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Abstract
In this paper, we study an adaptive finite element approximation of optimal control
problemswith integral fractionalLaplacian andpointwise control constraints. The state
variable is approximated by piecewise linear polynomials, and the control variable is
implicitly discretized. Upper and lower bounds of a posteriori error estimates for finite
element approximation of the optimal control problem are derived. An h-adaptive
algorithm driven by the a posterior error estimator is presented with Dörfler’s marking
criterion. We prove that the adaptive algorithm yields a sequence of approximations
that converge at the optimal algebraic rate. Numerical examples are given to illustrate
the theoretical findings.

Keywords Adaptive finite element Optimal control Fractional Laplacian A
posteriori error estimate

1 Introduction

Adaptive finite element method (AFEM) has attracted lots of attentions in the past
decades as a powerful tool to solve different PDEs with nonsmooth solutions. A great
deal of effort was devoted to the design of a posteriori error estimators, following the
pioneering work of Babus̆ka and Rheinboldt [1]. We refer to [2] for an overview of
AFEM in the applications of solving partial differential equations (PDEs). Besides
a posteriori error estimators, convergence and optimality are another two important
issues in AFEM. The convergence analysis was started with Dörfler [3] and further
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studied in [4–8]. The optimality was firstly addressed by Binev et al. [4] and further
studied by Stevenson [9, 10].

In the last two decades, AFEM also has successful applications in PDE-constrained
optimization. The initial works are attributed to Liu andYan [11] andBecker et al. [12],
where a residual type a posteriori error estimate and dual-weighted goal-oriented adap-
tivity for optimal control problems were investigated, respectively. For more details
of AFEM approximation of PDE-constrained optimization, we can refer to [13–19].
Among these works, there are two remarkable works. In [20] Kohls, Rösch and Siebert
derived an error equivalence property which enables one to derive reliable and effi-
cient a posteriori error estimators for optimal control problems. In [21], Gong and Yan
rigorously prove the convergence and quasi-optimality of AFEM for optimal control
problems with respect to the state and adjoint state variables.

Fractional differential operators such as the fractional Laplacian are an increasingly
important modeling tool in, e.g., fluids or image denoising ([22, 23]). Compared with
integer order differential operators, these fractional operators are nonlocal, which
makes both the mathematical analysis of physical models and numerical analysis of
numerical methods challenging. In recent years, optimal control problems governed
by fractional PDEs have also received lots of attentions. Many literatures are devoted
to developing numerical methods or algorithms for optimal control problems governed
by fractional PDEs. We refer to [24–30] for the finite element method, [31–33] for the
spectral method, and [34, 35] for fast algorithms. Among these literatures, only few
work is devoted to optimal control problems with the integral fractional Laplacian. In
[30], a priori error estimates of finite element approximation of the control constrained
optimal control problems with the fractional Laplacian are discussed.

Note that solutions to fractional differential equations typically have singulari-
ties even for smooth data input, which naturally call for using local refined meshes.
Therefore, in this paper, we aim to develop AFEM approximation of optimal control
problems with the integral fractional Laplacian. Upper and lower bounds of a poste-
riori error estimates for finite element approximation of optimal control problems are
derived. An h adaptive algorithm driven by the a posterior error estimator is presented
with Dörfler’s marking criterion. Using the abstract, general framework of [36], we
show in Theorem 10 that it yields a sequence of approximations that converge at the
optimal algebraic rate (with respect to an appropriate nonlinear approximation class)
under the assumption on the initial mesh size h0, i.e., h0 1 Finally, numerical
examples are given to illustrate the theoretical findings.

The paper is organized as follows: Some well-known results on the adaptive finite
element approximation to the problem with the fractional Laplacian are introduced in
Sect. 2. In Sect. 3, the finite element discrete scheme of the optimal control problem
is constructed, and a posteriori error estimates of the state, adjoint state, and control
variables are derived. The adaptive algorithm and its optimal convergence rate are
presented in Sect. 4. A numerical algorithm and numerical examples are presented to
verify the theoretical findings in Sect. 5. Finally, we give a conclusion.

Throughout this paper, we denote by C a generic positive constant independent of
the mesh size, which may stand for different values at its different occurrences. We
use the symbol A B to denote A CB for some constant C that is independent of
mesh size.
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2 Preliminaries

In this section, we begin with recalling some well-known results on the adaptive finite
element approximation to the problem with the fractional Laplacian, which are then
used for the convergence analysis of AFEM for optimal control problems with the
fractional Laplacian.

Consider the following problem

su x f x x

u x 0 x c (2.1)

Here, Rn is a bounded domain, c Rn , and s 0 1 . The fractional
Laplace operator s is defined by

su x C n s P.V.
Rn

u x u y

x y n 2s dy

where

C n s
22ss s n

2
n 2 1 s

Let s s Rn 0 in c , and s denote the dual space.
We denote by the L2 scalar-product. The weak formulation of (2.1) reads:
Find u s such that

A u f s (2.2)

Here,

A u
C n s

2 Rn Rn

u x u y x y

x y n 2s dxdy

It follows from [37, Proposition 2.4] that on s the s Rn seminorm is equivalent

to the s Rn norm. Let us define u s A u u C n s
2 u s Rn Then,

we have A u u u 2
s Therefore, by the Lax-Milgram theorem, the Eq. (2.1)

admits a unique solution u s for f s Since the equation (2.1)
is linear with respect to the right-hand side f , we can define a linear and bounded
solution operator L2 s such that u f .

