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Abstract

In this paper, we study an adaptive finite element approximation of optimal control
problems with integral fractional Laplacian and pointwise control constraints. The state
variable is approximated by piecewise linear polynomials, and the control variable is
implicitly discretized. Upper and lower bounds of a posteriori error estimates for finite
element approximation of the optimal control problem are derived. An h-adaptive
algorithm driven by the a posterior error estimator is presented with Dorfler’s marking
criterion. We prove that the adaptive algorithm yields a sequence of approximations
that converge at the optimal algebraic rate. Numerical examples are given to illustrate
the theoretical findings.

Keywords Adaptive finite element - Optimal control - Fractional Laplacian - A
posteriori error estimate

1 Introduction

Adaptive finite element method (AFEM) has attracted lots of attentions in the past
decades as a powerful tool to solve different PDEs with nonsmooth solutions. A great
deal of effort was devoted to the design of a posteriori error estimators, following the
pioneering work of Babuska and Rheinboldt [1]. We refer to [2] for an overview of
AFEM in the applications of solving partial differential equations (PDEs). Besides
a posteriori error estimators, convergence and optimality are another two important
issues in AFEM. The convergence analysis was started with Dorfler [3] and further
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studied in [4-8]. The optimality was firstly addressed by Binev et al. [4] and further
studied by Stevenson [9, 10].

In the last two decades, AFEM also has successful applications in PDE-constrained
optimization. The initial works are attributed to Liu and Yan [11] and Becker et al. [12],
where aresidual type a posteriori error estimate and dual-weighted goal-oriented adap-
tivity for optimal control problems were investigated, respectively. For more details
of AFEM approximation of PDE-constrained optimization, we can refer to [13—19].
Among these works, there are two remarkable works. In [20] Kohls, Rosch and Siebert
derived an error equivalence property which enables one to derive reliable and effi-
cient a posteriori error estimators for optimal control problems. In [21], Gong and Yan
rigorously prove the convergence and quasi-optimality of AFEM for optimal control
problems with respect to the state and adjoint state variables.

Fractional differential operators such as the fractional Laplacian are an increasingly
important modeling tool in, e.g., fluids or image denoising ([22, 23]). Compared with
integer order differential operators, these fractional operators are nonlocal, which
makes both the mathematical analysis of physical models and numerical analysis of
numerical methods challenging. In recent years, optimal control problems governed
by fractional PDEs have also received lots of attentions. Many literatures are devoted
to developing numerical methods or algorithms for optimal control problems governed
by fractional PDEs. We refer to [24—30] for the finite element method, [31-33] for the
spectral method, and [34, 35] for fast algorithms. Among these literatures, only few
work is devoted to optimal control problems with the integral fractional Laplacian. In
[30], a priori error estimates of finite element approximation of the control constrained
optimal control problems with the fractional Laplacian are discussed.

Note that solutions to fractional differential equations typically have singulari-
ties even for smooth data input, which naturally call for using local refined meshes.
Therefore, in this paper, we aim to develop AFEM approximation of optimal control
problems with the integral fractional Laplacian. Upper and lower bounds of a poste-
riori error estimates for finite element approximation of optimal control problems are
derived. An & adaptive algorithm driven by the a posterior error estimator is presented
with Dorfler’s marking criterion. Using the abstract, general framework of [36], we
show in Theorem 10 that it yields a sequence of approximations that converge at the
optimal algebraic rate (with respect to an appropriate nonlinear approximation class)
under the assumption on the initial mesh size ho, i.e., hp < 1. Finally, numerical
examples are given to illustrate the theoretical findings.

The paper is organized as follows: Some well-known results on the adaptive finite
element approximation to the problem with the fractional Laplacian are introduced in
Sect.2. In Sect. 3, the finite element discrete scheme of the optimal control problem
is constructed, and a posteriori error estimates of the state, adjoint state, and control
variables are derived. The adaptive algorithm and its optimal convergence rate are
presented in Sect.4. A numerical algorithm and numerical examples are presented to
verify the theoretical findings in Sect. 5. Finally, we give a conclusion.

Throughout this paper, we denote by C a generic positive constant independent of
the mesh size, which may stand for different values at its different occurrences. We
use the symbol A < B to denote A < C B for some constant C that is independent of
mesh size.
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2 Preliminaries

In this section, we begin with recalling some well-known results on the adaptive finite
element approximation to the problem with the fractional Laplacian, which are then
used for the convergence analysis of AFEM for optimal control problems with the
fractional Laplacian.

Consider the following problem

{(—A)‘u(x) = f(x), xeQ, on

u(x) =0, x € Q°.

Here, 2 C R" is a bounded domain, Q¢ := R”\ﬁ, and s € (0, 1). The fractional
Laplace operator (—A)* is defined by

u(x) —u(y)
" |)C _ y|n+2s Y

(=A)’u(x) :==C(n,s) P.V./

where
25sT (s + %)

C(n, S) = m

Let ]ﬁIS(Q) ={v e H(R") : v =0 in Q°}, and H™*(2) denote the dual space.
We denote by (-, -) the L2(2) scalar-product. The weak formulation of (2.1) reads:
Find u € H*(2) such that

A, v) = (f,v), Yve (). (2.2)

Here,

v(y))dxdy'

A, v) = S8 // (@) — u(») (W) -
ann

2 o=y

It follows from [37, Proposition 2.4] that on s (2) the H* (R™") seminorm is equivalent
to the H* (R™) norm. Let us define ||u||ﬁs(9) = A(u,u) = 1/@|M|H.&<Rn). Then,
we have A(u, u) > ||lu ||%HS @ Therefore, by the Lax-Milgram theorem, the Eq. (2.1)
admits a unique solution u € H*(Q) for f € H#(R). Since the equation (2.1)
is linear with respect to the right-hand side f, we can define a linear and bounded
solution operator S : L?(€2) — H*(Q) such that u = S f.

If the domain 2 C R" is a bounded Lipschitz domain, we have the following
regularity result for the problem (2.1); see [38, Theorem 2.1] for more details.

Lemma 1 Suppose that u € ﬁS(Q) is the solution of the Eq. (2.1) with right hand
term f € L*(Q). Then, the solution u € HY™5~¢(Q) and satisfies

C(2,n,s)
||I/l||H9+S—€(Q) S E—éllflle(Q)’ VO <€eE<S.

@ Springer



59 Page4of 33 Z.Zhaojie and W. Qiming

Here, 6 = min{s, %},E = %f0r1/2 <s<landé :%—}—;‘foro <s < 1/2 witha
constant { depending on 2 and n.

For the discretization of the problem (2.1), we consider a y-shape regular mesh
7T}, in the sense of meg< (diam(T) /IT| %), which partitions the computational domain
Tely

Q into n-simplices. To ease notation, we introduce the piecewise constant mesh size

. 1
function hg, € L*°(Q) by hg,|r:= hr = |T|». Set h = ma7)_( hr. Let V7, be
T€T),
the finite element space consisting of continuous piecewise linear functions over the

triangulation 7y,
V7. = {vg, € C(Q) NHY(Q); vy |re P1(T),VT € Ty).

