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Abstract
In this paper, we analyze discontinuous Galerkin methods based in the interior penalty
method in order to approximate the eigenvalues and eigenfunctions of the Stokes
eigenvalue problem. The considered methods in this work are based in discontinu-
ous polynomials approximations for the velocity field and the pressure fluctuation
in two and three dimensions. The methods under consideration are symmetric and
nonsymmetric, leading to variations on the associated matrices and, hence, on the
computation of the eigenvalues and eigenfunctions where real and complex results
may appear, depending on the choice of the method. We derive a convergence result
and error estimates for the proposed methods, together with a rigorous computational
analysis of the effects of the stabilization parameter in the appearance of spurious
modes when the spectrum is computed, when symmetric and nonsymmetric methods
are performed.
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1 Introduction

The Stokes problem is a system of equations that describes the motion of a certain
fluid. For a given domain � ⊂ R

d , where d ∈ {2, 3} with Lipschitz boundary defined

Communicated by: Ilaria Perugia

B Felipe Lepe
flepe@ubiobio.cl

1 GIMNAP-Departamento de Matemática, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile

123

Advances in Computational Mathematics (2023) 49:61

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-023-10062-y&domain=pdf
http://orcid.org/0000-0002-7929-9572


F. Lepe

by � := �D ∪ �N , where |�D| > 0, we are interested in the Stokes eigenvalue
problem: ⎧

⎪⎪⎨

⎪⎪⎩

−ν�u + ∇ p = λu in �,

div u = 0 in �,

u = 0 on �D,

(∇u − pI) · n = 0 on �N ,

(1)

where μ is the kinematic viscosity, u is the velocity, p is the pressure, I ∈ R
d×d is the

identity matrix, and n is the outer unit vector to �.
A variety of numerical methods have been developed for the Stokes eigenvalue

problem due to the many applications in different contexts that require an accurate
knowledge of the vibration modes of this system.

It is very well known that, one of the most important issues when the spectrum of a
certain operator is approximated, is the arising of spurious eigenvalues. This pollution
is important to avoid, since it has no physical meaning in real applications, motivating
the development of robust and reliable numerical methods that approximate safely and
accurately the eigenvalues and eigenfunctions of PDE spectral problems, in particular
the one of interest on this paper.

Nowadays, it is possible to find a number of works dealing with numerical methods
to approximate the solution of the Stokes spectral problem [1, 3, 11–13, 16], revealing
that the research on numerical methods for the aforementioned problem is a current
and important matter of study. In the present work, we contribute on this subject, with
the analysis of a discontinuous Galerkin method based in the interior penalization
strategy, that we will refer as IPDG.

The DG method, introduced with the spirit of solving hyperbolic problems, has
shownmany applications in different contexts of elliptic equations as well. A complete
description of the treatment of DG methods on elliptic problems can be found in
[2]. For spectral problems, the pioneer work where the DG method is considered a
suitable alternative to approximate the spectrum of eigenvalue problems is [1], where
the authors proved the correct approximation of the spectrum of the Laplace spectral
problem,where the spurious eigenvalues are avoided, andoptimal order of convergence
is proved with this numerical approach. This paper has become a corner stone to
solve other important eigenproblems, such as the Maxwell eigenvalue problem [3–5],
elasticity spectral problem [16], and Stokes spectral problem [17], among others.

In the present paper, we continue with our research program related to the appli-
cations of DG methods for eigenvalue problems. The aforementioned references have
shown interesting features to solve these type of problems, due to the flexibility for
the meshes, the easy computational coding, and the accuracy on the computation of
the spectrum. However, the use of DG methods, in particular the IPDG method, is
important and has no minor cost: the choice of the stabilization parameter. To make
matters precise, in [16, 17], the authors proved that the stability of the DG method
depends on a theoretical threshold in which the stabilization parameter lies and, in
the computational experiments, is relevant to localize this threshold in order to avoid
the spurious eigenvalues. This choice is not arbitrary and depends on the geometrical
features of the domains, boundary conditions, and physical parameters, just tomention
the most important, demanding a rigorous mathematical and computational analysis
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Interior penalty discontinuous...

related to the stabilization parameters and the role that play on the computation of the
spectrum.

Since the knowledge of the vibration modes of the Stokes eigenvalue problem is
important due to the many applications in real contexts, such as the design of pipes,
structures containing fluids, and fluids interacting with other fluids or structures, it
is relevant to design numerical techniques to approximate the eigenvalues and eigen-
functions of the Stokes eigensystem, and DG methods are an effective alternative to
compute them. With this aim, we are interested in the classic velocity/pressure for-
mulation for the Stokes problem, which, to the best of the author’s knowledge, has
not been taken in consideration for the implementation of DG methods in the con-
text of eigenvalue problems. This formulation leads to a less expensive numerical
method compared with the one analyzed in [17] for a pseudostress formulation, since
the presence of the aforementioned tensor obligates to approximate its corresponding
components, which are more compared with the components of a vectorial formula-
tion. This simplicity motivates the analysis of our work. However, we need to once
again face the stabilization problem for the three DG methods in which our work is
based: the symmetric interior penalty method (SIP), the nonsymmetric interior penalty
method (NIP), and the incomplete interior penalty method (IIP). To perform the anal-
ysis of the proposed DG methods for the Stokes eigenvalue problem, we made use of
the results provided in [1] for the Laplacian operator, adapting them for our case, since
in the Stokes setting, the grad–grad bilinear form appears and its treatment is the same
as in the aforementioned reference. The rest of the terms on the Stokes formulation
can be analyzed as in the source problem. We refer to [14] for a complete treatment
related to this subject.

The outline of the present paper is the following: inSect. 2,wepresent the variational
formulation of (1). We recall the classic properties of well posedness and regularity
of the eigenfunctions, that leads us to derive the spectral characterization for the
eigenvalue problem. The core of our paper is contained in Sect. 3, where we present
the definitions for the elements of themesh, averages and jumps for the functions, trace
inequalities, the DG space for the velocity and piecewise polynomials for the pressure,
and the discrete bilinear form that leads to the discrete eigenvalue problem which,
depending on the choice of certain parameter, deliver a symmetric or nonsymmetric
numerical method. We analyze the stability of the discrete formulation for the three
IPDG methods under consideration. In Sect. 4, we analyze the convergence of the
proposed DG method and derive error estimates, adapting the theory of non-compact
operators of [6, 7]. Finally, in Sect. 5, we present a series of numerical tests in which
we assess the performance of the DGmethods. A rigorous analysis of the effects of the
stabilization parameter in the computation of the spectrum is presented, together with a
comparison between the SIP, NIP, and IIP methods. Also, we compute the eigenvalues
in different domains and compute the order of convergence for each method.

1.1 Notations

Throughout this work, � is a generic Lipschitz bounded domain of R2. For s ≥ 0,
‖·‖s,� stands indistinctly for the norm of the Hilbertian Sobolev spaces Hs(�) or
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[Hs(�)]2 with the convention H0(�) := Ł2(�). If X and Y are normed vector spaces,
we write X ↪→ Y to denote that X is continuously embedded in Y . We denote by X ′
and ‖ · ‖X the dual and the norm of X , respectively. Finally, we employ 0 to denote
a generic null vector and the relation a � b indicates that a ≤ Cb, with a positive
constant C which is independent of a, b, and the size of the elements in the mesh.
The value of C might change at each occurrence. We remark that we will write the
constant C only when it is needed.

2 Themodel problem

Let us define the following subspace of [H1(�)]d in which we will seek the velocity
field u

V := {v ∈ [H1(�)]d : v|�D = 0}.
Observe that if � = �D , the space V is exactly the space [H1

0 (�)]d . The standard
space for the pressure p is Q = L2(�) (or L2

0(�) if � = �D). With these spaces
at hand, we introduce the following variational formulation of (1): Find λ ∈ R and
(0, 0) �= (u, p) ∈ V × Q such that

a(u, v) + b(v, p) = λ(u, v) ∀ v ∈ V,

b(u, q) = 0 ∀ q ∈ Q,
(2)

where the bilinear forms a : V×V → R and b : V×Q → R are defined, respectively,
by

a(w, v) := ν

∫

�

∇w : ∇v, b(v, q) := −
∫

�

q div v.

Now, we introduce the so-called solution operator, defined by

T : V → V, f 
→ T f := û,

where given f ∈ V , the pair (̂u, p̂) ∈ V × Q solves the following source problem

a(̂u, v) + b(v, p̂) = ( f , v) ∀ v ∈ V,

b(̂u, q) = 0 ∀ q ∈ Q.
(3)

Since problem above is well posed thanks to the Babuŝka-Brezzi theory, we conclude
that T is well defined. Also, it is easy to check that T is a selfadjoint operator with
respect to the L2 inner product.

