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Abstract
This paper studies the stochastic Allen-Cahn equation involving random diffusion
coefficient field and multiplicative force noise. A new time-stepping method based on
auxiliary variable approach is proposed and analyzed. The proposedmethod is efficient
thanks to its low computational complexity. Furthermore, it is unconditionally stable in
the sense that a discrete energy is dissipative when the multiplicative noise is absent.
Our numerical experiments show that the new scheme is much more robust than
the classical semi-implicit Euler-Maruyama scheme, particularly when the interface
width parameter is small. Several numerical examples are provided to demonstrate the
performance of the proposed method.
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noise · Extended Euler-Maruyama scheme · Stability

Mathematics Subject Classification (2010) 60H15 · 60H35 · 65C50

1 Introduction

Stochastic partial differential equations (SPDEs) are widely used to mathematically
model randomphenomena occurring in themanyfields of science and engineering, and
have been subject of many theoretical and numerical investigations. It is commonly
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believed that incorporating noise and/or uncertainty into models is closer to reality in
mathematical modeling. Over the past decades, there have been plenty of literature on
the numerical study of stochastic evolution equations (SEEs); see, e.g., monographs
[7, 31, 35, 41, 44, 58] and references therein. Although much progress has been made,
the development of numerical techniques is still far from being satisfactory, especially
for the SEEs with non-globally Lipschitz nonlinearity. Numerically solving SEEs
may encounter the difficulties stemming from the nonlinearity, infinite dimensional
operator, and driving noise; see, e.g., [8, 14, 15, 32, 33, 39, 45] and references therein.

A typical example of SEEswith non-globallyLipschitz nonlinearity is the stochastic
Allen-Cahn equation. The Allen-Cahn equation was originally proposed by Allen and
Cahn in [1] as a mathematical model to describe the phase separation process of a
binary alloy quenched at a fixed temperature. Due to the existence of uncertainty
stemming from various sources such as thermal fluctuation, impurities of materials
and so on, it is often necessary to consider stochastic effects and to study the impact
of noise on the phase change process. In fact the stochastic Allen-Cahn equation has
attracted increasing attention in the past few years, see, e.g., [8–10, 22, 32, 33, 37,
40, 42, 45, 54] and references therein. There exists a large amount of literature on
strong or weak convergence analysis of numerical schemes of the stochastic Allen-
Cahn equations, which involves two error categories, namely weak error and strong
error. The former is related to the approximation of the probability law of the solution.
We refer to, e.g., [9–11, 13] and references therein for a list of literature on the weak
error estimation of stochastic Allen-Cahn equations. Unlike weak error, the strong
error measures the deviation from the trajectory of an exact solution. It has been
extensively investigated for various types of the stochastic Allen-Cahn equations; see,
e.g., [5, 6, 8, 13, 22, 25–28, 32, 33, 39, 40, 42, 45, 47, 55] and references therein. We
mention here some works on strong convergence of the numerical approximations for
stochastic Allen-Cahn equations with additive or multiplicative noise. For instance,
Kovács et al. [33] proposed Euler type splitstep time scheme for the stochastic Allen-
Cahn equation perturbed by smooth additive Gaussian noise, and showed that the
strong convergence rate is 1/2 with respect to the step size. Bréhier et al. [8] analyzed
an explicit temporal splitting scheme for the stochastic Allen-Cahn equation driven
by additive space-time white noise, and obtained optimal strong convergence rates
of order 1/4. Some other works related to strong error analysis of the stochastic
Allen-Cahn equation with additive noise include Becker and Jentzen [6], Cui et al.
[13], Qi et al. [45], and Wang [55], in which different schemes were constructed
and analyzed. The case of strong convergence of stochastic Allen-Cahn equations
with multiplicative noise is generally more subtle and challenging, and has received
widely attention in the research community in recent years. For example, Feng et al.
[22] proposed a finite element approximation to the stochastic Allen-Cahn equation
with gradient-type multiplicative noise that is white in time and correlated in space.
Majee et al. [42] investigated amodified spatio-temporal discretization to the stochastic
Allen-Cahn equation with multiplicative noise and deduced uniform bounds in strong
norms for this fully discrete scheme. There has also been work for more general SEEs
with nonlinear terms which are not necessarily of the form of Allen-Cahn potential
functional. In this regard, we mention the work by Jentzen et al. [28] on a method for
approximating a class of semilinear stochastic equations with non-globally Lipschitz
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continuous nonlinearities, and the work by Liu et al. [40] on a general theory of
optimal strong error estimation for monotone drift driven by a multiplicative infinite-
dimensional Wiener process.

The present work focuses on the numerical approximation of the stochastic Allen-
Cahn equation with both multiplicative force noise and random diffusion coefficient
field, which seems not yet been considered in the literature to the best of our knowl-
edge. The aim is to propose and analyze efficient numerical methods for this equation.
The idea is tomake use of the auxiliary variable approach, which has been found useful
in constructing stable schemes for gradient flows, and the popular Euler-Maruyama
scheme for SEEs. Notice that Cui et al. [16] has proposed a similar idea for the stochas-
tic wave equation with only multiplicative noise. The main contributions/novelties of
this paper are summarized as follows:

• The well-posedness of the considered stochastic equation is established. That is,
the existence, uniqueness, and the stability of the mild solution is proved.

• The diffusion coefficient considered in this current work is a log-Whittle-Matérn
Gaussian random field with a parametrized covariance function whose regularity
can be controlled by a parameter. Therefore, different cases can be tested and
compared in a convenient way. A sampling approach called stochastic Fourier
method [50, 51] is employed to render the equation solvable with determined
diffusion coefficient field.

• The proposed time-stepping method is very efficient in term of the computational
complexity and stability. The implementation detail shows that the computational
complexity is equal to solving two second-order linear elliptic equations at each
time step. The computational cost of this scheme is smaller than some drift-implicit
Euler schemes [40, 42, 45] which require solving nonlinear equations at each
time step. More advantageously, the time-stepping is unconditionally stable in the
case the multiplicative noise is absent. Our numerical experiments show that the
new scheme is much more stable compared to the classical semi-implicit Euler-
Maruyama scheme [34, 46], especially when the interface width parameter is
small.