If the domain Rn is a bounded Lipschitz domain, we have the following
regularity result for the problem (2.1); see [38, Theorem 2.1] for more details.

Lemma 1 Suppose that u s is the solution of the Eq. (2.1) with right hand
term f L2 . Then, the solution u s and satisfies

u s
C n s

f L2 0 s
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Here, min s 1
2 , 1

2 for 1 2 s 1 and 1
2 for 0 s 1 2 with a

constant depending on and n.

For the discretization of the problem (2.1), we consider a -shape regular mesh

h in the sense of max
T h

diam T T
1
n , which partitions the computational domain

into n-simplices. To ease notation, we introduce the piecewise constant mesh size

function h h L by h h T hT T
1
n Set h max

T h

hT . Let h be

the finite element space consisting of continuous piecewise linear functions over the
triangulation h

h h C 1
0 h T 1 T T h

Then, the finite element approximation of problem (2.1) can be characterized as: Find
u h h such that

A u h h f h h h (2.3)

Similar to the continuous case, we introduce a discrete operator h L2
h

such that u h h f . Set

h sup
f L2 f 1

inf
h h

f h s

Here denotes the norm of L2 space. Let h0 be the mesh size of the initial
mesh h0 . Set

h0 sup
h 0 h0

h

It is obvious that h0 1, if h0 1 Then, we can prove the following results:

Lemma 2 For f L2 we have

f h f s h f L2 (2.4)

and

f h f h f h f s (2.5)

Proof Note that
A f h f h 0 h h

Then, we have for h h

f h f
2
s A f h f f h f

A f h f f h

f h f s f h s

123

59   Page 4 of 33



Adaptive finite element approximation of optimal...

This implies the first result.
To derive the second estimate, we resort to the duality arguments. Let be the

solution of the following problem with L2

s x x x

x 0 x c

Then, we have

h s h L2

Furthermore, we can derive

f h f A f h f

A h f h f

h s f h f s

h L2 f S h f s

This yields
f h f h f h f s

Remark 1 The quantity h is determined by the regularity of f . If the domain
is Lipschitz continuous, according to Lemma 1, we have u f s for
f L2 . Then, according to [38, Theorem 3.5] we have h h log h
for a uniformmesh partition, where min s 1

2 and if s 0 5 and 1
if s 0 5 with 1 2 being a constant depending on and n.

In the following, we are going to review the residual type a posteriori error estimator
for the finite element approximation of problem (2.1).

According to [39], the function s
h is ( generally) no longer in L2 for

h h
3
4 s 1, as it has singularities at the mesh skeleton. Therefore, the

following local weighted residual error indicators were introduced for T h

u u h T hsT f su h L2 T where

hsT

hsT s 0
1

2

hsT h
s

1

2
1 s

1

2

Here, the function h x is defined as follows:

h x inf
T h

inf
y T

x y
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Then, we write the error estimator as the sum of the local error indicators

u u h h

T h

2
u u h T

1
2

For all elements T h and k 0, we introduce the k-th order element patch
inductively by

0
h T T 0

h T T
k
h T interior

T k
h T

T

where
k
h T T h T k 1

h T

According to [39, Theorem 2.3], we have the following upper and lower bounds
of a posterior error estimate of the state equation.

Lemma 3 For 0 s 1 and f L2 the weighted residual error estimator is
reliable:

u u h s Crel u u h h

Moreover, for 0 s 1
2 and u s 1

2 s 0 min s 1
2 s ,

the estimator is also efficient

2
u u h h C2

eff u u h
2
s

T h

h1 2
T u u h

2
s 1

2 3
h T

Remark 2 The previous theorem gives only a weak efficiency result for the case 0
s 1 2 However, the numerical results show that the proposed error estimator is
observed to be efficient for all 0 s 1

In the following analysis of optimal control problems, we also need to consider
the adjoint state equation. For this purpose, we introduce the adjoint equation of (2.1).
For g L2 , let z s be the solution of the following adjoint equation:

A z g s (2.6)

The corresponding finite element approximation is defined as follows: Find z h

h such that

A h z h g h h h (2.7)

Similarly to the state equation, we introduce the following local weighted residual
error indicators for T h

z z h T hsT g sz h L2 T
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and we write the error estimator as the sum of the local error indicators

z z h h

T h

2
z z h T

1
2

Then, in an analogous way to (2.1), the a posterior error estimate for the adjoint
equation is given below [39]

z z h s Crel z z h h s 0 1

Moreover, for 0 s 1
2 and z s 1

2 s 0 min s 1
2 s , the

estimator is also efficient

2
z z h h Ceff z z h

2
s

T h

h1 2
T z z h

2
s 1

2 3
h T

3 A posteriori error estimate for optimal control problems

We consider the following fractional optimal control problem:

min
q Uad

J u q
1

2
u x ud x 2dx

2
q2 x dx (3.1)

subject to

su x f x q x x

u x 0 x c (3.2)

The admissible set is given by

Uad L a b a e in

Here, a b R and a b. The function ud L2 is the desired state, and 0
is the regularization parameter.