On the other hand, from [10, 21], we have the following regularity result for the
Stokes spectral problem, which allows us to conclude the compactness of T .

Theorem 1 If (λ, u, p) ∈ R × V × Q solves (2), there exists s > 0 such that u ∈
[H1+s(�)]d and p ∈ Hs(�).
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Remark 1 Let us notice that if (̂u, p̂) is the solution of (3), then there exists s > 0
such that the following estimate holds (see, for instance, [18])

‖û‖1+s + ‖ p̂‖s,� � ‖ f ‖0,�.

On the other hand, if (u, p) solves the spectral problem (2), then there exists r > 0
such that the following estimate holds

‖u‖1+r + ‖p‖r ,� � ‖u‖1,�.

From the compactness of T , it is well known that the spectrum of T satisfies
sp(T ) = {0} ∪ {μk}k∈N, where {μk}k∈N is a sequence of positive eigenvalues such
that μk → 0 as k → +∞. This spectral characterization of T is a key ingredient to
develop the forthcoming numerical analysis.

Let us introduce the bilinear form A : W × W → R defined by

A((u, p), (v, q)) := a(u, v) + b(v, p) + b(u, q) (u, p), (v, q) ∈ W,

whereW := V×Q. It is clear that A(·, ·) is bounded. With this bilinear form at hand,
we rewrite problem (2) as follows: Find λ ∈ R and (0, 0) �= (u, p) ∈ W such that

A((u, p), (v, q)) = λ(u, v) ∀(v, q) ∈ W . (4)

3 The DGmethod

Now, our aim is to introduce the DG methods. In order to do this, we need to set some
notations and definitions, inherent for these type of methods, such as DG spaces,
jumps, averages, and discrete bilinear forms.

3.1 Preliminaries

Let Th be a shape regular family of meshes which subdivide the domain �̄ into trian-
gles/tetrahedra that we denote by K . Let us denote by hK the diameter of any element
K ∈ Th and let h be the maximum of the diameters of all the elements of the mesh,
i.e. h := maxK∈Th {hK }.

Let F be a closed set. We say that F ⊂ � is an interior edge/face if F has a positive
(n − 1)-dimensional measure and if there are distinct elements K and K ′ such that
F = K̄ ∩ K̄ ′. A closed subset F ⊂ � is a boundary edge/face if there exists K ∈ Th
such that F is an edge/face of K and F = K̄ ∩�. LetF0

h andF∂
h be the sets of interior

edges/faces and boundary edges/face, respectively.We assume that the boundarymesh
F∂
h is compatible with the partition � = �D ∪ �N , namely,

⋃

F∈FD
h

F = �D and
⋃

F∈F N
h

F = �N ,
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where FD
h := {F ∈ F∂

h ; F ⊂ �D} and FN
h := {F ∈ F∂

h : F ⊂ �N }. Also we
denote Fh := F0

h ∪ F∂
h and F∗

h := F0
h ∪ FN

h . Also, for any element K ∈ Th , we
introduce the set F(K ) := {F ∈ Fh : F ⊂ ∂K } of edges/faces composing the
boundary of K .

For any t ≥ 0, we define the following broken Sobolev space

Ht (Th)n := {v ∈ [L2(�)]n : v|K ∈ [Ht (K )]n ∀K ∈ Th}.

Also, the space of the skeletons of the triangulations Th is defined by L2(Fh) :=∏
F∈Fh

L2(F).

In the forthcoming analysis, hF ∈ L2(Fh) will represent the piecewise constant
function defined by hF |F := hF for all F ∈ Fh , where hF denotes the diameter of
edge/face F .

Let Pm(Th) be the space of piecewise polynomials respect with to Th of degree at
most m ≥ 0; namely,

Pm(Th) :=
{
v ∈ [L2(�)]d : v|K ∈ [Pm(K )]d ,∀K ∈ Th

}
.

Let k ≥ 1. We define the following finite dimensional spaces:

Vh := {vh ∈ [L2(�)]d : vh |K ∈ [Pk(K )]d , ∀K ∈ Th},

and
Qh := {vh ∈ L2(�) : vh |K ∈ Pk−1(K ), ∀K ∈ Th},

to approximate the velocity field and pressure, respectively.
We define averages {v} ∈ [L2(Fh)]n and jumps �v� ∈ L2(Fh) as follows

{v}F := (vK + vK ′)/2 and �v�_F := vK · nK + vK ′ · nK ′ ∀F ∈ F(K ) ∩F(K ′),

where nK is the outward unit normal vector to ∂K and vK represents the restriction
v|K .We remark thatwhen it is convenient,wewill drop the subscript for this restriction.
Also, on the boundary ∂� and for all F ∈ F(K ) ∩ ∂�, the averages and jumps are
defined by {v}F := vK and �v�F := vK · n, respectively.

Inspired by the analysis of [1], let us define V(h) := V + Vh which we endow
with the following norm

‖v‖2V(h) = ‖∇hv‖20,� + ‖h−1/2�v�‖20,Fh
,

which coincides with the natural norm of V .

Motivated by the DG discretization for the Laplace eigenvalue problem of [1], we
introduce the following property: there exists a positive constant C , depending only
on the domain, such that for every τ ∈ V(h), there holds

‖τ‖0,� � ‖τ‖V(h). (5)
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Observe that this property is theDGversion for the classic Poincaré inequality. Finally,
we introduce the following trace inequality (see [8]):

‖h1/2{vK }‖0,F � ‖v‖0,� ∀v ∈ Pk(Th). (6)

3.2 Symmetric and nonsymmetric DG schemes

With the discrete spaces defined previously, we introduce the discrete counterpart of
(2) as follows: Find λh ∈ C and (0, 0) �= (uh, ph) ∈ Vh × Qh such that

ah(uh, vh) + bh(vh, ph) = λh(uh, vh) ∀ vh ∈ Vh,

bh(uh, qh) = 0 ∀ qh ∈ Qh,
(7)

where the bilinear form ah : Vh × Vh → C is defined by

ah(uh, vh) :=
∫

�

ν∇huh : ∇hvh +
∫

F∗
h

aS

hF
ν�uh� · �vh�

−
∫

F∗
h

{ν∇huh} · �vh�

− ε

∫

F∗
h

{ν∇hvh} · �uh�, (8)

where aS > 0 is a positive constant which we will refer as the stabilization parameter
and ε ∈ {−1, 0, 1}. It is easy to check that ah(·, ·) is a bounded bilinear form. Indeed,
for uh, vh ∈ Vh , we have

|ah(uh, vh)| ≤ ν‖∇huh‖0,�‖∇hvh‖0,� + aSν‖h−1/2
F �uh�‖0,F∗

h
‖h−1/2

F �vh�‖0,F∗
h

+ ν‖h1/2F {∇huh}‖0,F∗
h
‖h−1/2

F �vh�‖0,F∗
h

+ ε‖h1/2F {∇hvh}‖0,F∗
h
‖h−1/2

F �uh�‖0,F∗
h

≤ C max{ν,aSν, ε}
︸ ︷︷ ︸

:=MDG

‖(uh, ph)‖V(h)×Q‖(vh, qh)‖V(h)×Q,

where C is the constant of (6).
On the other hand, we define the bounded bilinear form bh : Vh × Qh → C by

bh(vh, qh) := −
∫

�

divh vhqh +
∫

F∗
h

{qh}�vh�, ∀v ∈ Vh, ∀qh ∈ Qh .

Now, and similar to the continuous case, we rewrite (7) as follows: Find λh ∈ C

and (uh, ph) ∈ Wh := Vh × Qh such that

Ah((uh, ph), (vh, qh)) = λh(uh, vh) ∀(vh, qh) ∈ Wh,
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where

Ah((uh, ph), (vh, qh)) := ah(uh, vh) + bh(vh, ph) + bh(uh, qh),

for all (uh, ph), (vh, qh) ∈ Wh . Observe that Ah(·, ·) is a bounded bilinear form due
the boundedness of ah(·, ·) and bh(·, ·).

In the definition of ah(·, ·), the constant ε ∈ {−1, 0, 1} is the parameter that dictates
if the DG method is symmetric or nonsymmetric. More precisely, if ε = 1, we obtain
the classic symmetric interior penalty method (SIP) as the one studied, for example, in
[16] for the elasticity eigenproblem. If ε = −1, we obtain the nonsymmetric interior
penalty method (NIP) and if ε = 0 the incomplete interior penalty method (IIP).
Clearly, when nonsymmetric methods are considered, complex computed eigenvalues
are expected when the spectrum is approximated.

