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Abstract
A conforming discontinuous Galerkin (CDG) finite element method is designed for
solving secondorder non-self adjoint and indefinite elliptic equations.Unlike other dis-
continuous Galerkin (DG) methods, the numerical trace on the edge/triangle between
two elements is not the average of two discontinuous Pk functions, but a lifted Pk+2
function from four (eight in 3D) nearby Pk functions. While all existing DG methods
have the optimal order of convergence, this CDG method has a superconvergence of
order twoabove the optimal orderwhen solvinggeneral secondorder elliptic equations.
Due to the superconvergence, a post-process lifts a Pk CDG solution to a quasi-optimal
Pk+2 solution on each element. Numerical tests in 2D and 3D are provided confirming
the theory.

Keywords Finite element · Conforming discontinuous Galerkin method · Second
order elliptic equation · Triangular mesh · Tetrahedral mesh
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1 Introduction

We solve the following second order elliptic problem:

− ∇ · (a∇u) + b · ∇u + cu = f in �, (1.1)

u = 0 on ∂�, (1.2)
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where � ⊂ R
d (d = 2, 3) is a bounded polytopal domain with a Lipschitz boundary,

a = (ai j (x))d×d is a symmetric, uniformly positive definite matrix of coefficients,
i.e., there is a positive constant α such that

ξ T aξ ≥ α ξ T ξ ∀ξ ∈ R
d , (1.3)

and function c satisfies

inf
x∈�

c >
1

2α
‖b‖L∞(�).

The continuous Galerkin finite element method approximates the solution of (1.1)
by continuous piecewise Pk polynomials on a triangular or tetrahedral mesh. That is,
finding uh ∈ Vh ⊂ H1

0 (�) such that

(a∇uh,∇vh) + ((b · ∇ + c)uh, vh) = ( f , vh) ∀vh ∈ Vh . (1.4)

Such amethod is called a conforming finite elementmethod. The nonconforming finite
element method employs piecewise Pk polynomials which are continuous weakly
between elements at order Pk−1. The weak form (1.4) remains.

A third class of finite elementmethods is the discontinuousGalerkin (DG)methods,
where the finite element space consists of totally discontinuous piecewise Pk polyno-
mials on a triangular or tetrahedral mesh. In all DG methods, inter-element integral
terms and a penalty (stabilizer) term are added to the weak form (1.4) in order to keep
consistency and to obtain convergent solutions, cf. [2]. But a conforming discontin-
uous Galerkin (CDG) method is introduced in [4, 9–16] which keeps the weak form
(1.4) of the conforming finite element method, unlike rest DG methods.

In this work, we extend the CDG method of [16] to general second order elliptic
equations. In the CDG finite element method, the inter-element trace vb of discontin-
uous functions is no longer the simple average of two functions vh on the two sides.
It is defined by two steps. First, on an edge e, we define a lifted Pk+2(Ue) polyno-
mial (where Ue is a patch of triangles) from four discontinuous Pk functions nearby,
{vh vh |Ti ∈ Pk(Ti ), i = 1, . . . , 4}, or eight Pk functions in 3D. In the second step, we
define the trace vb to be the L2-projection of this lifted Pk+2 polynomial into Pk+1(e).
We show that such a CDG solution converges two orders above the optimal order.
That is, the error between the local L2 projection of the true solution and the CDG Pk
solution converges at O(hk+3) in L2-norm, and at O(hk+2) in H1-like norm. Because
of this superconvergence, we show that such a Pk CDG solution can be postprocessed
to a quasi-optimal Pk+2 solution locally on each element. Numerical examples are
computed in 2D and 3D, confirming the theory.

2 Preliminary

Let Th be a partition of the domain � consisting of quasi-uniform triangles in 2D or
tetrahedra in 3D. For every element T ∈ Th , we denote by hT its diameter and by

123

2 Page 2 of 17



Order two superconvergence of the CDG finite...

h = maxT∈Th hT for Th . Denote by Eh the set of all edges or face-triangles in Th , and
by E0

h = Eh\∂� the set of all interior edges s or face-triangles.
For the purpose of error analysis, we define a WG (weak Galerkin) finite element

space as follows: cf. [3, 5–8, 17], for k ≥ 1,

Ṽh = {v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk+1(e), (2.1)

e ⊂ ∂T , T ∈ Th, vb|∂� = 0}.

