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Abstract
Probabilistic variants ofmodel order reduction (MOR)methods have recently emerged
for improving stability and computational performance of classical approaches. In
this paper, we propose a probabilistic reduced basis method (RBM) for the approx-
imation of a family of parameter-dependent functions. It relies on a probabilistic
greedy algorithm with an error indicator that can be written as an expectation of some
parameter-dependent random variable. Practical algorithms relying on Monte Carlo
estimates of this error indicator are discussed. In particular, when using probably
approximately correct (PAC) bandit algorithm, the resulting procedure is proven to
be a weak-greedy algorithm with high probability. Intended applications concern the
approximation of a parameter-dependent family of functions for which we only have
access to (noisy) pointwise evaluations. As a particular application, we consider the
approximation of solutionmanifolds of linear parameter-dependent partial differential
equations with a probabilistic interpretation through the Feynman-Kac formula.
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1 Introduction

This article focuses on the approximation of a family of functionsM = {u(ξ) : ξ ∈ �}
indexed by a parameter ξ , each function u(ξ) being an element of some high-
dimensional vector space V . The functions u(ξ) can be known a priori, or implicitly
given through parameter-dependent equations. In multi-query contexts such as opti-
mization, control, or uncertainty quantification, one is interested in computing u(ξ)

for many instances of the parameter. For complex numerical models, this can be com-
putationally intractable. Model order reduction (MOR) methods aim at providing an
approximation un(ξ) of u(ξ)which can be evaluated efficiently for any ξ in the param-
eter set �. For linear approximation methods, an approximation un(ξ) is obtained by
means of a projection onto a low-dimensional subspace Vn which is chosen to approxi-
mate at bestM, uniformly over� for empirical interpolationmethod (EIM) or reduced
basis method (RBM), or in a mean-square sense for proper orthogonal decomposition
(POD) or proper generalized decomposition (PGD)methods (see, e.g., the survey [1]).

Probabilistic variants of MORmethods have been recently proposed for improving
stability and computational performance of classicalMORmethods. In [2], the authors
introduced a probabilistic greedy algorithm for the construction of reduced spaces Vn ,
which uses different training sets in � with moderate cardinality, randomly chosen at
each iteration, that allows a sparse exploration of a possibly high-dimensional parame-
ter set. In [3], the authors derive a similar probabilistic EIM using sequential sampling
in �, which provides an interpolation with a prescribed precision with high probabil-
ity. Let us also mention that a control variate method using a reduced basis paradigm
has been proposed in [4] for Monte Carlo (MC) estimation of the expectation of a
collection of random variables u(ξ) in a space V of second-order random variables. A
greedy algorithm is introduced to select a subspace Vn of random variables, that relies
on a statistical estimation of the projection error. This algorithm has been analyzed
in [5] and proven to be a weak-greedy algorithm with high probability. Probabilistic
approaches have also been introduced for providing efficient and numerically stable
error estimates for reduced order models [6–9]. In [10–14], random sketching meth-
ods have been systematically used in different tasks of projection-based model order
reduction, including the construction of reduced spaces or libraries of reduced spaces,
the projection onto these spaces, the error estimation, and preconditioning.

Here, we consider the problem of computing an approximation un of u within a
reduced basis framework. The reduced basis method performs in two steps, offline
and online. During the offline stage, a reduced space Vn is generated from snapshots
u(ξi ) at parameter values ξi greedily selected by maximizing over � (or some subset
of �) an error indicator �(un−1(ξ), ξ) which provides a measure of the discrepancy
between u(ξ) and un−1(ξ). Then, during the online step, un(ξ) is obtained by some
projection onto Vn .

In this paper, we propose a probabilistic greedy algorithm for which �(un(ξ), ξ)

is the square error norm ‖u(ξ) − un(ξ)‖2V , expressed as the expectation of some
parameter-dependent random variable Zn(ξ),

�(un(ξ), ξ) = E(Zn(ξ)). (1)
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For maximizing E(Zn(ξ)), we rely on MC estimates. We consider either a naive MC
approach with a fixed number of samples or a PAC (probably approximately correct)
bandit algorithm proposed by the authors in [15] based on adaptive sampling. The
algorithm only requires a limited number of samples by preferably sampling ran-
dom variables associated with a probable maximizer ξ . It is particularly suitable for
applications where the random variable Zn(ξ) is costly to sample. Under suitable
assumptions on the distribution of Zn(ξ), it provides a PACmaximizer in relative pre-
cision, meaning that with high probability the parameter ξ is a quasi-optimal solution
of the optimization problem.We prove in this work that the resulting greedy algorithm
is a weak-greedy algorithm with high probability.

Intended applications concern the approximation of a parameter-dependent fam-
ily of functions u(ξ) defined on a bounded domain D for which we have access
to (possibly noisy) pointwise evaluations u(ξ)(x) := u(x, ξ) for any x ∈ D.
The proposed probabilistic greedy algorithm can be used to generate a sequence
of spaces Vn and corresponding interpolations un of u onto Vn . Assuming u(ξ) ∈
L2(D) and we have a direct access to pointwise evaluations, the square error norm
‖u(ξ) − un(ξ)‖2

L2(D)
used to select the parameter ξ can be estimated from samples

of Zn(ξ) = |D||u(Y , ξ) − un(Y , ξ)|2 with Y a uniform random variable over D. It
results in a probabilistic EIM in the spirit of [3]. In a fully discrete setting where �

and D are finite sets, u can be identified with a matrix and the proposed algorithm is
a probabilistic version of adaptive cross approximation for low-rank matrix approx-
imation [16, 17], with a particular column-selection strategy. Another context is the
solution of a linear parameter-dependent partial differential equation (PDE) defined
on a bounded domain D and whose solution u(ξ) admits a probabilistic representa-
tion through the Feynman-Kac formula. This allows to express a pointwise evaluation
u(x, ξ) as the expectation of a functional of some stochastic process. The problem
being linear, the error u(ξ)−un(ξ) also admits a Feynman-Kac representation, which
again allows to express the square error norm �(un(ξ), ξ) = ‖u(ξ) − un(ξ)‖2

L2(D)

as the expectation of some random variable Zn(ξ) and to estimate it through Monte
Carlo simulations of stochastic processes. This is a natural framework to apply the
proposed probabilistic greedy algorithm, which allows a direct estimation of the tar-
geted error norm and avoids the use of possibly highly biased residual-based error
estimates. This leads to error estimators with better effectivity, which improves the
behavior of weak-greedy algorithms. In practice, as the exact solution of the PDE is
not available, the snapshots used for generating the reduced space Vn are numerical
approximations computed from pointwise evaluations of the exact solution u(ξ) by
some interpolation or learning procedure. This results in a fully probabilistic setting
which opens the route for the solution of high-dimensional PDEs (see, e.g., [18] where
the authors rely on interpolation on sparse polynomial spaces).

This paper is structured as follows. In Section 2, we recall basic facts concern-
ing the reduced basis method. Then, in Section 3, we present and analyze our new
probabilistic greedy algorithm. Based on this algorithm, we derive in Section 4 a new
reduced basis method for parameter-dependent PDEs with a probabilistic interpreta-
tion. Numerical results illustrating the performance of the proposed approaches are
presented in Section 5.
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2 Reduced basis greedy algorithms

As discussed in the introduction, the reduced basis method relies on two steps. We
mainly focus on the offline stage during which the reduced subspace Vn ⊂ V is
constructed. In particular, we recall in this section some basic facts concerning greedy
algorithms usually considered in that context. For a detailed overview on that topic
see, e.g., surveys [19, 20].