The weak formulation of optimal control problem reads

min
u s q Uad

J u q (3.3)

subject to
A u f q s (3.4)
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For above optimal control problems, we have the following first order optimality
conditions.

Lemma 4 ([30, Theorem 3.5]) Let u q be the solution of the optimal control problem
(3.1)–(3.2). Then, there exists an adjoint state z such that

su x f x q x x

u x 0 x c (3.5)

s z x u x ud x x

z x 0 x c (3.6)

and

q z q 0 Uad (3.7)

Let
PUad max a min b

denote the pointwise projection onto the admissible setUad . The variational inequality
(3.7) is equivalent to

q PUad

1
z

The finite element approximation of the optimal control problem (3.1)-(3.2) can be
characterized as

min
u h q h h Uad

J u h q h (3.8)

subject to

A u h h f q h h h h (3.9)

Here, the control variable is implicitly discretized by variational discretization
approach ([41]), i.e., q h Uad In general q h is not a finite element function.
Similarly to the continuous case, we can derive the discrete first order optimality
condition

A u h h f q h h h h (3.10)

A h z h u h ud h h h (3.11)
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and

q h z h h q h 0 h Uad (3.12)

Again, (3.12) is equivalent to

q h PUad

1
z h

In the following analysis, we are going to derive a posterior error estimates for the
optimal control problem. For this purpose, we introduce two auxiliary problems: Find
u q h z u h

s s satisfying

A u q h f q h
s

A z u h u h ud
s

(3.13)

Theorem 5 Let u z q s s Uad and u h z h q h h h

Uad be the solutions of problems (3.5)-(3.7) and (3.10)-(3.12), respectively. Then, the
following estimates hold:

q q h u u h s z z h s

u h u q h s z h z u h s

and

u h u q h s z h z u h s

q q h u u h s z z h s

Proof Setting q h in (3.7) and h q in (3.12), we are led to

q z q h q 0

and
q h z h q q h 0

Adding the above two inequalities, we have

q q h
2 z h z q q h

z h z u h q q h z u h z q q h

(3.14)

Note that

A u u q h q q h
s

A z u h z u h u s
(3.15)
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Setting z u h z in (3.15) and u u q h in (3.15) yields

q q h z u h z u h u u u q h

From (3.14) and the above equation, we have

q q h
2

z h z u h q q h u h u u u h

u h u u h u q h

z h z u h q q h 0 u h u u h u q h

z h z u h q q h u h u q h u q h u u h u q h

z h z u h q q h u h u q h
2 u q h u u h u q h

(3.16)

By the governing equations of u and u q h as well as the coercivity of the bilinear
form A , we derive

u q h u s q q h

Inserting above estimate into (3.16) and using Young’s inequality(ab a2 1
4 b2)

leads to

q q h
2

z h z u h q q h u h u q h
2 q q h u h u q h

2
q q h

2 1
z h z u h

2 u h u q h
2 u h u q h

2

This implies

q q h
2 z h z u h

2 u h u q h
2 (3.17)

Moreover, by the coercivity of the bilinear form A , we can derive

u u h s u u q h s u q h u h s

q q h u q h u h s

(3.18)

and

z z h s

z z u h s z u h z h s

u u h s z u h z h s

q q h u q h u h s z u h z h s

(3.19)
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Combining (3.17)-(3.19), we deduce

q q h u u h s z z h s

u h u q h s z h z u h s

Now, we are at the position to prove a lower bound of q q h u u h s

z z h s . Note that

u h u q h s u h u s u u q h s

u h u s q h q

Similarly, we can derive that

z h z u h s z h z s z z u h s

z h z s u u h s

Thus, we have

u h u q h s z h z u h s

q q h u u h s z z h s

This completes the proof.

Next, we will prove a compact equivalence property which shows the certain rela-
tionship between the finite element optimal control approximation and the associated
finite element boundary value approximation.