Then, the finite element approximation of problem (2.1) can be characterized as: Find
ug, € Vg, such that

A(ug,,vy,) = (f,vg), Yvg, € Vg, 2.3)

Similar to the continuous case, we introduce a discrete operator Sz, : L*(2) — V7,
such that uz, = S, f. Set

n(h) = sup inf 1SS — 97, |l -
FeL2@), 1 f1=19% VT,

Here || - || denotes the norm of L%(£2) space. Let kg be the mesh size of the initial
mesh 7. Set

n(ho) = sup n(h).
he(0,hp]

It is obvious that n(hg) < 1, if hg < 1. Then, we can prove the following results:
Lemma2 For f € L%(2) we have

ISf =87, flfs@ S nWIflzg) 2.4

and

ISf =87, fIl S nWISf — ST, fllfis @) 2.5

Proof Note that
ASf -8, fowg) =0,Ywyg, € Vg,

Then, we have for ¢7;, € V7,

ISf = 87,3 o) S ASSf =S5 £.Sf = S5,./)
= ASf = S5,f.5f - ez)
SISf _Sﬁ,f”ﬁ[s(g)nsf - (/7’2}1“]1?13'(9)'
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This implies the first result.
To derive the second estimate, we resort to the duality arguments. Let w be the
solution of the following problem with ¥ € L*(£2)

=A)'wx) =¢¥x), xeQ,
w(x) =0, x e Q°.

Then, we have
ISY =S¥l S nMWIYILg)-

Furthermore, we can derive

(Sf=87,f.¥) =AY, Sf=S1, /)
=ASY =S¥, Sf=S7,/)
S ISy _S'Z;ll//”]ﬁIS(Q)”Sf _S’Z},f”]ﬁp(g)
SIS = S7, f s @)

This yields
ISf =Sz /Il S nWISf = 87, f s @)-

Remark 1 The quantity n (k) is determined by the regularity of S f. If the domain Q2
is Lipschitz continuous, according to Lemma 1, we have u = Sf € HP+5—¢€(Q) for
f € L*(Q). Then, according to [38, Theorem 3.5] we have n(h) = O(h?[log(h)|*)
for a uniform mesh partition, where & = min{s, %} andk = &ifs A0.5andk = 1+&
if s = 0.5 with £ > 1/2 being a constant depending on 2 and 7.

In the following, we are going to review the residual type a posteriori error estimator
for the finite element approximation of problem (2.1).
According to [39], the function (—A)*v7;, is ( generally) no longer in L?() for

vy, € Vg, % < s < 1, as it has singularities at the mesh skeleton. Therefore, the
following local weighted residual error indicators were introduced for VT € 7,

Ru(ut,, T) = By (f — (=AY ug)ll 27y, Where

s 1
h}"’ s € (07 E]’
hs =

N I ! !
hy w7, S € (5,1), B=s— 3
Here, the function w7, (x) is defined as follows:

w7, (x) ;= inf inf |x — y|.
75, (X) TeThyeaTl ¥l
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Then, we write the error estimator as the sum of the local error indicators

1
Rulug . Th) = ( 3 Riug, T))Z.
TeT,

For all elements T € 7, and k € Ny, we introduce the k-th order element patch
inductively by
QUT) :==T.T,(T) := (T}
Qﬁ(T) := interior( U T,
T'eTXT)
where o
THT) = {T" € Ty : T' N Q}1(T) # 0).

According to [39, Theorem 2.3], we have the following upper and lower bounds
of a posterior error estimate of the state equation.

Lemma3 For0 < s < 1 and f € L*(Q) the weighted residual error estimator is
reliable:

flu — uTg, ”]EIS(Q) = Cre]Ru(u’]},’ Th).
Moreover, for 0 < s < % and u € ]HIH'%_E(Q) N ﬂS(Q), 0 < € < min{s, % —sh

the estimator is also efficient

S 1-2
Rz T < Cor(lu—um g + 2 W e—ug 0 ).
= @ 1)

Remark 2 The previous theorem gives only a weak efficiency result for the case 0 <
s < 1/2. However, the numerical results show that the proposed error estimator is
observed to be efficient forall 0 < s < 1.

In the following analysis of optimal control problems, we also need to consider
the adjoint state equation. For this purpose, we introduce the adjoint equation of (2.1).
For g € L*(Q), let z € H* () be the solution of the following adjoint equation:

Aw,2) = (g, w), Yw e H(Q). (2.6)

The corresponding finite element approximation is defined as follows: Find z7;, €
V7, such that

A(wT,, z7,) = (g, wy), Ywy, € Vg,. 2.7

Similarly to the state equation, we introduce the following local weighted residual
error indicators for VT € 7j,

Ro(z7,. T) = [R5 (8 — (=AY zg) 21y
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and we write the error estimator as the sum of the local error indicators

1
Rz, Th) = ( > RiGg;. T))z.
TeTy

Then, in an analogous way to (2.1), the a posterior error estimate for the adjoint
equation is given below [39]

Iz = 27, sy < CreiR2(27;. Tn). 5 € (0. 1).

! ~ .
Moreover, for 0 < s < % and z € H¥T27¢(Q) NH* (), 0 < € < min{s, % — s}, the
estimator is also efficient

R, T) = Cer(lz = 27 W g + D W Nz = 27,

||12P]1x+%76 93 )
et (@1

3 A posteriori error estimate for optimal control problems

We consider the following fractional optimal control problem:

min J(, q) == %/Q(u(x) — ug(x))2dx +%/Qq2(x)dx 3.1)

q€Uqq

subject to

{ (A u@) = f(x) +q(x), x€Q, 42

u(x) =0, x € Q°.
The admissible set is given by
Uyg = [v € LOO(Q)‘a <v<b, ae., in Q]

Here,a, b € R anda < b. The function ug € L%() is the desired state, and ¢ > 0
is the regularization parameter.
The weak formulation of optimal control problem reads

_ min J(u,q) (3.3)
ueHs (), gelyq

subject to ~
A, v) = (f +4q,v), Yve H(Q). (3.4)
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For above optimal control problems, we have the following first order optimality
conditions.

Lemma4 (/30, Theorem 3.5]) Let (u, q) be the solution of the optimal control problem
(3.1)—(3.2). Then, there exists an adjoint state 7 such that

{ (=AM u@) = f() +qx), xeQ, 55)
u(x) =0, x e Q°,
{ (—A)'z(x) = u(x) —ug(x), x €, 46
z(x) =0, x € QF,
and
/(aq +2)(v—¢g) = 0,Yv € Uyq. 3.7
Q
Let

Py, (v) = max{a, min{v, b}}

denote the pointwise projection onto the admissible set U, 4. The variational inequality
(3.7) is equivalent to

1
q = Py, (=—2).
o

The finite element approximation of the optimal control problem (3.1)-(3.2) can be
characterized as

min J(ug,, q1;) (3.8)
(wg,.97;,)€V 15, xUad e

subject to

Aug,,vy,) = (f +q7,,v7), Yvg, €V, (3.9
Here, the control variable is implicitly discretized by variational discretization
approach ([41]), i.e., g7, € Uaq. In general g7, is not a finite element function.