Throughout this paper, V is some Hilbert space equipped with a norm ‖ · ‖V . We
seek an approximation un(ξ) of u(ξ) in a low-dimensional space Vn which is designed
to well approximate the solution manifold

M = {u(ξ) : ξ ∈ �}.

A benchmark for optimal linear approximation is given by the Kolmogorov n-width

dn(M)V := inf
dim Vn=n

sup
u∈M

‖u − PVnu‖V ,

where the infimum is taken over all n-dimensional subspaces Vn of V and where
PVn stands for the orthogonal projection onto Vn . However, an optimal space Vn is
in general out of reach. A prominent approach is to rely on a greedy algorithm for
generating a sequence of spaces from suitably selected parameter values. Starting from
V0 = {0}, the n-th step of this algorithm reads as follows. Given {ξ1, . . . , ξn−1} ⊂ �

and the corresponding subspace

Vn−1 = span{u(ξ1), . . . , u(ξn−1)},

a new parameter value ξn is selected as

‖u(ξn) − un−1(ξn)‖V = sup
ξ∈�

‖u(ξ) − un−1(ξ)‖V , (2)

where un−1 stands for an approximation of u(ξ) in Vn−1. However, this ideal algorithm
is still unfeasible in practice, at least for the two following reasons:

1. computing the error ‖u(ξ)−un−1(ξ)‖V for all ξ ∈ �may be unfeasible in practice
(e.g., when u(ξ) is only given by some parameter-dependent equation), and

2. maximizing this error over � is a non trivial optimization problem.

Point 1) is usually tackled by selecting a parameter ξn which maximizes some
surrogate error indicator �(un−1(ξ), ξ) that can be easily estimated. Assuming un(ξ)

is a quasi-optimal projection of u(ξ) ontoVn and assuming�(un−1(ξ), ξ) is equivalent
to ‖u(ξ) − un−1(ξ)‖V , there exists γ ∈ (0, 1] such that

‖u(ξn) − PVn−1u(ξn)‖V ≥ γ sup
ξ∈�

‖u(ξ) − PVn−1u(ξ)‖V , (3)
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which yields aweak-greedy algorithm.Quasi-optimalitymeans that the approximation
un of u in Vn satisfies

‖u(ξ) − un(ξ)‖V ≤ C‖u(ξ) − PVnu(ξ)‖V (4)

for some constant C independent from Vn and ξ . Although the generated sequence Vn
is not optimal, it has been proven in [21–23] that the approximation error

σn(M)V := sup
u∈M

‖u − PVnu‖V

has the same type of decay as the benchmark dn(M)V for algebraic or exponential
convergence.

Remark 1 In the case of parameter-dependent linear equation arising, e.g., from the
discretization of some parameter-dependent linear PDE of the form r(u(ξ), ξ) = 0
with u(ξ) ∈ V = RN , the approximation un(ξ) is typically obtained through some
(Petrov-)Galerkin projection onto Vn , with a complexity depending on n � N . In
such a context, a weak-greedy algorithm classically involves a certified residual-based
error estimate�(un(ξ), ξ), that is an upper bound of the true error. However, for some
applications, such an error estimate can be pessimistic (when the underlying discrete
operator is badly conditioned) so that the generated sequence Vn is far from being
optimal.Apossible strategy to improve such an estimate is to consider a preconditioned
residual [12, 14, 24]. In Section 4, we overcome this limitation by considering for
�(un(ξ), ξ) the targeted square error norm ‖u(ξ) − un(ξ)‖2V , which is evaluated
using adaptive Monte Carlo estimations.

Point 2) is addressed by transforming the continuous optimization problem over �
into a discrete optimization over a finite subset ˜� ⊂ �. Choosing the training set �̃

is a delicate task. As pointed out in [2, Section 2], if �̃ is an ε-net of �, then a greedy
algorithm for the approximation of the discrete solutionmanifold ˜M = {u(ξ) : ξ ∈ �̃}
generates a sequence of spaces that are able to achieve a precision in O(ε)with similar
performance as the ideal greedy algorithm. However, the cardinality of �̃may be very
large for a parameter set� in a high-dimensional space Rp and when a low precision ε

is required. In [2], the authors propose a greedy algorithmwhich uses different training
sets randomly chosen at each step. Under suitable assumptions on the approximability
of the solution map ξ �→ u(ξ) by sparse polynomial expansions, training sets can be
chosen of moderate size independent of the parametric dimension p.

To conclude this section, we give a practical deterministic (weak)-greedy algorithm
that can be summarized as follows.

Algorithm 1 Deterministic greedy algorithm.
Let �̃ ⊂ � be a discrete training set and V0 = {0}.
For n ≥ 1 proceed as follows.

Step 1. Select
ξn ∈ argmax

ξ∈�̃

�(un−1(ξ), ξ).

Step 2. Compute u(ξn) and update Vn = span{u(ξ1), . . . , u(ξn)}.
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Usually, Algorithm 1 is stopped when �(un(ξ), ξ) is below some target precision
ε > 0 or for a given dimension n.

3 A probabilistic greedy algorithm

In this section, wemotivate and present a probabilistic variant of Algorithm 1. Such an
algorithm relies on the concept of probably approximately correct (PAC) maximum.
It is proven to be a weak-greedy algorithm with high probability.

As a starting point for our work, we assume that for any value ξ in �, the error
estimator required at each step of Algorithm 1 admits the following form

�(un(ξ), ξ) := ‖u(ξ) − un(ξ)‖2V = E(Zn(ξ)), (5)

where Zn(ξ) is some parameter-dependent real-valued random variable, defined on
the probability space (	,F ,P). Here, E(Zn(ξ)) is a probabilistic representation of
the current square error ‖u(ξ) − un(ξ)‖2V depending on the targeted applications as
discussed in what follows.

Example 1 (Estimate of the norm of approximation error) Suppose that u(ξ) belongs
to V = L2(D) the Lebesgue space of square-integrable functions defined on a
bounded set D ⊂ Rd . If �(un(ξ), ξ) = ‖u(ξ) − un(ξ)‖2

L2 , then (5) holds with

Zn(ξ) = |D||u(Y , ξ) − un(Y , ξ)|2 where Y ∼ U(D) is a random variable with
uniform distribution over D.

Example 2 (Greedy algorithm for control variate [4, 5]) Let us suppose that we want
to compute an MC estimate of the expectation of a parameter-dependent family of
random variables u(ξ) belonging to a Hilbert space of centered second-order random
variables. MC estimate is known to slowly converge with respect to the number of
samples of u(ξ). Variance reduction techniques based on control variates are usu-
ally used to improve MC estimates. In [5], the authors propose an RB paradigm to
compute a control variate with a greedy algorithm of the form of Algorithm 1 where
�(un(ξ), ξ) = E(Zn(ξ)) with Zn(ξ) = |u(ξ) − un(ξ)|2 in (5).