Let us remark that the SIP method is relevant since it yields to optimal order of
convergence for the approximation of the eigenvalues and eigenfunctions, whereas the
NIP and IIPmethods deliver suboptimal orders. This will be observed in the numerical
section.

Now, the IPDG discretization of (4) reads as follows: Find λ ∈ C and (uh, ph) ∈
Wh such that

Ah((uh, ph), (vh, qh)) = λh(uh, vh) ∀(vh, qh) ∈ Wh .

To establish the well posedness of our discrete problem (7), we have from [14,
Proposition 10] the following discrete inf-sup condition

sup
τ h∈Vh

bh(τ h, qh)

‖τ h‖V(h)

≥ β‖qh‖0,� ∀qh ∈ Qh,

where the constant β > 0 is independent of h. On the other hand, let us define the
discrete kernel Kh of bh(·, ·) as follows:

Kh := {τ h ∈ Vh : bh(τ h, vh) = 0 ∀vh ∈ Vh}.

With this space at hand, we prove the following coercivity result for ah(·, ·).
Lemma 1 [ellipticity of ah(·, ·)] For any ε ∈ {−1, 0, 1}, there exists a positive param-
eter a∗ such that for all aS ≥ a∗ there holds

ah(vh, vh) ≥ α‖vh‖2V(h) ∀vh ∈ Kh,

where α > 0 is independent of h.
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Proof Let vh ∈ Kh . Then, from the definition of ah(·, ·), considering the well known
inequality ab ≤ a2

2η + ηb2

2 , for all η > 0, and (6), we have

ah(vh, vh) :=
∫

�

ν∇hvh : ∇hvh +
∫

F∗
h

aS

hF
ν�vh� · �vh�

−
∫

F∗
h

{ν∇hvh} · �vh�

− ε

∫

F∗
h

{ν∇hvh} · �vh�

≥ ν‖∇hvh‖20,� + aSν‖h−1/2
F �vh�‖20,F∗

h
− ν(1 + ε)

∫

F∗
h

{∇hvh} · �vh�

≥ ν‖∇hvh‖20,� + aSν‖h−1/2
F �vh�‖20,F∗

h

+ ν(1 + ε)

⎛

⎝−
‖h1/2F {∇hvh}‖20,F∗

h

2η
−

η‖h−1/2
F �vh�‖20,F∗

h

2

⎞

⎠

≥ ν

(

1 − C
(1 + ε)

2η

)

︸ ︷︷ ︸
C1

‖∇hvh‖20,� + ν

(

aS − η(1 + ε)

2

)

︸ ︷︷ ︸
C2

‖h−1/2
F �vh�‖20,F∗

h
,

where the constant C is the one provided by (6). Observe that C1 > 0 if and only if
η is chosen as η > (1 + ε)C/2. Now, the ellipticity holds for α := ν min{C1,C2}
and choosing aS such that aS > a∗ := (1 + ε)η/2, where η has been previously
determined. This concludes the proof. ��

As a consequence of lemma above, it is easy to check that

Ah((vh, qh); (vh, qh)) ≥ α‖vh‖2V(h) ∀vh ∈ Kh . (9)

Let us introduce the discrete solution operator defined by

T h : V → Vh, f 
→ T h f := ûh,

where given f ∈ V , the pair (̂uh, p̂h) ∈ Wh solves the following discrete source
problem

Ah((̂uh, p̂h), (vh, qh)) = ( f , vh) ∀(vh, qh) ∈ Wh .

4 Convergence and error estimates

The aim of this section is to derive convergence results and error estimates for our DG
methods. Despite the fact that T is compact, the classic theory of compact operators is
not enough to conclude the convergence in norm between the continuous and discrete
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solution operators, since the numerical method of our interest is non-conforming. Is
this reason, and following the spirit of [1], why we resort to the theory of non-compact
operators of [6, 7]?

In what follows, we will denote by ‖·‖L(V(h),V(h)) the corresponding norm acting
fromV(h) into the same space. In addition, we will denote by ‖·‖L(Vh ,V(h)) the norm
of an operator restricted to the discrete subspace Vh ; namely, if L : V(h) → V(h),
then

‖L‖L(Vh ,V(h)) := sup
0 �=τ h∈Vh

‖Lτ h‖V(h)

‖τ h‖V(h)

.

Our first task is to prove the following properties:

• P1. ‖T − T h‖L(Vh ,V(h)) → 0 as h → 0.
• P2. ∀τ ∈ V , there holds

inf
τ h∈Vh

‖τ − τ h‖V(h) → 0 as h → 0.

We need this properties in order to establish spectral correctness (see [6]) for all
the discrete methods (symmetric or nonsymmetric). Property P2 is immediate as a
consequence of the density of continuous piecewise degree k polynomial functions in
V . On the other hand, P1 is not direct, and our goal is to prove it.

The following convergence result holds for the continuous and discrete solution
operators.

Lemma 2 For all f ∈ V , the following estimate holds

‖(T − T h) f ‖V(h) � hs‖ f ‖0,�,

where s > 0 and the hidden constant is independent of h.

Proof From the definition of the continuous and discrete solutions operators, we have
û := T f and ûh := T h f . Now, since ûh is the DG approximation of the velocity
û, then ‖û − ûh‖V(h) is precisely the error of the DG method applied on the source
problem. Hence, the following Céa estimate holds

‖(T − T h) f ‖V(h) ≤ ‖(̂u − ûh, p̂ − p̂h)‖V(h)×Qh

�
(

1 + MDG

β

)

inf
(̂vh ,̂qh)∈Vh×Qh

‖(̂u, p̂) − (̂vh, q̂h)‖V(h)×Qh ,

where the pair (̂u, p̂h) ∈ Vh × Qh is precisely the solution of the discrete source
problem (7) and the hidden constant is independent of h. Now, If 
h û represents the
Lagrange interpolation of ûh (see for instance [9]), there holds

‖û − ûh‖V(h) � ‖û − 
h û‖V(h) = ‖û − 
h û‖1,� ≤ hs‖ûh‖1+s � hs‖ f ‖0,�,
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wherewe have used the additional regularity of the Stokes source problem, the approx-
imation properties of the Lagrange operator and Remark 1. On the other hand, if
Sh : Q → Qh denotes the classic L2-orthogonal projection, we have

‖ p̂ − p̂h‖0,� � ‖ p̂ − Sh p̂h‖0,� � hs‖ f ‖0,�,

where once again we have used Remark 1. This allows us to conclude the proof.

��
Now, we prove the analogous of the previous lemma, but considering discrete

sources.

Corollary 1 For all f h ∈ Vh, the following estimate holds

‖(T − T h) f h‖V(h) � hs‖ f h‖V(h),

where s is as in Theorem 1 and the hidden constant is independent of h.

Proof Let f h ∈ Vh . Invoking the previous Lemma, we conclude the proof. ��
Now, we are in position to establish P1.

Lemma 3 Therefore, following estimate holds

‖T − T h‖L(Vh ,V(h)) � hs,

where the hidden constant is independent of h.

Proof Given f h ∈ Vh , we have

‖T − T h‖L(Vh ,V(h)) := sup
0 �= f h∈Vh

‖(T − T h) f h‖V(h)

‖ f h‖V(h)

� hs,

where we have used Lemma 1. This concludes the proof. ��
Fromnowon,D denotes the unitary disk defined in the complex plane byD := {z ∈

C : |z| ≤ 1}. The following result proves that the continuous resolvent is bounded in
the V(h) norm.

Lemma 4 There exists a constant C > 0 independent of h such that for all z ∈
D \ sp(T ) there holds

‖(z I − T ) f ‖V(h) ≥ C |z| ‖ f ‖V(h) ∀ f ∈ V(h).

Proof For f ∈ V(h), we introduce

u∗ := T f ∈ V
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and notice that
(z I − T )u∗ = T (z I − T ) f .

Since T : V → V is a bounded operator and using the fact that ‖(z I − T ) u‖1,� ≥
C‖u‖1,� for z /∈ sp(T ) (see [16, Proposition 2.5 ] for instance), we have that

C‖u∗‖1,� ≤ ‖(z I − T )u∗‖1,�
= ‖T (z I − T ) f ‖1,� ≤ ‖T‖L(V,V)‖(z I − T ) f ‖V(h).