The rest of paper is organized as follows. In Section2, we establish the well-
posedness of the considered problem under some standard assumptions. In Section3,
we briefly describe the sampling method for the random diffusion coefficient field,
and present in details the spatio-temporal full discretization method. Several numer-
ical examples are provided in Section4 to demonstrate the performance of proposed
method. In particular, a comparison with popular existing schemes is given.

2 Problem and its well-posedness

Let T > 0, D ∈ R
d , d ∈ {1, 2, 3}, be a bounded open spatial domain with smooth

boundary. To be specific, we consider D := (0, 1)d in this work. Let L2(D) and
Hγ
0 (D) be classical Sobolev spaces, γ ≥ 0. Let (·, ·) denote the L2(D)-inner product

and L(L2(D)) represent the space of bounded linear operators A: L2(D) → L2(D)
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equipped with operator norm ‖A‖L(L2(D))
= sup

u �=0

‖Au‖
L2(D)

‖u‖
L2(D)

. (�,F, {Ft }t≥0,P) is

a filtered probability space with a normal filtration {Ft }t≥0. We denote v(x, ω) ∈
L2(�, L2(D)) if

‖v‖
L2(�,L2(D))

< +∞,

where the norm ‖v‖
L2(�,L2(D))

is defined by

‖v‖
L2(�,L2(D))

:= (
E[‖v(·, ω)‖2

L2(D)
]) 1

2 (2.1)

with E[·] being the expectation in the probability space (�,F,P). L2(�, L2(D)) is
also known as the space of the mean-square integrable random variables. Let W (t, x)
be a Ft -adapted Hγ

0 (D)-valued Wiener process with covariance operator Q, where
Q is a positive definite and symmetric operator with orthonormal eigenfunctions
{φ j (x) ∈ Hγ

0 (D) : j ∈ N} and corresponding positive eigenvalues {q j }; see, e.g.,
[32, 34, 53, 57] for more details.

Let Q
1
2 (Hγ

0 (D)) := {Q 1
2 v : v ∈ Hγ

0 (D)}. Let LQ be the set of linear operators

B : Q 1
2 (Hγ

0 (D)) → L2(D), which satisfies

( ∞∑

j=1

‖BQ 1
2 φ j‖2

L2(D)

) 1
2

< +∞.

LQ endowed with the norm ‖B‖LQ :=
( ∑∞

j=1 ‖BQ 1
2 φ j‖2

L2(D)

) 1
2
is the space of

Hilbert-Schmidt operators [23]. We will also use the space L2(�,LQ) of all random
Hilbert-Schmidt operators B : � → LQ , equipped with the norm

‖B(ω)‖
L2(�,LQ )

:= E[‖B(ω)‖2LQ
] 12 .

Throughout the paper we use c, with or without subscripts, to mean generic positive
constants (independent of ω in particular), which may not be the same at different
occurrences.

We are interested in the stochastic Allen-Cahn equation written in the following
abstract form:

du(x, t) = (−Lu + f (u))dt + G(u)dW (x, t), 0 < t < T , x ∈ D,

u(x, t) = 0, 0 ≤ t ≤ T , x ∈ ∂D,

u(x, 0) = u0(x), x ∈ D̄,

(2.2)

where L := −∇ · (a(x, ω)∇) is the elliptic operator with the coefficient a(x, ω) being
a bounded log-Gaussian random field, i.e., there exists two constants amin and amax
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such that: for almost every x ∈ D̄ and ω ∈ �,

0 < amin ≤ a(x, ω) = ez(x,ω) ≤ amax < ∞. (2.3)

Clearly the satisfaction of (2.3) relies on the uniform boundedness of the Gaussian
random variable z(x, ω). Notice that (2.3) does not hold if z(x, ω) is Gaussian random
variable without any restriction. Here we assume that for any x ∈ D̄, z(x, ω) is
a truncated Gaussian random variable [12, 29], such that zmin ≤ z(x, ω) ≤ zmax
with zmin and zmax representing two constants. The uniform boundedness condition
imposed on a(x, ω) guarantees that the constants produced in the subsequent analysis
is independent ofω. It is worth to mention that the log-Gaussian random field has been
used in the study of uncertainty quantification problems [3, 41], and appeared in some
applications, e.g., geostatistical modelling [30, 52]. A more general model similar to
problem (2.2) has been considered by Qi et al. [46], in which this kind of truncated
Gaussian random variable is also used.

The nonlinear functional takes form f (u) := −F ′(u) with F(u) being the
Ginzburg-Landau double-well potential function, i.e.,

F(u) := 1

4ε2
(u2 − 1)2, (2.4)

where ε represents the scale parameter. It is known that this parameter controls the
interface width, therefore also called the parameter thickness parameter. The theo-
retical result established in the paper depends on the following assumption on the
nonlinear term f (·):

| f (u)| ≤ c(1 + |u|), max
u∈R

| f ′(u)| ≤ c. (2.5)

Obviously the satisfaction of the assumption (2.5) relies on the uniform boundedness
of the solution u in D, which is a priori unknown. However, if u loses its boundedness
in D, the truncation technique shown in paper [49] can be employed to restrict the
growth of F(u) to be quadratic when |u| is bigger than a prescribed constant M ,
which is deterministic and independent of u. For example, it is common to replace the
definition (2.4) by

F(u) =

⎧
⎪⎨

⎪⎩

3M2−1
2ε2

u2 − 2M3u
ε2

+ 1
4ε2

(3M4 + 1), u > M,
1
4ε2

(u2 − 1)2, u ∈ [−M, M],
3M2−1
2ε2

u2 + 2M3u
ε2

+ 1
4ε2

(3M4 + 1), u < −M .

In this case, f (u) becomes

f (u) =

⎧
⎪⎪⎨

⎪⎪⎩

− (3M2−1)u
ε2

+ 2M3

ε2
, u > M,

u(1−u2)
ε2

, u ∈ [−M, M],
− (3M2−1)u

ε2
− 2M3

ε2
, u < −M .