Theorem 6 Let u z q and u h z h q h be the solutions of (3.5)-(3.7) and the
discrete counterpart, respectively. Then, the following estimates hold for h h0 1

u u h s u h u q h s C h u u h s z z h s

and

z z h s z h z u h s C h u u h s z z h s

Proof By the coercivity of the bilinear form A , we can derive

z u h z s u h u (3.20)

and

u u q h s q q h (3.21)
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Then, we have

u u h s u h u q h s C q q h (3.22)

and

z z h s z h z u h s C u h u (3.23)

By (3.7) and (3.12), we have

q q h
2

q q h q q h

z h z q q h dx

z h q z q q h dx z h q z h q q h dx

(3.24)

Here, z h q and u h q are defined by

A u h q h f q h h h

A h z h q u h q ud h h h

(3.25)

Combining (3.10) and (3.25) and choosing h z h q z h lead to

A u h q u h z h q z h q q h z h q z h (3.26)

Similarly, by setting h u h q u h we have from (3.11) and (3.25)

A u h q u h z h q z h u h q u h u h q u h (3.27)

By (3.26) and (3.27), we have

q q h z h q z h u h q u h u h q u h 0 (3.28)

Inserting (3.28) into (3.24) yields

q q h
2

z h q z q q h dx

z h q z q q h

Furthermore, we have

q q h z h q z (3.29)
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To bound z h q z , we introduce the following problem

s x z h q z x

x 0 x c

Let h be the finite element approximation of Then, by Lemma 2, we can derive

h s h z h q z L2

and

h
2 h z h q z L2

Note that u h q is the finite element approximation of u. Then, by Lemma 2, we have

u h q u h u h q u s

Then, we can obtain

z h q z 2

s x z h q z

A z h q z

A h z h q z A h z h q z

A h z h q z h u h q u u h q u

h s z h q z s h u h q u u h q u

h z h q z s z h q z L2
2 h z h q z u h q u s

h u h q u s z h q z

h z h q z s u h q u s z h q z

2 h u h q u s z h q z

This yields

z h q z h z h q z s u h q u s (3.30)

Furthermore, we derive by (3.29), (3.30) and triangle inequality

q q h

h z h q z h s z h z s u h q u h s

u h u s

h q q h z h z s u h u s
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Using the fact that h 1 for h h0 1 implies

q q h h z h z s u h u s (3.31)

Then, we have

u u h s u h u q h s C h z h z s u h u s

In the following analysis, we use a duality argument to estimate u h u Let
be the solution of the following problem

s x u u h x

x 0 x c

Let h be the finite element approximation of Then, by Lemma 2 and in an
analogous way to (3.30), we can obtain

u u h
2

s x u u h

A u u h

A h u u h A h u u h

A h u u h h q q h q q h

h s u u h s h q q h q q h

h u u h u u h s h u u h q q h u u h q q h

This leads with (3.31) to

u u h h u u h s q q h (3.32)

h z h z s u h u s

Inserting the above inequality into (3.23) yields

z z h s z h z u h s h z h z s u h u s

Next, we turn to deriving a posterior error estimates for the optimal control problem.
Define

u u h T hsT f q h
su h L2 T

z z h T hsT u h ud
s z h L2 T
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Then, on a subset , we define the error estimators of the state and adjoint
state by

u u h

T h T

2
u u h T

1
2

z z h

T h T

2
z z h T

1
2

Thus, u u h h and z z h h constitute the error estimators for the state equa-
tion and the adjoint state equation on with respect to h as follows

u u h h

T h

2
u u h T

1
2

and

z z h h

T h

2
z z h T

1
2

For ease of exposition, we also define the following quantity:

2
T u h z h T 2

u u h T 2
z z h T

and the straightforward modification for u h z h and u h z h h . Set

u z 2
s u 2

s z 2
s

Note that u h and z h are finite element approximations of u q h and z u h

Then, by Lemma 3, we can derive the following upper and lower bounds:

Lemma 7 For 0 s 1 and f ud L2 the following a posteriori error upper
bounds hold

u q h u h s Crel u u h h

z u h z h s Crel z z h h

Moreover, for 0 s 1
2 and u q h z u h

s 1
2 s 0

min s 1
2 s , the following lower a posterior error bounds hold

2
u u h h C2

eff u q h u h
2
s

T h

h1 2
T u q h u h

2
s 1

2 3
h T

2
z z h h C2

eff z u h z h
2
s

T h

h1 2
T z u h z h

2
s 1

2 3
h T
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Theorem 8 Let u z q s s Uad and u h z h q h h Uad

be the solutions of problems (3.5)-(3.7) and (3.10)-(3.12), respectively. Then, the
following upper a posteriori error bound holds for h h0 1

u u h z z h
2
s C1

2 u h z h h

Proof From Theorem 6 and Lemma 7, we have

u u h s u h u q h s C h u u h s z z h s

Crel u u h h C h u u h s z z h s

and

z z h s z h z u h s C h u u h s z z h s

Crel z z h h C h u u h s z z h s

Then, we can derive by the inequality a b 2 2 a2 b2

u u h z z h
2
s

2C2
rel

2 u h z h h 4C 2 h u u h z z h
2
s

2C2
rel

2 u h z h h 4C 2 h0 u u h z z h
2
s

Note that h0 1, if h0 1 This leads to

u u h z z h
2
s C1

2 u h z h h

Here,

C1
2C2

rel

1 8C 2 h0

Remark 3 : In the following, we try to prove the lower bound a posteriori error

estimate. To this end, we need to assume that u z u q h

1
2 s s

and

u q h u s 1
2

q q h

z u h z s 1
2

u u h

(3.33)