On the other hand, we have

‖ f ‖V(h) ≤ |z|−1‖u∗‖1,� + |z|−1‖(z I − T ) f ‖V(h)

� |z|−1 (
1 + ‖T‖L(V,V)

) ‖(z I − T ) f ‖V(h)

� |z|−1‖(z I − T ) f ‖V(h).

Hence, C |z|‖ f ‖V(h) ≤ ‖(z I − T ) f ‖V(h). This concludes the proof. ��
Remark 2 Lemma 4 implies that the resolvent of T is bounded. In other words, if J is
a compact subset of D \ sp(T ), then there exists a positive constant C independent of
h, satisfying the estimate

‖(z I − T )−1‖L(V(h),V(h)) ≤ C ∀z ∈ J .

Our next goal is to derive the boundedness of the discrete resolvent, when h is small
enough.

Lemma 5 If z ∈ D \ sp(T ), there exists h0 > 0 such that for all h ≤ h0,

‖(z I − T h) f ‖V(h) ≥ C ‖ f ‖V(h) ∀ f ∈ V(h),

with C > 0 independent of h but depending on |z|.
Proof The proof follows the same arguments of those in [1, Theorem 4.4], where the
following triangle inequality is needed

‖(z I − T h) f ‖V(h) ≥ ‖(z I − T ) f ‖V(h) − ‖(T − T h) f ‖V(h),

together with Lemma 2 and (5). The proof is concluded tending h to zero. ��
The previous lemma states that if we consider a compact subset E of the complex

plane such that E ∩ sp(T ) = ∅ for h small enough and for all z ∈ E , operator
z I − T h is invertible. Moreover, there exists a positive constant C independent of h
such that ‖(z I − T h)

−1‖L(V(h),V(h)) ≤ C for all z ∈ E . This fact is important since
it determines that the numerical method is spurious free for h small enough. This is
summarized in the following result proved in [6].
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Theorem 2 Let E ⊂ C be a compact subset not intersecting sp(T ). Then, there exists
h0 > 0 such that, if h ≤ h0, then E ∩ sp(T h) = ∅.

We recall the definition of the resolvent operator of T and T h respectively:

(z I − T )−1 : V → V , z ∈ C \ sp(T ),

(z I − T h)
−1 : Vh → Vh , z ∈ C \ sp(T h).

We introduce the definition of the gap δ̂ between two closed subspaces X and Y of
L2(�):

δ̂(X ,Y) := max
{
δ(X ,Y), δ(Y,X )

}
,

where

δ(X ,Y) := sup
x∈X : ‖x‖0,�=1

(

inf
y∈Y

‖x − y‖0,�
)

.

Let λ be an isolated eigenvalue of T and let D be an open disk in the complex plane
with boundary γ such that λ is the only eigenvalue of T lying in D and γ ∩ sp(T ) =
∅. We introduce the spectral projector corresponding to the continuous and discrete
solution operators T and T h , respectively

E := 1

2π i

∫

γ

(z I − T )−1 dz : V(h) −→ V(h),

Eh := 1

2π i

∫

γ

(z I − T h)
−1 dz : V(h) −→ V(h).

The following approximation result for the spectral projections holds.

Lemma 6 There holds
lim
h→0

‖E − Eh‖L(Vh ,V(h)) = 0.

Proof See [[1]Theorem 5.1]. ��
Now, we provide an error estimate for the eigenfunctions.

Lemma 7 For h small enough, it holds

δ̂h(E(V),Eh(Vh)) � hmin{r ,k},

where the hidden constant is independent of h.

Proof To obtain this result, in virtue of the definition of δ̂, we need to control
the quantities δh(E(V),Eh(Vh)) and δh(Eh(Vh),E(V)). Let us begin deriving an
estimate for δh(Eh(Vh),E(V)). Since the continuous solution operator is defined
by T : V → V , we need to operate as in the proof of [[16] Theorem 5.1].
We notice that since E|V is a spectral projection in V onto the eigenspace E(V)
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corresponding to the eigenvalue λ of T , we have E(V(h))) = E(V) (see [[16] equa-
tion (41)]). On the other hand, from Lemma 6, we are able to obtain the estimate
‖E − Eh‖L(Vh ,V(h)) � ‖T − T h‖L(Vh ,V(h)) (see [[16] Lemma 5.3]). Now since
Eh is a projector, for h sufficiently small, we have for all vh ∈ Eh(Vh) the relation
Ehvh = vh . Moreover, Evh ∈ E(V). Then, for all vh ∈ Eh(Vh), the following
estimate holds

δ(vh,E(V)) � ‖Ehvh − Evh‖V(h) � ‖Eh − E‖L(Vh ,V(h))‖vh‖V(h),

implying that δ(Eh(Vh),E(V)) � hmin {r ,k}, wherewe have invoked Lemma 3 for s =
r and taking into account the corresponding minimum between r and the polynomial
degree.

Now, our task is to estimate δh(E(V),Eh(Vh)). It is easy to check that the IPDG
methods are consistent in the sense that for all (vh, qh) ∈ Vh × Qh , the following
identity holds

Ah((u − uh, p − ph), (vh, qh)) = 0,

with (u, p) ∈ [H1+r (�)]d × Hr (�) and r > 0. This consistency, together with
standard arguments of mixed finite element theory, leads us to the following Céa
estimate

‖(u − uh, p − ph)‖V(h)×Qh �
(

1 + MDG

β

)

inf
(vh ,qh )∈Vh×Qh

‖(u, p) − (vh, qh)‖V(h)×Qh ,

where MDG and β are the continuity constant of ah(·, ·) and the inf-sup constant of
bh(·, ·), respectively. Now, from the properties of the Lagrange interpolation operator
(see [9] for instance) and the L2 orthogonal projection operator, together with the
additional regularity provided by the invariant space E(V), which in our case is u ∈
E(V) ⊂ [H1+r (�)]d with r > 0, we have

‖(u − uh, p − ph)‖V(h)×Qh � hmin{r ,k}(‖u‖1+r + ‖p‖r ,�).

This allows us to conclude the proof. ��
The next result provides, for the proposed IPDGmethods, a double order of conver-

gence for the eigenvalues. More precisely, the result presents estimates for symmetric
and nonsymmetric methods, where optimal and suboptimal order of convergence are
attained, respectively.

Theorem 3 There exists a strictly positive constant h0 such that, for h < h0, there
holds

(1) If the symmetric IPDG method is considered (ε = 1), then there holds

|λ − λh | � h2min{r ,k}, (10)

(2) If any of the nonsymmetric IPDG methods are considered (ε ∈ {−1, 0}), then
there holds

|λ − λh | � hmin{r ,k}, (11)
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where in each estimate, the hidden constant is independent of h.

Proof Observe that (11) is a direct consequence of Lemma 7. Now, to prove (10), let
us consider the following well-known algebraic identity:

Ah((u− uh, p− ph), (u− uh, p− ph))−λ(u− uh, u− uh) = (
λi,h − λ

)
(uh, uh).

On the other hand, invoking (9), we have

(uh, uh) = Ah((u − uh, p − ph), (u − uh, p − ph))

|λi,h | ≥ α‖uh‖2V(h)

|λi,h | ≥ Ĉ > 0.

Since Ah(·, ·) is a bounded bilinear form, we have

Ĉ |λi,h − λ| ≤ |Ah((u − uh, p − ph), (u − uh, p − ph))|
+ |λ||(u − uh, u − uh)|. (12)

For the first term on the right hand side of (12), we have

|Ah((u− uh, p − ph), (u− uh, p − ph))| = |ah(u− uh, u− uh)| ≤ ‖u− uh‖2V(h).

Then, since u ∈ E(V), we have

‖uh − u‖V(h) = δ(uh,E(V)) � δ̂(Eh(Vh),E(Vh)) � hmin{r ,k}. (13)

On the other hand,

‖u − uh‖0,� � ‖u − uh‖V(h) � hmin{r ,k}, (14)

where we have used the Poincaré inequality (5) and the same arguments that derive
(13). Hence, gathering (13), (14) and replacing these estimates in (12), we conclude
the proof. ��

5 Numerical experiments

In this section, we report some numerical tests in order to assess the performance of
the proposed numerical method, in the computation of the eigenvalues of problem (7).