(2.6)
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It is clear from (2.6) that there exists a constant c such that (2.5) is satisfied.
We are interested in the mild solution of problem (2.2) in the Itô sense [17, 18],

defined by

u(t) = S(t)u0 +
∫ t

0
S(t − τ) f (u(τ ))dτ +

∫ t

0
S(t − τ)G(u(τ ))dW (τ ), (2.7)

where S(t) := e−t L is a semigroup generated by the operator L [21].
In order to establish the existence and uniqueness of a mild solution to (2.2),

we furthermore assume that z(x, ω) is a F0-measurable, mean-zero, Whittle-Matérn
Gaussian randomfield,which is a stationary randomfieldwith the covariance function

cq(x) := g(‖x‖2)

2q−1	(q)
, x ∈ D̄, q > 2, (2.8)

where 	(·) is the Gamma function, and g(·) stands for the inverse Fourier transform
of ĝ(ξ) := 2q− 1

2 	(q+ 1
2 )

(1+ξ2)
q+ 1

2
. It is known that the parameter q shown in (2.8) controls the

regularity of the random field z(x, ω) [41]. Therefore, by taking different q value,
it’s easy to numerically test and compare different cases. Notice that the covariance
function and mean function uniquely determine a Gaussian random field [41].

Some other assumptions on the nonlinear term G are also needed, which are col-
lected below: - LsG(·), 0 ≤ s ≤ 1/2, is a mapping from L2(D) to LQ such that:

‖LsG(v)‖LQ
≤ c

(
1 + ‖v‖

L2(D)

)
, ∀v ∈ L2(D), (2.9)

∥∥Ls(G(v1) − G(v2)
)∥∥

LQ
≤ c‖v1 − v2‖L2(D)

, ∀v1, v2 ∈ L2(D). (2.10)

- {G(v(τ )) : τ ∈ [0, T ]} is a predictable LQ-valued process, such that

∫ T

0
E[‖G(v)‖2LQ

] dτ < +∞, ∀v ∈ L2(D). (2.11)

Wewant to point out that, although these assumptions on the nonlinear termG(·) seem
to be restrictive, the similar or more general assumptions have been considered in [2,
24, 34, 57], which are often used in establishing the existence and uniqueness of the
solution to SPDEs.

The well-posedness of the problem (2.2) consists in verifying that the integrals in
(2.7) are well defined and a function u satisfying the integral equation (2.7) uniquely
exists. We first notice that the realization of the random field a(x, ω) given in (2.3) is 2
times mean-square differentiable due to q > 2 [41], and the domain of the operator L
isD(L) = H2(D) ∩ H1

0 (D) almost surely [4]. We define the space Lt
2 for t ∈ [0, T ],
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which is the Banach space of L2(D)-valued predictable processes {v(τ) : τ ∈ [0, t]},
equipped with the norm

‖v‖Lt
2

:= sup
τ∈[0,t]

‖v(τ)‖
L2(�,L2(D))

< +∞.

Now we are in a position to state and prove the existence, uniqueness, and the sta-
bility of the mild solution (2.7). The proof is basically based on the framework of
[41, Theorem 10.26], but adapted for the problem considered here. In particular, the
randomness of the diffusion coefficient requires special care.

Theorem 2.1 Suppose that the initial data u0 ∈ L2(�, L2(D)) is an F0-measurable
random variable. Then, there exists a unique mild solution u ∈ L

T
2 to (2.2). Fur-

thermore, there exists a constant cT depended on T such that the following stability
inequality holds

‖u‖
L
T
2

≤ cT (1 + ‖u0‖L2(�,L2(D))
). (2.12)

Proof We define the integral operator M by: for all v ∈ L
t
2, 0 ≤ t ≤ T ,

(Mv)(t) := S(t)u0 +
∫ t

0
S(t −τ) f (v(τ ))dτ +

∫ t

0
S(t −τ)G(v(τ ))dW (τ ). (2.13)

We emphasize here that the semigroup operator S(·) involves the random diffusion
coefficient, thus the subsequent inequalities related to it should be understood in the
sense of almost surely. Obviously if there is a fixed point u ∈ L

t
2 for the operatorM,

then this fixed point is a mild solution defined by (2.7). Now we will use the fixed
point theorem to prove this is true by showing thatM is a contraction mapping from
L
t0
2 → L

t0
2 for small enough t0.

1) First we prove that if v ∈ L
t0
2 , then the integral operator M is well-defined, and

Mv ∈ L
t0
2 . Let I1(t) := ∫ t

0 S(t − τ)G(v(τ ))dW (τ ). Using the Karhunen-Loève
expansion of Q-Wiener process W (τ ), Itô isometry, ‖S(t − τ)‖L(L2(D))

≤ 1, and
assumption (2.9) gives:

‖I1(t)‖2
L2(�,L2(D))

= E[‖I1(t)‖2
L2(D)

] = ∫ t
0 E

[‖S(t − τ)G(v)‖2LQ

]
dτ ≤ ∫ t

0 E[‖G(v)‖2LQ
]dτ < +∞.

This means I1(t) is a predictable process and well defined in L2(�, L2(D)).
Moreover, it can be directly verified that S(t)u0 and

∫ t
0 S(t − τ) f (v(τ ))dτ are

also predictable due to u0 is F0-measurable and v ∈ L
t0
2 . Therefore (Mv)(t) is a

predictable process.
We next show ‖Mv‖Lt

2
< +∞, 0 ≤ t ≤ t0. Using ‖S(t)‖L(L2(D))

≤ 1 yields:

‖S(t)u0‖L2(�,L2(D))
≤ E

[‖S(t)‖2
L(L2(D))

‖u0‖2
L2(D)

] 1
2 ≤ ‖u0‖L2(�,L2(D))

< +∞.
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Under the assumption (2.5), we have, for v ∈ L
t0
2 ,

∥
∥

∫ t

0
S(t − τ) f (v)dτ

∥
∥
L2(�,L2(D))

≤
∫ t

0
‖S(t − τ) f (v)‖

L2(�,L2(D))
dτ

≤ c
∫ t

0
(1 + ‖v‖

L2(�,L2(D))
)dτ < +∞.