3.1 Main algorithm

Solving the following optimization problem

ξn ∈ argmax
ξ∈�̃

E(Zn−1(ξ)) (6)

is in general out of reach, since E(Zn−1(ξ)) is unknown a priori or too costly to
compute. Then, we propose a greedy algorithm with an approximate solution of (6).
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Algorithm 2 Probabilistic greedy algorithm.

Let �̃ ⊂ � be a discrete training set. Starting from V0 = {0}, proceed, for n ≥ 1, as follows.

Step 1. Select
ξn ∈ S(Zn−1(ξ), �̃).

Step 2. Compute u(ξn) and update Vn = span{u(ξ1), . . . , u(ξn)}.

The question is now how to choose properly the set of candidate parameter values
S(Zn−1(ξ), �̃)? In view of numerical applications, a first practical and naive approach
is to seek ξn maximizing the empirical mean, i.e.,

S(Zn−1(ξ), �̃) := argmax
ξ∈�̃

Zn−1(ξ)K

where Zn−1(ξ)K = 1
K

∑K
i=1(Zn−1(ξ))i with K i.i.d. copies of Zn−1(ξ). In the fol-

lowing, this algorithm will be called MC-greedy. Despite its simplicity, it is well
known that such an estimate for the expectation suffers from low convergence with
respect to the number of samples leading to possible high computational costs espe-
cially if Zn(ξ) is expensive to evaluate. Moreover, nothing ensures that the returned
(random) parameter ξn is a (quasi-)optimum for (6), almost surely or at least with high
probability.

Instead, the so-called bandit algorithms (see, e.g., monograph [25]) are good can-
didates to address (6). Here, we particularly focus on PAC bandit algorithms that for
each n return a parameter value ξn which is a probably approximately correct (PAC)
maximum in relative precision for E(Zn(ξ)) over �̃ (see [15]). For a given ε ∈ (0, 1)
and probability λn ∈ (0, 1), letting ξ�

n ∈ argmaxξ∈�̃ E[Zn−1(ξ)], such an algorithm
returns ξn satisfying

P
(

E(Zn−1(ξ
�
n )) − E(Zn−1(ξn)) ≤ εE(Zn−1(ξ

�
n ))

) ≥ 1 − λn . (7)

We use the notation S(Zn−1(ξ), �̃) := PACλn ,ε(Zn−1, �̃) when ξn satisfies (7). The
resulting greedy algorithm is calledPAC-greedy. In practice, the adaptive bandit algo-
rithm in relative precision introduced in [15, Section 3.2] is particularly interesting in
the case where Zn(ξ) is costly to evaluate since it preferentially samples the random
variable Zn(ξ) for the parameter values for which it is more likely to find a maximum.
Hence, it outperforms the mean complexity of a naive approach in terms of number of
generated samples. Appendix A gives a detailed presentation of such a PAC adaptive
bandit algorithm. As stated in Proposition 4, such an algorithm provides a PAC maxi-
mum in relative precision, that fulfills (7), in the particular case where {Zn(ξ), ξ ∈ �̃}
are random variables satisfying some concentration inequality. The interested reader
can refer to [15] and included references for more details.
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3.2 Analysis of PAC-greedy algorithm

Now, we propose and analyze a probabilistic greedy algorithm where the parameter
ξn is a PAC maximum in relative precision for (5), i.e., satisfying (7), at each step n.

At a step n of the Algorithm 2, the reduced space Vn = span{u(ξ1), . . . , u(ξn)}, as
well as the approximation un(ξ) are no longer deterministic. Indeed, they are related to
the selected parameters ξ1, . . . , ξn depending themselves on the errors at the previous
steps through i.i.d. samples of the random variables Zi (ξ) for all ξ ∈ � and i < n
(required during PAC selection of ξn). Now, we prove that Algorithm 2 is a weak-
greedy algorithm with high probability.

Theorem 1 Take (λn)n≥1 ⊂ (0, 1)N
+
such that

∑

n≥1 λn = λ < 1, ε ∈ (0, 1) and

�̃ ⊂ � a discrete training set. Moreover, suppose that for n ≥ 1 the approximation
un(ξ) of u(ξ) in Vn is quasi-optimal in the sense that it satisfies (3)with� replaced by

�̃. Then, Algorithm 2 is a weak-greedy algorithm of parameter
√
1−ε
C , with probability

at least 1 − λ, i.e.,

P

(

‖u(ξn)−PVn−1u(ξn)‖V ≥
√
1 − ε

C
max
ξ∈�̃

‖u(ξ)−PVn−1u(ξ)‖V ,∀n ≥ 1

)

≥1 − λ.

(8)

Proof Let first introduce some useful notation. We denote by Pn−1(·) := P(·|Z<n)

the conditional probability measure with respect to Z<n that denotes the collection
of random variables Zi (ξ)k for all ξ ∈ � and i < n, where Zi (ξ)k are i.i.d. copies
of Zi (ξ). The related conditional expectation is En−1 (·) = E (·|Z<n). Now, let A =
∩n≥1An , each event An being defined as

An :=
{

En−1(Zn−1(ξ
�
n )) − En−1(Zn−1(ξn)) ≤ εEn−1(Zn−1(ξ

�
n ))

}

,

with ξ�
n ∈ argmaxξ∈�̃ En−1(Zn−1(ξ)). Then, at each step n ofAlgorithm 2, the param-

eter ξn is a PAC maximum knowing Z<n , i.e.,

Pn−1(An) ≥ 1 − λn . (9)

Finally, as un−1(ξ) is completely determined by all the steps before n (i.e., depending
only on Z<n), we have

‖u(ξ) − un−1(ξ)‖2V = En−1(Zn−1(ξ)). (10)

For all n ≥ 1, the quasi-optimality condition (4) and probabilistic representation
(10) lead to

‖u(ξn) − PVn−1u(ξn)‖2V ≥ 1

C2 ‖u(ξn) − un−1(ξn)‖2V = 1

C2E
n−1(Zn−1(ξn)). (11)
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Moreover, if A holds, we have for n ≥ 1

En−1(Zn−1(ξ)) ≥ (1−ε)En−1(Zn−1(ξ
�
n )) ≥ (1−ε)max

ξ∈�̃

‖u(ξ)−PVn−1u(ξ)‖2V (12)

by definition of ξ�
n . Thus, by combining (11) and (12), we have that A implies for all

n ≥ 1

‖u(ξn) − PVn−1u(ξn)‖V ≥
√
1 − ε

C
max
ξ∈�̃

‖u(ξ) − PVn−1u(ξ)‖V .

We now estimate P(A)

P(A) = 1 − P(A) ≥ 1 −
∑

n≥1

P(An) = 1 −
∑

n≥1

E
(

1An

)

= 1 −
∑

n≥1

E

⎛

⎜

⎜

⎜

⎝

E
(

1An
|Z<n

)

︸ ︷︷ ︸

Pn−1(An)

⎞

⎟

⎟

⎟

⎠

≥ 1 −
∑

n≥1

λn,

where the last inequality derives from (9), which concludes the proof. ��
Remark 2 Theorem 1 proves that Algorithm 2 is a weak-greedy algorithm, with prob-
ability 1 − λ, for the approximation of the discrete solution manifold ˜M. Thus, the
approximation error σn(˜M) has the same decay rate as dn(˜M) for algebraic or expo-
nential convergence. In the lines of [2], it is possible to consider also a fully probabilistic
variant of Algorithm 2, in which a training set �n randomly chosen is used at each
step n of Algorithm 2 instead of �̃. For a particular class of functions that can be
approximated by polynomials with a certain algebraic rate, it can be proven that, for a
suitable chosen size of random training set�n , the resulting algorithm is aweak-greedy
algorithm with high probability with respect to the continuous solution manifold M.

