6]×[−2, 2]×[−2, 2] to obtain the set of initial statesA. States touching
or inside the obstacle are removed. Note that only initial states that have their optimal
path above the obstacle are included in this set. If we would allow trajectories below
the obstacle, there would be unique problems when computing the optimal solution
with the necessary PMP conditions. Figure3 illustrates the training (turquoise) and test
(orange) data set, showing only the position of the purple node fromFig. 2. The training
data set consists of 250 trajectories, which have a cover distance smaller than εtol,d/

Cmax,A = 1.2 · 10−2 in Algorithm 1. The maximum deviation from the HJB equation

Fig. 3 The left diagram shows the training data, the test data, and the centers chosen by Algorithm 2 for the
Hermite and the structured Hermite surrogate. Here, the respective state is indicated by the displacement
of the lower left corners of the soft tissue. The right diagram is a semilogy plot of the MRL2Error for the
three types of surrogate over the number of centers selected
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on the trajectories in the data set is smaller than 10−7 and the calculation of an optimal
trajectory takes about 110 s. For cross validation, s = 10 results in γH = 0.003 for the
Hermite surrogate and γSH = 0.015 for the structured Hermite surrogate. For both,
300 centers were selected, distributed as illustrated by the blue dots in Fig. 3 (left) for
the Hermite surrogate and by the red dots for the structured Hermite surrogate. The
training of the first surrogate took 413seconds resulting in a relative training error less
than εtol,f/Cmax,v = 1.466 · 10−2. The second surrogate was trained in 431seconds
and yields a relative training error less than εtol,f/Cmax,v = 5.155 · 10−3.

Looking at the MRL2Error , we see that both surrogates can beat the control of the
quadratic approximation, as the latter leads to an error of 7.088·10−2. As this quadratic
VF is the solution of the OCP without penalty term, the trajectories controlled by this
surrogate do not avoid the obstacle. What is striking about this model problem is that
the structuredHermite surrogate with aminimumMRL2Error of 8.099·10−3 clearly
outperforms the Hermite surrogate, which at its best has 2.399 · 10−2. By design, the
former starts with a much better error. In addition, very few centers are selected near
the zero state as expected. Again, the error begins to stagnate for both surrogates,
which can only be improved by reducing εtol,d. Here, the computation of a surrogate-
controlled trajectory with an initial state in the test data set took on average 7.6 s for
the Hermite surrogate and 2.8 s for the structured Hermite surrogate. Thus, also for
this model problem, computing a trajectory based on the surrogate is much faster than
computing an optimal open-loop solution with the PMP conditions, which took about
110 s as mentioned above.

Nonlinear heat equation

The third model problemwe consider is a nonlinear heat equation (NHE) of Zeldovich
type [56, p. 2], which we adapted from [57]. It is of the form

ẏ(ξ, t) = α�y(ξ, t) + β(y2(ξ, t) − y3(ξ, t)) + �(ξ)u(ξ, t)

for (ξ, t) ∈ � × [0,∞) with the boundary conditions

∂n y(ξ, t) = 0 for (ξ, t) ∈ ∂� × [0,∞) and y(ξ, 0) = y0(ξ) for ξ ∈ �,

� = (0, 1) × (0, 1), α = 5 and β = 0.5. Here, � is the indicator function of the set
[0.25, 0.75]×[0.25, 0.75]. The finite differencemethod can be used to semi-discretise
the NHE. This leads to an ODE system involving the matrix A ∈ R

N×N , which is
the discretized version of the operator α� and the matrix B ∈ R

N×M , that is the
discretized version of �. The quadratic and cubic terms become a component-wise
application of this operation on the state. For the experiments, we choose N = 100.
This gives M = 36. The system has a stable equilibrium point in the constant one
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function and an unstable equilibrium point in the constant zero function. The goal of
the control is to optimally steer the system to zero. We fix the following OCP:

min
u∈U∞

∫ ∞

0
‖x(s)‖22 + 10−3 ‖u(s)‖22 ds

subject to ẋ(s) = Ax(s) + β(x2(s) − x3(s)) + Bu(s) and x(0) = x0.