By the Itô isometry, (2.9), the definition of ‖ · ‖LQ
, and

∫ t
0 ‖L− 1

2 S(t − τ)‖2
L(L2(D))

d

τ ≤ ct [41, Exercise 10.8], we obtain

∥
∥

∫ t

0
S(t − τ)G(v)dW (τ )

∥
∥2
L2(�,L2(D))

=
∫ t

0
E

[∥∥L− 1
2 S(t − τ)L

1
2 G(v(τ ))

∥
∥2
LQ

]
dτ

≤ cE
[ ∫ t

0

∥
∥L− 1

2 S(t − τ)
∥∥2
L(L2(D))

(
1 + ‖v‖

L2(D)

)2
dτ

]

≤ cE
[(
1 + sup

0≤τ≤t
‖v(τ)‖

L2(D)

)2
∫ t

0

∥
∥L− 1

2 S(t − τ)
∥
∥2
L(L2(D))

dτ
]

≤ ct
(
1 + sup

0≤τ≤t
‖v(τ)‖

L2(�,L2(D))

)2
< +∞.

This shows that all terms in (Mv)(t) are uniformly bounded in [0, t0] in the norm
‖ · ‖

L2(�,L2(D))
. Therefore ‖Mv‖

L
t0
2

< +∞.

2) Then we prove that M is a contraction mapping on L
t0
2 . A similar reasoning as

above gives: for 0 ≤ t ≤ t0,

‖(Mv1)(t)−(Mv2)(t)‖2
L2 (�,L2 (D))

≤ c
( ∫ t

0

∥
∥S(t − τ)

(
f (v1(τ ))− f (v2(τ ))

)∥∥
L2 (�,L2 (D))

dτ
)2

+c
∥∥

∫ t

0
S(t − τ)(G(v1(τ ))−G(v2(τ )))dW (τ )

∥∥2
L2 (�,L2 (D))

≤c
( ∫ t

0

∥∥ f ′(v1+θ(v2−v1)
)(

v1(τ )−v2(τ )
)∥∥

L2 (�,L2 (D))

dτ
)2

+c
∫ t

0
E

[∥∥L− 1
2 S(t−τ)

∥∥2
L(L2 (D))

∥∥L
1
2
(
G(v1(τ ))−G(v2(τ ))

)∥∥2
LQ

]
dτ

≤ ct2 sup
0≤τ≤t

‖v1(τ ) − v2(τ )‖2
L2 (�,L2 (D))

+ cE
[
sup

0≤τ≤t
‖v1 − v2‖2

L2 (D)

∫ t

0

∥∥L− 1
2 S(t − τ)

∥∥2
L(L2 (D))

dτ
]

≤ c(t2 + t)‖v1(τ ) − v2(τ )‖2
L
t
2
,

where θ ∈ (0, 1). Therefore we obtain

‖Mv1 − Mv2‖2
L
t0
2

≤ c(t20 + t0)‖v1 − v2‖2
L
t0
2
.

It means M is a contraction mapping on L
t0
2 if c(t20 + t0) < 1, which is satisfied

for small enough t0. As a consequence, there exists a mild solution u(t) to (2.2) in
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(0, t0]. Note that c that makes the inequality c(t20 + t0) < 1 hold is independent
of the initial value u0, thus one can repeat the above proof on the time interval
[t0, 2t0], [2t0, 3t0] and so on to show that there exists a mild solution u(t) to (2.2)
in (0, T ].

3) Finally, we prove the stability inequality (2.13). We can likewise show that there
exists a constant cT > 0 depending on T such that

‖u(t)‖2
L2(�,L2(D))

≤cT
(
(1+‖u0‖L2(�,L2(D))

)2+
∫ t

0
‖u(τ )‖2

L2(�,L2(D))
dτ

)
, ∀t ∈(0, T ].

Then using Gronwall’s inequality gives

sup
t∈[0,T ]

‖u(t)‖
L2(�,L2(D))

≤ cT (1 + ‖u0‖L2(�,L2(D))
).

This completes the proof. �

3 Stochastic Fourier sampling and fully discrete scheme

In this section, we aims to propose a sampling method to sample the random diffu-
sion coefficient field a(x, ω). The proposed method is the so-called stochastic Fourier
approach (also known as quadrature method) [50, 51]. It is worthwhile to point out that
some other sampling methods, such as turning bands method [19, 43] and circulant
embedding with padding method [20, 56], are also available. However the turning
bands method is only applicable to isotropic Gaussian random fields, and the compu-
tational cost of the circulant embedding method is too large in high dimensions. One
of the merit of the sampling method we employ here is its applicability to stationary
Gaussian random fields including isotropic random fields, and its computational cost
is roughly equal to computing a stochastic Fourier integral.

It is obvious from (2.3) that if we want to sample a(x, ω), we only need to sample
z(x, ω). The crucial ingradient of the stochastic Fourier method is to construct a
new random field that is the same as z(x, ω) in the sense of distribution through
stochastic Fourier integral, and then approximately calculate the constructed random
field by numerical integration to sample z(x, ω) indirectly.Wewill briefly describe this
approach by taking one-dimensional sampling as an example in this section. Another
purpose in this section is to propose and analyze a finite element method and time
stepping scheme for spatio-temporal discretization of the problem (2.2). We start with
the stochastic Fourier sampling.

3.1 Stochastic Fourier sampling

Consider the sampling of the random field z(x, ω) for x ∈ [0, 1]. It is known from
(2.8) that the covariance function of the random field z(x, ω) is stationary, thus one
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gets easily from the Wiener-Khintchine theorem [41, Theorem 6.5] that

cq(x) =
∫

R

eiξ x fs(ξ)dξ, x ∈ [0, 1],

where fs(ξ) stands for the spectral density function corresponding to cq(x). Then
using (2.8) and the Fourier transform gives

fs(ξ) = ĝ(ξ)

2q−1	(q)
√
2π

= 	(q + 1
2 )

	(q)	( 12 )

1

(1 + ξ2)q+ 1
2

. (3.1)

Let {W(ξ) : ξ ∈ R} be a complex Brownian motion, i.e., W(ξ) := W1(ξ) + iW2(ξ)

with W1(ξ) and W2(ξ) representing independent two-sided Brownian motions. Com-
bining W(ξ) and fs(ξ) allows to construct a new random field Z(x) defined by

Z(x) :=
∫

R

eixξ
√

fs(ξ)dW(ξ). (3.2)

It is readily obtained that

E[Z(x)Z̄(y)] = 2
∫

R

eixξ
√

fs(ξ) e−iyξ
√

fs(ξ)dξ = 2
∫

R

ei(x−y)ξ fs(ξ)dξ. (3.3)