4 Reduced basis method for parameter-dependent PDEs
with probabilistic interpretation

We recall that this work is motivated by the approximation, in a reduced basis frame-
work, of a costly function u(ξ) : D → R defined on the spatial domain D ⊂ Rd

depending on the parameters ξ lying in � ⊂ Rp. Here, we consider the problem
where u is the solution of a parameter-dependent PDE with probabilistic interpreta-
tion.

Let D be an open bounded domain in Rd . For any parameter ξ ∈ �, we seek
u(ξ) : D → R the solution of the following boundary value problem,

−A(ξ)u(ξ) = g(ξ) in D,

u(ξ) = f (ξ) on ∂D,
(13)
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where f (ξ) : ∂D → R, g(ξ) : D → R are respectively the boundary condition and
source term, and A(ξ) is a linear and elliptic partial differential operator.

Since the exact solution of (13) is not computable in general, it is classical to
consider instead uh(ξ) an approximation in some finite dimensional space Vh ⊂ V
deduced from some numerical discretization of the PDE. Classical RBM applies in
that context, relying on some variational principles to provide an approximation un(ξ)

of uh(ξ) in a reduced space Vn ⊂ Vh , of small dimension, obtained through a greedy
algorithm (see Section 2). Here, we overcome such a priori discretization of the PDE
and directly address the approximation of the solution u(ξ) of (13). The key idea
is to use the so-called Feynman-Kac representation formula that allows to compute
pointwise estimates of u(ξ) for any x ∈ D̄. This particular framework raises the
following practical questions. During the offline step, how to choose a computable
error estimator �(un(ξ), ξ) required in greedy algorithm and compute the snapshots
required for generating the reduced basis and related reduced space Vn? During the
online step, how to compute the approximation un?

To that goal, in this section, a probabilistic RBM using only (noisy) pointwise
evaluations is presented. We first recall the Feynman-Kac formula in Section 4.1.
In Section 4.2, we detail a probabilistic greedy algorithm for the construction of the
reduced space Vn in this setting. Finally, in Section 4.3, we discuss possible approaches
for computing the approximation un(ξ).

4.1 Feynman-Kac representation formula for an elliptic PDE

In what follows, W = (Wt )t≥0 denotes a standard d-dimensional Brownian motion
defined on the probability space (	,F ,P) endowed with its natural filtration (Ft )t≥0.
For the sake of simplicity, the dependence to parameter ξ is omitted in the presentation
of the Feynman-Kac formula.

Let us consider the boundary problem (13), where the partial differential operator
A is given as

A = 1

2

d
∑

i, j=1

(σσ T )i j
∂2

∂xi∂x j
+

d
∑

i=1

bi
∂

∂xi
. (14)

It is the infinitesimal generator associated to the parameter-dependent d-dimensional
diffusion process Xx = (Xx

t )t≥0, adapted to (Ft )t≥0, solution of the following stochas-
tic differential equation (SDE)

dXx
t = b(Xx

t )dt + σ(Xx
t )dWt , Xx

0 = x ∈ D, (15)

where b(·) : Rd → Rd and σ(·) : Rd → Rd×d are the drift and diffusion coefficients,
respectively.

Before recalling Feynman-Kac formula, we introduce additional assumptions and
notation. Denoting by ‖ · ‖ both euclidean norm on Rd and Frobenius norm on Rd×d ,
we first introduce the assumption that b and σ are Lipschitz continuous.
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Assumption 1 There exists a constant 0 < M < +∞ such that for all x, y ∈ D̄, we
have

‖b(x) − b(y)‖ + ‖σ(x) − σ(y)‖ ≤ M‖x − y‖. (16)

Under Assumption 1, there exists a unique strong solution to Equation (15) (see, e.g.,
[26, Chapter 5, Theorem 1.1.]).

Denoting a = σσ T , we introduce the following uniform ellipticity assumption.

Assumption 2 There exists c > 0 such that

yT a(x)y ≥ c‖y‖2, for all y ∈ Rd , x ∈ D.

As problem (13) is defined on a bounded domain, we define the first exit time of D
for the process Xx as

τ x = inf
{

s > 0 : Xx
s /∈ D

}

. (17)

Also, we assume some regularity property on the spatial domain D and data.

Assumption 3 The domain D is an open connected bounded domain of Rd , regular in
the sense that it satisfies

P(τ x = 0) = 1, x ∈ ∂D.

Assumption 4 We assume that f is continuous on ∂D, g is Hölder-continuous on D.

The following probabilistic representation theorem [26, Chapter 6, Theorem 2.4]
holds.

Theorem 2 (Feynman-Kac formulaUnderAssumptions 1-4 there exists a unique solu-
tion of (13) in C(D) ∩ C2(D), which satisfies for all x ∈ D

u(x) = E

(

f (Xx
τ x ) +

∫ τ x

0
g(Xx

t )dt

)

=: E(F(x, Xx )), (18)

where Xx is the stopped diffusion process solution of (15).

Theorem 2 allows to derive a probabilistic numerical method for the computation
of pointwise MC estimate of u, see Appendix B.

4.2 Offline step

During the offline step, the probabilistic greedy algorithm presented in Section 3 is
considered to construct the reduced space Vn . The keystone of such an algorithm is
the probabilistic reinterpretation of the error estimate �(un(ξ), ξ) as in Equation (5).
Using the Feynman-Kac representation formula, we show in Section 4.2.1 that it is
possible to rewrite the square of the approximation error as an expectation. Then, in
Section 4.2.2, we discuss possible strategies for the practical implementation of such
an algorithm.
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4.2.1 Probabilistic error estimate

Let us assume that un(ξ) is a linear approximation of u(ξ) in a given reduced space
Vn ⊂ V (e.g., obtained using Algorithm 2). We recall that u(ξ) ∈ C(D) ∩ C2(D) is
the unique solution of (13) with the following probabilistic representation

u(x, ξ) = E
(

F(x, Xx,ξ , ξ)
)

, x ∈ D̄, (19)

with Xx,ξ the parameter-dependent stopped diffusion process solution of (15). In
classical RB methods, the error estimate �(un(ξ), ξ) used in Algorithm 1 is usually
related to some suitable norm of the equation residual. Here, we follow another path
by considering the L2-norm of the current approximation error en(ξ) = u(ξ)−un(ξ),
i.e.,

�(un(ξ), ξ) = ‖en(ξ)‖2L2 .