Please note that any function v ∈ Ṽh has a single value vb on each edge e ∈ Eh .
For v = {v0, vb} ∈ Ṽh , a weak gradient ∇wv is a piecewise vector valued polyno-

mial such that on each T ∈ Th , ∇wv|T ∈ [Pk+1(T )]d satisfies

(∇wv,q)T = (∇v0,q)T + 〈vb − v0,q · n〉∂T ∀q ∈ [Pk+1(T )]d . (2.2)

Lemma 2.1 ([1]) For v = {v0, vb} ∈ Ṽh , we have

C1‖v‖1,h ≤ ‖∇wv‖ ≤ C2‖v‖1,h, (2.3)

where

‖v‖21,h =
∑

T∈Th
(‖∇v0‖2T + h−1

T ‖v0 − vb‖2∂T ). (2.4)

Let �k and �b
k be the generic local L2 projections onto [Pk(T )] j for T ∈ Th

and [Pk(e)] j for e ∈ Eh , respectively, where j = 1, · · · , d. Define Qhu =
{�ku,�b

k+1u} ∈ Ṽh .

Lemma 2.2 ([1]) For u ∈ H1(�), then

∇wQhu = �k+1∇u. (2.5)

3 CDG finite element scheme

For a given integer k ≥ 1, let Vh be the CDG finite element space associated with Th
by

Vh = {v ∈ L2(�) : v|T ∈ Pk(T ), T ∈ Th}. (3.1)

To connect the vector spaces Vh and Ṽh , we define an embedding operator Eh :
Vh → Ṽh such that for v ∈ Vh

Ehv = {v,�k+1Eev} ∈ Ṽh, (3.2)
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where �k+1 is the L2 projection on edge e and Ee ∈ Pk+2(Ue) is defined by

{
Eev = 0, if e ⊂ ∂�,

(Eev,�kw)Se = (v,�kw)Se ∀w ∈ Pk+2(Ue), if e ∈ E0
h .

(3.3)

Here, �k is a local L2-projection on to space
∏4

i=1 Pk(Si ), Se is a union of 4 aligned
squares {Si } inside Ue,

S1 = [xc − 5

4
γ0h, xc − 3

4
γ0h] × [yc − 5

4
γ0h, yc − 3

4
γ0h],

S2 = [xc + 3

4
γ0h, xc + 5

4
γ0h] × [yc − 5

4
γ0h, yc − 3

4
γ0h],

S3 = [xc + 3

4
γ0h, xc + 5

4
γ0h] × [yc + 3

4
γ0h, yc + 5

4
γ0h],

S4 = [xc − 5

4
γ0h, xc − 3

4
γ0h] × [yc + 3

4
γ0h, yc + 5

4
γ0h],

for some fixed γ0 > 0, and Ue is a union of triangles containing the four aligned
squares, cf. Fig. 1. One would choose the four triangles as close to e as possible, in
order to reduce the constant in the error bound. But they do not have to include the
two triangles which have e as an edge. Here, four aligned squares may rotate together.
[16] proves that (3.3) defines an Eev. [16] shows also that it preserves Pk+2(Ue)

polynomials in the sense Eev = w if v|Si = �k,Sew for all w ∈ Pk+2(Ue). In 3D, the
set {Si } in (3.3) contains eight aligned cubes, two in each direction.

Lemma 3.1 ([16]) For k ≥ 1, the lifting operator Ee : Vh → Pk+2(Ue), defined in
(3.3), has an order k + 2 accuracy, i.e., for any u ∈ Hk+3(�),

‖Ee�ku − u‖0,Ue + h‖∇(Ee�ku − u)‖0,Ue ≤ Chk+3|u|k+3,Ue . (3.4)

Since Ehv ∈ Ṽh ,∇w(Ehv) can be calculated by (2.2). For v ∈ Vh , its weak gradient
∇wv is defined as

∇wv = ∇wEhv. (3.5)

Fig. 1 A closed polygon
Ue = ∪ne

i=1Ti contains 4 aligned
squares, for an edge e, where
ne = 5 and Ti is the closure of
Ti
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The CDG finite element method is to find uh ∈ Vh such that