Similarly to the continuous case, we can derive the discrete first order optimality
condition

Aug,,vy) = (f +4q75,,v7,), Y7, € V7, (3.10)

A(wy,, z7,) = (ug, — ug, wr,),Ywg, € Vg, (3.1
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and
/(oquh +z7,) (w7, —q7,) = 0,Ywy, € Ugq. (3.12)
Q

Again, (3.12) is equivalent to

1
q771 = PUad(_&Z,];I).

In the following analysis, we are going to derive a posterior error estimates for the
optimal control problem. For this purpose, we introduce two auxiliary problems: Find
(w(qT), z(ug,)) € H*(2) x H* () satisfying

Alu(gr,),v) = (f +q7,,v), Yve H(Q),

N (3.13)
Aw, z2(ug)) = (ug, —uq, w),  Vw € H(Q).

Theorem 5 Let (u, z, q) € H¥ () x HY () x Upg and (u7,, 21, q7;,) € V1, x V. X
Uga be the solutions of problems (3.5)-(3.7) and (3.10)-(3.12), respectively. Then, the
following estimates hold:

lg — a7l + lu — 7, gz @y 11z = 273 i ey
||M’Th - “(‘]’]}l)”ﬁx(g}) + ||Z'Z71 - Z(“’T;,)”]ﬁp(g)

and

||M’Z7, - ”(Qﬁ,)”]ﬁp(g) + ||Z’27, - Z(“’Z],)”ﬂfﬂs(g) S
lg — 51’171” + llu — u’]ﬁ”]ﬁp(g) +llz — Z’Th”]ﬁIS(Q)'

Proof Setting v = g7, in (3.7) and w7, = ¢ in (3.12), we are led to

(aqg +z,97;, —q) =0

and
(g7, +27,.9 —917,) = 0.

Adding the above two inequalities, we have

allg —q7 1> < 27, — 2.9 — 47;)

(3.14)
= (z7, —z(ug),q —q7,) + 2ug) — 2,9 — 9717).
Note that

A —u(gg,), w) = (q — q7,, w) Yw € H(Q),

N (3.15)
A, z(ug,) —2) = (ug, —u,v) Yv e H(Q).

@ Springer
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Setting w = z(u7,) — zin (3.15) and v = u — u(q7z,) in (3.15) yields

(q—q7,.z(ug) —2) = (wg, —u, u —u(gy,)).
From (3.14) and the above equation, we have
alg —q1,1°
<@g —zug),q —q7,) + (ug, —u,u —ug)
+ (ug, —u,ug, —ulgy,))
< (z7, —z(ug),q —q7;) + 0+ (ug;, — u, ug, —ulqz,))
= (z7, — z2(ug,), 9 — q7,) + (wg, —ulqy,) +ulgr) —u, ug, —ulgr))

(3.16)

< llzg, — 2wzl - g — a7, | + lug, — ulgz)I* + lulgz) — ull - lug, —ugz)l.

By the governing equations of u and u(qg7; ) as well as the coercivity of the bilinear
form A(, -), we derive

Inserting above estimate into (3.16) and using Young’s inequality(ab < ea® + ibz)
leads to

allg — g7, I?

< llz, — zug)ll - llg — gzl + lluz, — ulgz)II* + g — g7, || - llug, — ulqz,)|l
o 2, 1 2 2 2

< Ellq —qnll” + E(HZT;, = z(ug)I” + llug, — ulgg)17) + llug, —ulqz)|"

This implies

g — q7,11* S N2z, — 21 + llug, — ulgz)II*. (3.17)

Moreover, by the coercivity of the bilinear form A(-, -), we can derive

[l — ug, ”]ﬁ]X(Q) <|lu-— M(Q'Z}l)”]ﬁp(g) + ”“(‘]’Z}l) —ug, ||]17]IS(Q) (3.18)
Sllg — 471+ lulaz) — vz, Iy

and

Iz — 27, ||]ﬁIS(Q)
<lz—- Z(“T;,)”]ﬁp(g) + llz(ug,) — z7, ”]ﬁls(Q) (3.19)
Sl —ug llgps @) + 12uz) — 27, s ) '

Slg — a7, + lutaz) — ug, s gy + I2uz,) — 273 55 -
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Combining (3.17)-(3.19), we deduce

lg — q7, |+ llu — uz, ||]ﬁp'(52) +llz — 2T, ”]]T]IS(Q)
5”’4’27, - u(‘]ﬁ,)”]ﬁp(g) + ||Z’27, - Z(“’Z],)”ﬁ-ﬁs(g)-

Now, we are at the position to prove a lower bound of ||g — g7, || + |lu —u7, ”H?P‘(SZ) +
lz — z7, IIqu(Q). Note that

||uTh - M(Qﬂ)”ﬁsm) = ||uTh - '4”1@15(9) + llu — u(‘]ﬂ)”]ﬁp(g)
5”“’2@ - u”]ﬁ}r(g) + ||‘H}l —qll.

Similarly, we can derive that

||Z'T;, - Z(“?},)”]ﬁp(g) =< ||Z’Th - Z”]F[[A‘(Q) +llz — Z(“'Z};)”]ﬁa‘(g)

Thus, we have

lug, — u(az) sy + 127, — 23 I 0

Sllg = gzl + e — ug g @) + 12 — 27, s (g)-
This completes the proof.

Next, we will prove a compact equivalence property which shows the certain rela-
tionship between the finite element optimal control approximation and the associated
finite element boundary value approximation.

Theorem 6 Let (u, z,q) and (uT,, 27, qT,) be the solutions of (3.5)-(3.7) and the
discrete counterpart, respectively. Then, the following estimates hold forh < ho < 1

e — g, s ) < Nuz, —u(qn) s @) + Cn) (lu — ug, g ) + 12 — 27, s )
and
lz—z7 lfs @) = N2z, —2(ug) s (@) FCn ) Ulu — ug, s () + 12 — 27, s ())-
Proof By the coercivity of the bilinear form A(-, -), we can derive

lz(uz,) — 2l @) S llug, — ull (3.20)
and

e — ulgr) s ey S g — a7 1. (3.21)
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Then, we have

lu — ug, o) < U — 4@z g + Cllg — a7,
and

Iz = 27, 15 () = 27, — 2(ug) s () + Cllug, —ull.
By (3.7) and (3.12), we have

allg — gz, 117
= (aq —aq7,,9 — q971,)

< /Q(za;, —2)(q — q7;,)dx

=3L@ﬂ@>—w@—qﬂwx—A}uﬁ@—wﬂxq—qﬂwx

Here, z7, (¢) and u7, (¢) are defined by

A(ug, (@), vy,) = (f +q,vg), Yvg €Vg,
A(wy,, 27,(q) = (ug,(q) —ua, wy,),  Ywg, € V.

Combining (3.10) and (3.25) and choosing vy, = z7,(q) — z7, lead to
Aluz, (@) —ug,, 27,(@) — 2733) = (@ = 47,- 27,(9) — 27;)-

Similarly, by setting wy;, = u7, (q¢) — ug;, we have from (3.11) and (3.25)

A(ug, (q) —ug,, 27,(q) — z27,) = (u7,(q) —ug, ug, () —UT,).