We report numerical results for the three different DG discretizations to solve
the Stokes eigenvalue problem, namely, for ε ∈ {−1, 0, 1}. These results have been
obtained using aFEniCScode [15], and the consideredmeshes are the ones provided by
this software.Wewill present two different situations: The first consists of applying the
method to solve theStokes eigenvalueproblemconsideringmixedboundary conditions
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in order to observe if the method introduce spurious eigenvalues. In particular, we will
analyze the influence stabilization parameter aS . We note that other spectral analysis
using DG methods introduce spurious eigenvalues when the stabilization parameter
is not correctly chosen (see, for instance, [16, 17]). Hence, our intention in this test is
to identify a safe threshold in which we can compute the spectrum correctly.

On the other hand, in the second test, we apply the method considering homoge-
neous Dirichlet conditions in order to approximate smooth eigenfunctions and obtain
rates of convergence. These two scenarios will be tested for the SIP (ε = 1), NIP
(ε = −1), and IIP (ε = 0) methods in order to compare them.

From now on, the stabilization parameter aS in the bilinear form ah(·, ·) (cf. (8))
will be chosen proportionally to the square of the polynomial degree k as aS = ak2

with a > 0. For simplicity, we have taken ν = 1 as kinematic viscosity.

5.1 Square withmixed boundary conditions

In the forthcoming experiments, we are only concerned in the effects of the stabiliza-
tion parameter on the computation of the spectrum. For this test, the computational
domain is the unitary square � = (0, 1)2. The boundary conditions are u = 0 on
the bottom of the square, and, on the rest, we assume that the sides of the square are
free of stress, namely, (∇u − pI) · n = 0. Due the geometrical and physical con-
figuration of this domain, it is expectable that spurious eigenvalues arise when the
stabilization parameter is not chosen properly. This motivates the study of the effects
of the stabilization parameter on the computation of the spectrum.

In Fig. 1, we present an example of the meshes for our experiments. We remark
that these meshes are provided by FEniCS. For other domains, we also consider the
meshes of FEniCS.

Since in this test we are considering mixed boundary conditions, spurious eigenval-
ues are expected for certain stabilization parameters, as, for example, in [16] and [17]
for the elasticity and Stokes spectral problems, respectively, where this phenomenon
is also observed. To make matters precise, the forthcoming results show the effects in

Fig. 1 Examples of the meshes used in the unit square. The left figure represents a mesh for N = 4 and the
right one for N = 6
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Table 1 Computed eigenvalues for k = 2, refinement level of the mesh N = 8, and different stabilization
values

a = 1/4 a = 1/2 a = 1 a = 2 a = 4 a = 8

−51.5827843 −38.0086353 −25.7741157 2.4673967 2.4673984 2.4673995

2.4673994 2.4674060 −7.7428930 6.2823213 6.2837898 6.2846799

6.2807623 6.2836221 2.4673951 15.2191850 15.2250578 15.2289821

15.2197528 15.2247397 4.0187272 22.2069897 22.2082373 22.2089953

22.2090093 22.2304253 6.4215943 26.9585220 26.9655945 26.9702116

26.9419996 26.9500426 15.3198683 43.1596990 43.1813564 43.1958316

32.6879700 31.3711601 22.2040077 48.4095301 48.4608496 48.4962729

43.2234986 43.0886035 23.4674407 61.6948903 61.7207719 61.7360376

48.4030389 48.5151481 27.1142786 64.3707811 64.4286742 64.4646562

61.7382092 61.6745849 32.5589528 75.3545722 75.5091440 75.6186050

the choice of awhen the SIP, NIP, and IIP methods are considered for the computation
of the spectrum.

5.1.1 SIP method

In this test, we set ε = 1 in (8). To observe the behavior of the spurious eigenvalues
respect to the stabilization parameter, the strategy here consists into fix a refinement
parameter N and compute the spectrum for different values of a. We begin with
the computation of eigenvalues with different stabilizations and polynomial degrees,
fixing the refinement level on N = 8.

Table 2 Computed eigenvalues for k = 3, refinement level of the mesh N = 8, and different stabilization
values

a = 1/4 a = 1/2 a = 1 a = 2 a = 4 a = 8

−25.8911566 2.4673962 2.4673962 2.4673962 2.4673962 2.4673962

−6.9533161 6.2800172 6.2807543 6.2798261 6.2799516 6.2800197

1.3671713 15.2113035 15.2137332 15.2106882 15.2110819 15.2112975

2.4673962 22.2065701 22.2065631 22.2065701 22.2065714 22.2065723

6.2802957 26.9499653 26.9508745 26.9495553 26.9498729 26.9500458

15.2108124 43.1443102 43.1471293 43.1436341 43.1442823 43.1446839

22.2065688 48.3474162 48.3562431 48.3440788 48.3465144 48.3478748

26.9362671 61.6852113 61.6847819 61.6851692 61.6852465 61.6853014

27.6605592 64.3094958 64.3180603 64.3072318 64.3091509 64.3102899

28.3620195 75.2194409 75.2351965 75.2149097 75.2200868 75.2234502
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Table 3 Computed eigenvalues for k = 4, refinement level of the mesh N = 8, and different stabilization
values

a = 1/4 a = 1/2 a = 1 a = 2 a = 4 a = 8

−23.7579288 2.4673962 2.4673962 2.4673962 2.4673962 2.4673962

−12.6239007 6.2795001 6.2794428 6.2795049 6.2795263 6.2795376

2.4673962 15.2096059 7.3180634 15.2096921 15.2097587 15.2097936

6.2794847 22.2065655 15.2098219 22.2065655 22.2065655 22.2065655

15.2095018 26.9487029 22.2065655 26.9487045 26.9487594 26.9487890

22.2065655 43.1420482 22.7715111 43.1420939 43.1421826 43.1422299

26.0942752 48.3368059 26.9492760 48.3377321 48.3381475 48.3383709

26.9485754 61.6849077 43.1420081 61.6849052 61.6849056 61.6849059

43.1418083 64.3021502 48.3373849 64.3023792 64.3026819 64.3028435

48.3363308 75.2020647 61.6849042 75.2025415 75.2032383 75.2036188

From Tables 1, 2, 3, 4, and 5, we observe that spurious eigenvalues appear when
a ≤ 1 for each polynomial degree. However, when k increases, the presence of
physical eigenvalues predominates compared with the spurious ones. Moreover, this
test reveals that for a > 1, the computation of the spectrum is safe.

5.1.2 NIP method

For this test, we set ε = −1 in (8). Since the method is nonsymmetric, the matrix
associated with Ah(·, ·), in general, is nonsymmetric as well. This fact leads to the
presence of complex eigenvalues in the computed spectrum. In order to present the
tables, we only report the real part of the computed eigenvalues.

Table 4 Computed eigenvalues for k = 5, refinement level of the mesh N = 8, and different stabilization
values

a = 1/4 a = 1/2 a = 1 a = 2 a = 4 a = 8

−39.1823755 −45.6379054 −18.0818408 2.4673962 2.4673962 2.4673962

−3.6023959 2.4673962 2.4673962 6.2794043 6.2794091 6.2794108

2.4673962 6.2793257 6.2794179 15.2093787 15.2093935 15.2093991

6.2794411 15.2093065 15.2094129 22.2065655 22.2065655 22.2065655

15.2096639 22.2065655 22.2065655 26.9484479 26.9484594 26.9484637

22.2065654 26.9481586 26.9484956 43.1416731 43.1416927 43.1417001

26.9484204 43.1411160 43.1417131 48.3357858 48.3358742 48.3359077

43.1417325 48.3349732 48.3360290 61.6849041 61.6849041 61.6849042

48.3353715 61.6849040 61.6849041 64.3009605 64.3010269 64.3010520

61.6849040 64.2985669 64.3010532 75.1992565 75.1994045 75.1994604
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Table 5 Computed eigenvalues for k = 6, refinement level of the mesh N = 8, and different stabilization
values

a = 1/4 a = 1/2 a = 1 a = 2 a = 4 a = 8

−17.7169206 2.4673962 −11.5796563 2.4673962 2.4673962 2.4673962

2.4673962 6.2793877 2.4673962 6.2793742 6.2793757 6.2793763

6.2793838 11.9560755 6.2793735 15.2092840 15.2092888 15.2092906

15.2093235 15.2096875 15.2092769 22.2065655 22.2065654 22.2065655

22.2065654 22.2065654 22.2065654 26.9483737 26.9483774 26.9483788

26.9483773 26.9483999 26.9483632 43.1415472 43.1415535 43.1415559

43.1415741 43.1415828 43.1415383 48.3352156 48.3352437 48.3352544

48.3355123 48.3356899 48.3351890 61.6849040 61.6849041 61.6849043

61.6849040 61.6849040 61.6849040 64.3005376 64.3005590 64.3005673

64.2995331 64.3005816 64.3004917 75.1983010 75.1983484 75.1983665

Once again, we fix the refinement level of themesh on N = 8 and consider different
polynomial degrees.