A(uh, v) = ( f , v) ∀v ∈ Vh . (3.6)

where

A(uh, v) = (a∇wuh,∇wv) + (b · ∇wuh, v) + (cuh, v). (3.7)

Defining a norm as follows for v = {v0, vb} ∈ Ṽh ,

|||v|||2 = ‖∇wv‖2 + ‖v0‖2. (3.8)

For v ∈ Vh , |||v||| is defined as

|||v||| = |||Ehv|||. (3.9)

Lemma 3.2 Assume κ = β − ‖b‖2L∞(�)

2α > 0. Then, we have for v = {v0, vb} ∈ Ṽh

A(v, v) ≥ γ |||v|||2 (3.10)

A(v,w) ≤ C |||v||||||w|||. (3.11)

Proof By (1.3) and β = ess inf{c(x) : x ∈ �}, we have

A(v, v) ≥ α‖∇wv‖2 + (b · ∇wv, v0) + β‖v0‖2
≥ α‖∇wv‖2 − ‖b‖L∞(�)‖∇wv‖‖v0‖ + β‖v0‖2

≥ α

2
‖∇wv‖2 + (β − ‖b‖2L∞(�)

2α
)‖v0‖2

≥ γ |||v|||2

where γ = min{α
2 , κ}. (3.11) is obtained by assuming bounded coefficients. This

completes the proof. ��
Thewell posedness of the CDGfinite element method is a direct result of the lemma

above.

Lemma 3.3 The CDG finite element method (3.6) has a unique solution.

4 Superconvergence in energy norm

In this section, we will obtain order two superconvergence for the CDG finite element
solution in (3.6). The superconvergence of the corresponding WG method [1] will be
used to achieve such a goal.
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Let ũh ∈ Ṽh be the solution of the WG method such that

A(ũh, v) = ( f , v0) ∀v = {v0, vb} ∈ Ṽh . (4.1)

The superconvergence of theWGfinite element solution ũh is derived in [17] described
by the following lemma.

Lemma 4.1 ([17]) Let ũh = {ũ0, ũb} ∈ Ṽh be the WG finite element solution of (4.1).
Then,

h‖∇w(Qhu − ũh)‖ + ‖�ku − ũ0‖ ≤ Chk+3|u|k+3, (4.2)

where �ku is the L2 projection, Qhu = {�ku,�b
k+1u} ∈ Ṽh and �b

k+1u is the L2

projection on an edge.

For any function ϕ ∈ H1(T ), the following trace inequality holds true:

‖ϕ‖2e ≤ C
(
h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T

)
. (4.3)

Lemma 4.2 Let u ∈ Hk+3(�). Then, we have

|||Qhu − �ku||| ≤ Chk+2|u|k+3, (4.4)

|||�ku − ũh ||| ≤ Chk+2|u|k+3. (4.5)

Proof Recall Qhu = {�ku,�b
k+1u} and Eh�ku = {�ku,�b

k+1Ee�ku}. Using (3.5),
(4.3), inverse inequality and (3.4), we have with q = ∇w(Qhu − Eh�ku),

‖∇w(Qhu − �ku)‖2 = ‖∇w(Qhu − Eh�ku)‖2 (4.6)

=
∑

T∈Th
〈�b

k+1u − �b
k+1Ee�ku, q〉∂T

=
∑

T∈Th
〈u − Ee�ku, q〉∂T

≤
( ∑

T∈Th
h−1
T ‖u − Ee�ku‖20,∂T

)1/2( ∑

T∈Th
hT ‖q‖20,∂T

)1/2

≤ C
( ∑

T∈Th
h−2
T ‖u − Ee�ku‖20,T + ‖∇(u − Ee�ku)‖20,T

)1/2‖q‖

≤ Chk+2|u|k+3‖∇w(Qhu − �ku)‖.

By (2.4), |||Qhu − �ku||| = |||Qhu − Eh�ku|||. It follows from the definition of Qhu
and Eh�ku,

Qhu − Eh�ku = {�ku − �ku, Qbu − �b
k+1Eb�ku} = {0, Qbu − �b

k+1Eb�ku}.
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Thus, we have

‖(Qhu − Eh�ku)0‖ = 0. (4.7)

Combining (4.6), (4.7) and (4.6), we have

|||Qhu − �ku|||2 = |||Qhu − Eh�ku|||2
= ‖∇w(Qhu − Eh�ku)‖2 + ‖(Qhu − Eh�ku)0‖2
= ‖∇w(Qhu − Eh�ku)‖2
≤ Ch2(k+2)|u|2k+3,

which proves (4.4). It follows from (4.2) and (4.4),

|||�ku − ũh ||| ≤ |||�ku − Qhu||| + |||Qhu − ũh ||| ≤ Chk+2|u|k+3.