By (3.26) and (3.27), we have
q — a7, 27,(q@) — z73) = (u7,(q) —u7;, ug,(q9) —ug) > 0.
Inserting (3.28) into (3.24) yields
allg = q7,1°
< / (z7,(q) — 2)(q — q7;)dx
Q
<llzz; (@) —zl - llg — g7,
Furthermore, we have
g —qz, IS llzz; (@) — zlI.
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To bound ||z7; (¢) — zl|, we introduce the following problem

(=AY'9(x) =z7,(q) —z, x€Q,
¢(x) =0, x € QF.

Let ¢7, be the finite element approximation of ¢. Then, by Lemma 2, we can derive

¢ — o1, ||]ﬁ1s<g) S n) iz, (q) — zll 2@

and

lp — o7, 1l S n*(W 27, (@) — zll 12(2)-

Note that u7; (¢) is the finite element approximation of u. Then, by Lemma 2, we have

luz, (q) — ull S 1)z, (@) — ulgs g
Then, we can obtain

27, (@) — zII?
= (=AY (), z7,(9) — 2)
=A(¢.z7,(9) —2)
= A(¢ — ¢7;,, 27, (@) — 2) + A(97,. 27;,(9) — 2)
= A(¢ — ¢7,, 27, (@) — 2) + (97, — ¢, uT, (@) —u) + (9, ug,(q) —u)
< 1¢ = o7 s 127, @) — 2llfge ) + 107, — @1l - llug, (@) —ull + ol - luz, (@) — ull
S nWllzg, (@) — zllgs @ 127, (@) — 2l 2 ) + (W27, (@) =zl - lluT, (@) — ullfgs (@
+ M llug, (@) — ullgs ) - 27, (@) —zlI.
Sz, (@) — zlifs @) + luz, (@) — ullfs @) llz7; (@) — 2l
+ 2 luT, (@) — ulg g 27, (@) — 2.

This yields
lz7, (@) — zll S n(Wllz7;, (@) — zlifis (@) + w7, (@) — ullfs ). (3.30)
Furthermore, we derive by (3.29), (3.30) and triangle inequality

g — gzl

Sz, (@) — 27, g @) + 27, — 2llfs @) + 1z, (@) — uz, s g
+ lug, — ()

Snh)(llg - a7, Il + llzz, — Z||]ﬁp(g) + llug, — u||]17]1s(§2))-
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Using the fact that n(h) < 1 for h < hg < 1 implies

lg — a7, Il S n()(llz7, — zllfs @) + luz, — ullfs @) (3.3D)

Then, we have

[l — ug, ”]ﬁX(Q) = ||’4’Z7, - ”(CIT;,)”]ITH-V(Q) + C’?(h)(”Z’Z, _Z”IEIS(Q) + ||”’27, - u||]ﬁp(§2))~

In the following analysis, we use a duality argument to estimate ||u7, — ul|. Let ¢
be the solution of the following problem

(=AY (x) =u—ug, xe€,
Y(x) =0, x € QF.

Let 7, be the finite element approximation of vr. Then, by Lemma 2 and in an
analogous way to (3.30), we can obtain

Nl — g 1?
= (=AY (x),u —ug,)
=AW, u—ug)
=AW — Y7, u—ug)+ AW, u—u7;)
=AW —¥g.u—ug)+ Wy, —Vv.q9 —q7) + V.9 —q7,)
=W = Y7 llgs ) - lu —uz s + 1z — ¥ -llg —az Il + 0¥ - llg — g7,
S nWllu —ug |l lu —ug, s @) + 1MW llu —ug |l - g — gz, Il + lu —ug, |l - g — g7, 1l

This leads with (3.31) to

lu—ug, I S nWlu—uzlifsq + g — 9zl (3.32)
SJ 77(]”)(”27;, - Z”]ﬁp(g) + ||“771 - ’/‘”1?]13(52))‘

Inserting the above inequality into (3.23) yields
lz — [ ||[['§IS(Q) 5 ||Z’Z}, - Z(“T;,)”]ﬁp(gz) + n(h)(”Z’Z}, - Z”]IT]IJ(Q) + ||“’Th - “||ﬁS(Q))~

Next, we turn to deriving a posterior error estimates for the optimal control problem.
Define

Rulu,, T) = B3 (f + a7, — (=D uz)ll2(1)s
R.(z7,. T) = W (g, — g — (=AY 23l 27
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Then, on a subset w C 2, we define the error estimators of the state and adjoint
state by

Ruuz, o) = Y Riwg. D),
TeTy,TCo

RGr.0)i=( Y Rzp.D).
TeZ,,TCw

Thus, Ry (u7;,, 7) and R (z7;,, Tp,) constitute the error estimators for the state equa-
tion and the adjoint state equation on Q with respect to 7j, as follows

1
Rulug . Tp) = ( 3 Riug, T))2
TeTy

and

1
R-(7. Th) = ( 3 R, T))z.
TeT,

For ease of exposition, we also define the following quantity:
Ri(ug,, 27, T) = Ri(ug,, T) + R2(z1;,, T)

and the straightforward modification for R(u7;, z7,, w) and R(u7,, z7,, 7). Set

2 _ 2 2
Note that u7, and z7; are finite element approximations of u(g7,) and z(u7;).
Then, by Lemma 3, we can derive the following upper and lower bounds:

Lemma7 For0 <s < 1l and f,ug € L*(Q) the following a posteriori error upper
bounds hold

lulgz,) — uT, ”fﬁp(g) < CrelRy(ug;, Tn),
”Z(u’ﬂ,) — 27, ”]ﬁ]s(g) =< CreIRz(z’]}l’ Th).

Moreover, for 0 < s < %and u(qr,), z(ug,) € H”%*E(Q) N ﬁS(Q),O <€ <
min{s, % — s}, the following lower a posterior error bounds hold

R2ug. T) = Cor(lutam) — unlhog, + 2 by *lulen) - ur; I
TeTy

2 2 2 1-2. 2
Rz, T) = Cor (Ieum) = 27 W g + Y W Natugy) — 21, ||HX+%,€(Q?[(T))).
TeT),

e (Q?,(T»)’
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Theorem 8 Let (u, z, q) € H¥(Q) x H¥(Q) x Uug and (u,, 27,,47,) € V7, X Usd
be the solutions of problems (3.5)-(3.7) and (3.10)-(3.12), respectively. Then, the
following upper a posteriori error bound holds for h < hy < 1

||(M —ur,T— Z771)||%HV(Q) = Cle(u,ﬂy’ Ty 7;’)
Proof From Theorem 6 and Lemma 7, we have

lu—ug, ||]17]IX(Q) <llug, _u(‘Iﬁ,)||]ﬁp(Q)+Cn(h)(||u — ur, ||]ﬁp(g2) + Iz — z7;, ||]ES(Q))
< CoerRulugy. T) + Cn(h)(lu = g, lg5s ) + 12 = 273 1355 )

and

le—27, gy < 127 — 27 s+ Cn ) (it — 173 ey + N2 — 273 5 ()
< CrelR;(z7,, Tn) + Cn(h)(lu — u7, ”]ﬁls(g) +llz —z7, ||]ﬁIS(Q))~

Then, we can derive by the inequality (a + b)? < 2(a® + b?)