hold for some 0 min s 1
2 s From Theorem 6 and Lemma 7, we have

2 u h z h h C2
eff u q h u h z u h z h

2
s

T h

h1 2
T u q h u h z u h z h

2
s 1

2 3
h T
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By (3.20), (3.21), (3.31) as well as the inequality a b 2 2 a2 b2 , we can
derive

u q h u h z u h z h
2
s

u q h u h
2
s z u h z h

2
s

2 u q h u 2
s 2 u u h

2
s 2 z u h z 2

s 2 z z h
2
s

2 u u h z z h
2
s 2 q h q 2 2 u u h

2

4 u u h z z h
2
s 8 2 h u u h z z h

2
s

u u h z z h
2
s

We can deal with the second term in the similar manner. Note that

u q h u h z u h z h
2
s 1

2 3
h T

2 u u h z z h
2
s 1

2 3
h T

2 u q h u z u h z 2
s 1

2 3
h T

Then, we derive

T h

h1 2
T u q h u h z u h z h

2
s 1

2 3
h T

2
T h

h1 2
T u u h z z h

2
s 1

2 3
h T

2
T h

h1 2
T u q h u z u h z 2

s 1
2 3

h T

2
T h

h1 2
T u u h z z h

2
s 1

2 3
h T

2 h1 2 u q h u z u h z 2
s 1

2

(3.34)

where denotes the maximum times of an element T appearing in all element patch
3
h T . Above estimates combined with (3.31) and (3.32) as well as the inequalities

(3.33) lead to

2 u h z h h

C u u h z z h
2
s C

T h

h1 2
T u u h z z h

2
s 1

2 3
h T

C h1 2 u q h u z u h z 2
s 1

2

C u u h z z h
2
s C

T h

h1 2
T u u h z z h

2
s 1

2 3
h T
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C h1 2 u q h u 2
s 1

2
z u h z 2

s 1
2

C u u h z z h
2
s C

T h

h1 2
T u u h z z h

2
s 1

2 3
h T

C h1 2 q h q 2 u h u 2

C u u h z z h
2
s C

T h

h1 2
T u u h z z h

2
s 1

2 3
h T

C h1 2 2 h u u h z z h
2
s

Suppose that the initial mesh size satisfies h1 2
0

2 h0 1 Then, we deduce the
following lower bound

2 u h z h h

C2 u u h z z h
2
s

T h

h1 2
T u u h z z h

2
s 1

2 3
h T

According to [30], we have u z s 1
2 for s 0 1 for smooth

domain. Moreover, from Lemma 1, we have u u q h z s 1
2 s 1 2

for a bounded Lipschitz domain and u q h u s 1
2

q q h and

z u h z s 1
2

u u h . From Section 4, we can see that the proof

of optimal convergence rate for the adaptive algorithm of the optimal control problem
is independent of weak efficiency. Hence, we think additional regularity assumption
for the weak efficiency does not conflict with the optimal convergence rate for the
adaptive algorithm.

4 Adaptive algorithm and its convergence

In this section, we consider the optimality of AFEM for solving optimal control prob-
lems (3.1)–(3.2). Although the convergence and quasi-optimality of AFEM for solving
elliptic optimal control problems with pointwise control constraints have been studied
in [21], the convergence and quasi-optimality of AFEM for solving fractional opti-
mal control problems are not reported. In the current paper, we will prove that the
corresponding adaptive algorithm for the fractional optimal control problem is rate
optimal.

Based on the local contribution of the residual error estimator u h z h h , we
consider the following standard approach for adaptive mesh refinement of the type

, where the following Dörfler’s
marking criterion is used to select elements for refinement.
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Algorithm 1Marking strategy
1. Given a parameter 0 1;
2. Construct a minimal subset k hk such that

T k

2
T u

hk
z

hk
T 2 u

hk
z

hk
hk

3. Mark all the elements in k .

The corresponding AFEM algorithm is characterized as follows:

Algorithm 2 Adaptive FEM algorithm
1. Given an initial mesh h0 with mesh size h0 and a tolerance Tolspace 0.
2. Set k 0 and solve (3.10)-(3.12) to obtain u

hk
z

hk
q

hk hk hk
Uad .

3. Compute the local error indicator T u
hk

z
hk

T T hk .

4. Construct k hk by the marking Algorithm 1.
5. Refine k to get a new mesh hk 1 by procedure .
6. Construct the finite element space

hk 1
and solve (3.10)-(3.12) to obtain

u
hk 1

z
hk 1

q
hk 1 hk 1 hk 1

Uad .

7. End loop if u
hk

z
hk

hk Tolspace, otherwise, set k k 1 and go to Step 3.

Let be the set of all regular triangulations generated by iterated newest vertex
bisections of the initial mesh h0 . Set

t u sup
N 0

min
h

# h # h0 N

u h z h h N 1 t

If there exist positive constants copt Copt such that

copt t u sup
0

u hl
z hl

hl # hl
t Copt t u (4.1)

we say that the adaptive Algorithm 2 is rate optimal with respect to the error estimator.
To prove the quasi-optimality of the adaptive algorithm, we use the framework of

[36]. Roughly speaking, we need four requirements on the error estimator and the
problem under investigation, which will be stated below and verified in a series of
lemmas.