This completes the proof of the lemma. ��
Subtracting (3.6) from (4.1) implies

A(ũh − uh, v) = 0 ∀v ∈ Vh . (4.8)

The following lemma provides the error bound for ũh − uh .

Lemma 4.3 Let u ∈ Hk+3(�). Then, we have

|||ũh − uh ||| ≤ Chk+2|u|k+3. (4.9)

Proof By (3.10), (4.8), and (4.5),

γ |||ũh − uh |||2 ≤ A(ũh − uh, ũh − uh)

= A(ũh − uh, ũh − �ku)

≤ C |||ũh − uh ||||||ũh − �ku|||.

Combining the inequality above with (4.5), we have

|||ũh − uh ||| ≤ Chk+2|u|k+3. (4.10)

The proof is completed.

The order two superconvergence of the CDG solution in an energy norm is obtained
in the following theorem.

Theorem 4.1 Let u ∈ Hk+3(�) ∩ H1
0 (�) be the exact solution of (1.1). Let uh ∈ Vh

be the CDG solution of (3.6). Then

|||�ku − uh ||| ≤ Chk+2|u|k+3. (4.11)
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Proof By (4.2), (4.4), and (4.9), we have

|||�ku − uh |||
≤ |||�ku − Qhu||| + |||Qhu − ũh ||| + |||ũh − uh |||
≤ Chk+2|u|k+3,

which finishes the proof of the theorem. ��

5 Superconvergence in L2 norm

Let eh = {e0, eb} = ũh − Ehuh = {ũ0 − uh, ũb − ub} ∈ Ṽh with ub defined in (3.3).
We consider the corresponding dual problem: seek w ∈ H1

0 (�) satisfying

− ∇ · (a∇w) − ∇ · (bw)w + cw = e0 = ũ0 − uh in �. (5.1)

Recall that ũh = {ũ0, ũb} and uh are the solutions of the WG method (4.1) and the
CDG method (3.6), respectively. Assume that the following H2-regularity holds

‖w‖2 ≤ C‖e0‖. (5.2)

Lemma 5.1 For w ∈ H2(�) ∩ H1
0 (�) and eh ∈ Ṽh , we have

(−∇ · (a∇w) + ∇ · (bw)w + cw, e0) (5.3)

= A(eh, Qhw) + E1(w, eh) + E2(w, eh)

+ E3(w, eh) + E4(w, eh) + E5(w, eh),

where

E1(w, eh) = (a(∇w − ∇wQhw,∇weh),

E2(w, eh) = 〈(a∇w − �k+1(a∇w)) · n, e0 − eb〉∂Th
E3(w, eh) = 〈(�k+1(bw) − bw) · n, eb − e0〉∂Th
E4(w, eh) = (b · ∇weh, w − �kw)

E5(w, eh) = (w − �kw, ce0).

Proof Using the integration by parts and the fact that 〈a∇w · n, eb〉∂Th = 0, we have

(−∇ · (a∇w, e0) = (a∇w,∇e0)Th − 〈a∇u · n, e0 − eb〉∂Th
It follows from integration by parts and (2.2) that

(a∇w,∇e0)Th = (�k+1(a∇w),∇e0)Th
= −(e0,∇ · �k+1(a∇w))Th + 〈e0,�k+1(a∇w) · n〉∂Th
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= (�k+1(a∇w),∇weh)Th + 〈e0 − eb,�k+1(a∇w) · n〉∂Th
= (a∇w,∇weh) + 〈e0 − eb,�k+1(a∇w) · n〉∂Th
= (a∇wQhw,∇weh) + (a(∇u − ∇wQhw),∇weh)

+ 〈e0 − eb,�k+1(a∇w) · n〉∂Th .