We observe that for the NIP method for any stabilization that we choose and any
polynomial degree, there is no spurious eigenvalues when we compute the spectrum.
This is a better result compared with the SIPmethod. For the IIP, the results are similar.
Hence, we do not incorporate since the conclusion is the same as for the NIP method.

To end this section, we present in Fig. 2 plots of the velocity field associated with
the first three eigenfunctions of the unitary square with mixed boundary conditions,
whereas in Fig. 3, the plots represent the pressure fluctuation on this setting. The plots
have been obtained with a = 10, N = 20 and k = 2 considering the NIP method. We
remark that when the SIP and IIP methods are considered, and for a > 10 and k > 1,
in general, the plots are similar (Tables 6, 7, 8, 9, 10).

Fig. 2 Velocity fields associated with the first, second, and third eigenfunctions. These plots have been
obtained with a = 10, N = 20, and k = 2 for the NIP method
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Fig. 3 Pressure fluctuation associated with the first, second, and third eigenfunctions. These plots have been
obtained with a = 10, N = 20, and k = 2 for the NIP method

Table 6 Computed eigenvalues for k = 2, refinement level of the mesh N = 8, and different stabilization
values

a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1 a = 2

2.4699176 2.4697962 2.4695950 2.4692963 2.4689102 2.4684867

6.2857132 6.2857494 6.2858166 6.2859957 6.2864213 6.2870959

15.2996858 15.2972945 15.2931330 15.2867796 15.2786188 15.2698076

22.4079792 22.3983103 22.3822392 22.3583846 22.3276595 22.2941663

27.1879249 27.1759397 27.1563688 27.1288184 27.0967965 27.0661281

43.9493286 43.9158153 43.8592391 43.7743383 43.6648958 43.5461418

49.2058990 49.1621884 49.0933412 49.0005606 48.8981248 48.8059789

63.2071642 63.1346623 63.0137592 62.8346721 62.6059930 62.3598511

65.7218704 65.6571088 65.5490650 65.3926356 65.2039891 65.0159306

77.3486064 77.2689570 77.1369295 76.9457888 76.7150977 76.4854844

Table 7 Computed eigenvalues for k = 3, refinement level of the mesh N = 8, and different stabilization
values

a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1 a = 2

2.4674078 2.4674077 2.4674075 2.4674073 2.4674070 2.4674067

6.2802294 6.2801095 6.2799319 6.2797152 6.2795241 6.2794457

15.2101531 15.2100221 15.2098849 15.2098225 15.2099299 15.2102326

22.2079387 22.2078653 22.2077461 22.2075775 22.2073748 22.2071695

26.9528604 26.9523855 26.9517237 26.9509595 26.9502662 26.9498301

43.1519319 43.1512400 43.1503727 43.1495236 43.1488604 43.1483415

48.3513208 48.3498997 48.3482557 48.3469812 48.3466700 48.3473697

61.7123006 61.7107512 61.7082435 61.7047107 61.7004727 61.6961768

64.3417568 64.3373979 64.3315462 64.3251209 64.3194410 64.3154425

75.2569989 75.2525652 75.2478248 75.2446788 75.2442038 75.2451066
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Table 8 Computed eigenvalues for k = 4, refinement level of the mesh N = 8, and different stabilization
values

a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1 a = 2

2.4674058 2.4674059 2.4674059 2.4674059 2.4674059 2.4674060

6.2795865 6.2795814 6.2795767 6.2795729 6.2795675 6.2795596

15.2102536 15.2102239 15.2101749 15.2101004 15.2100044 15.2099099

22.2065207 22.2065286 22.2065413 22.2065597 22.2065824 22.2066054

26.9488997 26.9488918 26.9488882 26.9488909 26.9488921 26.9488839

43.1422553 43.1422577 43.1422507 43.1422229 43.1421750 43.1421324

48.3411012 48.3409231 48.3406402 48.3402355 48.3397398 48.3392602

61.6824677 61.6826277 61.6828874 61.6832611 61.6837192 61.6841812

64.3033286 64.3032704 64.3031825 64.3030563 64.3028993 64.3027638

75.2066217 75.2064714 75.2061795 75.2056641 75.2049292 75.2041863

Table 9 Computed eigenvalues for k = 5, refinement level of the mesh N = 8, and different stabilization
values

a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1 a = 2

2.4674060 2.4674060 2.4674060 2.4674060 2.4674060 2.4674060

6.2794252 6.2794287 6.2794323 6.2794344 6.2794338 6.2794321

15.2092443 15.2092618 15.2092863 15.2093154 15.2093452 15.2093721

22.2066536 22.2066536 22.2066537 22.2066538 22.2066539 22.2066540

26.9484447 26.9484537 26.9484655 26.9484771 26.9484859 26.9484931

43.1413330 43.1413616 43.1414069 43.1414695 43.1415428 43.1416123

48.3346507 48.3347519 48.3349064 48.3351104 48.3353415 48.3355657

61.6851085 61.6851111 61.6851154 61.6851215 61.6851287 61.6851358

64.3001194 64.3002303 64.3003835 64.3005606 64.3007361 64.3008948

75.1972111 75.1973821 75.1976577 75.1980454 75.1985012 75.1989331

Table 10 Computed eigenvalues for k = 6, refinement level of the mesh N = 8, and different stabilization
values

a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1 a = 2

2.4674060 2.4674060 2.4674060 2.4674060 2.4674060 2.4674060

6.2793946 6.2793960 6.2793984 6.2794020 6.2794057 6.2794081

15.2093701 15.2093688 15.2093664 15.2093621 15.2093551 15.2093460

22.2066544 22.2066544 22.2066544 22.2066543 22.2066543 22.2066543

26.9484505 26.9484527 26.9484564 26.9484617 26.9484667 26.9484687

43.1417231 43.1417151 43.1417015 43.1416808 43.1416542 43.1416273

48.3358167 48.3358038 48.3357801 48.3357392 48.3356781 48.3356044

61.6851539 61.6851537 61.6851534 61.6851529 61.6851524 61.6851518

64.3011214 64.3011203 64.3011166 64.3011053 64.3010779 64.3010303

75.1993671 75.1993174 75.1992335 75.1991071 75.1989479 75.1987919
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5.2 Rigid square

In this test, we consider as computational domain the square � := (−1, 1)2, and the
considered meshes are like the presented in Fig. 1. We assume the condition u = 0
on the whole boundary �. This implies that the condition

∫

�
p = 0 is incorporated in

the matrix system as a Lagrange multiplier. Our aim is to compare the SIP, NIP, and
IIP methods, particularly on the convergence order of approximation with different
polynomial degrees.

In the forthcoming tables, we present the computed eigenvalues with different
meshes, the order of convergence, and extrapolate values. These values have been
obtained with a least square fitting of the form λhi ≈ λi +Cihαi , whereCi ∈ R, for all
i ∈ N. This fitting has been done for each eigenvalue separately. The fitted parameters
λi and αi are the reported extrapolated vibration frequency λextr and estimated order
of convergence, respectively.

In Tables 11, 12, and 13, we report the first six computed eigenvalues for differ-
ent meshes and different methods. In Table 11, the eigenvalues have been computed
with the SIP method. We observe clearly the double order of convergence. More pre-
cisely, the order of convergence is O(h2k), where k is the polynomial degree. On the

Table 11 Smallest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 8, and ε = 1

k N = 10 N = 20 N = 30 N = 40 Order λextr [20] [19]

1 13.4868 13.1853 13.1272 13.1089 1.98 13.0823 13.0860 13.086

24.1190 23.3116 23.1487 23.1003 1.93 23.0217 23.0308 23.031

24.2360 23.3210 23.1566 23.1019 2.06 23.0321 23.0308 23.031

34.4884 32.6529 32.3007 32.1922 1.99 32.0318 32.0443 32.053

41.3628 39.3010 38.8512 38.7208 1.82 38.4778 38.5252 38.532

44.9594 42.6074 42.1248 41.9708 1.88 41.7251 41.7588 41.759

2 13.0902 13.0865 13.0862 13.0862 3.64 13.0861 13.0860 13.086

23.0465 23.0322 23.0312 23.0311 3.63 23.0309 23.0308 23.031

23.0488 23.0323 23.0312 23.0311 3.68 23.0309 23.0308 23.031

32.1109 32.0562 32.0530 32.0525 3.89 32.0522 32.0443 32.053

38.5981 38.5358 38.5320 38.5314 3.84 38.5310 38.5252 38.532

41.8338 41.7630 41.7582 41.7576 3.69 41.7570 41.7588 41.759

3 13.0862 13.0861 13.0861 13.0861 5.31 13.0861 13.0860 13.086

23.0312 23.0310 23.0310 23.0310 5.26 23.0310 23.0308 23.031

23.0312 23.0310 23.0310 23.0310 5.52 23.0310 23.0308 23.031

32.0530 32.0523 32.0523 32.0523 5.27 32.0523 32.0443 32.053

38.5320 38.5311 38.5312 38.5312 5.78 38.5312 38.5252 38.532

41.7584 41.7572 41.7572 41.7572 5.44 41.7572 41.7588 41.759
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Table 12 Smallest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 8, and ε = −1

k N = 10 N = 20 N = 30 N = 40 Order λextr [20] [19]