Assumption 4.1 Let h be a triangulation of and h be any of
its refinements. Denote by h and

h
the finite element spaces associated

with h and h , respectively. Let h h and
h h

. Suppose that

h h
T h

2
T h T is the error estimator associated with the triangu-

lation h We make the following four assumptions:
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(A1) Stability on the non-refined elements: For any subsets h h , there holds

T

2
T h

T
1
2

T

2
T h T

1
2

Cstab h h

(A2) Reduction property on the refined elements: There exist constants qred 0 1
and Cred 0 such that

T h h

2
T h

T qred
T h h

2
T h T Cred h h

2

(A3) Quasi-orthogonality: There exist constants C0 0 Corth 0 such that for all
l N 0, there holds

N

k
hk 1 hk

2 C0 hk

2 Corth
2

hl
hl

(A4) Discrete reliability: Let h h and
h h

. The following estimate
holds

h h

2 C2
rel

T h h

2
T h T

In the following, we are going to verify above assumptions for the error estimator
T h T T u h z h T and the space s

4.1 Verification of A1

Note that A1 takes the form

T

2
T u

h
z

h
T

1
2

T

2
T u h z h T

1
2

Cstab u
h

u h z
h

z h s

Let
interior

T

T

From the definition of the estimators, we derive

T

2
T u

h
z

h
T

1
2

T

2
T u h z h T

1
2

hs
h

f q
h

su
h L2 hs

h
u

h
ud

s z
h L2

hs
h

f q h
su h L2 hs

h
u h ud

s z h L2
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hs
h

s u
h

u h L2 hs
h

s z
h

z h L2

hs
h
q

h
q h L2 hs

h
u

h
u h L2

Note that q h PUad
1 z h and q

h
PUad

1 z
h

Then, we have

PUad

1
z h PUad

1
z

h

1
z h z

h

Furthermore, by the inverse estimate for the fractional Laplacian ([39, Theorem 2.7])

hs
h

s
h L2 Cinv h s h h

where the constant Cinv 0 depends only on n s and the -shape regularity of
h , and the inverse triangle estimate, we have

T

2
T u

h
z

h
T

1
2

T

2
T u h z h T

1
2

hs
h

s u
h

u h L2 hs
h

s z
h

z h L2

hs
h
PUad

1
z h PUad

1
z

h L2 hs
h
u

h
u h L2

u
h

u h s z
h

z h s

Cstab u
h

u h z
h

z h s

4.2 Verification of A2

Note that A2 has the form

T h h

2
T u

h
z

h
T

qred
T h h

2
T u h z h T Cred u

h
u h z

h
z h

2
s

For any T h h , we define T T h T T . Note that

hsT T
1
n s 2 b T

s
n 2

bs
n hsT for 0 s 1 2 (4.2)

and

hsT T
1
n s

h
2 b T

s
n

h
2

b s
n hsT for 1 2 s 1 (4.3)
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where b denotes the number of bisections of every element T h in the refinement.
Then, it is clear that

T h h T T

2
T u h z h T

1
2

2
b
n 2

T u h z h T
1
2

(4.4)

Here, s for 0 s 1 2 and s for 1 2 s 1. Therefore, by
definition of the estimator and similar to the proof of A1, we can deduce

T h h

2
T u

h
z

h
T

T h h

2
T u h z h T

T h h

hsT q
h

q h
2
L2 T hsT u

h
u h

2
L2 T

hsT
s u

h
u h

2
L2 T hsT

s z
h

z h
2
L2 T

T h h

2 2 b
n 2

T u h z h T

T h h

hsT q
h

q h
2
L2 T hsT u

h
u h

2
L2 T

hsT
s u

h
u h

2
L2 T hsT

s z
h

z h
2
L2 T

qred
T h h

2
T u h z h h Cred u

h
u h z

h
z h s

Then, we prove A2 with qred 2 2 b
n

4.3 Verification of A3

Compared to the convergence of adaptive algorithms for symmetric elliptic bound-
ary value problems, the main difficulty is that the optimal control problem lacks the
orthogonality. Instead, we turn to prove (quasi)-orthogonality following [6].

Let H denote a coarse shape-regular mesh of with mesh size function H H

L by H H T HT T
1
n Set H max

T H

HT . Set u h q H h f q H

and z h u H h H f q H ud . Here
H
is the ajoint operator of H

To make the following proof clearly visible, we split it into four steps.
Step 1: Note that

u u h
2
s u u H

2
s u H u h

2
s 2A u u h u H u h
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z z h
2
s z z H

2
s z H z h

2
s 2A z z h z H z h

Now, we go to estimate A u u h u H u h and A z z h z H z h . Since
u H u h h , we have

A u u h u H u h q q h u H u h

q q h u H u h

q q h
2 u H u h

2

From the definitions of u H and u h q H , we can view u H as the finite element
approximation of u h q H in H Then, by a duality argument similar to Lemma 2,
we can derive

u H u h q H
2 2 H u H u h q H

2
s (4.5)

In an analogous way, we can derive

z H z h u H
2 2 H z H z h u H

2
s (4.6)

To obtain the estimate (4.5) and (4.6), we need to prove the following Lemma.