I = ug, 2 = 27130 g
< 2GR (ur;. 27, T) +4CT ()| — w2 = 23) I g

< 20 R* (w27, T) +4CH (ho) | (u — ugy 2 = 27|, -
Note that n(hg) < 1, if kg < 1. This leads to
I —ugy. 2 = 23)l} ) < CYR ;. 27, Th).

Here,
2
C, = 2Crel
1 —8Cn?(ho)
Remark3 : In the following, we try to prove the lower bound a posteriori error

estimate. To this end, we need to assume that u, z, u(q7,) € H%H_E(Q) N Iﬁl‘(Q)
and

@) = ull iy e g S g —azl.

(3.33)
lz(ug,) — zIIHﬁ%_e

<|lu—u
(Q)N” 7

hold for some 0 < ¢ < min{s, % — s}. From Theorem 6 and Lemma 7, we have

R, 27, T) < C (W) — ugy. 2um) — 2, g

+ D hy llgn) — ug, 2ug) = 2

S+l76 3 ) :
et 2@y
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By (3.20), (3.21), (3.31) as well as the inequality (a 4+ b)> < 2(a*> 4 b*), we can
derive

(g = ug, 2(uz) = 27) 13 g
= llugz,) — ug I g + I2@z) — 27, I
< 2llulgz) — uld, g F2lu—uz; I3, o F2M2g) = 2lF o, + 202 — 27 13 g,
S 20— ug,. 2 = 2733 ) + 297 — qll* +2lu — ug,|?
S —uzy, 2= 21) 13 o, + 81 W = w2 = 23) R

< _ _ 2

Sl =g, 2 — 2 g,

We can deal with the second term in the similar manner. Note that

(g, — uT,, z(ug,) — 271>
" " " "t Qi)

<2ll(u—ug,, z—z7)|?

ey T 2N @n) —u, 2(ug) =)
@(1)

B @ 1)

Then, we derive

1-2¢
> b lwqr) = ug. 2ug) = 23)1 @iy

TeTy
<2 hy W —ug,z—z7)I?
r% ! ' @)
+2 Y hy N ulgr) — u, z(ug) — 2| et de s (3.34)
TeT, 277 (5(T))
<2 hy*w—uz,z—z7)I
T;; B ()
+2MR X i) —u zug) — DI
H ™2 °(Q)

where M denotes the maximum times of an element 7" appearing in all element patch
QE(T). Above estimates combined with (3.31) and (3.32) as well as the inequalities
(3.33) lead to

R*(u7,, 27, Tn)

< Clw —ug,. 2 = 2l g, + € D hy N —ug.z =27
TeT),

FCMRT2 (ulgT;) — u, z(u;) — z>||23+

”7*793(7))

1 —€
(€)

< Clw —ug,. 2 = 23l g, + € D hy N —ug.z =27

H»**E 3
oS 2@ (1)
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59 Page 180f33 Z.Zhaojie and W. Qiming

+C MR (Jlu(gg,) — u||;s+%,é(m + lz(ug) — z||§ﬂs+l,5(m>
< Cll =g =)l g + € D0 N —wg =2y, o
et (;,(T))
+CMh‘*26(||qT —ql?> + llug, —ull?
<Cllu- — 2R o +C D by N —ug,. 2 — 2)|1
7 @) = T K ]HI”Z’E(S?(T))
TeTy

1-2¢ 2 2
FCMR T (W — ug,, 2 = 23) g )

Suppose that the initial mesh size satisfies /\/lh(l)_26 n?(ho) < 1. Then, we deduce the
following lower bound

R*(u7,, 27, Tn)

< Co(lw—ug, 2=z g + 2 YN = gy 2 = 231

r+776 3 )
et 27 @)

According to [30], we have u,z € H”'%_E(Q) for s € (0,1) for smooth

domain. Moreover, from Lemma 1, we have u, u(qz,),z € H‘”%_E (Q),s > 1/2
for a bounded Lipschitz domain and |u(g7,) — ull_, +7_E(Q) < llg — q7,|l and

lz(ug,) — zll ‘*Té(g) S llu — ug, ||l. From Sectlon 4, we can see that the proof

of optimal convergence rate for the adaptive algorithm of the optimal control problem
is independent of weak efficiency. Hence, we think additional regularity assumption
for the weak efficiency does not conflict with the optimal convergence rate for the
adaptive algorithm.

4 Adaptive algorithm and its convergence

In this section, we consider the optimality of AFEM for solving optimal control prob-
lems (3.1)—(3.2). Although the convergence and quasi-optimality of AFEM for solving
elliptic optimal control problems with pointwise control constraints have been studied
in [21], the convergence and quasi-optimality of AFEM for solving fractional opti-
mal control problems are not reported. In the current paper, we will prove that the
corresponding adaptive algorithm for the fractional optimal control problem is rate
optimal.

Based on the local contribution of the residual error estimator R (7, , z7; , Th), we
consider the following standard approach for adaptive mesh refinement of the type
SOLVE — —ESTIMATE — —MARK — —REFINE, where the following Dorfler’s
marking criterion is used to select elements for refinement.
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Algorithm 1 Marking strategy

1. Given a parameter 0 < 6 < 1;
2. Construct a minimal subset My C 7j, such that

2 2
Y. Rilug, .27, . T) = 0R (g, .27y, - Tiy).
TeM;

3. Mark all the elements in M.

The corresponding AFEM algorithm is characterized as follows:

Algorithm 2 Adaptive FEM algorithm

. Given an initial mesh Tho with mesh size /¢ and a tolerance Tolspace > 0.
. Set k = 0 and solve (3.10)-(3.12) to obtain (unk s ZThk s thk) € VThk X VThk X Ugg.-

. Compute the local error indicator R (”Thk R ZThk’ T),VT € ’Thk.

. Construct My C 7j, by the marking Algorithm 1.
. Refine M to get a new mesh 7j, 41 by procedure REFINE.
. Construct the finite element space VTth and solve (3.10)-(3.12) to obtain

AN AR W N =

, 2 , v v Ugd-
(uThk-H gy gy )€ Tigyy XV Tigyy X Vad
7. End loop if R(”Thk s zThk s ’Zjlk) < Tolgpace, otherwise, set k = k + 1 and go to Step 3.

Let T be the set of all regular triangulations generated by iterated newest vertex
bisections of the initial mesh 7y,,,. Set

Ay(u)= sup min  Rug,,z7,, Tn)(N + 1)".
NeNy The
#771_#771051\]

If there exist positive constants cops, Cop such that

CoptBy () < sup R(ug, . 27, Tn) #Tn)" <Copr Ay (w), 4.1)
£eNy

we say that the adaptive Algorithm 2 is rate optimal with respect to the error estimator.

To prove the quasi-optimality of the adaptive algorithm, we use the framework of
[36]. Roughly speaking, we need four requirements on the error estimator and the
problem under investigation, which will be stated below and verified in a series of
lemmas.