1 13.2778 13.1302 13.1034 13.0959 2.10 13.0849 13.0860 13.086

23.5280 23.1602 23.0847 23.0614 1.89 23.0233 23.0308 23.031

23.6616 23.1602 23.0863 23.0614 2.35 23.0381 23.0308 23.031

33.1704 32.3229 32.1674 32.1140 2.02 32.0454 32.0443 32.053

39.9729 38.8834 38.6743 38.6146 2.01 38.5209 38.5252 38.532

43.4244 42.1522 41.9255 41.8515 2.08 41.7573 41.7588 41.759

2 13.1217 13.0946 13.0896 13.0881 2.05 13.0860 13.0860 13.086

23.1337 23.0561 23.0413 23.0370 2.02 23.0305 23.0308 23.031

23.1411 23.0573 23.0417 23.0371 2.05 23.0304 23.0308 23.031

32.3113 32.1066 32.0740 32.0645 2.28 32.0533 32.0443 32.053

38.8366 38.6011 38.5597 38.5481 2.14 38.5317 38.5252 38.532

42.0862 41.8367 41.7903 41.7765 2.05 41.7566 41.7588 41.759

3 13.0865 13.0861 13.0861 13.0861 4.44 13.0861 13.0860 13.086

23.0324 23.0311 23.0310 23.0310 4.03 23.0310 23.0308 23.031

23.0328 23.0311 23.0310 23.0310 4.13 23.0310 23.0308 23.031

32.0570 32.0526 32.0523 32.0523 3.96 32.0523 32.0443 32.053

38.5372 38.5315 38.5312 38.5312 3.95 38.5312 38.5252 38.532

41.7649 41.7577 41.7573 41.7572 3.89 41.7572 41.7588 41.759

Table 13 Smallest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 8, and ε = 0

k N = 10 N = 20 N = 30 N = 40 Order λextr [20] [19]

1 13.3569 13.1507 13.1121 13.1006 2.04 13.0840 13.0860 13.086

23.7551 23.2185 23.1080 23.0759 1.91 23.0217 23.0308 23.031

23.8801 23.2185 23.1121 23.0759 2.22 23.0378 23.0308 23.031

33.6842 32.4475 32.2166 32.1427 2.02 32.0410 32.0443 32.053

40.4995 39.0387 38.7391 38.6536 1.92 38.5080 38.5252 38.532

44.0067 42.3206 41.9984 41.8950 1.98 41.7463 41.7588 41.759

2 13.1073 13.0909 13.0880 13.0872 2.15 13.0861 13.0860 13.086

23.0943 23.0453 23.0368 23.0343 2.16 23.0310 23.0308 23.031

23.0993 23.0460 23.0369 23.0344 2.20 23.0311 23.0308 23.031

32.2209 32.0837 32.0645 32.0590 2.47 32.0535 32.0443 32.053

38.7298 38.5716 38.5472 38.5406 2.34 38.5325 38.5252 38.532

41.9738 41.8035 41.7758 41.7680 2.26 41.7583 41.7588 41.759

3 13.0864 13.0862 13.0861 13.0861 4.49 13.0861 13.0860 13.086

23.0319 23.0310 23.0310 23.0310 4.06 23.0310 23.0308 23.031

23.0322 23.0311 23.0310 23.0310 4.21 23.0310 23.0308 23.031

32.0554 32.0525 32.0523 32.0523 4.04 32.0523 32.0443 32.053

38.5352 38.5314 38.5312 38.5312 4.04 38.5312 38.5252 38.532

41.7623 41.7575 41.7573 41.7572 3.99 41.7573 41.7588 41.759
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Fig. 4 Velocity fields associated with the first, second, and third eigenfunctions. These plots have been
obtained with a = 8, N = 30, and k = 3 for the NIP method

other hand, for the nonsymmetric methods, a variation on the order of convergence is
observed.

Tomakematters precise, in bothmethods (for ε ∈ {−1, 0}),when k is even, the order
of convergence is O(hk), whereas when k is odd, the order is O(hk+1). These results
are expectable, since when the DGmethod has been applied in other contexts as in [3]
for Maxwell’s spectral problem, the behavior on the computed order of convergence
for symmetric and nonsymmetric methods is similar to our problem. Also, for the
pseudostress formulation of the Stokes spectral problem analyzed in [17], the order
of convergence is also the same.

An important fact on the computation of the spectrum when the nonsymmetric
methods are considered is the complex eigenvalues. In some cases, these complex
results arise. For example, for theNIPmethod (ε = −1), k = 1 and N = 20, the second
and third eigenvalues, which are double, are in fact λh = 23.160181519681554 ±
0.003363156781536 i , where the imaginary part is small compared with the real part
of the eigenvalue. For the IIP method (ε = 0), we have observed, for k = 1, a similar
result, i.e, λh = 23.218511272886694 ± 0.001801568783833 i . When k > 1, we
have not observed complex eigenvalues on the computed spectrum.

We end this test presenting plots of the velocity fields (Fig. 4) and pressure fluctu-
ations (Fig. 5) for the rigid square domain. These plots have been obtained with the
NIP method, for a = 8, N = 30, and k = 3.

Fig. 5 Pressure fluctuation associated with the first, third, and fourth eigenfunctions. These plots have been
obtained with a = 8, N = 30, and k = 3 for the NIP method
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5.3 Circular, non-convex, and three dimensional domains

In the following tests, we are only interested in the computation of convergence order
for the method, for different domains. In particular, the domains under consideration
are a unit circle, an L-shaped domain, and a cube. On each domain, we consider the
SIP, NIP, and IIIP methods.

5.3.1 Circular domain

In this test, we consider the unitary circle as computational domain, which we define
by�C := {(x, y) ∈ R

2 : x2+ y2 ≤ 1}. The relevance of this experiment is that we are
approximating a curved domain with triangular meshes, which lead to a variational
crime. As before, we consider the symmetric and nonsymmetric methods for this
domain, and the results are reported for SIP, NIP, and IIP methods in Tables 14,
15, and 16, respectively. We mention that all the computed eigenvalues have been
computed for a = 8 and polynomial degrees k = 1, 2, 3 in each of the DG methods.

It is clear from Tables 14, 15, and 16 that for each DG method and for every
polynomial degree, the order of convergence is O(h2). These order of convergence
are expectable due to the the variational crime committed when a curved domain
is approximated with polygonal meshes (which in our case are meshes consisting
in triangles). These results have been also observed in other formulations for the