Notice that fs(ξ) given in (3.1) is an even function of ξ , thus both
∫
R
ei(x−y)ξ fs(ξ)dξ

and E[Z(x)Z̄(y)] are real. It follows from (3.3) and [41, Corollary 6.27] that Z(x) is
a stationary complex Gaussian random field with mean-zero and covariance 2cq(x).
Consequently the real and imaginary parts of Z(x) are independent copies of a real-
valued stationary Gaussian random field with mean-zero and covariance cq(x). This
means that the real and imaginary parts of Z(x) have the same distribution as our
target random field z(x, ω) shown in (2.3). Hence, the stochastic Fourier integral (3.2)
provides a way to sample z(x, ω) through approximating Z(x) by numerical integral.
For example, we can approximate Z(x) by the trapezoid rule as follows:

Z(x) ≈
J∑

j=0

eixξ j
√

fs(ξ j )W j , (3.4)

where ξ j = −R + jξ, j = 0, 1, . . . , J ,ξ = 2R
J with R being a large enough

number,

W j :=

⎧
⎪⎨

⎪⎩

W(ξ0 + ξ
2 ) − W(ξ0), j = 0,

W(ξ j + ξ
2 ) − W(ξ j − ξ

2 ), j = 1, ..., J − 1,

W(ξJ ) − W(ξJ − ξ
2 ), j = J .

It is seen from the above definition that W j ∼ CN(0, 2ξ) for j = 1, ..., J −1 and
W j ∼ CN(0,ξ) for j = 0 and J , where CN(·, ·) stands for complex Gaussian
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distribution [41, Definition 6.15]. Hence, for a given x , Z(x) can be easily sampled
because W j are pairwise independent, and its real or imaginary part can be used as
an approximation to z(x, ω).

Note that the samplingmethod described above is convenient in the sense that it only
needs to numerically compute a stochastic Fourier integral and can simultaneously
produce two sets of independent and identically distributed (i.i.d) samples in one
sampling. Notably, for each of the sampling data of the random diffusion coefficient,
the problem (2.2) becomes a stochastic Allen-Cahn equation with randomness only
on the G(·)-term. The forthcoming subsections will focus on the spatio-temporal full
discretization of the problem (2.2).

3.2 A time stepping scheme based on auxiliary variable approach

The proposed time scheme makes use of an auxiliary variable approach, known as
SAV, originally introduced by Shen et al. in [48] for deterministic gradient flows.
Although this approach has been successfully applied to construct efficient schemes
for a large class of nonlinear problems, its generalization to stochastic equations needs
some care, especially when the differentiation of random fields is involved. The idea

is to introduce the time-dependent auxiliary variable r(t) :=
√∫

D F(u)dx + c0 for

each ω ∈ �, c0 is a positive constant such that
∫
D F(u)dx + c0 is positive. Then we

insert this auxiliary variable into the original equation (2.2), yielding the following
equivalent reformulation:

du(t) = −μ(t)dt, t ∈ (0, T ), x ∈ D,

μ(t) = Lu − r(t)
√∫

D F(u)dx + c0
f (u) − G(u)Ẇ (t, x),

dr(t) = −
∫
D f (u)∂t u(t) dx

2
√∫

D F(u)dx + c0
dt,

(3.5)

where Ẇ (t, x) is the white noise, which is the time derivative of the Q-Wiener process
W (t, x), i.e., Ẇ (t, x)dt = dW (t, x). Note that in the above reformulation, although
all the unknown variables u, μ, and r are denoted as functions of t , u, and μ are
indeed also functions of x too. Two facts are readily seen: (i) the equation sets (2.2)
and (3.5) are strictly equivalent at the continuous level; (ii) the equation set (3.5) looks
more complicated with an additional variable r as compared to the original one (2.2).
However, as we are going to see, starting with the reformulation (3.5), it becomes
much easier to construct stable schemes. Recently, this type of approaches has been
considered and applied to solve stochastic wave equation with multiplicative noise
by Cui et al. [16]. We believe it is interesting to see the potential advantage of this
approach in approximating other SPDEs such as the equation considered in the current
paper.
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The time stepping method we propose reads:

un+1 − un = −tμn+1,

μn+1 = Lun+1 − rn+1
√∫

D F(un)dx + c0
f (un) − G(un)

Wn

t
,

rn+1 − rn

t
= − 1

2
√∫

D F(un)dx + c0

∫

D
f (un)

un+1 − un

t
dx,

(3.6)

where t = T
N is the uniform time step size for a positive integer N , un is the

time discrete approximation to u(tn) for tn = nt , and Wn := W (tn+1) − W (tn).
Essentially, the above scheme is a kind of Euler-Maruyama discretization [34, 41, 46]
applied to the reformulation system (3.5), will thus be termed as “extended Euler-
Maruyama scheme” hereafter.

One remarkable property of the above scheme is that it satisfies an energydissipation
law in the absence of multiplicative noise, as shown in the following proposition. This
dissipation law implies that the proposed scheme is unconditionally stable because
the numerical solution remains bounded during the time stepping.

Proposition 3.1 (Unconditional stability) Without the source term, i.e., G(·) = 0,
the numerical solution of the discrete problem (3.6) satisfies the following energy
dissipation law for almost every ω ∈ �:

En+1 ≤ En, ∀n = 0, 1, . . . , N − 1, (3.7)

where En+1 := 1
2

∥∥√
a(x, ω)∇un+1

∥∥2
L2(D)

+ |rn+1|2.

Proof For almost every ω ∈ �, taking the L2(D)-inner product (·, ·) of the first and
second equations of (3.6) with μn+1 and (un+1 − un) respectively, and multiplying
the third equation by 2rn+1, then summing up the resulting equations, we obtain

(√
a(x, ω)∇un+1,

√
a(x, ω)∇(un+1−un)

)+2(rn+1, rn+1−rn)=−t(μn+1, μn+1).

Using the identity bn+1(bn+1 − bn) = 1
2 (|bn+1|2 − |bn|2 + |bn+1 − bn|2) gives:

En+1−En+ 1

2

∥∥
√
a(x, ω)(∇un+1−∇un)

∥∥2
L2(D)

+ |rn+1−rn|2=−t(μn+1, μn+1).