Assumption 4.1 Let 7, € T be a triangulation of € and 7, € T be any of
its refinements. Denote by V7, and Vﬂ the finite element spaces associated

with 7, and 7, respectively. Let ¢7, € V7, and ¢77, € Vﬁ,' Suppose that

E@7,, Th) = Y EzT(dm, T) is the error estimator associated with the triangu-
TeT,
lation 7;,. We make the following four assumptions:
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(A1) Stability on the non-refined elements: For any subsets S C 7, N 7, there holds

(o= T))% - (> gt6n. T))é < Cswll$7, — 05 Ilx-
S

TeS Te

(A2) Reduction property on the refined elements: There exist constants greq € (0, 1)
and Creq > 0 such that

Y BT <dwa ). E7@7,.T)+ Ceallér, — b5 I3
TeTi\Th TeTi\Th

(A3) Quasi-orthogonality: There exist constants Co > 0, Corn > 0 such that for all
[, N € Ny, there holds

N
> (||¢>:rhk+] —¢7, 1% — Collg — ¢7, ||%() < Con B> (875, Ty)-
k=t

(A4) Discrete reliability: Let ¢7, € V7, and qﬁz € Vﬂ . The following estimate
holds

67, — ¢5 15 < Cra D EF @7, 7).
TeT\T,

In the following, we are going to verify above assumptions for the error estimator
Er(¢7,.T) = Rr(ug,, z7,, T) and the space X = H* ().

4.1 Verification of A,

Note that A; takes the form

1

(X Ritu 25 0) = (3 Ritum 3, 1)

TeS TeS
= Cstab”(”rj;l —u7,, Zj;I - Z'T;,)”[EIS(Q)‘

Let
w := interior( U T).
TeS
From the definition of the estimators, we derive

(X Rtz 2. 1) — (X Rt zp 1)
TeS

TeS

S {135, (F + a5, — A uz)la) + 105, g — s = (=AY 251200

—lIR%, (f + a7, — (=D’ ug)l 20y = 175, (g, — ta = (=AY 25) 120
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S W% (=AY (g, = ug) 20y + I, (=) 25 = 23)l12)

HIR, (@5, — 42wy + Wi, (g — 47 2200)-

Note that g7, = PUm,(—ézTh) and ¢4, = P[]M,(—ézi7 ). Then, we have

1 1 1
1Pt (=~ 273) = Pupa(=—23)1 < Iz, = 25,1l
Furthermore, by the inverse estimate for the fractional Laplacian ([39, Theorem 2.7])

”h%l (_A)SUT;L ||L2(Q) = Cinv”UTh ”ﬁx(Q)v VUTh € V’E s

where the constant Cj,y > 0 depends only on €2, n, s, and the y-shape regularity of
Ty, and the inverse triangle estimate, we have

1 1
2 2
‘(ZRZT(%,ZTMT)) —(ZRZ}(MT,l,ZT,,,T))
TeS TeS
S g (=AY (g —ug)l 2w + 107, (=8) @4, — 2 120)

~ 1 1 ~
HIhg, (Pusg (= —27) = P (= =23 D2 + I, (g, = uz) 12
/S ”u'j;l —uz, ”fﬂx(g) + ”ij;l — 77, ”fﬁp(g)
S Couanllug —ug,. 25 — 23)lfis @)

4.2 Verification of A,

Note that A, has the form

2
Y. Rilug.zz.T)
Teli\Th
2 2
Sded ), RiWwg.zg. D)+ Crallg, —ug 25 — 23 q)-
reT\ T

Forany T € ﬁl\’j},, we define 7 := {T' € Ty T C T}. Note that
s niis —b £ —bs o=
W, =(T'1") < @7 PIThn =277k, for0<s <172 4.2)
and

~ 1 s—B b(s—p) ~
h‘},:(|T’|")‘Y_’5w% 5(2"’|T|)7w%=2_ oY, for1/2 <s <1, (4.3)
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where b denotes the number of bisections of every element 7' € 7 in the refinement.
Then, it is clear that

2 b
( > Riug.zg. T’)) < 2—7(R2T(u7h,z¢,l, T))
T/e’f},\Th, T'eT

2

4.4

Here, ¢ = s,for0 < s < 1/2and ¢ = s — B, for 1/2 < s < 1. Therefore, by
definition of the estimator and similar to the proof of A, we can deduce

2
Y. Riug.z3.T)

Tel\7,
< Y Riug,zg.7)
TeT\T,
+ > (Mg, — a3 + Wiy ug, — gl
Teli\T,

HIE (=AY (g, = ug) By + (=AY 2, = 253y

_pbt
< Y 2 RGg e, T)
TeT\T;
+ > (Wraz, — 9B + Wiz, — gl
Teli\T,

HIRY (= A) (g — ug) gy + 1B (=AY (25 — zz,)ﬂizm)

2
Sded Y, Rz, g, To) + Creallug —ugy, 25— 23) s o-
TeT\T;

. bt
Then, we prove A with greq = 272,

4.3 Verification of A3

Compared to the convergence of adaptive algorithms for symmetric elliptic bound-
ary value problems, the main difficulty is that the optimal control problem lacks the
orthogonality. Instead, we turn to prove (quasi)-orthogonality following [6].

Let 7y denote a coarse shape-regular mesh of  with mesh size function Hy;, €

1
L>®(Q)by Hy,,|7:= Hr :=|T|n.SetH = Tn;gljg( Hr.Setug, (973,) := S7,(f+913,)
H

and z7, (uy,) = S%, (ST, (f +q73,) — uq). Here S;‘—H is the ajoint operator of S7;, .
To make the following proof clearly visible, we split it into four steps.
Step 1: Note that

2 2 2
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2 2 2
”Z - Z'];,”]ﬁr(ﬂ) = ”Z - ZTH”ﬁ[r(Q) - ”ZTH — 27, ”ﬁ[v(g) + 2A(Z — 3T, 3Ty — Z'Z;,)

Now, we go to estimate A(u — u7,, ug, — ug,) and A(z — z7,, 27, — 27;)- Since
ut, —ug, € Vg, we have

Al —ug,, ug, —ug) = (q —q7,, W1 —UT;,)
< g — g7, Muzy —ug|
2 2
S g —az, 7 + llug, —ug, |,

From the definitions of u7,, and u7, (q7;,), we can view u7;, as the finite element
approximation of u7, (g7;,) in V7,,. Then, by a duality argument similar to Lemma 2,
we can derive

luzs, — uz, (71> S 0 (EDluzy, — ug, (47) 0 - 4.5)
In an analogous way, we can derive

le7y = 23, ) I? S P (ED ez, — 23, (um) Iy - (4.6)

To obtain the estimate (4.5) and (4.6), we need to prove the following Lemma.