Lemma 9 Let H h denote the set of refined elements from H to h. Then, the
following estimates hold

u H u h q H
2
s

T

2
u u H T

z H z h u H
2
s

T

2
z z H T

Proof Let I H denote the Scott-Zhang operator([39, Lemma 3.2]) onto H which
satisfies

H s
H

I I H C s
s

Here, the definition of H s
H
is similar to hs

h
, i.e., H s

H
H s

H
0 s 1

2 and

H s
H

H s
T H

1
2 s 1. Then, by the coercivity and Galerkin orthogonality

of the bilinear form A , we derive

u H u h q H
2
s A u h q H u H u h q H u H

A u h q H u H I I H u h q H u H

f q H
su H I I H u h q H u H
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Here, is the duality pairing that extends the L2 inner product. Let

interior
T H h

T

According to [39, Lemma 3.2], the Scott-Zhang operator can be chosen to satisfy the
following condition:

I I H 0 on for h

Then, we further derive

u H u h q H
2
s

Hs
H

f q H
su H L2 H s

H
I I H u h q H u H L2

T

2
u u H T

1
2

H s
H

I I H u h q H u H L2

T

2
u u H T

1
2
u h q H u H s

This yields the first result. The second result can be derived in an analogous way.

Step 2: By (3.31), Lemma 9, and (4.5), we have

u H u h
2

u H u h q H
2 u h q H u h

2

2 H u H u h q H
2
s q H q h

2

2 H
T

2
u u H T q H q 2 q q h

2

2 H
T

2
u u H T 2 h z h z 2

s u h u 2
s

2 H z H z 2
s u H u 2

s

This implies

A u u h u H u h

2 H
T

2
u u H T 2 h z h z 2

s u h u 2
s

2 H z H z 2
s u H u 2

s
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In an analogous way, we can derive the following result by the estimate (3.30), Lemma
9, and (4.6):

A z z h z H z h

u u h z H z h

u u h
2 z H z h

2

u u h
2 z H z h u H

2 z h u H z h
2

u u h
2 2 H

T

2
z z H T u H u h

2

2 h z h z 2
s u h u 2

s

2 H
T

2
z z H T u H u h

2

Combining above estimates leads to

u u h
2
s u u H

2
s u H u h

2
s

C 2 h0
T

2
u u H T C 2 h0 z h z 2

s u h u 2
s

C 2 h0 z H z 2
s u H u 2

s

and

z z h
2
s z z H

2
s z H z h

2
s

C 2 h0
T

2
T u H z H T C 2 h0 z h z 2

s u h u 2
s

C 2 h0 z H z 2
s u H u 2

s

Step 3: To achieve the final results we further need to estimate the term involved
with T . For T H h , we have T u H z H T T u H z H T This
leads to

2 u H z H H
2 u H z H h

2 u H z H H h
2 u H z H h H

From (4.4), we have

T h H

2
T u H z H T 2 2 b

n

T H h

2
T u H z H T
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i.e.,

2 u H z H h H 2 2 b
n 2 u H z H H h

Furthermore, we can derive

1 2 2 b
n 2 u H z H H h

2 u H z H H h
2 u H z H h H

2 u H z H H
2 u H z H h

This implies

T

2
T u H z H T

1

1 2 2 b
n

2 u H z H H
2 u H z H h (4.7)

Step 4: Finally, by (4.2), (4.3) and (4.7) we have

u H u h z H z h
2
s

1 C 2 h0 u u H z z H
2
s

1 C 2 h0 u u h z z h
2
s C 2 h0

T

2
T u H z H T

1 C 2 h0 u u H z z H
2
s

1 C 2 h0 u u h z z h
2
s

C 2 h0

1 2 2 b
n

2 u H z H H
2 u H z H h

Then, according to [36, Lemma 3.7], above estimate combined with reliability leads
to the general quasi-orthogonality A3 as follows:

N

k l

u hk 1
u hk

z hk 1
z hk

2
s 2C 2 h0 u u hk

z z hk

2
s

N

k l

1 C 2 h0 u u hk
z z hk

2
s u u hk 1

z z hk 1

2
s

C 2 h0

1 2 2 b
n

2 u hk
z hk

hk
2 u hk

z hk
hk 1

1 C 2 h0 u u hl
z z hl

2
s

C 2 h0

1 2 2 b
n

2 u hl
z hl

hl

Corth
2 u hl

z hl
hl

provided h0 1
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4.4 Verification of A4

Viewing q H as the continuous solution and q h as its approximation, it follows from
(3.31) that

q H q h H z H z h s u H u h s

Then, by the coercivity of A , Galerkin orthogonality, and Lemma 9, we derive

u H u h
2
s

u H u h q H
2
s u h q H u h

2
s

u H u h q H
2
s q H q h

2

T H h

2
u u H T C 2 H z H z h

2
s u H u h

2
s

and

z H z h
2
s

z H z h u H
2
s z h z h u H

2
s

z H z h u H
2
s u H u h

2

T H h

2
T u H z H T C 2 H z H z h

2
s u H u h

2
s

Combining the above two estimates and using the fact that H 1 for H h0 1
yields

u H u h z H z h
2
s

T H h

2
T u H z H T

4.5 Main result

Theorem 10 Assume that h 0 h0 0 h0 1 Under the assumptions A1
A4 of Assumption 4.1 and 0 1, the Algorithm 2 is rate optimal in the sense
(4.1).