In what follows, we give a possible probabilistic reinterpretation of this error. Assum-
ing that un(ξ) is regular enough (the regularity being inherited from the snapshots),
the error en(ξ) := u(ξ) − un(ξ) is the unique solution, for all ξ in �, of

− A(ξ)en(ξ) = gn(ξ) on D,

en(ξ) = fn(ξ) on ∂D, (20)

where fn(ξ) := f (ξ) − un(ξ) and gn(ξ) = g(ξ) + A(ξ)un(ξ). By Feynman-Kac
representation theorem, for all ξ in �, en(ξ) is the unique solution of (20) in C(D) ∩
C2(D) and satisfies for all x ∈ D

en(x, ξ) = E

(

fn(X
x,ξ
τ x,ξ

, ξ ) +
∫ τ x,ξ

0
gn(X

x,ξ
t , ξ)dt

)

=: E (Fn(x, Xx,ξ , ξ)
)

, (21)

with Xx,ξ the stopped diffusion process solution of (15). Then, we have the following
probabilistic reinterpretation for ‖en(ξ)‖2

L2 .

Theorem 3 Let Y ∼ U (D) be uniformly distributed on D. Let W and W̃ be two
independent standard d-dimensional Brownian motions defined on (	,F ,P) and
independent of Y . For any x ∈ D, let Xx,ξ and X̃ x,ξ be solutions of (15) with W, W̃
respectively. Then, we have for any ξ in �

‖en(ξ)‖2L2 = |D|E (Zn(ξ)) , (22)

with Zn(ξ) = Fn(Y , XY ,ξ , ξ)Fn(Y , X̃Y ,ξ , ξ) and |D| the Lebesgue measure of D.

Proof We first recall

‖en(ξ)‖2L2 =
∫

D
en(x, ξ)2dx = |D|E

(

en(Y , ξ)2
)

.
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Since, for any x , Xx,ξ and X̃ x,ξ are i.i.d. random processes, we have

E
(

en(Y , ξ)2
)

= E

(

E
(

Fn(Y , XY ,ξ , ξ))|Y
)2
)

= E
(

E
(

Fn(Y , XY ,ξ , ξ)|Y
)

E
(

Fn(Y , X̃Y ,ξ , ξ)|Y
))

,

and
‖en(ξ)‖2L2 = |D|E

(

E
(

Fn(Y , XY ,ξ , ξ)Fn(Y , X̃Y ,ξ , ξ)|Y
))

.

Then, by the law of iterated expectation, we obtain (22). ��
Remark 3 Assuming the existence of probabilistic representations for the gradient
of u(ξ) and un(ξ), it would be possible to consider probabilistic interpretation of
other norms of the approximation error, such as the H1-norm. Such probabilistic
representations have been derived in simple cases, see, e.g., [27, Corollary IV.5.2].

4.2.2 A probabilistic greedy algorithm using pointwise evaluations

For the purpose of numerical applications, we can apply Algorithm 2 together with
the error estimate (22) for the construction of the reduced space Vn .

Sample computation
The samples of Zn(ξ) (as defined in Theorem 3) are generated from the functional Fn
and independent trajectories of the discrete diffusion process XY ,�t , with Y ∼ U(D).
The discrete diffusion process XY ,�t is computed using a suitable time integration
scheme (see Appendix B) for the stochastic ODE (15).

Snapshot computation
Within Algorithm 2, the reduced space corresponds to Vn = span{u(ξ1), . . . , u(ξn)}.
However, the snapshots {u(ξ1), . . . , u(ξn)} are generally not available since it requires
to compute the exact solution of (13) for parameter instances {ξ1, . . . , ξn}. From
Feynman-Kac formula (18), it is possible to compute MC estimates u�t,M (x, ξ) of
u(x, ξ) from independent realizations of the diffusion process Xx,�t starting from
x ∈ D̄ (as detailed in Appendix B). Then, a global numerical approximation can
be computed in some finite-dimensional linear space of dimension N (potentially
much larger than n), e.g., by interpolation or least-square method, from these MC
pointwise estimates. To compensate possible slow convergence of MC estimates, one
can consider a sequential approach which uses the approximation error at each step
as a control variate in order to reduce the variance of MC estimates. Such a strategy
has been initially proposed in [28, 29] for interpolation, and recently extended for
high-dimensional problems in [18].

Projection computation
For given ξ , the approximation un(ξ) in Vn can be computed by interpolation or a
least-square projection using MC estimates u�t,M (x, ξ) given by (B10), with suitable
choice for evaluation points in D (e.g., using magic points for interpolation [30], or
optimal sampling for least-squares [31]). The resulting complexity of this projection
step is only linear in n (up to log).
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4.3 Online step

Given the reduced space Vn obtained during the offline stage, the approximation un(ξ)

is computed, with complexity depending only on n (and not on N ), following the
procedure described in the projection step of Section 4.2.2.

5 Numerical applications

The aim of this section is twofold. We first illustrate the feasibility of a greedy algo-
rithmwith probabilistic error estimate for the approximation of a parameter-dependent
function from its pointwise evaluations. Then, we present some numerical experi-
ments concerning the probabilistic RBM, discussed in Section 4, for the solution of
parameter-dependent PDEs with probabilistic interpretation.

5.1 Approximation of parameter-dependent functions

Let us consider the problem of computing an approximation un(ξ) of u(ξ), from
its pointwise evaluations at given points in D. Particularly, we seek un(ξ) as the
interpolation of u(ξ) in the finite-dimensional space Vn ⊂ V , such that

un(xi , ξ) = u(xi , ξ), xi ∈ �,

with � = {x1, . . . , xn} an unisolvant grid of suitably chosen interpolation points in D.
Numerical experiments with a least-square projection provided similar results. Thus,
they are not presented in this section.

5.1.1 Procedures for the construction of Vn

For constructing the space Vn = span{u(ξ1), . . . , u(ξn)}, we compare different greedy
procedures for the selection of the snapshots u(ξi ), i = 1, . . . , n. First, we use the
deterministic greedy Algorithm 1, for which�(un−1(ξ), ξ) is a numerical estimate of
the L2-norm of the approximation error ‖u(ξ) − un(ξ)‖L2(D) using some integration
rule. This approach is confronted to probabilistic alternatives relying on probabilistic
reinterpretation of the approximation error

‖u(ξ) − un(ξ)‖2L2(D)
= E(Zn(ξ)).

where Zn(ξ) = |D||un(X , ξ) − u(X , ξ)|2, X ∼ U(D), as discussed in Example 1.
In this setting, the set S(Zn−1(ξ), �̃) within Algorithm 2 is obtained using either
a crude MC estimate of the expectation or adaptive bandit algorithms discussed in
Appendix A.When non-asymptotic concentration inequalities are used, the parameter
ξn returned by Algorithm 2 is a PAC maximum under suitable assumptions on the
distribution of Zn(ξ). In particular, for any ξ ∈ �̃, if there exist an(ξ), bn(ξ) ∈ R such
that an(ξ) ≤ Zn(ξ) ≤ bn(ξ) a.s., concentration inequalities under the form (A2) hold.
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Having such knowledge a priori of the distribution of Zn(ξ) and finding the bounds
an(ξ), bn(ξ) is not an easy task. Here, since u(ξ) is known, we set the following
heuristic bounds

an(ξ) = min
x∈D̃

|u(x, ξ) − un(x, ξ)|2 and bn(ξ) = max
x∈D̃

|u(x, ξ) − un(x, ξ)|2,

to perform our computations with D̃ ⊂ D a finite subset. Moreover, by Remark 5, we
have to define the sequence (dm)m≥1 with dm = λn

#�̃
(p−1)

p m−p, p = 2 and λn = λ
n . We

also consider a variant relying on asymptotic concentration inequality as a central limit
theorem (CLT), which overcomes the necessity of computing any bound for Zn(ξ) and
defining the sequence (dm)m≥1. These probabilistic approaches are also compared to
another naive approach, in which ξn is chosen at random in �̃ (without replacement)
at each step n of Algorithm 2.