Thus

En+1 − En ≤ −t(μn+1, μn+1) ≤ 0.

This completes the proof. �
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The scheme can be very efficiently implemented by using a suitable decomposition
technique, which we describe below. It follows from the first and second equations of
(3.6) that

un+1 := un+1
1 + rn+1un+1

2 , (3.8)

where un+1
1 or un+1

2 solves the following elliptic equation

(I + t L)u = gn in D (3.9)

with the source term gn being gn1 := un + G(un)Wn and gn2 := t f (un)√∫
D F(un)dx+c0

respectively. Obviously, un+1
1 and un+1

2 can be separately solved through the elliptic
equation (3.9). It now remains to compute rn+1. This can be done by plugging (3.8)
into the third equation of (3.6), which gives

(
1 +

∫
D f (un)un+1

2 dx

2
√∫

D F(un)dx + c0

)
rn+1 = rn −

∫
D f (un)(un+1

1 − un)dx

2
√∫

D F(un)dx + c0
.

Once rn+1 is computed from this equation, inserting it into (3.8) gives un+1.
It is seen that the overall cost of the proposed scheme (3.6) is roughly equal to

solving two decoupled second-order equations with random coefficients at each time
step. In the following, we briefly describe the spatial discretization.

3.3 Spatial discretization

Consider the P1 finite element method for the spatial discretization of the problem
(3.6). Let Th be a regular triangulation. Define the finite element space Vh by

Vh := {v ∈ C0(D̄), v = 0 on ∂D, v|K ∈ P1(K ) for all K ∈ Th},

where P1(K ) denotes the space of the polynomials of degree ≤ 1 defined in K . Let
Ph be the orthogonal projection from L2(D) to Vh , and Pw

J be the projection from
Hγ
0 (D) to the finite-dimensional space span{φ1, . . . , φ J }. Set the initial condition to

be u0h := Phu0 and the initial auxiliary variable to be r0h :=
√∫

D F(u0h)dx + c0.

Given the previous step solution unh ∈ Vh , rnh ∈ R, the spatial discretization of the
problem (3.6) reads: find un+1

h ∈ Vh , r
n+1
h ∈ R, such that for each ω ∈ �, vh ∈ Vh ,

and n = 0, · · · , N − 1,

(un+1
h −unh , vh)= −t(μn+1

h , vh),

(μn+1
h , vh)=(

a(x, ω)∇un+1
h ,∇vh

)− rn+1
h√∫

D F(unh)dx + c0
( f (unh), vh)− 1

t

(
G(unh)Pw

J Wn , vh
)
,

rn+1
h −rnh = − 1

2
√∫

D F(unh)dx + c0

∫

D
f (unh)(un+1

h − unh)dx,

(3.10)
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wherePw
J Wn := ∑J

j=1
√
q j (β j (tn+1)−β j (tn))φ j with β j (t) representing the i.i.d

Ft -Brownian motions.
The full discrete scheme (3.10) can be realized through solving uh ∈ Vh from the

following elliptic problem:

(
uh, vh

) + t
(
a(x, ω)∇uh,∇vh

) = (
gnh , vh

)
, ∀vh ∈ Vh, (3.11)

where

gnh = unh + G(unh)Pw
J Wn (3.12)

or

gnh = t
√∫

D F(unh)dx + c0
f (unh). (3.13)

We separately denote by un+1
1,h and un+1

2,h the solution of (3.11) for gnh in (3.12) and

(3.13), then the current step solution un+1
h is obtained by

un+1
h = un+1

1,h + rn+1
h un+1

2,h , (3.14)

where rn+1
h is computed by

(
1 +

∫
D f (unh)u

n+1
2,h dx

2
√∫

D F(unh)dx + c0

)
rn+1
h = rnh −

∫
D f (unh)(u

n+1
1,h − unh)dx

2
√∫

D F(unh)dx + c0
. (3.15)

To summarize, the ful discrete scheme (3.10) can be implemented as follows:

i) Solve un+1
1,h and un+1

2,h from (3.11) for gnh defined in (3.12) and (3.13) respectively;

ii) Compute rn+1
h by (3.15);

iii) Compute un+1
h by (3.14).

In actual calculation, we will use the average of the sampled values at the finite
element nodes to approximate a(x, ω).

4 Numerical experiments

Several numerical examples are presented in this section to demonstrate the perfor-
mance of the proposed scheme and show the effect of stochastic factors on numerical
solutions. We start by testing the convergence orders of the temporal and spatial dis-
cretization.
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Example 4.1 (Accuracy and stability test) We take the following one-dimensional
stochastic Allen-Cahn equation with random diffusion coefficient field and multi-
plicative force noise:

du(x, t) = ∂x
(
ez(x,ω)∂xu

)
dt + u − u3

ε2
dt + G(u)dW (x, t), 0 < t < T , x ∈ (0, 1),

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T ,

u(x, 0) = u0(x), x ∈ (0, 1),
(4.1)

where z(x, ω) is the truncated Gaussian random field with mean-zero and covariance
function cq(x), and W (x, t) is a Hγ

0 -valued Wiener process defined by

W (x, t) =
∞∑

j=1

√
q j sin( jπx)β j (t), (4.2)

where q j = O( j−(2γ+1+ε)) with arbitrary small positive ε.
We first test the effectiveness of the sampling method used in this paper. For each

x ∈ D̄, denote byμm(x) the approximation ofE[z(x, ω)] underm samples.We run the
sampling method presented in Section 3.1 to produce an approximation of the random
vector z = (

z(x1, ω), . . . , z(xP , ω)
)T by taking P = 100 and q = 3. Furthermore we

calculate |μm(x)| for x = 0.1, 0.5, 0.9 and m = 10, 20, 50, 100. The obtained result
is shown in Fig. 1, from which we observe that as the sampling number increases,
|μm(x)| converges to the theoretical mean-zero, and the convergence rate is roughly

O(m− 1
2 ).