Lemma9 Let S = Ty \7j, denote the set of refined elements from Ty to Tj,. Then, the
following estimates hold

2 2
luzy = uz, T3 o) S D Raluzy, T),
TeS

27y = 23 ) ) S D REGTy, 1)
TeS

Proof Let I7,, denote the Scott-Zhang operator([39, Lemma 3.2]) onto V-7, which
satisfies

|H5(0 — Il < Cllvllg gy Yo € B (9.
Here, the definition of ﬁ}v is similar to E} ,1.e. ﬁ{f = HE‘V, 0<s < ; and

ﬁT Hﬁ szﬁ » 5 < s < 1. Then, by the coercivity and Galerkin orthogonality
of the bilinear form A(-, -) , we derive

luz, = uz, @1} ) S AT, (q7,) = Uy 07,47, = uT3,)
< A(ug, (q1y) — uTy, (I — I73,)(uT, (973) — UT)))
= (f + CI’TH - (_A)SMTHv (I - ITH)(M'E, (QTH) - MTH))
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Here, (-, -) is the duality pairing that extends the L?(£2) inner product. Let

o := interior( U 7).
TeTyNTy,

According to [39, Lemma 3.2], the Scott-Zhang operator can be chosen to satisfy the
following condition:

(I = I7,;))v=0, onw, forVv € V7.
Then, we further derive

SNHE, (f + 41, — (=8 ug) | 2@ 1T (=17, (g, (q7,) =4 ) | 120000
1
2,5

= (X Riwz,. D) WHZ U = 15w (07) = ur) 20

TeS
1

2
< (X Rz, ) luz ) — 7, I 0.
TeS

This yields the first result. The second result can be derived in an analogous way.

Step 2: By (3.31), Lemma 9, and (4.5), we have

g, — ug,|I?
S My — u (g I° + lug (g7,) — u, |I°
S H)llug, —uz, 1) g + 4Ty, — 47,17
S Y RiGuzy. D)+ llaz, — al* + llg — 7,117
TeS

S H) Y Ratugy, T) + 0 (W(lzg, = 23, o, + luz, — ullf, o)
TeS

+P ()23, = 2l g + ez, — ulf q))-
This implies
Al —ug,, ug, —ug;)
S H) Y Riugy, T) + n*()(lzg, — 23, o, + luz, — ullf, o)
TeS

P (H) (27, — 2l g + Iz, — ullf q))-
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In an analogous way, we can derive the following result by the estimate (3.30), Lemma
9, and (4.6):

Az —z7,. 21 — 27;)
=W —ug, 214 — 27,)
S llu—ug, |+ llzzy, — 27,11
S llu—ug | + 2z, — 27, ) + 2z, () — 27,112

Sl —ug P+ n*(H) Y R2Gz,. T) + lug, —ug |
TeS

S P2z, = 2l g + lug, — ullf, o)

+n*(H) Y RGry,. T) + lug, —ug, |
TeS

Combining above estimates leads to

2 2 2

< C(ho) Y Riuryy. T) + C (ho) (2, — 2liF g + luz, — ullF o)
TeS

+Cn*(ho)(lz7y; — 2l g + gy — ullfy )
and

2 2 2
”Z — 17, ”Iﬁl’(ﬂ) - ”Z — 2Ty ||ﬁA(Q) + ”ZTH — 27, “ﬁs(g)

< Cn*(ho) ) Ry(ugyy 273, T) + Cn*(ho) (27, — 2l g + luz, =l )
TeS

+Cn*(ho)(llz7y; — 2l g + gy — ullf q))-

Step 3: To achieve the final results we further need to estimate the term involved
with R7. For T € Ty N T, we have Ry (ugy,, 275, T) = Rr(ugy,, 275, T). This
leads to

R (ugy, 2135 Tr) — R*(uryy s 27> Tn)
= R*(uty, 275> Tu\Tn) — R*(uT,, 27, Ti\T1).

From (4.4), we have

2 -2k 2
Z RT(“THv ZTH7 T/) S 2 n Z RT(MTHv ZTHa T)v
T'eTi\Ty TeTy\T,
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ie.,

_nb¢
R*(uty,, 275 Ti\Trr) < 2727 R*(uty,, 27> T\ Th)-

Furthermore, we can derive

bt
(1=22R*(uy,, 215, Tu\Tn) < R*(uTy,, 27, Tu\Tn) —R*(uTy,, 275, Tn\Trr)
= Rz(uTHa ZTHv TH) - RZ(MTH, ZTHa 771)

This implies
1
D Rtz 23y, D = e (RAuery, a7 To) =Ry, 2z, T) - (4D
TeS e

Step 4: Finally, by (4.2), (4.3) and (4.7) we have

2
”(MTH - uﬂv Ty — Zﬁ,)”]ﬁ[r(g)

< (1 + Cn’hoD e = ugy, 2 = 27
—(1 = C* (o)l = ugy.. 2 = 27) 3 ) + C0*(ho) Y Ry (uzyy 273, T)
TeS

< L+ CnP o) | — ugyy, 2 = 273 s g

—(1 = C*(ho) || — ;. 2 — Z'EI)”I%]IS(Q)
Cn?(ho)

t— i Ry i3y T) = ROy 27, T)-
1-2

Then, according to [36, Lemma 3.7], above estimate combined with reliability leads
to the general quasi-orthogonality A3 as follows:

N

> (16w, —ug, 27, = ) g = 202 G0l = ugy, 2 = 231 g )
k=l

N

= Y (=Pt - uz, = zm kg — N —ugy 2 =21, o)
k=l

C (o)
+T(R2(u771k 2T Tne) = RZ(”ThkvahksThm)))

Cr(ho)
< (1—Cn2<ho>>||<u—uTh,,z—m,)||§;1,\.(Q>+1"7°R2( 7y 273, Tn)

< ConR*(u;,» 275, Thy):
provided /gy < 1.
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4.4 Verification of A4

Viewing g7, as the continuous solution and g7, as its approximation, it follows from
(3.31) that

lazy — a1l S nCH)lz7, — 273 o) + N0z, — 075 I 0)-

Then, by the coercivity of A(-, -), Galerkin orthogonality, and Lemma 9, we derive

2
”uTH —urg, “ﬁy(g)
2 2
S luzy = uz, @73 o) + a7y — 47,117

S Y Rauz, 1)+ C(H)lzgy — 273 1F o, + luzy — ug; I, o)
TeTy\T,

and

2
”ZTH — 27, “H.NHS(Q)
2 2
5 ”ZTH — 27, (MTH)”]?]IS(Q) + ”Z'Th — 27, (MTH)”]ﬁIs(Q)
2 2
S/ ”ZTH — 17, (uTH)”ﬁ[v(Q) + ”uTH - u??, ”

S Y Rituzy.zmy. D)+ CP () lzy — 21, g, + Iz, — w13 )
TeTy\7,

Combining the above two estimates and using the factthatn(H) < 1for H < hg < 1
yields

2 2
”(MTH - M'];, » XTy — Z’Z;l) ”]ﬁ[S(Q) 5 Z 7Q’T (MTH s Ty » T)
TeTp\T,

4.5 Main result

Theorem 10 Assume that h € (0, hg), 0 < ho < 1. Under the assumptions (A1) —

(Ag) of Assumption 4.1 and 0 < 6 <K 1, the Algorithm 2 is rate optimal in the sense
4.1).