It follows from the two equations above,

−(∇ · (a∇w, e0) = (a∇wQhw,∇weh) + E1(w, eh) + E2(w, eh) (5.4)

Similarly, we have

−(∇ · (bw), e0) = (bw,∇e0)Th − 〈bw · n, e0 − eb〉∂Th
= (�k+1(bw),∇e0)Th + 〈bw · n, eb − e0〉∂Th
= (�k+1bw,∇e0)Th + 〈�k+1(bw) · n, eb − e0〉∂Th

+ 〈(�k+1(bw) − bw) · n, eb − e0〉∂Th
= (b · ∇weh, w) + E3(w, eh)

= (b · ∇weh,�kw) + (b · ∇weh, w − �kw) + E3(w, eh)

= (b · ∇weh,�kw) + E4(w, eh) + E3(w, eh),

which implies

−(∇ · (bw), e0) = (b · ∇weh,�kw) + E4(w, eh) + E3(w, eh). (5.5)

It is straightforward to have

(cw, e0) = (c�kw, e0) + (w − �kw, ce0) = (c�kw, e0) + E5(w, eh). (5.6)

Combining (5.4)–(5.6) implies (5.3). ��
Lemma 5.2 For w ∈ H2(�) and eh ∈ Ṽh , we have

E1(w, eh) ≤ Chk+3|u|k+3‖w‖2, (5.7)

E2(w, eh) ≤ Chk+3|u|k+3‖w‖2, (5.8)

E3(w, eh) ≤ Chk+3|u|k+3‖w‖2, (5.9)

E4(w, eh) ≤ Chk+3|u|k+3‖w‖2, (5.10)

E5(w, eh) ≤ Chk+3|u|k+3‖w‖2. (5.11)

Proof It follows from (3.11) and (4.11)

E1(w, eh) ≤ |(a(∇w − ∇wQhw,∇weh)|
= |(a(∇w − �k+1∇w),∇weh)|
≤ C‖∇w − �k+1∇w‖‖∇weh‖
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≤ Chk+3|u|k+3‖w‖2.

Using the Cauchy-Schwarz inequality, (4.3), (2.3), and (4.9), we have

|E2(w, eh)| =
∣∣∣∣∣∣

∑

T∈Th
〈(a∇w − �k+1(a∇w)) · n, e0 − eb〉∂T

∣∣∣∣∣∣

≤ C
∑

T∈Th
‖a∇w − �k+1(a∇w)‖∂T ‖e0 − eb‖∂T

≤ C

⎛

⎝
∑

T∈Th
hT ‖a∇w − �k+1(a∇w)‖2∂T

⎞

⎠

1
2
⎛

⎝
∑

T∈Th
h−1
T ‖e0 − eb‖2∂T

⎞

⎠

1
2

≤ Ch|w|2|||eh |||
≤ Chk+3|u|k+3‖w‖2.

Similarly, we have

E3(w, eh) = 〈(�k+1(bw) − bw) · n, eb − e0〉∂Th
≤ Chk+3|u|k+3‖w‖2.

By the Cauchy-Schwarz inequality and (4.9), we obtain

E4(w, eh) = (b · ∇weh, w − �kw) ≤ Chk+3|u|k+3‖w‖2
E5(w, eh) = (w − �kw, ce0) ≤ Chk+3|u|k+3‖w‖2.

This completes the proof. ��
In the next theorem, we will prove the order two superconvergence of the CDG

solution in the L2-norm.

Theorem 5.1 Let u ∈ Hk+3(�) ∩ H1
0 (�) be the exact solution of (1.1). Let uh ∈ Vh

be the CDG solution of (3.6). Then,

‖�ku − uh‖ ≤ Chk+3|u|k+3. (5.12)

Proof Testing (5.1) by e0 and using (5.3) and (4.8) give

‖e0‖2 = (−∇ · (a∇w) + ∇ · (bw)w + cw, e0) (5.13)

= A(eh, Qhw − �kw) + E1(w, eh) + E2(w, eh) + E3(w, eh)

+ E4(w, eh) + E5(w, eh)

It follows from (3.11) and (4.9)

A(eh, Qhw − �kw) ≤ |||eh ||||||Qhw − �kw||| (5.14)
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≤ Chk+3|u|k+3‖w‖2.