Remark 4 We remark that (4.1) implies u h z h h N t for the optimal
triangulations h with cardinality N . However, according to [39], the characteri-
zation of t u in terms of u z and the data f ud is still open due to nonlocal
operator and the strong efficiency of the error estimator unavailable.

123

Page 27 of 33    59



Z. Zhaojie and W. Qiming 

5 Numerical experiments

In this section,we use the adaptive finite element algorithm to solve the optimal control
problem (3.1)-(3.2) and verify the a posteriori error analysis and the convergence rate
of the adaptive algorithm. We use the code developed in [40] for solving the state
and the adjoint state equations with finite element methods. Before that, we define the
following effectivity

effectivity
u h z h h

u u h z z h s

Example 1 In this example, we consider problem (3.1)-(3.2) on a unit circle
B1 0 , and the exact solutions are as follows:

u
2 2s 1 x 2 s

1 s 2

z u

q max 1 min 0
1
z

where 3 and 1 The functions f and ud can be determined from the exact
solutions.

Two cases of s 0 25 and s 0 75 are considered. We know that the exact
solutions of the state and adjoint are smooth inside the unit circle but have singularities
at . Therefore, the expected refinement should be carried out at the boundary.
Figure1 shows the final refinement mesh with s 0 25 0 7 and the profiles of
numerical solutions of state and control. The final refinementmeshwith s 0 75
0 5 and the profiles of numerical solutions of the state and control are also shown in
Fig. 2. We can find that the meshes obtained by the adaptive finite element algorithms
are mainly refined in regions close to the boundary, where the solutions are singular.
The reliability of the a posteriori error estimate is verified.

In the left plot of Fig. 3, we see the convergece behavior of the estimator
u h z h h , the state estimator u u h h , the adjoint estimator z z h h

Fig. 1 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s 0 25 0 7 on the circle
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Fig. 2 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s 0 75 0 5 on the circle

as well as the state error u u h s and adjoint state error z z h s in the
energy norm for uniform and adaptive meshes with s 0 25 0 7. The same
contents are shown in the right of Fig. 3 with s 0 75 0 5. It can be observed
that the reduced rates (N 1 4) of the estimators and errors are obtained for uniformly
refined meshes due to the singularities of the exact solutions at the boundary of the
circle. The rates of the estimators and errors are restored to N 1 2 for the adaptively
refined meshes, which is the optimal convergence rate.

Finally, we vary the parameter 0 1 0 4 0 7 1 for fixed s 0 25. In the left
plot of Fig. 4, the values of the estimators, the state, and adjoint estimators are shown.
In the right plot of Fig. 4, the values of the state and adjoint errors are shown. The
non-optimal convergence is obtained when the marking parameter 1, because
this is uniform refinement. When 1, it is clear that the rates of the indicators,
estimators, and errors are restored to N 1 2.

Example 2 In the second example, we consider an optimal control problem without
explicit solutions. We set 1 1 2, 1, a 0, b 0 3, respectively.

In Fig. 5, we show the final refinement mesh with s 0 25 0 7 and the
profiles of the numerical solutions of state and control. Figure6 shows the final
mesh and numerical solutions with s 0 75 0 5. We can observe that the

N -1/4

N -1/2

N -1/2

N -1/4

Fig. 3 The convergence behavior of the estimators and errors with s 0 25 0 7 (left) and s
0 75 0 5 (right) for uniform and adaptive refinement on the circle
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Fig. 4 The convergent behaviors of the estimators and errors for fixed s 0 25 and 0 1 0 4 0 7 1
respectively on the circle

Fig. 5 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s 0 25 0 7 on the square

Fig. 6 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s 0 75 0 5 on the square
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N -1/4

N -1/2

N -1/4

N -1/2

Fig. 7 The convergent behavior of the estimators with s 0 25 0 7 (left) and s 0 75 0 5
(right) for uniform and adaptive refinement on the square

main refinement behavior is carried out at the whole boundary of the square, which
shows that the estimators accurately capture the singularities of the exact solutions
at the whole boundary and then guide the mesh refinement. The refined results are
consistent with our expectations.

The convergence behaviors of the indicators and estimators with s 0 25 0 7
and s 0 75 0 5 for uniform and adaptive refinement on the square are shown in
Fig. 7. The empirical results are the same as for the previous example. The convergence
rates of the estimators and indicators are only N 1 4 for uniform refinement, while
optimal convergence rates N 1 2 is obtained for the adaptive refinement.
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