Remark 4 We remark that (4.1) implies R(u7; , z7,, 7n) = O(N ") for the optimal
triangulations 7;, € T with cardinality N. However, according to [39], the characteri-
zation of A;(u) < oo in terms of u, z and the data f, ug is still open due to nonlocal
operator and the strong efficiency of the error estimator unavailable.
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5 Numerical experiments

In this section, we use the adaptive finite element algorithm to solve the optimal control
problem (3.1)-(3.2) and verify the a posteriori error analysis and the convergence rate
of the adaptive algorithm. We use the code developed in [40] for solving the state
and the adjoint state equations with finite element methods. Before that, we define the
following effectivity

R(uz,, 27, Tn)
| (e — ur,,2 — Z’Z},)”]ﬁsm)

effectivity :=

Example 1 In this example, we consider problem (3.1)-(3.2) on a unit circle Q =
B1(0), and the exact solutions are as follows:

_ 27—y

L +s)?
7 =Ku,

1
g = max{—1, min{0, ——z}},
o

where k = 3 and o = 1. The functions f and u4 can be determined from the exact
solutions.

Two cases of s = 0.25 and s = 0.75 are considered. We know that the exact
solutions of the state and adjoint are smooth inside the unit circle but have singularities
at 0€2. Therefore, the expected refinement should be carried out at the boundary.
Figure 1 shows the final refinement mesh with s = 0.25,0 = 0.7 and the profiles of
numerical solutions of state and control. The final refinement mesh withs = 0.75, 6 =
0.5 and the profiles of numerical solutions of the state and control are also shown in
Fig. 2. We can find that the meshes obtained by the adaptive finite element algorithms
are mainly refined in regions close to the boundary, where the solutions are singular.
The reliability of the a posteriori error estimate is verified.

In the left plot of Fig. 3, we see the convergece behavior of the estimator
R(ug,, z1;,, Tn), the state estimator R, (u7;, 7p,), the adjoint estimator R;(z7;,, Th)

Fig.1 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s = 0.25, 6 = 0.7 on the circle
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RNV
. N W //

05

1

Fig.2 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s = 0.75, 6 = 0.5 on the circle

as well as the state error ||u — ug, s @) and adjoint state error ||z — z7; s (@) in the
energy norm for uniform and adaptive meshes with s = 0.25,6 = 0.7. The same
contents are shown in the right of Fig. 3 with s = 0.75,6 = 0.5. It can be observed
that the reduced rates (N ~1/4) of the estimators and errors are obtained for uniformly
refined meshes due to the singularities of the exact solutions at the boundary of the
circle. The rates of the estimators and errors are restored to N ~!/2 for the adaptively
refined meshes, which is the optimal convergence rate.

Finally, we vary the parameter 6 € {0.1, 0.4, 0.7, 1} for fixed s = 0.25. In the left
plot of Fig. 4, the values of the estimators, the state, and adjoint estimators are shown.
In the right plot of Fig. 4, the values of the state and adjoint errors are shown. The
non-optimal convergence is obtained when the marking parameter 6 = 1, because
this is uniform refinement. When 6 < 1, it is clear that the rates of the indicators,
estimators, and errors are restored to N~1/2,

Example 2 In the second example, we consider an optimal control problem without
explicit solutions. We set Q = (—1, 1)2, a =1,a =0, b = 0.3, respectively.

In Fig. 5, we show the final refinement mesh with s = 0.25,60 = 0.7 and the
profiles of the numerical solutions of state and control. Figure6 shows the final

mesh and numerical solutions with s = 0.75,6 = 0.5. We can observe that the
. .
. I i —&— effectivity . i T —5— effectivity
—6— indicator adap —6— indicator adap
state estimator adap state estimator adap
—— adjoint estimator adap —&— adjoint estimator adap
—o—lluruyll, adap ~6—llwtl, adap
—0—Ilz-z,I|, adap M—-ﬂ —o—llz-z,Il, adap
= = slope is -1/2 = = slopeis-1/2
—©— indicator unif —8— indicator unif
100F state estimator unif 100F state estimator unif
& | —©—adjoint estimator unif —8— adjoint estimator unif
7 |—e—llu-ull, unit —o— lu-ugll, unif
©  |—o—lzzll, unif —e— izl unif
® 7:-/: slope is -1/4 === slope is -1/4
N
a Y 12 ] L
10 N /: 10
102 . . . 102 . .
10? 10% 10* 10? 10°
DOFs N DOFs N

Fig. 3 The convergence behavior of the estimators and errors with s = 0.25,6 = 0.7 (left) and s =
0.75, 6 = 0.5 (right) for uniform and adaptive refinement on the circle
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T T 10!
100
10°F
=== slope is -1/4
= = slope s -1/2
6= 0=0.1 state estimator X === slope is -1/4
—#— 6=0.1 adjoint estimator N = = slope is -1/2
—8—9=0.1 indicator oot
== 0=0.4 state estimator 107 | —o—0=0.1 Jlzz,,
=0.4 adjoint estimator 004 ol
09— 1=04 [lz-2,|
=0.7 adjoint estimator =07 [lu-u Il
0=0.7 indicator »
=07 llzz
107 |~ 0=1 state estimato 1 llz-z,l,
—E— 9=1 adjoint estimator —6—0=1 llu-ully
—6— =1 indicator | N it |
2 3 4 107 2 3 4
10 10 10 10° 10 10
DOFsN DOFs N

Fig. 4 The convergent behaviors of the estimators and errors for fixed s = 0.25 and 6 = 0.1,0.4,0.7, 1
respectively on the circle

E;ﬁ;"";i‘?i;;zvmﬁwﬁﬁa;

SN
N

QAR

VAN

</
ORI

(2) (b) ©

Fig.5 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s = 0.25, 6 = 0.7 on the square

0
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i V’i“g\!‘t\;‘}"’gé”m\
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Fig.6 Adaptively generated mesh (left) as well as the profiles of the numerically computed state (middle)
and control (right) with s = 0.75, 6 = 0.5 on the square
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10° T T T
&~ indiactor adap

10° T T

state estimator adap —§— indicator adap
—O— adjoint estimator adap state estimator adap
=== slope is -1/4 —O— adjoint estimator adap
—8— indiactor unif —==slope is -1/4.

state estimator unif 6~ indicator unif
—6— adjoint estimator unif state estimator unif
— —slopeis -1/2 —6— adjoint estimator unif
= = slopeis 12

102 10% 10* 10? 10°
DOFs N DOFs N

Fig. 7 The convergent behavior of the estimators with s = 0.25,6 = 0.7 (left) and s = 0.75,6 = 0.5
(right) for uniform and adaptive refinement on the square

main refinement behavior is carried out at the whole boundary of the square, which
shows that the estimators accurately capture the singularities of the exact solutions
at the whole boundary and then guide the mesh refinement. The refined results are
consistent with our expectations.

The convergence behaviors of the indicators and estimators with s = 0.25,6 = 0.7
and s = 0.75, 6 = 0.5 for uniform and adaptive refinement on the square are shown in
Fig. 7. The empirical results are the same as for the previous example. The convergence
rates of the estimators and indicators are only N ~1/4 for uniform refinement, while
optimal convergence rates N ~!/2 is obtained for the adaptive refinement.
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