By (5.13), (5.7)-(5.11) and (5.14), we have

‖e0‖2 ≤ Chk+3|u|k+3‖w‖2. (5.15)

It follows from (5.15) and (5.2),

‖ũ0 − uh‖ ≤ Chk+3|u|k+3. (5.16)

Using (4.2) and (5.16), we have

‖�ku − uh‖ ≤ ‖�ku − ũ0‖ + ‖ũ0 − uh‖ (5.17)

≤ Chk+3|u|k+3. (5.18)

We have proved the theorem. ��

6 A locally lifted Pk+2 solution

We proved that the Pk CDG solution is order two superconvergent in both L2 norm
and H1-like norm. We can use the superconvergent solution (to the L2-projection of
u) and its superconvergent weak gradient to reconstruct a quasi-optimal Pk+2 solution
on each triangle/tetrahedron.

On each element T , we solve a local problem that finds ûh ∈ Pk+2(T ) by

(∇ûh − ∇wuh,∇v)T = 0 ∀v ∈ Pk+2(T )\P0(T ), (6.1)

(ûh − uh, v)T = 0 ∀v ∈ P0(T ). (6.2)

Theorem 6.1 Let u ∈ H1
0 (�) ∩ Hk+3(�) be the exact solution of (1.1)–(1.2). Let

ûh ∈ �T∈Th Pk+2(T ) be the locally lifted solution of (6.1)–(6.2). Then, there exists a
constant C such that

‖u − ûh‖0 ≤ Chk+3|u|k+3. (6.3)

Proof It is straightforward to show that (6.1)–(6.2) has a unique solution, cf. [16].
As the estimate (6.3) is equation independent, by (4.11) and (5.12), the theorem is

proved exactly the same way as in [16]. ��

7 Numerical tests

In the first example, we solve the 2nd order elliptic problem (1.1)–(1.2) on the unit
square domain � = (0, 1) × (0, 1), where

a = 2 + x + y, b =
(
x
y

)
, c = 4 − x − y.
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Fig. 2 The first three levels of triangular grids for the computation in Tables 1, 2, and 3

The function f is chosen so that the exact solution is

u(x, y) = x3(1 − x)y(1 − y)3. (7.1)

We use perturbed triangular grids shown as in Fig. 2. We compute this example by
three CDG finite elements. The results are listed in Tables 1, 2, and 3. The proved
orders of superconvergence are achieved in all cases. That is, for example, for P1
finite element method, the optimal orders of convergence are 2 and 1 in L2 and H1-
like norms, respectively. The order two superconvergence means the order 4 and order
3 convergence in L2 and H1-like norms, respectively. The locally postprocessed P3
solution converges at the optimal order 4 in L2-norms.

In the second example, we test a case of an L-shape domain with corner singularity.
It is known that the H1-convergence is independent of such domain singularity, but
dependent of the smoothness of the true solution. The L2-convergence is only 2/3
order, instead of 1 full order, higher than that of H1-convergence, in theory. As we
choose a smooth solution, which and its first derivatives vanish at the singular corner,
in addition, we do still get two order superconvergence in both H1 and L2 norms.

Table 1 Error profile for (7.1),
on grids as shown in Fig. 2

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P1 CDG finite element (3.1).

4 0.1551E-05 4.1 0.1539E-03 2.9

5 0.9326E-07 4.1 0.2028E-04 2.9

6 0.5749E-08 4.0 0.2610E-05 3.0

By the P1 CDG solution and its P3 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

4 0.2579E-04 2.1 0.1700E-05 4.0

5 0.6348E-05 2.0 0.1063E-06 4.0

6 0.1579E-05 2.0 0.6685E-08 4.0
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Table 2 Error profile for (7.1),
on grids as shown in Fig. 2

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P2 CDG finite element (3.1).

3 0.2924E-05 4.5 0.1533E-03 3.6

4 0.1087E-06 4.7 0.1092E-04 3.8

5 0.3712E-08 4.9 0.7298E-06 3.9

By the P2 CDG solution and its P4 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

3 0.1389E-04 3.1 0.3058E-05 4.5

4 0.1604E-05 3.1 0.1130E-06 4.8

5 0.1929E-06 3.1 0.3844E-08 4.9

We solve the 2nd order elliptic problem (1.1)–(1.2) on the L-shape domain � =
(−1, 1)2 \ (0, 1)2, where

a = 2 + x + y, b =
(
x
y

)
, c = 4 − x − y.