In what follows, the deterministic approach is called D-greedy, whereas the prob-
abilistic ones using MC estimate and bandit algorithms are named MC-greedy
and PAC-greedy relying on non-asymptotic (Bounded) or asymptotic concentration
inequalities (CLT). The last one is simply referred to as Random.

5.1.2 Numerical setting

We perform some numerical tests with the methods discussed in the previous section
for the approximation of the two subsequent functions

u(x, ξ) = 10x sin(2πxξ), (x, ξ) ∈ [0, 1] × [2, 4]

and, following [5],

u(x, ξ)=√
x + 0.11[0,ξ ](x) +

(

x − ξ

2
√

ξ + 0.1
+√ξ + 0.1

)

1[ξ,1](x), (x, ξ)∈[0, 1]2.

The test case related to each function will be designated by (TC1) and (TC2),
respectively.

For the numerical experiments, the training set �̃ is obtained using #�̃ = 300
equally spaced points in �, similarly for D̃ made from equally spaced points in D
(10000 for (TC1), and 1000 for (TC2)). Then, the L2-norm of the approximation
error is estimated by the trapezium rule. Both deterministic and probabilistic greedy
algorithms are stopped for given n = 20 for (TC1) and n = 30 for (TC2). The
interpolation grid � is set to be the sequence of magic points [30], with respect to
the basis of Vn . For the probabilistic procedure with naive MC estimate, we set K ∈
{1, 50}. Finally, for bandit algorithms, the stopping criterion is ε = 0.9 and λ = 0.1.
In [15, Section 4], it was observed that λ has little influence on the number of samples
mn(ξ) used by adaptive algorithm. However, an open problem is to find a λ that gives
an optimal compromise between a high probability of returning a PCA maximum and
a small sampling complexity.

123

Page 15 of 26 19



M. Billaud-Friess et al.

5.1.3 Numerical results

Let us first study the quality of the approximations provided by the different
approaches. Figures1 and 2 represent the evolution of the estimated expectation Eξ

and maximum, with respect to ξ , of the approximation error ‖un(ξ) − u(ξ)‖L2(D̃)

for (TC1) and (TC2). These estimates have been computed using 100 independent
realizations of un(ξ) obtained from uniform draws of ξ in �. In that case, only one
realization of the probabilistic algorithms is performed for the comparison. For both
test cases, D-greedy, MC-greedy, and PAC-greedy procedures behave similarly with
the same error decay with respect to n reaching a precision around 10−14 for (TC1)
and 10−5 for (TC2). Let us mention that for (TC2), the function to approximate has
a slow decay of its Kolmogorov n-width (see, e.g., discussion in [5, Section 4.3.2])
which explains higher error for larger n. For the random approach, the selection of
interpolation points is less optimal. For the first iterates, it behaves similarly to other
approaches, but we observe that the approximation un(ξ) is less accurate with n, from
around 15 for (TC1) and 10 for (TC2) respectively. However, despite no guarantee
of the optimality of the returned parameter ξn , the PAC algorithm with asymptotic
concentration inequality and especially the MC-greedy algorithm, either with a single
random evaluation of the error estimate (K = 1), lead to very satisfactory results with
an error close to the deterministic interpolation approach for both test cases.

Greedy procedure
We now turn to the study of the greedy procedures used for the selection of the snap-
shots. Figures3 and 4 represent the error estimate�(un−1(ξ), ξ) as well as the number
of samplesmn(ξ) required during the greedy selection of ξn for deterministic and prob-
abilistic greedy algorithms based on bandit algorithms for (TC1) and (TC2). These
curves correspond to one realization of the probabilistic algorithms. First, we observe
that parameters selected (indicated with the symbol ∗ on the curves) by probabilistic
algorithms do not necessarily coincide with the ones selected by D-greedy. For MC-
greedy, we observe a much higher variability of the error relatively to parameter ξ ,
for K = 1. This is due to the high variance of the estimate. However, in this simple
example, even a crude MC estimate with K = 1 allows to select a value of parameter

0 5 10 15 20
10− 16

− 12

10− 8

10− 4

100

0 5 10 15 20
10− 16

10− 12

10− 8

10− 4

100
D-Greedy
PAC-Greedy (Bounded)
PAC-Greedy (CLT)
MC-Greedy (K = 50)
MC-Greedy (K = 1)
Random

Fig. 1 (TC1) Evolution with respect to n, of the estimated expectation and maximum of the approximation
error in L2-norm, computed for 100 instances of ξ , for one realization of the probabilistic greedy algorithms
compared to the deterministic one
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Fig. 2 (TC2) Evolution with respect to n, of the estimated expectation and maximum of the approximation
error in L2-norm, computed for 100 instances of ξ , for one realization of the probabilistic greedy algorithms
compared to the deterministic one
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Fig. 3 (TC1)Evolution of the error during greedy procedures based onPACbandit algorithms (top), together
with required samples mn(ξ) for selecting ξn ∈ �̃
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Fig. 4 (TC2)Evolution of the error during greedy procedures based onPACbandit algorithms (top), together
with required samples mn(ξ) for selecting ξn ∈ �̃

that will make the error decrease significantly at the next iteration (see Figs. 1 and 2).
Second, as expected the number of samples mn(ξ) is adapted for both algorithms
resulting in higher sampling in the region where it is likely to findmaximum. Globally,
we observe that PAC-greedy (CLT) works quite similarly to PAC-greedy (Bounded).
But the two approaches differ in terms of the required number of samples. Indeed,
CLT-based approach only requires around a maximum of 10 − 102 samples whereas
the one based on concentration inequalities requires between 103 − 105 samples.

Sampling complexity
Now, we briefly discuss the sampling complexities of the different methods, which are
summarized in Table 1. From Figs. 1 and 2, we see that MC- and PAC-greedy yield
roughly the same level of error for a given dimension n. Therefore, the table provides
the cumulated number of evaluations of the function for constructing the reduced basis
of a given dimension n for each test case.
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Table 1 Cumulative number of
samples required by each
algorithm, for (TC1) and (TC2),
to construct the reduced basis of
dimension n

Method (TC1) for n = 20 (TC2) for n = 30

D-greedy 6 × 107 9 × 106

MC-greedy K = 1 6 × 103 9 × 103

MC-greedy K = 50 3 × 105 4.5 × 105

PAC-greedy (Bounded) 1.284326 × 107 5.764507 × 107

PAC-greedy (CLT) 7.507800 × 104 2.333380 × 105

We present as a reference the results of D-greedy using a fine grid D̃ for numeri-
cal integration. The most costly probabilistic algorithm is PAC-greedy (Bounded). It
requires a high number of samples for constructing non-asymptotic confidence inter-
vals so that it does not outperform D-greedy. Let us mention that PAC-greedy (CLT)
is quite competitive with MC-greedy with K = 50 and underlines the interest of
using some adaptive procedure for snapshot selection. However, the most interesting
trade-off between efficiency and accuracy is MC-greedy with K = 1.