We then test the time-space strong convergence rate of the full discrete scheme,
where the strong convergence is understood in the sense of convergence with respect

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 1 Mean of sample values |μm (x)| as function of m in log-log scale
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to the norm ‖ · ‖L2(�,L2(D)). In particular, we will compare the result to that of the

classical semi-implicit Euler-Maruyama scheme, i.e., find un+1
h ∈ Vh , such that

(I + t Lh)u
n+1
h = unh + tPh f (u

n
h) + Ph

(
G(unh)Pw

J Wn), n = 0, · · · , N − 1,

u0h = Phu0,
(4.3)

where Lh : Vh → Vh is the finite-dimensional operator defined by

(Lhw, v) := (a(x, ω)∇w,∇v), ∀w, v ∈ Vh .

It is worth pointing out that the strong convergence analysis of the stochastic Allen-
Cahnequation is generallymoredifficult than that of theSPDEswith globallyLipschitz
nonlinearity due to the presence of the non-globally Lipschitz (cubic) nonlinearity
of the Allen-Cahn potential functional, see, e.g., [5, 9, 45, 55]. Although no error
analysis for the FEM/extended Euler-Maruyama scheme (3.10) is available, we notice
that under the assumption (2.5), the strong error estimate of the scheme (4.3) has been
derived in our recent paper [46]. In that paper the strong convergence rate O(h2−δ +
t

1
2 ) was proved for the scheme (4.3), where δ is an infinitesimal number. This

numerical test has the purpose of checking if the scheme (3.6) is more stable than
(4.3), while they have comparable accuracy.

The strong convergence rate in time and space is measured in terms of mean-
square approximation errors at the endpoint T = 0.001. Since the exact solution of the
problem (4.1) is unknown, we will use the reference solution computed in a finer time-
space mesh as the exact solution. Precisely, the “exact solution” is computed by using
h = 1/128 and t = 10−8 in the time accuracy test, and h = 1/512 and t = 10−6

in the spatial accuracy test. The error expectation, denoted by uerror, is approximated

by computing the mean of 200 samples:
(

1
200

∑200
j=1 ‖urefj − uN

j,h‖2L2(D)

) 1
2
, where urefj

and uN
j,h are respectively the exact solution and the approximative solution for the j-th

sample.
We calculate uerror with different time steps and mesh sizes by taking u0(x) =

sin(2πx), ε = 1, c0 = 0, γ = 2 and q = 2. The error behavior with respect
to the time step size and the finite element mesh size is presented in Table 1 for
G(u) = 5(1− u2). Also shown is the comparison between the classical semi-implicit
and our new scheme. The same test is repeated for G(u) = 5u, and the result is given
in Table 2. It is observed in these tables that both the classical semi-implicit and the
new schemes give the same convergence rate, 1/2-order in time and second order in
space as expected.

Next, we focus on the stability comparision of the extended Euler-Maruyama
scheme (3.6) and classical semi-implicit scheme (4.3). Consider themodel (4.1) again.
Fix a random stream, take u0 = sin(4πx), γ = 1, c0 = 0, q = 2, G(u) = (1−u2)/2,
h = 1/64, T = 1, ε = 0.01. We run the both schemes with different time steps,
and trace the evolution of the numerical solution uN

h . We say the scheme blows up if
we get a NaN for the numerical solution. We find that when t ≥ 2.2 × 10−4, the
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Table 1 Time (upper table) and
space (lower table) convergence
rates with G(u) = 5(1 − u2)

Semi-implicit New scheme
uerror Order uerror Order

Time step t

1.00E-4 3.25E-3 - 3.31E-3 -

5.00E-5 2.38E-3 0.45 2.57E-3 0.37

2.50E-5 1.75E-3 0.44 1.85E-3 0.47

1.25E-5 1.27E-3 0.47 1.23E-3 0.58

6.25E-6 9.17E-4 0.47 8.89E-4 0.47

Mesh size h

1/16 1.05E-2 - 1.06E-3 -

1/32 2.70E-3 1.96 2.70E-3 1.97

1/64 6.88E-4 1.97 7.02E-4 1.94

1/128 1.76E-4 1.97 1.80E-4 1.97

1/256 4.28E-5 2.04 4.51E-5 2.00

semi-implicit Euler-Maruyama scheme blows up at time t = 2.42 × 10−3, whereas
the new scheme allows stable long time calculation (stoped at t = 390) even for the
time step t = 10−1. We also test the stability for the problem (4.1) with the nonlin-
ear drift term u−u3

ε2
replaced by − u

ε2
and keeping other terms and inputs unchanged.

The computed result shows that when t ≥ 2.1× 10−4, the traditional semi-implicit
scheme blows up at time t = 2.46 × 10−2, while the new scheme (3.6) allows stable
calculation up to t = 7373 (forced interrupted) with the time step t = 0.1. This
test clearly demonstrates that the proposed new scheme is much more robust than the
classical semi-implicit Euler-Maruyama scheme.

Table 2 Same as Table 1 but for
G(u) = 5u

Semi-implicit New scheme
uerror Order uerror Order

Time step t

1.00E-4 4.28E-3 - 3.54E-3 -

5.00E-5 2.92E-3 0.55 2.58E-3 0.45

2.50E-5 2.02E-3 0.53 1.76E-3 0.56

1.25E-5 1.47E-3 0.46 1.25E-3 0.49

6.25E-6 1.04E-3 0.50 8.47E-4 0.56

Mesh size h

1/16 1.04E-2 - 1.04E-2 -

1/32 2.75E-3 1.92 2.69E-3 1.96

1/64 7.12E-4 1.95 6.82E-4 1.98

1/128 1.83E-4 1.96 1.76E-4 1.96

1/256 4.37E-5 2.07 4.28E-5 2.04
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Example 4.2 (Phenomenon comparison) In this example, the time evolution of the
numerical solution of the stochastic Allen-Cahn equation is compared to that of the
deterministic Allen-Cahn equation to show the effect of random perturbations. The
deterministic Allen-Cahn equation reads:

ut (x, t) = �u + u − u3

ε2
, t ∈ (0, T ), x ∈ D. (4.4)

Let W (x, t) be the same as shown in (4.2), u0 = sin(4πx), u(x, 0) = u(x, 1) =
0, T = 0.1, t = 10−4, h = 1/256, ε = 10−2, c0 = 0, γ = 1. We compare
the numerical solutions between the stochastic Allen-Cahn equations (4.1) and the
deterministic equation (4.4). The contour lines of the computed solutions in the (x, t)-
plan are plotted in Fig. 2, in which the stochastic solution is the mean of 30 samples.
It is observed from this comparison:

i) compared to the deterministic model, when a random diffusion coefficient field
is incorporated, the thickness of the phase field interface is increased, and the
interface shifts randomly, as seen from Fig. 2(b);

ii) when force noise is introduced and the diffusion coefficient is deterministic, the
kinks interact and annihilate each other, as shown in Fig. 2(c). This is in a good
agreement with the result reported in [41].

iii) with both the noise and random diffusion coefficient field, a phenomenon that is
a overlay of (i) and (ii) arises, as seen in Fig. 2(d).