The function f is chosen so that the exact solution is

u(x, y) = (1 − x)x2(1 − x)(1 + y)y2(1 − y). (7.2)

We use perturbed triangular grids shown as in Fig. 3. We compute this example by
three CDG finite elements. The results are listed in Tables 4, 5, and 6. The proved
orders of superconvergence are still achieved in all cases, even when the domain has
a singular corner.

Table 3 Error profile for (7.1),
on grids as shown in Fig. 2

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P3 CDG finite element (3.1).

2 0.1189E-04 4.9 0.3860E-03 3.8

3 0.2526E-06 5.6 0.1515E-04 4.7

4 0.4630E-08 5.8 0.5366E-06 4.8

By the P3 CDG solution and its P5 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

2 0.3394E-04 3.7 0.1214E-04 4.9

3 0.1838E-05 4.2 0.2573E-06 5.6

4 0.1041E-06 4.1 0.4714E-08 5.8
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Fig. 3 The first three levels of triangular grids for the computation in Tables 4, 5, and 6

Table 4 Error profile for (7.2),
on grids as shown in Fig. 3

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P1 CDG finite element (3.1).

3 0.1769E-03 4.1 0.8136E-02 2.8

4 0.9958E-05 4.2 0.1035E-02 3.0

5 0.5859E-06 4.1 0.1294E-03 3.0

By the P1 CDG solution and its P3 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

3 0.8709E-03 2.6 0.1894E-03 4.0

4 0.2073E-03 2.1 0.1116E-04 4.1

5 0.5184E-04 2.0 0.6760E-06 4.0

Table 5 Error profile for (7.2),
on grids as shown in Fig. 3

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P2 CDG finite element (3.1).

2 0.4884E-03 3.2 0.1302E-01 2.4

3 0.1806E-04 4.8 0.9195E-03 3.8

4 0.6042E-06 4.9 0.5901E-04 4.0

By the P2 CDG solution and its P4 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

2 0.8966E-03 2.8 0.5079E-03 3.2

3 0.9257E-04 3.3 0.1873E-04 4.8

4 0.1176E-04 3.0 0.6246E-06 4.9

Table 6 Error profile for (7.2),
on grids as shown in Fig. 3

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P3 CDG finite element (3.1).

2 0.6050E-04 5.3 0.1903E-02 4.4

3 0.1135E-05 5.7 0.6519E-04 4.9

4 0.1929E-07 5.9 0.2117E-05 4.9

By the P3 CDG solution and its P5 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

2 0.1582E-03 4.2 0.6188E-04 5.3

3 0.1029E-04 3.9 0.1156E-05 5.7

4 0.6945E-06 3.9 0.1961E-07 5.9
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Fig. 4 The first three levels of tetrahedral grids used in Tables 7, 8, and 9

Table 7 Error profile for (7.3),
on grids as shown in Fig. 4

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P1 CDG finite element (3.1).

3 0.7246E-03 4.17 0.4633E-01 2.77

4 0.4013E-04 4.17 0.5954E-02 2.96

5 0.2418E-05 4.05 0.7529E-03 2.98

By the P1 CDG solution and its P3 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

3 0.7226E-02 2.36 0.2842E-03 4.28

4 0.1735E-02 2.06 0.2872E-04 3.31

5 0.4312E-03 2.01 0.1980E-05 3.86

Table 8 Error profile for (7.3),
on grids as shown in Fig. 4

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P2 CDG finite element (3.1).

3 0.8129E-04 4.97 0.8504E-02 3.69

4 0.2482E-05 5.03 0.5560E-03 3.93

5 0.7662E-07 5.02 0.3520E-04 3.98

By the P2 CDG solution and its P4 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

3 0.1156E-02 3.05 0.9931E-04 4.89

4 0.1451E-03 2.99 0.3120E-05 4.99

5 0.1820E-04 3.00 0.9752E-07 5.00

Table 9 Error profile for (7.3),
on grids as shown in Fig. 4

Grid ‖�ku − uh‖0 rate |||�ku − uh ||| rate

By the P3 CDG finite element (3.1).