In regard to these observations, in the next section, the MC-greedy approach with
few samples K for the error estimation will be retained in practice to reduce compu-
tational costs.

5.2 Parameter-dependent PDE

Now, we focus on the solution of parameter-dependent PDEs, as introduced in
Section 4. Given � = [0.005, 1], we seek u(ξ), ξ ∈ �, solution on D =]0, 1[ of
the following boundary problem

− A(ξ)u(ξ) := −a(ξ)u′′(ξ) − b(ξ)u′(ξ) = g(ξ) in ]0, 1[,
u(ξ) = f (ξ) at x ∈ {0, 1}, (23)

for given boundary values f (ξ) : {0, 1} → R and source term g(ξ) : [0, 1] → R.
Moreover, we denote a(ξ) ∈ (0,+∞) and b(ξ) ∈ R the diffusion and advection
coefficients respectively. We assume that (23) admits a unique solution in C2([0, 1])
whose probabilistic representation is given by

u(x, ξ) = E(F(x, Xx,ξ , ξ)) := E

(

f (Xx,ξ
τ x,ξ

) +
∫ τ x,ξ

0
g(Xx,ξ

t , ξ)dt

)

.

The associated parameter-dependent stopped diffusion process Xx,ξ is solution of

dXx,ξ
t = b(ξ)dt +√

2a(ξ)dWt , Xx,ξ
0 = x . (24)
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In the following, we take a(ξ) = ξ and b(ξ) = −10. The source term as well as
Dirichlet boundary conditions are set such that the exact solution to Equation (23) is

u(x, ξ) = exp(x/ξ) − 1

exp(1/ξ) − 1
· (25)

5.2.1 Compared procedures

In what follows, we test the probabilistic RBM discussed in Section 4. Since the exact
solution is known, we use it for the snapshots. The projection un is obtained from
evaluations of the exact solution through interpolation (Interp) using magic points or
a least-squares (LS) approximation using a set of points D̃ in D, with #D̃ ≥ n. It is
also compared to the minimal residual based (MinRes) approximation defined by

un(ξ) = arg min
v∈Vn

(
∑

xi∈D̃
|A(xi , ξ)v(xi , ξ) + g(xi , ξ)|2

+ |u(0, ξ) − v(0, ξ)|2 + |u(1, ξ) − v(1, ξ)|2
)

. (26)

During the offline stage, we consider different greedy algorithms for the generation of
the reduced spaces. First, we perform the proposed probabilistic greedy Algorithm 2
for the construction of the reduced space Vn using MC estimates with Zn(ξ) defined
as in Theorem 3. This approach is compared to an alternative RBM in a deterministic
setting. Since u(ξ) is implicitly known through the boundary value problem (23),
the greedy selection of Vn is performed using Algorithm 1 where �(un(ξ), ξ) is
an estimate (using trapezoidal integration rule) of the residual-based error estimate
‖A(ξ)un(ξ) + g(ξ)‖2

L2(D)
during the offline stage.

In the presented results, the residual-based greedy algorithm is referred to asResid-
ual. The MC estimate using Feynman-Kac representation is named FK-MC. These
approaches are also compared to a naive one namedRandom in which the parameters
ξ1, . . . , ξn that define Vn are chosen at random.

5.2.2 Numerical results

For the numerical experiments, the training set �̃ is made of 200 samples from a
log uniform distribution over �. This distribution is chosen as the solution strongly
varies with respect to the viscosity ξ , in particular, we want to reach small viscosities.
Realizations of Zn(ξ), given by (B10), are computed using M = 500 realizations of
the approximate stochastic diffusion process solution of Equation (24), obtained by
Euler-Maruyama scheme (see Appendix B) with �t = 10−3. For computing un(ξ),
magic points are used for interpolation while for LS and MinRes approaches, we
choose for D̃ a regular grid of 100 points in D. Here, greedy algorithms are stopped
when n = 30. The MC-FK greedy algorithm is performed for K ∈ {1, 10}.

Figure5 represents the estimated expectation and maximum, with ξ , of the approx-
imation error for the compared procedures, with respect to n. The obtained results
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Fig. 5 Parameter-dependent equation: evolution with respect to n, of the estimated expectation and max-
imum of the approximation error in L2-norm, computed for 100 instances of ξ , for one realization of the
probabilistic greedy algorithms compared to the deterministic one

underline the importance of both projection and reduced basis construction. When
MinRes method is used, the approximation is less accurate than for other determinis-
tic approaches (dashed yellow curve). Especially, when it is compared to approaches
using a residual-based error estimate (blue curves) with interpolation or LS approx-
imation. In that case, the mean approximation error is of order 10−11 for MinRes
against 10−15 for the latter (for the maximum error, we have 10−10 against 10−14).
Second, let us comment the impact of the probabilistic reduced basis selection. As for
function approximation, picking at random the reduced basis for the considered prob-
lem is far from optimal since the error expectation tends to stagnate around 10−10 for
n ≥ 20 (around 10−9 for the maximum). However, when considering residual-based
or FK-based error estimates (even with K = 1), with interpolation or least-square for
projection, the error behaves quite similarly and reaches 10−15 for n = 30. This shows
that the proposed probabilistic-based error procedure performs well in practice.

6 Conclusion

In this work, we have proposed a probabilistic greedy algorithm for the approxima-
tion of a family of parameter-dependent functions for which we only have access to
(noisy) pointwise evaluations. It relies on an error indicator that can be written as an
expectation of some parameter-dependent random variable. Different variants of this
algorithm have been proposed using either naive MC estimates or PAC bandit algo-
rithms, the latter leading to a weak-greedy algorithm with high probability. Several
test cases have demonstrated the performances of the proposed procedures.

For parameter-dependent PDEs whose solution admits a probabilistic representa-
tion, through the Feynman-Kac formula, such an algorithm can be embedded within
a probabilistic RBM using only (noisy) pointwise evaluations. Numerical results
have shown the main relevance of considering Feynman-Kac error-based estimate
for greedy basis selection. We have also illustrated the influence of the projection
during the online and offline step. Indeed, we observed in Section 5.2.2 that interpo-
lation or least-square projection (using pointwise evaluations of the solution) clearly
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outperform MinRes projection. Following the discussion of Section 4.2.2, using a
sequential procedure as proposed in [18, 28, 29] should be an interesting alternative
to avoid limitations of residual-based projections. However, further work should be
conducted to provide a projection with controlled error and at a low cost, which is
crucial for efficient model reduction.

The purpose of our simple numerical experiments was to illustrate the behavior
of our probabilistic greedy algorithms. The application to more complex problems in
higher dimensions will be the focus of future works.

Appendix A: Adaptive bandit algorithms

We present an adaptive bandit algorithm to find a PAC maximum in relative precision
ofE(Z(ξ)) over the discrete set �̃. Here {Z(ξ) : ξ ∈ �̃} is a finite collection of random
variables satisfying E(Z(ξ)) �= 0, defined on the probability space (	,F ,P). After
introducing some required notation, we present a practical adaptive bandit algorithm
which returns a PAC maximum in relative precision for (6) when assuming suitable
assumptions on the distribution of Z(ξ).