We now perform two simulations of phase interface evolution to show the per-
turbing effects of the random factors on the numerical solution. This is done through
numerically solving the two-dimensional Allen-Cahn equation by using the extended
Euler-Maruyama scheme. Let D = (0, 1)2.

W (x, t) :=
∞∑

i, j=1

√
qi j sin(iπx1) sin( jπx2)βi j (t),

where qi j = exp(− i2+ j2

200 ) and βi j (t) are the i.i.d Brownian motions.
In the deterministic case, it has been known that as ε → 0, the zero level set of u,

denoted by 	ε
t := {x ∈ D : u(x, t) = 0}, approaches a surface 	t whose evolution

follows the geometric law:

V = − 1

R
= −κ,

where V is the normal velocity of the surface 	t at each point, κ is its mean curvature,
and R is the principal radius of curvature [36, 38]. If we denote the radius at time t by

R(t) and set the initial radii to be R0, then R(t) =
√
R2
0 − 2t .
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Fig. 2 Comparison of the time evolution of numerical solutions of the one dimensional stochastic and
deterministic Allen-Cahn equation. (a) deterministic. (b) random with q = 2, G(u) = 0. (c) deterministic
diffusion coefficient and G(u) = 5(1 − u2). (d) random with q = 2,G(u) = 5(1 − u2)

We simulate double-circle shrinkage evolution using the equation (4.1) with ε =
1.5 × 10−3, c0 = 0, and the following initial condition:

u0 = tanh
0.4 −

√
(x1 − 0.5)2 + (x2 − 0.5)2√

2ε
− tanh

0.3 −
√

(x1 − 0.5)2 + (x2 − 0.5)2√
2ε

− 1

using 256×256mesh and the time stept = 5×10−5. Figure3 shows the evolution of
the initial concentration at the times given above each subfigure for both deterministic
case and random perturbations. In this figure the first row corresponds to the determin-
istic case, the remaining rows are for deterministic coefficient with G(u) = 2(1−u2);
q = 2,G(u) = 0; and q = 2,G(u) = 2(1 − u2) respectively. It is observed that the
double-circle shrinks regularly in the deterministic case. However, when the random
diffusion coefficient field or noise are added, the shape of the circle evolves irregularly
over time, the thickness of the phase field interface thickens, and some small-scale
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Fig. 3 Interface evolution of a star-shaped at t = 0, 0.001, 0.005. The first row: deterministic case. The
second row: random case with q = 2 and G(u) = 0. The third row: deterministic diffusion coefficient and
G(u) = 2(1 − u2). The fourth row: random case with q = 2 and G(u) = 2(1 − u2)

structures are generated. Notably, the last row of Fig. 3 shows the cumulative effects
of both random diffusion coefficient fields and force noise.

The second simulation is the evolution of a star-shaped curvature-driven interface.
We use 10 sample points and 512×512 mesh in this simulation. Set ε = 7.5 × 10−4,
t = 5 × 10−5, c0 = 0, and the initial condition:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(x1, x2, 0) = tanh
1.5 + 1.2 cos(8θ) − 2πr√

2ε
,

θ = arctan
x2 − 0.5

x1 − 0.5
,

r =
√

(x1 − 0.5)2 + (x2 − 0.5)2.
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The time evolution of the samplemean of the numerical solutions is presented in Fig. 4.
Again we use this simulation to investigate the impact of the randomness. The first
row, which corresponds to the deterministic case, confirms the well known results that
the tips of the star move inward, while the gaps between the tips move outward, and
the whole shape shows a trend of shrinking towards the center. The second row shows
the effect of the random diffusion coefficient with q = 2, G(u) = 0. We observe that
the thickness of the interface is expanded, and the evolution of the star interface lost
the symmetrical shape due to the diffusion randomness. The third row stands for the
case with deterministic diffusion coefficient and G(u) = 2(1 − u2), from which we
see that noise causes small-scale structures, and makes star-shaped interface shifted
slightly. The last row of Fig. 4 presents the case where q = 2 and G(u) = 2(1 − u2),
which can be seen as a combination of the effects of random factors observed in the

Fig. 4 Interface evolution of the initial double-circle at t = 0, 0.01, 0.03. The first row: deterministic case.
The second row: deterministic coefficient and G(u) = 2(1 − u2). The third row: random case with q = 2
and G(u) = 0. The fourth row: random case with q = 2 and G(u) = 2(1 − u2)
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second and third rows. The kinks interact, even cancel each other out, and new kinks
may appear.

5 Conclusions

In this paperwe have considered a stochasticAllen-Cahn equation driven by a bounded
log-Whittle-Matérn random diffusion coefficient field and Q-Wiener multiplicative
force noise. The well-posedness of the considered equation was established. Basically,
the proof of the existence of a mild solution made use of the fixed point theorem,
with help of the assumptions imposed on the nonlinear term G(·) and the random
coefficient. A number of known results, including the Karhunen-Loève expansion of
Q-Wiener process, Ito isometry, and the inequality of the semigroup generated by
the stochastic elliptic operator, was used in the proof. For the numerical solution, an
efficient time-stepping scheme was proposed, which is an extension of the classical
Euler-Maruyama scheme under an auxiliary variable reformulation of the stochastic
Allen-Cahn equation.We have showed that the proposed scheme is very efficient since
only two decoupled second-order equationswith random coefficients need to be solved
at each time step. Moreover, the new scheme is unconditionally stable in the sense
that a discrete energy is dissipative when the multiplicative noise is absent. Notably,
through several numerical examples, we have demonstrated that the new scheme is
muchmore efficient than the classical semi-implicit Euler-Maruyama scheme. Finally,
using the proposed scheme, impact of the coefficient randomness and the noise on the
phase interface evolution was investigated.
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