2 0.5301E-03 6.39 0.2650E-01 5.04

3 0.9307E-05 5.83 0.1035E-02 4.68

4 0.1432E-06 6.02 0.3438E-04 4.91

By the P3 CDG solution and its P5 lift.

‖u − u0‖h rate ‖u − ûh‖0 rate

2 0.2106E-02 4.43 0.7341E-03 5.58

3 0.1369E-03 3.94 0.1336E-04 5.78

4 0.8722E-05 3.97 0.1970E-06 6.08
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In the third example, we solve a 3D problem (1.1)–(1.2) on the unit cube domain
� = (0, 1)3, where

a = 4 + x + y + z, b =
⎛

⎝
x
y
z

⎞

⎠ , c = 4 − x − y − z.

The function f is chosen so that the exact solution is

u(x, y, z) = sin πx sin π y sin π z. (7.3)

We use uniform tetrahedral grids shown as in Fig. 4. We compute this example by
three CDG finite elements. The results are listed in Tables 7, 8, and 9. The proved
orders of superconvergence are achieved in all cases.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. AL-Taweel, A., Wang, X., Ye, X., Zhang, S.: A stabilizer free weak Galerkin method with superclose-
ness of order two. Numer. Meth. PDE. 37, 1012–1029 (2021)

2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer.
Anal. 19(4), 742–760 (1982)

3. Cui, M., Zhang, S.: On the uniform convergence of the weak Galerkin finite element method for a
singularly-perturbed biharmonic equation. J. Sci. Comput. 82, 5–15 (2020)

4. Feng, Y., Liu, Y., Wang, R., Zhang, S.: A conforming discontinuous Galerkin finite element method
on rectangular partitions. Electron. Res. Arch. 29, 2375–2389 (2021)

5. Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed
convection-diffusion-reaction problems. SIAM J. Num. Anal. 56, 1482–1497 (2018)

6. Mu, L., Ye, X., Zhang, S.: A stabilizer free, pressure robust and superconvergence weak Galerkin finite
element method for the Stokes Equations on polytopal mesh. SIAM J. Sci. Comput. 43, A2614–A2637
(2021)

7. Wang, J., Zhai, Q., Zhang, R., Zhang, S.: A weak Galerkin finite element scheme for the Cahn-Hilliard
equation. Math. Comp. 88, 211–235 (2019)

8. Ye, X., Zhang, S.: A stabilizer free weak Galerkin method for the biharmonic equation on polytopal
meshes. SIAM J. Numer. Anal. 58, 2572–2588 (2020)

9. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method. Int. J. Numer. Anal.
Model. 17(1), 110–117 (2020)

10. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method: part II. Int. J Numer.
Anal. Model. 17, 281–296 (2020)

11. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method: part III. Int. J. Numer.
Anal. Model. 17(6), 794–805 (2020)

12. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method for the Stokes problem
on polytopal meshes. Internat. J. Numer. Methods Fluids. 93(6), 1913–1928 (2021)

13. Ye, X., Zhang, S.: A C0-conforming DG finite element method for biharmonic equations on trian-
gle/tetrahedron. J. Numer. Math. 30(3), 163–172 (2021)

14. Ye, X., Zhang, S.: A weak divergence CDG method for the biharmonic equation on triangular and
tetrahedral meshes. Appl. Numer. Math. 178, 155–165 (2022)

123

2 Page 16 of 17



Order two superconvergence of the CDG finite...

15. Ye, X., Zhang, S.: Achieving superconvergence by one-dimensional discontinuous finite elements: the
CDG method. East Asian J. Appl. Math. 12(4), 781–790 (2022)

16. Ye, X., Zhang, S.: Order two superconvergence of the CDGfinite elements on triangular and tetrahedral
meshes. CSIAM Trans. Appl. Math. 4(2), 256–274 (2023)

17. Zhu, P., Xie, S.: Superconvergent weak Galerkin methods for non-self adjoint and indefinite elliptic
problems. Appl. Numer. Math. 172, 300–314 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

Page 17 of 17 2


	Order two superconvergence of the CDG finite elements for non-self adjoint and indefinite elliptic equations
	Abstract
	1 Introduction
	2 Preliminary
	3 CDG finite element scheme
	4 Superconvergence in energy norm
	5 Superconvergence in L2 norm
	6 A locally lifted Pk+2 solution
	7 Numerical tests
	References