A.1 Notations and assumptions

We denote by Z(ξ)m the empirical mean of Z(ξ) and V (ξ)m its empirical variance,
respectively defined by

Z(ξ)m = 1

m

m
∑

k=1

Z(ξ)k and V (ξ)m = 1

m

m
∑

k=1

(

Z(ξ)k − Z(ξ)m

)2
, (A1)

where Z(ξ)1, . . . , Z(ξ)m are m independent copies of Z(ξ). Moreover, the random
variable Z(ξ) is assumed to satisfy the following concentration inequality

P
(

|Z(ξ)m − E(Z(ξ))| ≤ c(m, x, ξ)
)

≥ 1 − x, (A2)

for each ξ ∈ �̃, 0 ≤ x ≤ 1 and m ≥ 1. The bound c(m, x, ξ) depends on the
probability distribution of Z(ξ).

Remark 4 In view of numerical experiments, we can consider standard concentration
inequalities for sub-Gaussian or bounded random variables, see, e.g., [15, Section 2].
In particular, if for any ξ ∈ �̃, there exists a(ξ), b(ξ) ∈ R such that almost surely, we
have a(ξ) ≤ Z(ξ) ≤ b(ξ), then (A2) holds with

c(m, x, ξ) =
√

2V (ξ)m log(3/x)

m
+ 3 (b(ξ) − a(ξ)) log(3/x)

m
.
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An alternative to (A2) is to rely on asymptotic confidence intervals for E(Z(ξ))

based on limit theorems of the form

P
(

|Z(ξ)m − E(Z(ξ))| ≤ c(m, x, ξ)
)

→ 1 − x, as m → ∞. (A3)

For example, for second-order random variables, the central limit theorem provides
such a property with

c(m, x, ξ) = γx

√

V (ξ)m

m
,

and γx the (x/2)-quantile of the normal distribution.

A.2 Algorithm

Now, let us define a sequence (dm)m≥1 ⊂ (0, 1)N, independent from ξ , and such that
∑

m≥1 dm < ∞. Then, we introduce cξ,m = c(m, dm, ξ), and β±
ξ,m(ξ) = Z(ξ)m(ξ) ±

cξ,m(ξ). Note that the concentration inequality (A2) implies that [β−
m(ξ)(ξ), β+

m(ξ)(ξ)]
is a confidence interval for E(Z(ξ)) with level 1 − dm(ξ).

Letting s(ξ) := sign(Z(ξ)m(ξ)) and εξ,m(ξ) =
{ cξ,m(ξ)

|Z(ξ)m(ξ)| if Z(ξ)m(ξ) �= 0,

+∞ otherwise.
, we

define the following estimate for E(Z(ξ)) given by

Êm(ξ)(Z(ξ)) =
{

Z(ξ)m(ξ) − εξ,m(ξ) s(ξ)cξ,m(ξ) if εξ,m(ξ) < 1,
Z(ξ)m(ξ) otherwise.

(A4)

Then, the adaptive bandit algorithm proposed in [15] is as follows.

Algorithm 3 Adaptive bandit algorithm.

1: Let ε, λ ∈ (0, 1) and K ∈ N. Set � = 0, �0 = �̃, m(ξ) = K and εξ,m(ξ) = +∞ for all ξ ∈ �.
2: while #�� > 1 and max

ξ∈��

εξ,m(ξ) > ε
2+ε

do

3: for all ξ ∈ �� do
4: Sample Z(ξ), increment m(ξ) and update εξ,m(ξ).

5: Compute the estimate Êm(ξ)(Z(ξ)) using (A4).
6: end for
7: Increment � and put in �� every ξ ∈ �̃ such that

β+
ξ,m(ξ)

≥ max
ν∈�̃

β−
ν,m(ν)

. (A5)

8: end while
9: Select ξ̂ such that

ξ̂ ∈ argmax
ξ∈��

Êm(ξ)(Z(ξ)).
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At each step �, the principle of Algorithm 3 is to successively increase the num-
ber of samples m(ξ) of the random variables Z(ξ) in the subset �� ⊂ �̃, obtained
using confidence intervals [β−

m(ξ)(ξ), β+
m(ξ)(ξ)] ofE(Z(ξ)) according to (A5). The idea

behind is to use those confidence intervals to find regions of �̃ where one has a high
chance to find a maximum. Then, ξ̂ is returned as a maximizer over �� of the expec-
tation estimate defined by (A4). Under suitable assumptions, and when using certified
non-asymptotic concentration inequalities, this algorithm returns a PAC maximum in
relative precision of E(Z(ξ)) over �̃, as stated in [15, Proposition 3.2], recalled below.

Proposition 4 Let ε, λ ∈ (0, 1) and (dm)m≥1 ⊂ (0, 1) be a sequence that satisfies

∑

m≥1

dm ≤ λ

#�̃
and log(1/dm)/m →

m→+∞ 0, (A6)

and assume that c satisfies (A2). If for all ξ in �, Z(ξ) is a random variable with
E(Z(ξ)) �= 0, then Algorithm 3 almost surely stops and returns a PAC maximum in
relative precision, i.e., ξ̂ = PACλ,ε(Z , �̃).

Remark 5 In practice a possible choice for the sequence (dm)m≥1 is to take

dm = δcm−p with δ = λ

#�̃
and c = p − 1

p
, (A7)

which satisfies (A6) for any p > 1.

In general, confidence intervals based on asymptotic theorems are much smaller
than those obtained with non-asymptotic concentration inequalities and yield a selec-
tion ofmuch smaller sets�� of candidatemaximizers, hence amuch faster convergence
of the algorithm. However, when using asymptotic theorems, we can not guarantee to
obtain a PAC maximizer.

Appendix B. Probabilistic approximation of the solution of a PDE

Here, we discuss the numerical computation of an estimate of u(x) for any x ∈ D̄. To
that goal, we use a suitable integration scheme to get an approximation of the diffusion
process Xx and a MC method to evaluate the expectation in formula (18).

An approximation of the diffusion process is obtained using an Euler-Maruyama
scheme. More precisely, setting tn = n�t , n ∈ N, Xx is approximated by a piecewise
constant process Xx,�t , where Xx,�t

t = Xx,�t
n for t ∈ [tn, tn+1[ and

Xx,�t
n+1 = Xx,�t

n + �t b(Xx,�t
n ) + σ(Xx,�t

n ) �Wn,

Xx,�t
0 = x,

(B8)

where �Wn = Wn+1 − Wn is an increment of the standard Brownian motion.
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Numerical computation of u(x) for all x ∈ D̄ requires the computation of a stopped
process Xx,�t at time τ x,�t , an estimation of the first exit time of D. Here, we consider
the simplest way to define this discrete exit time

τ x,�t = min
{

tn > 0 : Xx,�t
tn /∈ D

}

. (B9)

Such a discretization choice may lead to over-estimation of the exit time with an
error in O(�t1/2). More sophisticated approaches are possible to improve the order
of convergence, as Brownian bridge, boundary shifting or Walk On Sphere (WOS)
methods, see, e.g., [27, Chapter 6]. These are not considered here.

Letting {Xx,�t (ωm)}Mm=1 be M independent samples of Xx,�t , we obtain a MC
estimate noted u�t,M (x) for u(x) defined as

u�t,M (x) = 1

M

M
∑

m=1

[

f (Xx,�t
τ x,�t (ωm)) +

∫ τ x,�t

0
g(Xx,�t

t (ωm))dt

]

. (B10)
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