Table 14 Smallest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 8, and ε = 1

k N = 4 N = 8 N = 16 N = 32 Order λextr

1 15.8494 14.9674 14.7535 14.6999 2.04 14.6839

29.9807 27.3034 26.6097 26.4337 1.95 26.3693

29.9807 27.3034 26.6097 26.4337 1.95 26.3693

50.2529 43.2118 41.3401 40.8653 1.92 40.6810

50.2529 43.2118 41.3401 40.8653 1.92 40.6810

59.2113 51.9202 49.9222 49.3980 1.88 49.1922

2 14.9900 14.7375 14.6939 14.6847 2.50 14.6835

26.9900 26.4785 26.3962 26.3795 2.60 26.3780

26.9890 26.4785 26.3962 26.3795 2.60 26.3780

41.9030 40.8829 40.7408 40.7141 2.80 40.7130

41.9030 40.8829 40.7408 40.7141 2.80 40.7130

50.7293 49.4371 49.2603 49.2278 2.83 49.2268

3 14.8907 14.7285 14.6929 14.6846 2.18 14.6826

26.7540 26.4582 26.3943 26.3793 2.19 26.3756

26.7540 26.4582 26.3943 26.3793 2.19 26.3756

41.3050 40.8358 40.7368 40.7137 2.23 40.7088

41.3050 40.8358 40.7368 40.7137 2.23 40.7088

49.9456 49.3750 49.2553 49.2273 2.23 49.2211
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Table 15 Smallest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 8, and ε = −1

k N = 4 N = 8 N = 16 N = 32 Order λextr

1 15.1752 14.7935 14.7097 14.6889 2.16 14.6841

28.3699 26.8179 26.4826 26.4015 2.19 26.3835

28.3699 26.8179 26.4826 26.4015 2.19 26.3835

46.3610 41.9450 41.0018 40.7794 2.21 40.7297

46.3610 41.9450 41.0018 40.7794 2.21 40.7297

55.7968 50.6705 49.5649 49.3036 2.19 49.2397

2 15.2105 14.7898 14.7063 14.6877 2.31 14.6840

27.4084 26.5935 26.4251 26.3867 2.26 26.3787

27.4084 26.5935 26.4251 26.3867 2.26 26.3787

42.6661 41.1105 40.7999 40.7290 2.30 40.7156

42.6661 41.1105 40.7999 40.7290 2.30 40.7156

51.5893 49.7150 49.3336 49.2462 2.27 49.2276

3 14.8772 14.7259 14.6925 14.6846 2.17 14.6827

26.7505 26.4551 26.3937 26.3792 2.24 26.3761

26.7505 26.4551 26.3937 26.3792 2.24 26.3761

41.3482 40.8348 40.7362 40.7136 2.35 40.7100

41.3482 40.8348 40.7362 40.7136 2.35 40.7100

49.9642 49.3705 49.2541 49.2271 2.32 49.2225

Table 16 Smallest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 8, and ε = 0

k N = 4 N = 8 N = 16 N = 32 Order λextr

1 15.4590 14.8634 14.7270 14.6932 2.11 14.6843

29.0491 27.0132 26.5331 26.4142 2.07 26.3792

29.0491 27.0132 26.5331 26.4142 2.07 26.3792

48.0037 42.4555 41.1356 40.8131 2.07 40.7190

48.0037 42.4555 41.1356 40.8131 2.07 40.7190

57.2308 51.1762 49.7074 49.3410 2.04 49.2302

2 15.1067 14.7651 14.7004 14.6863 2.38 14.6840

27.2123 26.5397 26.4115 26.3833 2.37 26.3787

27.2123 26.5397 26.4115 26.3833 2.37 26.3787

42.3108 41.0046 40.7723 40.7220 2.46 40.7156

42.3108 41.0046 40.7723 40.7220 2.46 40.7156

51.1920 49.5856 49.2994 49.2376 2.46 49.2298

3 14.8832 14.7270 14.6927 14.6846 2.17 14.6825

26.7517 26.4564 26.3939 26.3793 2.22 26.3760

26.7517 26.4564 26.3939 26.3793 2.22 26.3760

41.3275 40.8351 40.7364 40.7136 2.29 40.7092

41.3275 40.8351 40.7364 40.7136 2.29 40.7092

49.9551 49.3724 49.2546 49.2272 2.28 49.2220
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Fig. 6 Velocity fields associated with the first, second, and third eigenfunctions. These plots have been
obtained with a = 10, N = 32, and k = 2 for the IIP method

Stokes eigenproblem, as the primal pseudostress formulation of [17]. In Figs. 6 and
7 we present plots for the velocity fields and pressure fluctuation, respectively for the
circular domain.

5.3.2 L-shape domain

In this numerical test, we consider an L-shape domain given by � := (−1, 1) ×
(−1, 1)\[−1, 0]× [−1, 0]. The order of convergence for the eigenvalues of this test is
1.7 ≤ s ≤ 2 (see [19] for instance), where this fluctuation depends on the smoothness
of the corresponding eigenfunctions.

For sake of simplicity, we present results for the lowest order polynomial approx-
imation (k = 1). On Table 17 we present the computed eigenvalues on the L-shaped
domain.

For this geometry, we observe that the results for SIP, NIP, and IIP are the expected.
No complex eigenvalues were observed when the NIP and IIPmethods are considered.
Also, we observe that for the three methods, the order of convergence for the first
eigenvalue is similar, due to the lack of smoothness of the associated eigenfunction.
Finally, in Fig. 8, we present plots of the velocity fields, whereas in Fig. 9, we present
pressure fluctuations on the L-shaped domain, both computed with the SIP method.

Fig. 7 Pressure fluctuation associated with the first, second, and fourth eigenfunctions. These plots have
been obtained with a = 10, N = 32, and k = 2 for the IIP method
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Table 17 Smallest computed eigenvalues for polynomial degree k = 1, a = 8, and ε = 1, ε = −1 and
ε = 0, respectively

Method N = 12 N = 16 N = 20 N = 24 N = 28 Order λextr

SIP 35.0389 33.8121 33.3939 32.9322 32.7651 1.75 32.1046

39.9709 38.4941 38.0245 37.7078 37.5065 2.50 37.2246

45.9889 43.9096 43.2586 42.8401 42.5753 2.68 42.2343

54.6011 51.9578 50.9847 50.2794 49.9092 2.15 49.0392

NIP 34.0110 33.2248 32.9082 32.6127 32.5480 1.84 32.1356

39.0586 37.9569 37.6712 37.4868 37.3246 2.98 37.2234

44.6660 43.2138 42.7825 42.5178 42.3335 2.84 42.1430

52.7546 50.8729 50.2630 49.8289 49.5408 2.38 49.1056

IIP 34.0153 33.2267 32.9225 32.6196 32.5397 1.77 32.1007

39.0557 37.9865 37.6850 37.4885 37.3325 2.80 37.1974

44.6968 43.2560 42.8196 42.5363 42.3534 2.74 42.1374

52.7985 50.9476 50.3094 49.8474 49.5773 2.26 49.0615

Fig. 8 Velocity fields associated with the first, second, and third eigenfunctions. These plots have been
obtained with a = 10, N = 28, and k = 1, for the SIP method

Fig. 9 Pressure fluctuation associated with the first, third, and fourth eigenfunctions. These plots have been
obtained with a = 10, N = 28, and k = 1, for the SIP method
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Fig. 10 Examples of the meshes used in the unit cube. The left figure represents a mesh for N = 4, the
center figure for N = 8, and the right figure for N = 12

5.3.3 Cubic domain

In this test, we further assess the proposed schemes by consider a three-dimensional
domain that consists on a cube defined by� = (0, 1)3. Here, N represents the number
of cell per side such that the number of tetrahedron is 6(N +1)3. In Fig. 10, we present
examples of the meshes used in the cube domain. We report, for simplicity, results for
k = 1.

Table 18 Smallest computed eigenvalues for polynomial degree k = 1, a = 8, and ε = 1, ε = −1 and
ε = 0, respectively

Method N = 8 N = 10 N = 12 N = 14 Order λextr

SIP 64.8876 63.9227 63.3887 63.0640 1.92 62.1178

65.7615 64.5206 63.8210 63.3899 1.84 62.0721

65.7615 64.5206 63.8210 63.3899 1.84 62.0721

97.8478 95.8009 94.6153 93.8668 1.70 91.3605

97.8478 95.8009 94.6153 93.8668 1.70 91.3605

101.5515 99.8105 98.7939 98.1556 1.68 95.9760

NIP 63.4782 62.9610 62.6975 62.5461 2.30 62.1906

63.9410 63.2622 62.9081 62.7013 2.19 62.1859

63.9410 63.2622 62.9081 62.7013 2.19 62.1859

94.8467 93.6714 93.0361 92.6546 2.02 91.6089

94.8467 93.6714 93.0361 92.6546 2.02 91.6089

98.5714 97.6962 97.2347 96.9664 2.17 96.2883

IIP 63.8465 63.2119 62.8776 62.6808 2.15 62.1808

64.4919 63.6407 63.1815 62.9068 2.04 62.1633

64.4919 63.6407 63.1815 62.9068 2.04 62.1633

95.6764 94.2720 93.4870 93.0033 1.86 91.5433

95.6764 94.2720 93.4870 93.0033 1.86 91.5433

99.3797 98.2708 97.6582 97.2891 1.94 96.2217
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Table 18 reports the computed spectrum with the three methods considered in our
work. We observe that for SIP, NIP, and IIP methods, the quadratic order is clear.
In particular, for the SIP method, the order of convergence of the double eigenvalue
λ3 = λ4 is lower compared with the rest of the eigenvalues, whereas for the NIP and
IIP methods, the order O(h2) is recovered with no problems.
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