We choose the space-continuous version of the set of initial states as

{a sin(bπξ1)
2 sin(cπξ2)

2 + d sin(eπξ21 )2 sin( f πξ2)
2

|a, d ∈ [−0.25, 0.5] and c, b, e, f ∈ {1, 2}},

since the functions satisfy the Neumann boundary condition. We have to make this
restriction for dimensionality reasons. Then, the set A is given by the spatially dis-
cretized version of these functions according to the finite difference grid, where the
parameters a and d are uniformly sampled from [−0.25, 0.5]2 with 25 points in each
direction. A meaningful visualization of the training and test data sets, as well as the
centers selected for each of the twoHermite surrogates, is difficult for this model prob-
lem. For illustrative purposes, Fig. 4 (left) only shows the course of the first optimal
trajectory in the training data set. The latter consists of 250 trajectories, with a cover
distance smaller than εtol,d/Cmax,A = 3.956 · 10−2. Computing an optimal trajec-
tory with PMP conditions took about 344 s. The maximum deviation of the optimal
trajectory from the HJB equation is smaller than 10−10. The cross validation with
s = 10 resulted in γH = 0.002 for the Hermite surrogate and γSH = 0.02 for the
structured Hermite surrogate. Again, we use 200 centers for both model problems. For
the Hermite kernel surrogate, the training phase took 570 s for the parameter γH and
the relative training error fell below εtol,f/Cmax,v = 7.326 · 10−4. For the structured

Fig. 4 The left diagram shows the first trajectory in the training data set on six time instants. The right
diagram presents a semilogy plot of the MRL2Error for the three types of surrogate over the number of
centers selected
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Hermite surrogate, the relative training error is less than εtol,f/Cmax,v = 2.119 · 10−3.
This took 542 s to train.

In terms of the MRL2Error , both surrogates quickly give better results than the
quadratic approximation to the VF, which delivers 5.556·10−2. In this model problem,
the latter is constructed by linearizing the ODE and solving the resulting algebraic
Riccati equation.Aswith allmodel problems, the structuredHermite surrogate is better
at the beginning, but similar to the first model problem, it is caught up by the Hermite
surrogate. However, the structured Hermite surrogate gives a similar MRL2Error
curve whose minimum value is 2.713 · 10−3. The minimum MRL2Error value for
the Hermite surrogate is 1.658 · 10−3. It took on average 3.5 s to compute a surrogate-
controlled trajectory with an initial state in the test data set for the Hermite surrogate
and 3.6 s for the structured Hermite surrogate, which again is much less than the 344
s for computing an optimal open-loop controlled solution.

6 Conclusion

A key element of our data-based approach is the generation of high-quality VF data.
This is achieved by a method that solves the infinite time horizon problem by trans-
forming the integration domain and adjusting the boundary conditions accordingly.
An indicator that this method works very well is the small deviation of the data from
the HJB equation of the infinite time horizon OCP. In fact, this was so small for some
model problems that one could also interpret it as a collocation approach. Another
aspect that makes the VKOGA for Hermite interpolation possible in the first place
is the matrix-free approach. Here, it should be emphasized that the matrix–vector
multiplication can be reduced from O(N |D| n2) to O(|D| n2). This allows medium-
dimensional problems, such as the NHE model problem, to be considered and the
use of the selection criterion in the VKOGA algorithm, without incurring extreme
runtimes. As outlook, to work with high-dimensional problems, one could use MOR.
In the numerical experiments, we mainly discussed the quality of control by the sur-
rogate via the MRL2Error . It should be noted that the error between the real VF
and the surrogate could accumulate at each control step in the surrogate closed-loop
control. However, this is not observed in the numerical experiments, where not only
the stability of this closed-loop is seen, but also that the solutions are nearly optimal.
Moreover, these surrogate-controlled solutions can be computedmuch faster than opti-
mal open-loop solutions when the surrogate is available, as the runtimes show, leading
to a significant offline-online decomposition. Furthermore, the numerical experiments
show that the use of the context-aware structured Hermite surrogate is worth trying
when a quadratic approximation to the VF is available. This is motivated by the result
for the GST model problem. In general, this data-based approach could be extended
to OCPs with finite time horizons, such as those found in MPC. In this, the VF is
dependent on the initial time, which raises the question of how the surrogate should
be designed to deal with this additional time variable.
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